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1. Introduction

Hidden symmetries of exceptional type in the reduction of supergravity theories
were first discovered in maximal N = 8 supergravity in D = 4.1,2 The unexpected
emergence of the coset E7/SU(8) describing the scalar sector of the theory was soon
generalized to other dimensions and other theories.3 The most prominent example
remains the chain of hidden symmetries occurring in the dimensional reduction of
D = 11 maximal supergravity on a torus T n. For 1 ≤ n ≤ 8 the resulting scalars,
after maximal dualization of forms to scalars at every step, always appear in group
cosets which have become known as En/K(En) where we use K(En) to designate
the maximal compact subgroup of En. For n > 8 it was soon conjectured that the
resulting symmetry groups become infinite-dimensional,4 and formulations using
the centrally extended loop group E9 (Ref. 5) and partial results on E10 (Ref. 6)
have since been obtained.

In an initially unrelated development, the study of the asymptotic behavior of
D = 11 supergravity (and IIA and IIB supergravity) near a space-like singular-
ity also revealed evidence for infinite-dimensional symmetries, and the hyperbolic
Kac–Moody group E10, in particular. Namely, in this limit, the dynamics can be
described aymptotically by a cosmological billiard taking place in the fundamen-
tal Weyl chamber of E10.7,8 The dynamical variables in this case are the spatial

∗Invited plenary talk delivered by H. Nicolai at the International Conference on Einstein’s Legacy
in the New Millennium, December 15–22, 2005, Puri, India.
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scale factors. This led the authors of Ref. 9 to propose a one-dimensional non-
linear σ-model based on a coset E10/K(E10), and Damour et al.9,10 uncovered a
remarkable dynamical equivalence between a truncation of the bosonic D = 11
supergravity equations and a truncated version of this infinite-dimensional coset
model. It is the aim of the present contribution to review this correspondence and
similar correspondences to the D = 10 maximal supergravities which were derived
in Refs. 11 and 12. We will not present the relation of higher derivative correc-
tions to the E10 model which can be found in Ref. 13. Related works in Refs. 14
and 15 discuss the role of imaginary roots of E10 from a brane point of view and
orbifolds.

In yet another development, it was proposed in Refs. 16 and 17 that D =
11 supergravity is a non-linear realization of the bigger group E11 (and the
conformal group via a Borisov–Ogievetsky-type construction18). The non-linear
E11 model is thus supposed to operate directly in 11 (or even more) dimen-
sions, and is therefore very different from the one-dimensional E10 model which
we will present below. In addition, as will be discussed in Sec. 5.3, space–time
is thought to emerge in the present scheme from the E10 model itself, whereas
for E11 space–time is realized through an additional E11 invariant structure.19

These two space–time concepts, and a third one based on a one-dimensional
E11 model proposed in Ref. 20, were discussed in Ref. 21. The relation of that
latter E11 model to the model considered herea was studied in Ref. 25. It was
already shown in Refs. 26 and 27 that E11 can unify the symmetries of the bosonic
sectors type IIB and massive type IIA supergravity by use of the same tech-
niques as in Ref. 17, which is therefore a feature shared by the E10 model and
the E11 proposal.

A most remarkable feature of the results obtained so far is that E10 implies
several results on the bosonic sectors of maximal supergravity theories which were
heretofore thought to require (maximal) local supersymmetry, to wit:

• the correct bosonic multiplets of all maximal supergravities in 11 and all
lower dimensions, in particular for both (massive) type IIA and type IIB
supergravity,11,12 as first shown for the embedding of these theories into E11

26,27;
• the self-duality of the 5-form field strength in IIB supergravity12;
• the correct bosonic self-couplings for all these theories, in particular, of the D =

11 Chern–Simons term9;
• the vanishing of the cosmological constant in D = 11 supergravity,10 originally

shown in Ref. 28;
• (possibly) restrictions on the form of the higher order corrections in M

theory.13

aThere exists a related “brane version” of the E10 model for which the denominator is non-
compact and has non-unique space–time signatures22,23 which are identical to those of the exotic
M-theories of Ref. 24.
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This casts some doubt on widely held expectations concerning the role of (local)
supersymmetry as a fundamental symmetry, and may indicate that the concept
of supersymmetry may have to be replaced by yet another, and in some sense,
even more “fundamental” symmetry conceptb (possibly also involving quantiza-
tion). Moreover, in a scheme where space(–time) is treated as an “emergent” phe-
nomenon, the distinction between bosons and fermions may well disappear, too,
and only “emerge” together with space(–time) itself.

The structure of this contribution is as follows. Section 2 reviews some basic facts
about the hyperbolic Kac–Moody algebra e10 underlying E10, leading in particular
to a spectral analysis of the E10/K(E10) model. The model itself is defined in Sec. 3.
The correspondences to the various maximal supergravity theories in D = 10 and
D = 11 are derived or reviewed in Sec. 4. In Sec. 5 we discuss some cosmological
applications and extensions of the model presented here and end with a few open
problems.

2. The e10 Kac–Moody Algebra

In this section we recall the definition of the hyperbolic Kac–Moody Lie algebra
e10 = Lie(E10) and present its basic properties required for the coset model which
will be defined in Sec. 3.

