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Abstract We study possible restrictions on the structure of curvature correc-
tions to gravitational theories in the context of their corresponding Kac-Moody
algebras, following the initial work on £ in Damour and Nicolai [Class Quant
Grav 22:2849 (2005)]. We first emphasize that the leading quantum corrections
of M-theory can be naturally interpreted in terms of (non-gravity) fundamental
weights of E1o. We then heuristically explore the extent to which this remark
can be generalized to all over-extended algebras by determining which curva-
ture corrections are compatible with their weight structure, and by comparing
these curvature terms with known results on the quantum corrections for the

corresponding gravitational theories.
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1508 T. Damour et al.

1 Introduction

The study of the BKL limits [1] of coupled gravity-matter systems near a
space-like singularity has revealed an interesting ‘correspondence’ between
the emerging cosmological billiard and over-extended Kac—Moody algebras
(KMAs). The cosmological billiard describes the dynamics of a few effective
degrees of freedom (spatial Kasner exponents and dilatons) moving in a space
bounded by walls that become sharper as one goes towards the singularity. The
unexpected connection to the theory of KM As is that the position of these walls
is related to root vectors in the root lattice of certain special KMAs called the
over-extended algebras [2,3] (for a review and references see [4]). Important
aspects of the classical two-derivative action are reflected in algebraic proper-
ties of the corresponding KM As. For example, regularity or chaos of the motion
as one approaches the singularity is tied to hyperbolicity of the algebra [5]: for
hyperbolic KM As there is chaos.

In recent work devoted to M-theory [6], it was shown that the higher-deriv-
ative quantum corrections to the action admit an interpretation in terms of the
Kac-Moody structure. More precisely, higher-order corrections in the curva-
ture (Riemann or Weyl) tensor and the 4-form field strength were associated
in [6] to certain negative imaginary roots on the Ej( root lattice. There are two
reasons for the potential importance of this result, namely (i) the possibility
that the ‘geodesic’ E1g/K(E1g) o-model may contain hidden information about
(perturbative) higher order corrections of M-theory to arbitrary orders, and (ii)
the fact that this result may allow one to understand the physical significance
of imaginary roots (recall that, also on the mathematical side, this is where the
main obstacles towards a better understanding of indefinite KM As lie).

Here, we elaborate on these results and conjecturally generalize them to
other over-extensions of finite-dimensional simple Lie algebras.! For simplicity,
we only consider the pure curvature corrections, which provide the dominant
terms; the generalization of our results to other types of fields (p-forms) is
straightforward, at least in principle.?

We first observe that the imaginary roots that describe the quantum cor-
rections in the Eqy case are not just any arbitrary roots but, rather, are the
dominant non-gravity weights. More precisely, as shown in Sect. 3 below, the
root of E1g associated with the leading terms in the first quantum corrections R*
quartic in the curvature turns out to be the fundamental weight A1y conjugate
to the ‘non-gravity’ root «;g, i.e., to the (‘exceptional’) root which does not lie
on the Ay = s5[(10) ‘gravity line’ (see Fig. 1). This property ensures that Ay is
invariant under permutations of the spatial directions (Weyl group of s[(10)).
The leading terms in the expected subsequent quantum corrections R’, R'” etc.
are associated with positive integer multiples of A1y and are thus also invariant
under the Weyl group of s[(10).

L The particular case of over-extended G, was already analysed in [7].

2 Corrections involving field strengths give rise to billiard walls which are ‘hidden’ behind those
from curvature corrections [6].

@ Springer
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Fig. 1 Dynkin diagram of E with numbering of nodes

This suggests that it might not be the root lattice which is relevant for the
correction terms, but rather the weight lattice. We recall that the weight lattice
is the lattice spanned by the fundamental weights A; obeying

2(Ailey)
(ailoy) i @

where the «; are the simple roots spanning the root lattice. The weight lattice
always contains the root lattice as a sublattice but is generically finer. We also
recall that the set of ‘dominant weights’ is defined by taking integral linear
combinations of the fundamental weights with non-negative coefficients. Cor-
respondingly, we define ‘dominant non-gravity weights’ by taking non-negative
integral linear combinations of those fundamental weights not conjugate to
roots on the ‘gravity line’. Here, we shall generally define the ‘gravity line’ by
the simple roots associated with the so-called ‘symmetry walls’, i.e., the Ham-
iltonian contributions which are related to the off-diagonal components of the
metric [4].

The purpose of this paper is to explore to what extent this ‘botanical obser-
vation’ inspired by the M-theory/E7y analysis (concerning the role of domi-
nant non-gravity weights of the corresponding over-extended KMA), can be
extended to higher-order curvature corrections in other (super)gravity models.
We shall therefore systematically determine, for all over-extended Kac—-Moody
algebras which higher order curvature corrections are associated with dominant
non-gravity weights, and compare the results of this heuristic ‘algebraic selec-
tion rule’ to the currently known quantum corrections for the corresponding
gravitational theories.

For E, the root and the weight lattices happen to coincide, and therefore
the distinction between weights and roots did not play any role in the analysis
of [6]. In fact, Eq is the only over-extended KMA for which the root lattice
(usually designated by Q(E1¢)) has this property: Q(E19) = Ilg; is the unique
even self-dual Lorentzian lattice in ten dimensions, and such lattices are known
to exist only in 2 4 8n dimensions [8].

For other algebras, however, we will find that there are correction terms
associated with genuine weights outside the root lattice. This fact appears to
imply that these corrections cannot be described within the geodesic o-model,
and that one will have to augment the o-model Lagrangian by additional terms
related to these weights if the correspondence is to be extended to higher order
corrections. Put differently, it is only for the maximally extended Eiy model that
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1510 T. Damour et al.

one can argue, as was done in [6], that not only the effective low energy theory,
but the entire tower of higher-order corrections might be understood on the basis
of a single geodesic o-model Lagrangian.

Even in the Eq case, the observation that the imaginary roots that arise are
actually fundamental weights sheds a new, potentially interesting, light on the
structure of the subleading quantum corrections since fundamental weights are
naturally linked with representations. We indicate that the pattern for these
subleading terms uncovered in [6] is indeed similar to that of a lowest-weight
representation (albeit a non-integrable one).

The assumption explored here that quantum corrections are controlled by
dominant non-gravity weights gives us restrictions on the type of curvature
corrections which are consistent with the algebraic structure. We have analy-
sed these restrictions for all over-extended algebras g™ in split real form. The
resulting restrictions are quite satisfactory for M-theory — as originally found
in [6] — but there are mismatches which remain to be understood for the other
string-related cases. This is particular striking for types IIA and IIB, where
some corrections known to appear do not define points on the weight lattice.
Although this can be blamed on the singular field theory limits involved in
passing from M-theory to the ten-dimensional models, we lack a deeper group-
theoretical reason as to why one finds perfect matching in some cases and not
in others.

Our paper is organized as follows. We first recall how to compute the walls
for a given Lagrangian and powers of the curvature tensor in Sect. 2. Section 3
re-examines the case of eleven-dimensional gravity and E( using the dominant
weight perspective. In Sect. 4 we then repeat the analysis for D Ey and BE for
which the introduction of the weight lattice becomes evident. The analogous
results for the remaining over-extended algebras are presented in Sect. 5, illus-
trating the particular properties of the ten-dimensional hyperbolic KMAs in
the class of all over-extended algebras. In Sect. 6, we analyse Ejp under decom-
positions appropriate for interpretations in terms of the ten-dimensional IIA
and IIB theories. Concluding remarks can be found in Sect. 7.

2 Weights and curvature monomials

We follow the systematics of [4,3] for constructing walls corresponding to any
term in an effective Lagrangian of the form

L=L0+> @y, )

m>1

where £(© is the lowest order Lagrangian (quadratic in derivatives), and L is a
dimensionful expansion parameter of dimension [Length] for the higher deriv-
ative correction terms £=1, The integer s depends on the theory in question;
for instance, in the case of string theories one has s = 2 and L? = «’. We will
take £ to be the Lagrangian of the maximally oxidized theory for a simple

@ Springer



Curvature corrections and Kac-Moody compatibility conditions 1511

split Lie algebra g. These Lagrangians were studied and given in [9]; in partic-
ular, the maximal space-time dimension D = (d 4+ 1) was determined for all
g. The wall forms are already completely determined by £© [4,3]. They are
parametrized by a dilaton field ¢ (when it exists in dimension D), and by the
logarithmic scale factors B* (for a = 1,...,d), which appear via the following
split of the spatial vielbein

e,a = exp(—B9)6,a (3)

where the spatial frame 67, ‘freezes’ near the singularity [4]. These wall forms
are explicitly written as

d
w(B.9) = D _paB* + pyp. (4)

a=1

The inner product between two such wall forms w and w’ is determined from
the Hamiltonian constraint following from the Einstein—-Hilbert action in the
standard way, and given by 3

d d d
1
WIw) =D papy — = | 2oPa | | 22P4 | +2PoP)- (5)
a=1

a=1 a=1

For KMAs with non-symmetric generalized Cartan matrix this will yield the
symmetrized form with some values different from 2 on the diagonal since not
all roots have the same length. For later use, we also define the logarithm of the
spatial volume factor dete = /g, namely

o= Z,B”. (6)

Near a space-like singularity, the Lagrangian (2) can be replaced by an effec-
tive Lagrangian describing the dynamics of the logarithmic scale factors ¢ and
the dilaton ¢ in an effective potential V that behaves asymptotically like a sum
of (exponentially sharp) billiard walls

V(B.g) ~ D cpe 2P (7)

3 Our conventions here differ from [3] by a factor of 2 for the dilaton terms since we normalize
the dilaton kinetic term with a factor of 1/2 in the Einstein frame. When there are several dilaton
fields ¢ = (¢1,¢2,...), the dilaton contributions in the wall forms and the wall scalar product read
- — 7 = :

Po-¢ and2p, - p g, respectively.
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1512 T. Damour et al.

for a number of walls w. In all cases, the dominant walls (those which have the
largest contribution in the limit) are located at positions describing the funda-
mental Weyl chamber of the Kac-Moody-theoretic over-extension g™ of the
symmetry algebra g [4].