2.1. Definition of e10

We use the Chevalley–Serre presentation also employed in Refs. 29 and 30. This
definition starts from the generalized Cartan matrix or, equivalently, the e10 Dynkin
diagram given in Fig. 1.

The rank of e10 is 10 since there are 10 nodes in Fig. 1. The Cartan matrix
A = (Aij) encoded in the e10 Dynkin diagram is given by (i, j = 1, . . . , 10)

Aij =




2 for i = j,

−1 if there is a link between nodes i and j,

0 otherwise.

For the case of e10 the Cartan matrix is non-degenerate and indefinite (with nine
positive eigenvalues and one negative eigenvalue). According to the general theory
of Kac–Moody Lie algebras,29 the Chevalley–Serre presentation therefore starts
from 30 Chevalley generators

ei, fi, hi (i = 1, . . . , 10) (1)

subject to the relations

[hi, ej ] = Aijej , [hi, fj ] = −Aijfj , [ei, fj] = δijhi, [hi, hj ] = 0. (2)

bOf course, we will have to await what LHC has to say on this issue!
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Fig. 1. Dynkin diagram of e10.

On top of the 30 generators of (1) one now considers multiple commutators of the
simple positive generators ei and of the simple negative generators fi of the form

[ei1 , [· · · [eik−1 , eik
]]] and [fi1 , [· · · [fik−1 , fik

]]], (3)

spanning free Lie algebras on {ei} and {fi} and then subject to the Serre relations
(for i �= j)

(ad ei)1−Aij ej = 0 and (ad fi)1−Aij fj = 0, (4)

and, of course, to the Jacobi and anti-symmetry relations of the Lie bracket. The
number of Chevalley generators in such a nested multiple commutator is called the
height of the element.

The Lie algebra consisting of (1) and (Serre) non-trivial elements (3) is the
infinite-dimensional Kac–Moody algebra e10, which we will also sometimes denote
by g ≡ e10. We consider e10 in its split real form obtained by taking only real linear
combinations of the basis elements. Like every Kac–Moody algebra, e10 possesses a
triangular structure

e10 = n− ⊕ h ⊕ n+, (5)

where h is the Cartan subalgebra (CSA) spanned by the elements hi, and n± have
bases consisting of the positive simple generators ei together with their multi-
ple commutators and the negative simple generators fi together with their mul-
tiple commutators, respectively. The positive half n+ and the negative half n− are
exchanged by the Chevalley involution θ which acts on the Chevalley generators
(1) by

θ(ei) = −fi, θ(fi) = −ei, θ(hi) = −hi (6)

and extends to all of e10; sometimes it is convenient to define a generalized trans-
position by xT := −θ(x). The fixed point set of θ

k10 := K(e10) := {x ∈ e10 : θ(x) = x} (7)

will be called the maximal compact subalgebra in analogy with the finite-dimensional
theory. It consists of all anti-symmetric elements. The Lie algebra k10 is not a Kac–
Moody algebra.31
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We will furthermore make use of the root space decomposition of g ≡ e10 defined
through

g = h ⊕
⊕
α∈∆

gα, (8)

with

gα :=
{
x ∈ g : [h, x] = α(h)x for all h ∈ h

}
. (9)

The non-trivial linear maps α : h → R are called roots. The simple roots are denoted
by αi; their associated root spaces gαi = 〈ei〉 are thus one-dimensional. The root
lattice Q is obtained as the integer lattice over the simple roots. All roots are
linear combinations of simple roots with either all non-negative or all non-positive
coefficients; the roots are then called “positive” or “negative,” respectively. We thus
write an arbitrary root α ∈ ∆ as

α =
10∑

i=1

miαi, (10)

with either all mi ≥ 0 or all mi ≤ 0. The height of α is ht(α) =
∑

i mi. The set of
all roots ∆ ⊂ Q hence decomposes as ∆ = ∆+ ∪ ∆− into positive roots ∆+, and
negative roots ∆−.

For the hyperbolicc Kac–Moody algebra e10 one can furthermore show29 that
the set of all roots ∆ ⊂ Q is given by

∆ =
{
α ∈ Q : α2 ≤ 2

} \{0}. (11)

Here, the norm α2 = 〈α|α〉 is computed using the Cartan matrix as inner product
(on both h and h∗), such that for all simple roots α2

i = 〈αi|αi〉 = 2 and for an
arbitrary root (10) we have α2 =

∑
i,j miAijmj . The symmetric form 〈·|·〉 on h can

be extended to a symmetric invariant form on all of e10 by letting 〈ei|fj〉 = δij and
then using the invariance to define 〈·|·〉 on multiple commutators. A final piece of
terminology we require from the theory of Kac–Moody algebras is the notion of
real and imaginary roots. A root α of e10 is said to be real if α2 = 2 and imaginary
otherwise; in the latter case, one further distinguishes light-like (null) and time-like
roots, for which α2 = 0 and α2 < 0, respectively.

Further details can be found in Ref. 29.

2.2. Spectral analysis: Level decomposition

Among the basic quantities of interest of a Kac–Moody algebra are the root mul-
tiplicities mult(α) = dimR gα for roots α ∈ ∆. In contradistinction to the finite-
dimensional Lie algebras and affine Kac–Moody algebras there is no closed formula
determining the root multiplicity of an arbitrary root α. Presently, only recursive

cThe adjective “hyperbolic” means that upon deletion of any single node from the Dynkin diagram,
the remaining diagram consists only of diagrams of finite-dimensional or affine diagrams.29
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Fig. 2. A sketch of the solid hyperboloid in root space with an elliptic slice corresponding to a
finite-dimensional subalgebra of e10. For the pictorial presentation the number of dimensions has
been lowered and the discrete lattice structure has been smoothened.

techniques such as the Peterson formula can be used to calculate the multiplicitiesd

by working up in height, starting from the fact that for the simple roots one has
mult(αi) = 1. By performing such calculations on a computer one can obtain a good
picture of the root structure of a Kac–Moody algebra.32,33 Due to the Lorentzian
structure of the Cartan matrix of e10 and the condition (11) we end up with the
following picture: all lattice points α inside the solid hyperboloid {α2 ≤ 2} ⊂ Q

in the Lorentzian space h∗ are roots of e10, and each such point represents the
vector space gα associated with the corresponding root α. We imagine the lat-
tice points as being labelled in addition by the dimension (= multiplicity) of the
root space.

An economical and physically motivated way to present the algebraic data is
the level decomposition under a finite-dimensional regular subalgebrae introduced
in Ref. 9. In the above picture this corresponds to an elliptic slicing of the solid
hyperboloid. From this it is obvious that any given slice contains only a finite
number of points representing a root space, see Fig. 2. In this language, the algebra
can be described by a stack of slices each of which contains a finite number of
irreducible representations of the subalgebra (acting via the adjoint action). The
level � of such a slice is given as the vector of numbers of times the simple generators
of the deleted nodes appears in the elements on the slice, and � provides a grading
of the algebra. Instead of giving the details of how this decomposition is done,
we will give the relevant examples below and refer the reader to Refs. 9, 32 and
34–36 for expositions of the general technique. We will only give levels � ≥ 0 since

dIt is known that the root multiplicities grow exponentially in −α2.
eBy this we mean a subalgebra obtained by deleting nodes from the Dynkin diagram. Examples
will be given below. This terminology is slightly non-standard.
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Table 1. Levels 0 ≤ � ≤ 3 in the A9 decomposition of e10.

� A9 representation e10 root α Generator

0 [100000001] (1, 1, 1, 1, 1, 1, 1, 1, 1, 0) Ka
b (traceless)

[000000000] (0, 0, 0, 0, 0, 0, 0, 0, 0, 0) K :=
P10

a=1 Ka
a

1 [000000100] (0, 0, 0, 0, 0, 0, 0, 0, 0, 1) Ea1a2a3

2 [000100000] (0, 0, 0, 0, 1, 2, 3, 2, 1, 2) Ea1···a6

3 [010000001] (0, 0, 1, 2, 3, 4, 5, 3, 1, 3) Ea0|a1···a8

the negative levels are contragradient to the positive levels due to the Chevalley
involution θ.f

2.2.1. Decomposition under A9

We first single out the “exceptional” node 10 in Fig. 1 and delete it together with its
link to node 7, leaving the subalgebra A9 ≡ sl(10). The level � in this decomposition
is the last entry m10 of a root α =

∑10
i=1 miαi. The spectrum on levels 0 ≤ � ≤ 3

in the A9 decomposition was computed in Ref. 9 and is given in Table 1.
The notation in Table 1 is as follows. Irreducible sl(10) representations are given

in terms of their Dynkin labels, such that the entry in the first row of the table is
the adjoint representation, whereas the second representation for � = 0 is the trivial
one. They combine to give the generators Ka

b of gl(10). Indices a, b etc. are sl(10)
vector indices and hence take values 1, . . . , 10. Similarly, the representations on
levels � = 1 and � = 2 are totally anti-symmetric of rank 3 and 6, respectively, and
we have already introduced the symbols we will use below when referring to these
representations. The � = 3 generator satisfies the Young irreducibility constraints

Ea0|[a1···a8] = Ea0|a1···a8 , E[a0|a1···a8] = 0. (12)

These 0 ≤ � ≤ 3 tensors will play a role below when we relate an E10 symmetric
coset model to D = 11 supergravity in Sec. 4.1. Let us also note that up to level
� ≤ 3, the decomposition is essentially the same for all En; in particular, for E11,
the representations are analogous.35 Beyond level � = 3, however, they differ by
A10 representations which have no counterparts in E10.32

2.2.2. Decomposition under D9

Another possible slicing of the hyperboloid is obtained by deleting the node 9 in
Fig. 1. The remaining subalgebra is D9 ≡ so(9, 9). The level decomposition was
carried out in Ref. 11 with result for � = 0, 1, 2 reproduced in Table 2. Here, the
indices I, J, K = 1, . . . , 18 are vector indices of so(9, 9), whereas A = 1, . . . , 256 is
a spinor index. The representations on level � = 0 are the adjoint and the scalar

fAnother reason for restricting the spectral analysis to � ≥ 0 is that in Sec. 3 we will use a
triangular gauge which only employs � ≥ 0 generators.