For simplicity, we will be concerned with curvature correction terms of the
type* (withs =2 and L? = ')

LND ~ /ZG RNeK?, (8)

As was shown in [6] the dominant contribution of such a term to the Hamilto-
nian density scales as

e2(N—1)0—&-Kgo (9)

in the asymptotic limit. Equating this with a Hamiltonian wall potential e=2"(£-#)
yields the corresponding wall form

1
wnk(B,9) =—(N —1)o — §K<P- (10)

(or wN,K(ﬂ,E)) = —(N-10o — (1/2)7(Z . ¢ in the multi-dilaton case). It is
important to keep in mind that (10) is the form of the wall in the Einstein frame.
In order to make contact with known results from string perturbation theory
it will be necessary to convert such a wall into the string frame. The notion of
Einstein frame exists in any dimension, and means that the Einstein—Hilbert
term appears without dilatonic prefactors. By contrast, the notion of string
frame most readily applies in D = 10 dimensions, and means that the tensor—

scalar part of the action reads e 2%/ —G(R+4(d®)?), where @ is the standard
string dilaton field (with gg = e®). This parametrization is natural if there is
an underlying world-sheet theory in which ® couples to the world-sheet curva-
ture scalar. The effective theory will then admit an expansion in genera of the
world-sheet and higher order corrections at g-loop order in string theory come
with a factor e?8~2®,

In ten dimensions the relation between the two frames, and the two dilatons,
as obtained by identifying’

M[R - %(a(p)z] - e*zq’\/—»G[R +4(39)?] (11)

4 Here, RN denotes some Nth-order polynomial in the curvature tensor. Note that, while the
inclusion of Ricci and scalar curvature terms do not matter for the leading terms, they do for the
subleading ones [6].

5~ Where the tilde on 0 indicates that the partial derivatives are to be contracted with the metric
GM
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Curvature corrections and Kac-Moody compatibility conditions 1513

reads
Gun = eMP%Gyy; o =g, (12)
where Gy and Gy denote the metrics in the Einstein frame and the string

frame, respectively. The corresponding relation for the higher order terms is
therefore

V=GRN = /DWN=5¢ | _GRN 4 ... (13)

From this we immediately read off the formula relating the coefficient K multi-
plying the dilaton for the corresponding wall forms between the two frames in
ten dimensions, which reads

1
K — Kstring = K —+ E(N — 5) (14)

In our survey of KMAs we will also make use of the generalization of this for-
mula to D # 10 dimensions. Here, we define the string frame in any dimension
D by requiring that the tensor—scalar sector of the action density reads as the
right-hand side of Eq. (11) above. This yields

- D -2
Gun = eYP DGy, & = e d (15)

instead of the D = 10 result (12) above. The corresponding generalization of
the transformation law for the dilaton coupling coefficient reads

[ 8 2
Kstring = D—2 K+ D— 2(2N — D). (16)

3 E; revisited

3.1 Non-gravity weight Ajg and R* correction

We briefly recall the result of [6] for D = 11 supergravity and Ey = Eé“’, for
which there is no dilaton present. The dominant walls (=simple roots) are given

explicitly by

a; = (0,0,0,0,0,0,0,0,-1,1) = o) =-p°+8",

a9 = (~1,1,0,0,0,0,0,0,0,0) =  a9(B) =—B'+ 8%
a0 = (1,1,1,0,0,0,0,0,0,0) = ) =+ B2+ B
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1514 T. Damour et al.

Here the components of each root are the ‘covariant’ coordinates p, in the 8¢
basis of Eq. (4) (with d = 10, and without dilaton contribution). We use the
numbering of nodes and simple roots indicated in Fig. 1. In [6], it was demanded
that any (leading) correction be associated with a root. Since there is no dilaton,
this amounts to requiring —(N — 1)o to be a root. This occurs only when N — 1
is an integer multiple of 3. The smallest value, N — 1 = 3, yields the imaginary,
negative root —3o, which has length squared —10.

Now, the crucial observation made here is that —3o corresponds to the non-
gravity fundamental weight A

A =-@G,3,3,3,3,3,3,3,3,3) = A =-30 17)

conjugate to ag by (1). Therefore, asking that the higher curvature corrections
be associated with dominant non-gravity weights, i.e. of the type aA g for some
non-negative integer a, reproduces the result of [6] for the Ejg prediction of
curvature corrections to D = 11 supergravity. Indeed, equating aA1g = —3ac
to —(N — 1)o from (10) yields N = 3a + 1, i.e. allowed curvature corrections
R34 thatis R*, R, R0, .. ..

3.2 Subleading terms and representations

The pattern found in [6] for the subleading terms in the R* supersymmetry
multiplet is also reminiscent of lowest weight (non-integrable) representations
since the weights associated with these subleading terms (which are, in the
Ej case, all on the root lattice) were found to be obtained by adding positive
roots to the dominant weight A1g. This weight pattern does correspond to (the
beginning of) a representation of Ejg, with Aqy as lowest weight. It is easily
checked that the wall forms corresponding to the supersymmetry multiplets of
the higher-order curvature corrections R'*3 will similarly resemble the weight
patterns of representations with lowest weight aA .

However, these representations are not the usually considered ‘integrable
lowest-weight’ representations [10]. Indeed, integrable lowest-weight repre-
sentations must have the negative of dominant weights as lowest weight. This is
illustrated in Fig. 2 .