October 19, 2006 17:56 WSPC/142-IJMPD 00900

1626 A. Kleinschmidt and H. Nicolai

Table 2. Levels 0 ≤ � ≤ 2 in the D9 decomposition of e10.

� D9 representation e10 root α Generator

0 [010000000] (1, 2, 2, 2, 2, 2, 2, 1, 0, 1) MIJ

[000000000] (0, 0, 0, 0, 0, 0, 0, 0, 0, 0) T
1 [000000010] (0, 0, 0, 0, 0, 0, 0, 0, 1, 0) EA

2 [001000000] (0, 0, 0, 1, 2, 3, 4, 3, 2, 2) EIJK

Table 3. Levels 0 ≤ � ≤ 4 in the A8 ⊕ A1 decomposition of e10.

� A8 ⊕ A1 representation e10 root α Generator

0 ([10000001], 1) (1, 1, 1, 1, 1, 1, 1, 0, 0, 1) Ka
b (traceless)

([00000000], 1) (0, 0, 0, 0, 0, 0, 0, 0, 0, 0) K
([00000000], 3) (0, 0, 0, 0, 0, 0, 0, 0, 1, 0) Ji

1 ([00000010], 2) (0, 0, 0, 0, 0, 0, 0, 1, 0, 0) Ea1a2
α

2 ([00001000], 1) (0, 0, 0, 0, 0, 1, 2, 2, 1, 1) Ea1...a4

3 ([00100000], 2) (0, 0, 0, 1, 2, 3, 4, 3, 1, 2) Ea1...a6
α

4 ([01000001], 1) (0, 0, 1, 2, 3, 4, 5, 4, 2, 2) Ea0|a1...a7

([10000000], 3) (0, 1, 2, 3, 4, 5, 6, 4, 1, 3) Ea1...a8
i

representation, respectively. Level � = 1 contains the Dirac spinor, and � = 2 an
anti-symmetric three form.g In Sec. 4.2 we will relate the corresponding tensors to
quantities appearing in (massive) type IIA supergravity.

2.2.3. Decomposition under A8 ⊕ A1

The final choice of subalgebra we consider is obtained by deleting node 8 from
Fig. 1 (this analysis follows an earlier one on the embedding of A9 into E11

26,36).
The remaining subalgebra is now A8 ⊕ A1 ≡ sl(9) ⊕ sl(2). The decomposition was
carried out in Ref. 12 with the result for � = 0, 1, 2, 3, 4 reproduced in Table 3.
Here, the sl(9) vector indices a, b, etc. range from 1 to 9, the indices i = 1, 2, 3
are so(2, 1) ≡ sl(2) vector indices and α = 1, 2 are so(2, 1) spinor indices. These
tensors will be related to IIB supergravity quantities in Sec. 4.3. Beyond the levels
displayed in the table, there again appear differences between E10 and E11: one
example are the ten-forms studied in Ref. 37 which have no analog in E10, see also
Refs. 12, 38–40.

2.3. Commutation relations

Once the representation content (spectrum) of the algebra has been determined to
the required level one then needs to work out the commutation relations between
the Lie algebra elements. Here the power of the level decomposition becomes evi-
dent since only a few structure constants appear between the representations. The

gGenerally, the representations occurring on even levels are tensor representations of so(9, 9) and
the odd level representations are spinor representations of so(9, 9).
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number of e10 elements thus covered can still be quite large if the representations
are large but covariance under the subalgebra action fixes all the structure con-
stants within a representation. We again illustrate these facts in examples. A more
general discussion on how to compute the commutation relations can be found in
Ref. 40.

We consider the A9 decomposition of e10 in some detail. As discussed in
Sec. 2.2.1, the � = 0 generators are Ka

b (a, b = 1, . . . , 10) with standard gl(10)
commutation relations

[Ka
b, K

c
d] = δc

bK
a

d − δa
dKc

b, (13)

and normalization

〈Ka
b|Kc

d〉 = δc
bδ

a
d − δa

b δc
d. (14)

Their identification with the Chevalley generators of e10 is

ei = Ki
i+1, fi = Ki+1

i, hi = Ki
i − Ki+1

i+1 (i = 1, . . . , 9), (15)

and

h10 = −1
3
K + K8

8 + K9
9 + K10

10. (16)

This follows from demanding [h10, ei] = A10iei. The “exceptional” generators e10

and f10 belong to levels � = 1 and � = −1, respectively and will be identified below.
On � = 1, the generators Ka

b act by gl(10) rotationsh

[Ka
b, E

c1c2c3 ] = δc1
b Eac2c3 + δc2

b Ec1ac3 + δc3
b Ec1c2a ≡ 3δ

[c1
b Ec2c3]a. (17)

The next relation to be worked out involves the transposed � = −1 generator

Fa1a2a3 := (Ea1a2a3)T := −θ(Ea1a2a3), (18)

which transforms contragradiently under Ka
b

[Ka
b, Fc1c2c3 ] = −3δa

[c1
Fc2c3]b

. (19)