With the convention that simple roots are in the future of the basic spacelike
hyperplane separating positive from negative roots, the fundamental weights
are located in the past light cone. A typical integrable lowest-weight diagram
would then lie within the future light cone and would extend upwards from
the negative of a dominant weight® (see upper part of Fig. 2). By contrast, the
formal weight pattern corresponding to the curvature correction R3¢ extends
upwards from aAg, which lies in the middle of the past light cone. There-
fore, if these weight patterns do correspond to lowest-weight representations,

6 Similarly, a highest weight representation would extend downwards from a dominant weight in
the past lightcone.
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Curvature corrections and Kac-Moody compatibility conditions 1515

Fig.2 Comparison between
the weight pattern of a typical
integrable lowest-weight
representation (within the
future light cone), and the
weight patterns corresponding
to the supersymmetry
multiplets of the curvature
corrections in M-theory. The
weight pattern corresponding
to R34 extends upward
from the lowest weight

a1y = —3ao which lies
within the past light cone

these must be of the non-integrable type (which has not been thoroughly stud-
ied because of its greater mathematical complexity). [We have not checked
whether multiplicities match for the weights that are actually present.] It is
interesting to point out that among the subleading terms analysed in [6], some
correspond to weights Ay + « involving positive imaginary roots « up to the
Ag level 8.

It is also interesting to remark that there is another similarity between the
pattern of weights entering curvature corrections, and the weight diagrams of
integrable lowest-weight representations. The weight diagrams {A} of integra-
ble lowest-weight representations can be shown [10] to be contained in the
convex hull of the quadric A? = A120W ost Passing by the lowest weight Ajowest-
Rather similarly, it was ‘botanically’ observed in [6] that all the wall forms in
the R* supermultiplet considered there are contained within a quadric defined
by the equation (A — Ajowest)> = 2. Another observation is that the enveloping
hyperboloid becomes broader as one moves deeper into the past light cone. For
Ajowest = 2A10 the condition is (A — Ajowest)> < 8. These facts are illustrated
in Fig. 2.

4 Correction terms for other rank 10 KMAs

We shall now investigate how the weight structure fits with the other over-exten-
sions which have, in general, more than one non-gravity root.

@ Springer



1516 T. Damour et al.

4.1 DEjg

We start with DEjo = D ™. This rank 10 hyperbolic KMA is associated with
the bosonic part of pure type I supergravity [2,11]. The corresponding string
theory (type T') is obtained from type I string models by dropping the vector
multiplet and keeping only the gravity multiplet (through a positive charge
orientifold plane). Note that the bosonic sector is also identical with the low
energy effective action of the closed bosonic string in ten space-time dimen-
sions. Because D E is hyperbolic, its fundamental weights are within or on the
past lightcone. Thus, the dominant weights that are also roots are necessarily
negative, imaginary roots.
There is one dilaton and the wall forms in this case are given by

Q) = (0, 0’ 0’ 0’ 0’ Oa 0’ _1a 1a0)

ag = (_1’ 1’ Oa Oa 0505()90)0’0)
a9 = (1’1’0,070’0’03030;_%)
aip = (1,1,1,1,1,1,0,0,0;+3) (18)

The components listed here are the ‘covariant’ coordinates (pg, py) in the (8%, ¢)
basis of Eq. (4). We use the numbering of nodes indicated in Fig. 3. The first
eight nodes give rise to the symmetry walls (hence they form the gravity line)
and the nodes 9 and 10 correspond to the NSNS 2-form and its dual 6-form,
respectively.

The non-gravity fundamental weights are Ag and A1g; explicitly

3 1
A9(ﬁ9 (P) = —0 — Zgo, AlO(ﬂ? §0) =—-0+ Z(p (19)

Being a sublattice of Q(E1g) (DEqg is a subalgebra of E [12]), the root lattice
Q(DE)p) is not self-dual.” In fact, neither Ag nor Ajg is on the root lattice of
DE;. This is easy to verify for Ajg, which has norm squared equal to —1, and
can also be checked for Ag (which is lightlike). Note that the non-gravity fun-
damental weight Afom of Ejgis a positive linear combination of the non-gravity
fundamental weights of D Eq,

A = Ao + 2410 (20)

7 The well-known link between the 11-dimensional metric and 3-form of M-theory on the one
hand and the type-IIA 10-dimensional metric, dilaton and p-forms on the other hand, dictates
the embedding used here. By comparing Eq. (18) with Eq. (31) below, one sees that the simple

roots of DEq( are given in terms of the simple roots of Eq( through a,—DEm = a,-Em (i=1,...,8),

DE, E, DE, E, E,
g 0= alOO and o 0= 20 04 2a100 + 3ag + 4a7 + 30 + 205 + 4.
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Fig.3 Dynkin diagram of D E{ with numbering of nodes

As explained above, we shall explore here the generalized conjecture that
curvature corrections correspond to positive integer combinations of non-grav-
ity fundamental weights. Let us then consider, within the context of D Eq, the
dominant weight aAg + bAqg, with a, b some non-negative integers. Equating
this form with a putative curvature form of the type of (10) gives the Einstein
frame result

3 1

In terms of string frame variables [see (14)] we obtain
N=1+a+b, Ksying=—2+2a. (22)

This result has the following properties

e The dilaton coefficients in the string frame which are compatible with D Eyq
are those which appear in the genus expansion of closed string perturbation
theory, with the coefficient a of Ag ‘counting’ the number of string loops. We
do not have an understanding of why the ten-dimensional hyperbolic alge-
bra encodes this ‘stringy’ property outside of supergravity. We will see this
rather tantalizing property also occurs for the Kac—-Moody correspondants
of some of the other ten-dimensional theories to be studied below.

e For fixed power N of the curvature correction R" only a finite number of
values for a, b are allowed (since we assumed that aAg + bAq( is dominant,
i.e.a,b > 0). In view of the string loop interpretation above, this means that
only contributions to RV from string diagrams with at most N — 1 loops are
consistent with the structure of the D E weight lattice.

e The first KM-allowed curvature corrections are at order R? and arise when
the pair (a, b) takes the values (0,1) or (1,0). Neither of these weights is
a root. The accompanying power of the dilaton in the string frame is e ~>®
in the first case and e’® in the second case suggesting an interpretation as
string tree level and string one loop contribution, respectively.

e Another curious observation is that the known ‘string tree level’ R? cor-
rection term does not receive a contribution from Ag suggesting that in
fact there are correction terms related to it by SO(9,9) rotations. In other
words there is an (expected) sign of T-duality invariance for the corrections.
Results in this direction have been obtained in [13].
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1518 T. Damour et al.

Because the quantum corrections to type I’ string theory have not been
explicitly computed, there is not much to be added here. Our above comments
are thus predictions on which terms in type I’ are forbidden in the sense of not
being compatible with the weight structure.

42 BEjo

Adding one Maxwell vector multiplet to pure type I supergravity yields the
hyperbolic algebra BEjg = B§™' [2]. Accordingly, we have the embeddings

DEy C BEjpand Q(DE1y) C Q(BEy),whichis explicitly displayed by observ-

ing that a9D Eo _ 2a§ E10 4 4g. The dominant walls are taken to be

Q) = (O’ Oa Oa Oa O’ O’ O’ _17170)

ag = (_1a 1505 09090909090;0)
ag = (1’0’0’0’0’0’0’()’0;_%)
ato = (1,1,1,1,1,1,0,0,0;+3) (23)

We use the numbering of nodes indicated in Fig. 4, with the gravity line consist-
ing of nodes 1 through 8. Node 9 gives rise to the wall of the Maxwell vector
field and node 10 to the 6-form dual to the NSNS 2-form.

The non-gravity fundamental weights again are Ag and A1y which are com-
puted to be

3 1
Ag(ﬂ’ ‘P) =—0 — Z‘/’, A10(13> (P) =—0+ Zw (24)

They coincide with the fundamental non-gravity weights of DEjy. Note that

A1p is on the root lattice of BE, —in fact it is a root, but Ag is not. Because Ag
and Aqg are the same as for DEj(, we again get

3 1

in the Einstein frame. Therefore the BE7) compatible string frame corrections
satisfy

N=1+4+a+b, Ksying=—2+2a. (26)
As in the pure supergravity DE, case, the dilaton coefficients agree with
(closed) string perturbation theory. Equation (26) also predicts that for RV
only contributions from string diagrams with up to (N — 1) loops are compati-

ble with the BEy weight lattice structure.
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Fig.4 Dynkin diagram of BEj, with numbering of nodes

The dominant weight aAg + bAq is a root of BE1( only for even (non-nega-
tive) a’s. If one were to restrict the quantum corrections to be roots, one would
miss the corrections involving an odd number of loops.

4.3 Heterotic and type I cases
4.3.1 General considerations

If one adds k abelian vector multiplets to pure type I supergravity in ten dimen-
sions, the relevant Kac-Moody algebra is 50(8, 8+k)* " [14], which is a non-split
real form. The analysis proceeds in this case in a way very similar to that of
BEj, because it is that subalgebra that controls the (real) roots and weights.

To understand this point, consider first the familiar toroidal dimensional
reduction to three spacetime dimensions. After dualization of all non-metric
fields to scalars, the theory is described by the three-dimensional Einstein—Hil-
bert action coupled to the non-linear sigma model action for the coset space
SO(8,84+k)/SO(8) x SO(8+k). This action is most easily written down using the
Iwasawa decomposition appropriate to non-split real forms [15]. This decom-
position, in turn, follows from the Tits—Satake decomposition of the algebra
50(8,8+ k) in terms of real root spaces, which we briefly recall. The split algebra
Bg = 50(8,9) is a maximal split subalgebra of s0(8, 8 4+ k). One can decompose
over the reals s0(8,8 + k) in terms of representations of s0(8,9). The Car-
tan generators of Bg have indeed real eigenvalues, while the other (compact)
Cartan generators of s0(8,8 + k) have imaginary eigenvalues and cannot be
diagonalized over the reals. Because the rank of Bg (known also as the real
rank of s0(8,8 + k)) is eight, the weights are eight-dimensional vectors. They
turn out to coincide with the roots of Bg, i.e., with the weights of the adjoint
representation of Bg, but they come with a non-trivial multiplicity. Specifically,
the short Bg-roots appear k times, while the long roots are non-degenerate. And
furthermore, the zero eigenvalue also appears in the spectrum. Their associated
eigenvectors are the elements of so(k). Corresponding to this decomposition,
the coset Lagrangian for SO(8,8 + k)/SO(8) x SO(8 + k) takes a form very
similar to that of SO(8,9)/SO(8) x SO(9), namely: (i) there are eight dilatons
with standard kinetic term, because 8 is the real rank of s0(8, 8 + k) i.e., the rank
of its maximal split subalgebra s0(8,9); (ii) for each positive root of Bg, counting
50(8, 8 + k) multiplicities, there is an axion with a kinetic term multiplied by the
exponential of the corresponding root.
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Coming back to the non reduced model, it is natural to conjecture that it is
dual to the geodesic motion on the infinite dimensional coset space SO(8, 8 +
k)Tt/K(SO(8,8 + k)*T). Again, the algebra s0(8,8 + k)t is a representation
of its maximal split subalgebra s0(8,9)™ = Bé“r = BEjg. The ‘real roots’ of
50(8,8 + k)t are the weights of that representation. They are equal to the
roots of BE(, but come with some non trivial multiplicity (over and above the
Kac-Moody multiplicity of the BEjy imaginary roots). For instance, the real
root a9 has multiplicity k. It is the maximally split subalgebra BE, that one
sees in the o model Lagrangian. In particular, the billiard region is the same as
in the case of one Maxwell multiplet, the only difference being that the electric
wall (associated with the simple root ag) appears k times.