Due to the grading property of the level the commutator [(� = 1), (� = −1)] has
to be contained in (� = 0). The relations (17) and (19) are insensitive to the
normalizations of Ea1a2a3 (and hence Fa1a2a3) but [Ea1a2a3 , Fb1b2b3 ] is not. We fix

hWe use (anti-)symmetrizers of strength one.
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the norm in terms of the invariant bilinear form to be

〈Ea1a2a3 |Fb1b2b3〉 = 3! δa1a2a3
b1b2b3

. (20)

The lowest element on � = 1 is E8 9 10 and in view of 〈e10|f10〉 = 1 and (20) we can
identify

e10 = E8 9 10, f10 = F8 9 10. (21)

This also fixes the coefficients in the commutation relation

[Ea1a2a3 , Fb1b2b3 ] = −2δa1a2a3
b1b2b3

K + 18δ
[a1a2
[b1b2

Ka3]
b3]

, (22)

which completes the full set of commutation relations on levels � = −1, 0, 1. Thus,
in the above relation, GL(10) covariance fixes all structure constants in terms of
only two coefficients. More precisely, these two coefficients are fixed by invariance
of the bilinear form and the normalization (20). Similar remarks apply to higher
level commutators.

Proceeding to � = 2, we again have to fix the normalization of the relevant
generator Ea1...a6 , which we do by defining

Ea1...a6 := [Ea1a2a3 , Ea4a5a6 ], (23)

which, using the invariance of the bilinear form, leads to

〈Ea1...a6 |Fb1...b6〉 = 6! δa1...a6
b1...b6

. (24)

Using Jacobi identities the remaining commutators for |�| ≤ 2 can be worked out
and are listed in Ref. 10.

For � = 3 we define

E[a0|a1a2]a3...a8 := [Ea0a1a2 , Ea3...a8 ], (25)

which is equivalent to

Ea0|a1...a8 = 4[Ea0[a1a2 , Ea3...a8]], (26)

with normalization

〈Ea0|a1...a8 |Fb0|b1...b8〉 = 8 · 8!
(
δa0
b0

δa1...a8
b1...b8

− δ
[a1
b0

δ
a2...a8]
[b1...b7

δa0
b8]

)
. (27)

Again, Jacobi identities can be used to determine the remaining commutation rela-
tions. These were given in Ref. 10.
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Similar considerations can be used for the D9 and A8 ⊕ A1 decompositions of
Secs. 2.2.2 and 2.2.3. The results can be found in Refs. 11 and 12, respectively.

3. The E10 Coset Model

In this section, we present, following Ref. 9, a coset model with manifest E10 symme-
try. This model is a null geodesic model on the coset space E10/K(E10), where E10

is the Kac–Moody group with Lie algebra e10 and K(E10) its “maximal compact
subgroup” with Lie algebra k10 ⊂ e10 fixed by the Chevalley involution θ from (6).
We take a time-dependent coset element V(t) ∈ E10/K(E10) of the form

V(t) = exp

(
10∑

i=1

φi(t)hi

)
exp


 ∑

α∈∆+

mult(α)∑
s=1

A(s)
α (t)E(s)

α


 , (28)

which is in the so-called Borel gauge, where only the CSA h and the upper triangu-
lar part n+ are used. E

(s)
α label the independent generators in the root space of α.

In the finite-dimensional situation the parametrization (28) can be reached due to
the Iwasawa decomposition. Here, we simply take (28) as definition for the coset
E10/K(E10). We will sometimes also use a slight modification of this parametriza-
tion where only levels � ≥ 0 are used and the exponentials are separated differently,
which is a non-linear change of coordinates on the coset.

The e10-valued velocity (Cartan form) associated with the coset element (28) is

∂tVV−1 = Q + P , Q ∈ k10, P ∈ e10 � k10, (29)

such that θ(Q) = Q and θ(P) = −P . We define the generators along the coset and
the subgroup by

Sα = Eα + Fα, Jα = Eα − Fα, (30)

where Fα := (Eα)T := −θ(Eα) denotes the transposed generator to Eα.i Therefore,
k10 consists of the anti-symmetric elements and the remaining symmetric elements
belong to e10 � k10.

The time reparametrization invariant Lagrange function defining the dynamics
of the geodesic model is given by

L = L(t) =
1
2n

〈P|P〉, (31)

where n(t) is a Lagrange multiplier (“einbein”) needed for reparametrization invari-
ance and 〈·|·〉 is the e10 invariant bilinear form discussed in Sec. 2.1. The equations
of motion following from this Lagrange function are

∂t(n−1P) = [Q, n−1P ], 〈P|P〉 = 0. (32)

We will refer to the second equation (obtained by varying n) as the Hamiltonian
constraint. It expresses the light-like orientation of the geodesic.

iThe multiplicity index will be suppressed for clarity of notation and is summed over implicitly.
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The system is formally integrable, as is already evident from the Lax formulation
of the geodesic equation in (32). It is easy to write down infinitely many conserved
charges through the e10-valued current

J = n−1V−1PV . (33)

This is the Noether current associated with the global E10 invariance of (31). The
transformation

V(t) → k(t)V(t)g−1 (34)

for constant g ∈ E10 (and compensating k(t) ∈ K(E10) to maintain the Borel
triangular gauge) induces the transformations