As the representations of s0(8,8 + k)™ are characterized by real weights
that are weights of B{ © = BEj, the quantum corrections should be associated
with weights of BE((. Note that the non-trivial multiplicities related to the fact
that the algebra is a non-split real form concerns only the terms involving the
gauge fields, which are subleading.

50(8,8+ k)Tt -supergravity theories, i.e., supergravity theories with 16 super-
charges, one gravity multiplet and k vector multiplets, have been analysed in
the string context in [16]. It was found that string backgrounds consistent with
this matter content could exist, but only in particular spacetime dimensions,
which depend on k. For instance, the k = 1 theory has global anomalies except
in three spacetime dimensions and below. For k& = 2, the maximal spacetime
dimension is 5. This suggests that it would be of interest to repeat the BEj
weight analysis in lower dimensions. However, since the effective actions for
those theories have not been much studied, we have not performed here that
analysis.

If one wants to generalize the abelian group U(1)* to some non-Abelian
gauge group (as required for the heterotic string), one encounters the difficulty
that there is no ‘nice’ and obvious choice of KM A that would naturally accom-
modate the Yang Mills gauge groups. Because the rank of the gauge groups
relevant to string theory in ten dimensions is 16, one might nevertheless argue
that it is the algebra s0(8,8 + 16)™ = 50(8,24)™ and thus the maximal split
algebra BEj that controls the weight pattern. Evidence for this comes from
the billiard analysis [2] and was also given in [17]. The above study of quantum
corrections for BEjy would therefore again apply.®

Because quantum corrections to the heterotic string and type I string models
have been studied, one can check whether they are compatible with the BE
weight structure. The analysis proceeds differently in the two cases.

8 There is a fourth hyperbolic rank 10 Kac-Moody algebra, namely CEj. This algebra is dual to
BE{( and is a twisted overextension [14], although CE; # Cé"+. Because it has not been associated
to a field theoretical model, we shall not investigate it here.
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4.3.2 Heterotic string

The first known curvature corrections to the heterotic string are at order R?
and by studying Eq. (22) we see that there are two solutions compatible with
BEjy when the pair (a,b) takes the values (0,1) or (1,0). The accompanying
power of the dilaton in string frame is e 2® in the first case and e’® in the
second case corresponding to string tree level and string one loop contribution.
In fact the first term (tree level) has been computed in [18] and agrees with
our result. The second term (one-loop), however, has been argued to be absent
[19]. This shows that the algebraic constraints heuristically investigated here
may play a role somewhat analogous to selection rules: they can be used to
predict which terms should be absent, but not which terms should be actually
present (indeed, further hidden symmetries might cancel a term allowed by
general selection rules). The same situation holds for R> corrections, which are
allowed at tree level, one-loop and two-loops by our algebraic constraints, but
which have been argued to be absent on account of supersymmetry [19] (see
also [20,21]). Finally, R* corrections up to three loops are permitted by the
BE algebraic constraints. However, although R* corrections are known to be
present in the heterotic effective action, their actual loop dependence is less
clear [19].

4.3.3 Typel

To analyse the type I superstring, one must recall that the transition from the
Einstein frame (where we have derived the algebraically compatible count-
erterms) to the string frame is different than in the heterotic case: the type I
dilaton is minus the heterotic dilaton, and the spacetime metric changes accord-
ingly. Converting the algebraically compatible counterterms to the type I string
frame, one finds that the two R? corrections found above come with the (type I)
dilaton powers exp(—®) and exp(—3®), respectively. The first term corresponds
to the tree heterotic correction, while the second corresponds to the heterotic
one-loop term. Only the first term is compatible with the type I effective action
and furthermore, it is in perfect agreement with [19]. Combining the informa-
tion that the second term must be absent in type I with heterotic-type I duality,
one can argue that there is no one-loop R? term in the heterotic case. The same
argument is too weak to eliminate all R® corrections, which are forbidden by
supersymmetry.

5 Other algebras
5.1 Results
For the other over-extended algebras we give the result only in tabulated form,

including also the results obtained for the rank 10 hyperbolic KMAs in the
preceding section for completeness. We take the standard gravity lines (see
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for example [3]) and consider positive integral linear combinations of the non-
gravity fundamental weights and equate them to the general leading correction
wall form (10). We exclude C;;* from the list since the corresponding (3 + 1)-
dimensional theory has (n — 3) dilaton fields which would clutter the notation.
It can be checked however that the algebra allows for curvature correction RV
for all values of N.

Algebra (d+1) Nin V=GRNeK¢  Kin /—GRNeKe

AFT n+3 1+a -

++ n=2,_ _2_

B,-,Hr n+2 l+a+b @a @b

n—:<,__ _z

Dy n+2 1+a+b a mb

GFt 5 1+a -

Fjt 6 1+2a+b L

EFT 8 1+2a+b —b

++ 3 1

E; 9 14+a+2b Ssa— b
10 142a -

EST 11 1+43a -

As for the just quoted C* case, one sees that all the algebras in the table
(except EéH' and E;r * in ten dimensions) are compatible with curvature correc-
tions RN for all positive integers N. This is not very restrictive but the fact that
only integers N (as opposed to non integer values) are forced by the algebraic
requirement was not a priori guaranteed. Furthermore, many of the corrections
known to be present in the effective Lagrangians would not be allowed had we
insisted on having only roots. For instance, for pure gravity in spacetime dimen-
sion D = d+1, the corrections corresponding to roots are of the restricted form
RK(D=2)+1

The Eq( case corresponds to M-theory and has been analysed above. The
entry with D = 10 for E57 in the table corresponds to a theory which is a
non-supersymmetric truncation of IIB supergravity, keeping only gravity and
the four-form potential. Therefore one has the same problem with writing a
manifestly covariant Lagrangian for this theory in ten dimensions as with 1IB
supergravity and the theory is usually considered in D = 9, where all powers of
the curvature are allowed. Here we see however that corrections in ten dimen-
sions would be compatible with the algebra structure only for odd powers of
the curvature.

In the case where there is a dilaton, non trivial restrictions on the allowed
powers of the dilaton for a given N do appear, as indicated in the right column
of the table. However, it is difficult to test the validity of these predictions as
the quantum corrections appearing in the effective Lagrangians of the corre-
sponding theories have not been investigated.
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5.2 String frame

The dilaton entries K in the table are in the Einstein frame. The notion of string
frame really makes sense only for the string-related theories, but one can nev-
ertheless explore the consequences of converting the formulas into a would-be
string frame by using Eq. (16). The result for B,/ * and D} " is

Ksing = —2+2a (Bftand D)), (27)

Thus, Kyring is an even integer that depends only on a suggesting an interpre-
tation in terms of a genus expansion in string perturbation theory for all .

For the three exceptional algebras which give rise to a dilaton one finds after
conversion to the string frame

Kstring =-2+42a (F4++)» (28)
4 2 2
Kstring =-2+ ga + (§ - %) b (Eng), (29)
b
Kuring = =2+ (4+ 62) ; +(38-2v2) 2 (EFH).  (30)

Ksiring for F " is identical to Kiing for B, and D;/ . For the other two cases,
we do not have a transparent interpretation.

6 Reduction of counterterms, ITA and IIB

It is conjectured that Ejg = E¢ " is also the relevant symmetry for type IIA
and type IIB supergravity in ten dimensions. Evidence for this conjecture was
given in [2,12,22], following earlier work on the embedding of these theories
into E11 [23-26]. The structure of the low derivative curvature correction terms
for these theories is known from string scattering computations and is summa-
rized for example in [27]. Somewhat unexpectedly, in both cases there is strong
evidence that the first correction appears at order R* and receives contributions
only from string tree level and string one-loop diagrams.® We will now examine
these results in the light of our algebraic compatibility conditions.

6.1 IIA

The IIA supergravity theory can be obtained by standard dimensional reduction
of the D = 11 theory. Reducing to Einstein frame we find that the dominant

9 To be sure, there are corrections coming from D(—1) instantons for IIB which we do not discuss
here. The absence of higher-order loop corrections was partially confirmed in an explicit computa-
tion [28].
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walls (simple roots) of Ejy are now expressed via

a1 = (0’ 07 Oa Oa Oa O’ O’ _19190)

ag = (_13 1505 09090909090;0)
a9 = (1,0,0,0,0,0,0,0,0;+3)
a0 = (131303 O’ O’ O’ 0’ O’ O’_%) (31)

Here the first eight ‘symmetry roots’ define the new (non-maximal) gravity line
of the £y Dynkin diagram (see Fig. 1), corresponding to the symmetry walls
of gravity in D = 10 space-time dimensions. Unlike for D = 11 supergravity,
the simple root «g is no longer associated with a symmetry wall, but now cor-
responds to the Kaluza Klein vector; the simple root oy is associated with the
NSNS two-form.

The relevant fundamental weights not belonging to the gravity line are now

Ag=—(2.2.2.2.2.2.2.2.2:+1) = Ao(B.9) = —20 + o
A =-(33333333- = ApBe=-30-1¢ (32

Equating the dominant weight aAg + b A1y with (10) corresponds to the higher
order term

b
V=GRNeX? with N=1+2a+3b, K=-a+2. (33)

In string frame the dilaton exponent gives
Kstring = =2 +2b (34)

according to (14), so that the coefficient b counts the number of string loops.
We see that A — which corresponded to R* in D = 11 supergravity — in the
ITA basis corresponds to (a,b) = (0, 1), i.e. R*atone loop in string perturbation
theory. Our reasoning allows for tree level terms (b = 0) for all odd powers
of the curvature. The absence of R> corrections, however, has been established
both by supersymmetry arguments and explicit calculation. If one considers the
known tree level term for R* one finds a wall form which is the following sum
of simple roots

27 21
— (3051 + 602 + 7Ta3 + 1204 + 1505 + 18ag + 2107 + -8 + 609 + 70110) .
(35)

Because of the appearance of fractional coefficients, this is not element of the
weight lattice (=root lattice). Therefore, Eyy predicts correctly only the max-
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imum loop order at which corrections can occur. One way to interpret this
apparent discrepancy between the known string computations and the present
KMA analysis is that the Kac-Moody model of [29] is thought to describe the
decompactified version of M-theory, which in particular involves taking the limit
in which the string coupling (or equivalently @) tends to infinity. In this strong
coupling limit only the highest genus terms of a string loop expansion survive.
Indeed, only the one loop terms is known to lift to eleven dimensions.