P → kPk−1, Q → kQk−1 + ∂tkk−1, (35)

so that P transforms covariantly and Q like a gauge connection. This is as expected
since Q is associated with the unbroken K(E10) gauge invariance of the coset
E10/K(E10). We define a K(E10) covariant derivative by

D := ∂t −Q, (36)

in terms of which the dynamical equation (32) becomes D(n−1P) = 0.
The set of equations of motion (32) now can be expanded in the basis consisting

of the various Sα. We will do this in a form adapted to a level decomposition, where
we expand

P =
∑
�≥0

P (�) ∗ S(�), Q =
∑
�≥0

Q(�) ∗ J (�), (37)

where the asterisk indicates a contraction of the various irreducible generators (like
S(�)) occurring on a given level with coefficients (like P (�)). It is an important result
that we can consistently truncate the equations of motion by demanding

P (�) = 0, for � > �0, (38)

where �0 is some fixed but arbitrary level. The consistency of this truncation was
established in Ref. 10.

Although the equations (32) are written in first order form by use of Q and P ,
the equations of motion are, of course, second order because the components of
P must be ultimately expressed as first derivatives of coordinates (φi, Aα) on
the coset space E10/K(E10)j; in terms of such an explicit parametrization, the
equation of motion then indeed takes the form of the standard geodesic equa-
tion. Equation (38) then implies that the higher level coordinates are non-trivial
but evolve in just the right manner prescribed by the first order equation (38).
When such an explicit parametrization is not required, it is convenient to work
with the “tangent space” objects P rather than the coordinates because one

jIn triangular gauge there is no obstruction to working out P to arbitrarily high orders by use of
the Baker–Campbell–Haussdorff equalities.



October 19, 2006 17:56 WSPC/142-IJMPD 00900

Maximal Supergravities and the E10 Coset Model 1631

always deals with Lie algebra valued quantities transforming as tangent vectors
under K(E10) (the use of tangent space quantities is furthermore indispensable
once one introduces fermions). The choice of fields parametrizing the triangu-
lar gauge corresponds to a choice of local coordinates on the coset manifold,
and as such is subject to a huge variety of coordinate reparametrizations (field
redefinitions).

4. Correspondence to Maximal Supergravities

We will now construct correspondences between the abstract E10 σ-model defined
in the preceding section on the one hand, and the bosonic sectors of the maximal
supergravity theories in 10 and 11 space–time dimensions on the other hand. These
correspondences consist of a dictionary between the coset fields and supergravity
fields under which the null geodesic equation (32) become equivalent to the field
equations of the bosonic fields of the supergravity theories in a truncation to first
spatial gradients only.

It is important that in all cases we make use of the same E10 invariant model
and the correspondences arise through reading that very same model in terms of
different subalgebras used for writing the model by means of a level decompo-
sition, see Sec. 2.2. In other words, one and the same E10 model gives rise to
the different (and suitably truncated) maximal supergravity equations of motion,
depending on how one slices the lightcone in the space of E10 roots. Therefore the
E10 σ-model could realize one of the central desiderata of M-theory: to explain
the known maximal theories (hence, all the maximal supergravity theories) in
terms of a single “Ur”-theory.41,42 We refer to this aspect of the E10 model as
versatility.

In order to establish the correspondences it is necessary to make a few common
gauge choices in the supergravity theories. These choices arek

• A pseudo-Gaussian gauge for the vielbein where there are no mixed space–time
components:

EM
A =

(
N 0
0 em

a

)
.

Here, N is the lapse function, and we denote g1/2 = det(em
a). In the

cosmological applications of Sec. 5.1 we will choose the convenient gauge
N = det(em

a).

kOur index conventions for gravity in D = d + 1 dimensions are such that capital Latin indices
run from 0 to d, with 0 corresponding to the time direction, whereas lower case Latin indices run
only over the spatial directions 1 to d. Letters from the beginning of the alphabet are flat (tangent
space) indices and from the middle of the alphabet are curved (world) indices. We use the “mostly
plus” convention for the metric.
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• The spatial coefficients of anholonomy

Ωab c = −Ωba c = 2e[a
meb]

n∂men c

are fixed, by the subgroup SO(10) of spatial rotations of the local Lorentz group,
to have vanishing trace Ωab b = 0. Following Refs. 10 and 12 we will denote the
remaining traceless part as Ω̃ab c. The spin connection ωa bc is defined in terms of
Ωab c by

ωa bc = −ωa cb =
1
2

(Ωab c + Ωca b − Ωbc a) ,

with Ωab b = 0 implying ωb ba = 0, and vice versa.
• Spatial frame derivatives of the lapse N , of ω and of the gauge invariant field

strengths are neglected.
• The coset model time parameter t is chosen such that, near the cosmological

singularity, we have t → ∞ as T → 0, where T is the proper time.
• All fermionic terms are set to zero.

The necessity of fixing these gauges on the supergravity side in order for the
correspondence to work is well known. The precise nature of these choices will
be discussed in detail in Ref. 43 where again the residual gauge freedom will be
identified with the invariances of the one-dimensional σ-model of Sec. 3.

Under these assumptions the spatial components of the Ricci tensor (in flat
indices) splits as

Rab = Rtemp
ab + Rspat

ab ,

where we defined, following Ref. 10,

Rtemp
ab := ∂0ωa b0 + ωc c0ωa b0 − 2ω0 c(aωb) c0, (39)

Rspat
ab :=

1
4
Ω̃cd aΩ̃cd b − 1

2
Ω̃ac dΩ̃bc d − 1

2
Ω̃ac dΩ̃bd c − ∂cΩ̃c(a b). (40)

In standard normalization of the kinetic term for a p-form gauge field AM1···Mp

with (p + 1)-form field strength FM1···Mp+1 = (p + 1) ∂[M1AM2···Mp+1] the space–
space components of the Einstein equation reads in flat indicesl

Rtemp
ab = −T el

ab + T magn
ab − Rspat

ab , (41)

where the stress energy contribution of the p-form was split into “electric” and
“magnetic” contributions according to

T el
ab =

p

2p!
F0ac1···cp−1F0bc1···cp−1 −

p

2p!(D − 1)
δabF0c1···cpF0c1···cp , (42)

T magn
ab =

1
2p!

Fac1···cpFbc1···cp − p

2(p + 1)!(D − 1)
δabFc1···cp+1Fc1···cp+1. (43)

lThe remaining components are the Hamiltonian and diffeomorphism constraints of the theory.
While the Hamiltonian constraint is linked to the constraint of the E10 σ-model, there is currently
no full understanding of the diffeomorphism constraint in general. Some progress on this issue was
reported recently in Ref. 44.
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4.1. D = 11 supergravity

Using the results of Secs. 2.2.1 and 2.3, we first write the coset model equations
(32) in A9 decomposition up to � = 3. With

P =
1
2
P

(0)
ab Sab +

1
3!

P (1)
a1a2a3

Sa1a2a3 +
1
6!

P
(2)
a1···a6S

a1···a6 +
1
9!

P
(3)
a0|a1···a8

Sa0|a1···a8

(44)

they are9,10

nD(0)(n−1P
(0)
ab ) = P

(1)
acdP

(1)
bcd − 1

9
δabP

(1)
c1···c3P

(1)
c1···c3 +

2
5!
(
P

(2)
ac1···c5P

(2)
bc1···c5

− 1
9
δabP

(2)
c1···c6P

(2)
c1···c6

)
+

16
9!
(
P

(3)
c1|c2···c8aP

(3)
c1|c2···c8b

+
1
8
P

(3)
a|c1···c8

P
(3)
b|c1···c8

− 1
8
δabP

(3)
c0|c1···c8

P
(3)
c0|c1···c8

)
, (45)

nD(0)(n−1P
(3)
abc) =

1
3
P

(2)
abcd1···d3

P
(1)
d1···d3

− 2
3 · 5!

P
(3)
d1|d2···d6abcP

(2)
d1···d6

, (46)

nD(0)(n−1P
(2)
a1···a6) = −1

3
P

(3)
c1|c2c3a1···a6

P (1)
c1c2c3

, (47)

nD(0)(n−1P
(3)
a0|a1···a8

) = 0. (48)

These equations are SO(10) = K(GL(10)) covariant by construction, and SO(10)
is the spatial Lorentz group of an 11-dimensional theory. We have put the A9 level
on the components P (�) to make the structure more transparent. The derivative
operator D(0) appearing here is only partly covariantized and defined by

D(0)(P (�) ∗ S(�)) = ∂t(P (�) ∗ S(�)) − [Q(0) ∗ J (0), P (�) ∗ S(�)]

+ [P (0) ∗ S(0), Q(�) ∗ J (�)] . (49)

Maximal supergravity in d = (1 + 10) dimensions1 has as bosonic fields grav-
ity and a three-form gauge potential AM1M2M3 with field strength FM1···M4 =
4∂[M1AM2M3M4]. Since in this case D − 1 = 10 − 1 = 9 and p = 3 we see that
the structure of the � = 0 equation (45) is very similar to the Einstein equation
(41) given that we map

nD(0)(n−1P
(0)
ab )(t) ↔ N2Rtemp

ab (t,x0), (50)

where we chose a fixed but arbitrary spatial point x0. The map can be rewritten in
terms of maps for P

(0)
ab , Q

(0)
ab and n which we present together with corresponding
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maps for the other fieldsm

n(t) ↔ Ng−
1
2 (t,x0),

Q
(0)
ab (t) ↔ −Nω0ab(t,x0),

P
(0)
ab (t) ↔ −Nωa b0(t,x0),

P
(1)
abc(t) ↔

1
2
NF0abc(t,x0),

P
(2)
a1···a6(t) ↔ − N

2 · 4!
εa1···a6b1···b4Fb1···b4(t,x0),

P
(3)
a0|a1···a8

(t) ↔ 3
4
Nεa1···a8b1b2Ω̃b1b2a0(t,x0).