6.2 1IB

One gets stranger results for type IIB string theory. This is perhaps not surpris-
ing in view of the singular field theory limit involved in getting to type IIB from
the 11-dimensional model. For IIB in D = 10 the Ej( simple roots are now
represented as

o] = (Os O’ Oa Oa O’ 0’ 09 _1, 1, 0)

a7 = (0,-1,1,0,0,0,0,0,0;0)

a0 = (—1,1,0,0,0,0,0,0,0;0)

ag = (1,1,0,0,0,0,0,0,0; —1)

a9 = (0,0,0,0,0,0,0,0,0;4+1) (36)
As before, the first eight are symmetry roots, but the associated ‘gravity line’ is
now given by a1, . . ., @7, ®19, and thus differs from the IIA gravity line (compare
also Fig. 1). The root ag corresponds to the wall generated by the NSNS 2-form,
while a9 corresponds to the dilaton wall. Remarkably, and unlike for the ITA

theory, the dilaton root a9 has no components involving the spatial neunbein.
Now the relevant fundamental weights are

AS = _(4’ 4’ 4’ 4’ 41 43 43 4: 45 O) = A8(IB’ (0) = _40

Demanding that the dominant weight aAg + bAg be identical to the wall (10)
yields corrections in the Einstein frame with

N=1+4a+2b, K= -b. (38)
Conversion to the string frame gives
N=1+4a+2b, Ksying=—2+2a, (39)
so that the coefficient a counts the number of string loops.
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The first correction terms compatible with this weight pattern are R> (tree)
and R® (tree and one-loop). The pattern does not match with the known
v/—G R* in ten dimensions, independently of the dilatonic factor, which would
require a wall form o« (3,3,3,3,3,3,3,3,3;*). One can also check directly that
the latter combination does not lie on the Ej( root lattice, no matter how the
dilaton factor is chosen. Incidentally, the tree level term /—G R* e =3¢/2 in this
case is again located at the same root vector (35) as in the ITA case. The one-loop
term is also off the weight lattice for IIB.

The correction term weight Ao which gave sensible results for D = 11 and
ITA [see (17) and (32)] in this basis becomes

A =-(43.33333330 = App.e=-30-p (40

and is non-isotropic for IIB in D = 10. This might be related to the difficulties
with writing a covariant Lagrangian for the IIB supergravity theory in ten space-
time dimensions and we are therefore tempted to consider the situation after
compactification of the theory on S!' (coordinatized by x') to nine space-time
dimensions (which is required to make the T-duality equivalence of IIA and
IIB manifest), as is necessary in all string calculations of higher order effects in
IIB theory. The 11-component of the spatial vielbein becomes another ‘dilaton’,
and we would need to match /—G R* only with o (3,3,3,3,3,3,3,3; ;%). This
is certainly possible and will be the reduction of the one-loop term of the IIA
theory but only at the price of including a non-covariant term involving this
extra dilatonic factor, so far not seen in string perturbation theory.

7 Conclusions

In this paper, we have first shed new light on the findings of [6] concerning the
quantum corrections of M-theory. We have emphasized that the imaginary roots
uncovered in [6] are dominant non-gravity weights, suggesting a representation
theoretic interpretation for the subleading quantum corrections.

We then ‘botanically’ explored the possible consequences for various maxi-
mally oxidized gravitational theories of a general conjecture linking dominant
non-gravity weights to quantum curvature corrections. This conjecture has been
found to have quite a few successes, but also a certain number of failures. Among
the successes, let us mention that the consideration of weights (as opposed to
roots) makes a difference for non-self-dual lattices, and has been found to be
necessary to reproduce some of the known quantum corrections. The conjecture
derives further credit from the fact that the relevant KM As appear to ‘know’
about string perturbation theory, via Egs. (22), (26) and (39). On the other
hand, for the type I models, we found that the algebraic restrictions imposed
by the conjectured symmetry are not restrictive enough: they allow terms that
have not been observed. In the case of the types ITA and IIB, they also forbid
terms that are known to occur — independently of whether one considers roots
or weights. From this point of view, it is for the Ejg-based M-theory that the
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matching between the algebraic constraints and the known results works most
successfully (and indeed spectacularly so).

For the non string-related theories like pure gravity, the matching does

appear to make sense since the known quantum corrections are reproduced
(when one includes weights), but it is more difficult to test the Kac-Moody
predictions because little is in general known on the effective lagrangians. It is
expected that a deeper understanding of the occurrence of Kac-Moody weights
could be obtained through a further analysis of the allowed o-model counter-
terms, which are controlled by the invariants of the ‘maximal compact subgroup’
K(GTt)of GT+.
Note added: While this article was completed, the preprint [30] was posted.
This preprint (whose reference [21] refers to part of the present work) shows
that reduction to three spacetime dimensions of curvature corrections involves
weights of the duality algebra G which is manifest in three dimensions — and of
which the Kac-Moody algebra G is the overextension.
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