(51)

Using this correspondence Eq. (45) is mapped to the relevant Einstein equation,n

Eq. (46) is mapped to the suitably truncated equation of motion for the gauge field,o

Eq. (47) is the Bianchi identity for the gauge potential, and Eq. (48) expresses
the existence of a factorization of the space–time-dependent vielbein into a space-
dependent times a time-dependent factor.10

The correspondence (51) provides a map between the dynamics of two seem-
ingly different systems: the E10 invariant geodesic model (31) (truncated beyond
� = 3) and the bosonic sector of d = 11 supergravity with the gauge choices and
truncations detailed above.

4.2. D = 10 massive type IIA supergravity

The analysis for d = 11 can be repeated for massive type IIA supergravity in
d = 10.45 This was carried out in Ref. 11 in a formalism which uses the D9 = so(9, 9)
subalgebra of e10. The spatial Lorentz group is now SO(9) and is the diagonal of
SO(9) × SO(9) = K(SO(9, 9)). In order to find the right representations under
the Lorentz group one has to further decompose the SO(9, 9) representations of
Sec. 2.2.2.

The (SO(9, 9) × GL(1))/(SO(9) × SO(9)) coset model which is the restriction
of the E10/K(E10) model to � = 0 in the D9 decomposition can be shown to be
equivalent to the reduction of the bosonic sector of d = 10 type I supergravity

mNote that the position of the flat indices does not matter any more since they are SO(10) ⊂
GL(10) indices and we use the Euclidean flat δab to raise and lower them. Similarly, the 10 index
ε-symbol appearing in Eq. (51) is the invariant tensor of SO(10).
nOne term in (40) does not fully match when plugging in the correspondence for the mixed
symmetry generator: although one recovers the first and second term in (40) and the last term
vanishes in the truncation, the third term with “crossed index contraction” is not reproduced. In
the cosmological billiard picture,8 this term is subdominant.
oWhich, in our conventions, and using flat indices reads

DAF ABCD = − 1

8 · 144 εBCDE1···E4F1···F4FE1···E4FF1···F4 .
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by extending arguments of Maharana and Schwarz.46 As supergravity the bosonic
sector of type I is identical to the NSNS sector of type IIA supergravity.

Turning to the � = 1 contributions in the E10/K(E10) σ-model, we first decom-
pose the 256-component SO(9, 9) spinor under the diagonal SO(9) Lorentz group
with the result

256 → 16⊗ 16 = 9 + 84 + 126 + 36 + 1. (52)

These representations can be seen as anti-symmetric tensors of rank p for p =
1, 3, 5, 7, 9, which are exactly the RR potentials of massive type IIA supergravity.47

The suitably truncated sector of massive type IIA supergravity was rewritten in
terms of the underlying SO(9, 9) symmetry in Ref. 11 and shown to be dynamically
equivalent to the truncated E10 model under a correspondence similar to (51). The
precise correspondence requires a number of redefinitions which we do not spell out
here but instead refer the reader to Ref. 11 for details. Reference 11 also contains a
partial treatment of fermions and supersymmetry which were used to derive some
of the redefinitions required to make SO(9)×SO(9) manifest. The relation between
the bosonic fields of massive IIA supergravity transforming under GL(10) and E11

was analyzed earlier in Ref. 27.

4.3. D = 10 type IIB supergravity

The final example we consider is chiral d = 10 IIB supergravity.48,49 The corre-
sponding level decomposition of e10 is the A8 ⊕A1 decomposition discussed in Sec.
2.2.3. The explicit factor of A1 ≡ sl(2) together with tentative spatial Lorentz
group so(9) = K(A8) = K(sl(9)) already hints at a type IIB interpretation. That
this is indeed true was shown in Ref. 12. We briefly recall the correspondence and
highlight the interesting new features.

The field content of Table 3 is interpreted in terms of IIB quantities. On
� = 0 we find the spatial vielbein coset GL(9)/SO(9) and the axion–dilaton coset
SL(2)/SO(2). Level � = 1 contains the SL(2) doublet of electric field strengths of
the two-form potentials which correspond to the F- and the D-string.50 Level � = 2
contains an SL(2) singlet electric field strength of the four-form potential. Level
� = 3 carries the SL(2) doublet of magnetic field strengths of the two-form poten-
tials. Finally, level � = 4 contains the dual graviton mixed symmetry tensor and the
magnetic field strengths of the axion–dilaton pair, together with a gauge potential.
As shown in Ref. 12 there is again a dynamical match of the truncated IIB equations
of motion and the truncated E10 σ-model. We refer readers there for details of the
correspondence. An important point here concerns the self-duality constraint of the
five-form field strength in IIB supergravity. As explained in Ref. 12, the dynamical
correspondence is only valid if this self-duality is used on the supergravity side,
eliminating all magnetic field strength components in favor of electric ones. The
relation between IIB supergravity and E11 was analyzed earlier in Ref. 26.

As also discussed in Ref. 12 there is a qualitative difference between E11 and
E10 which manifests itself in the present analysis. The corresponding type IIB



October 19, 2006 17:56 WSPC/142-IJMPD 00900

1636 A. Kleinschmidt and H. Nicolai

Fig. 3. E10 versatility summarized. The filled nodes indicate the deleted nodes in the correspond-
ing level decompositions.

decomposition of E11 is under A9 = sl(10) which allows for anti-symmetric 10-form
potentials, which in string theory are thought to be the source for nine-branes.51

The analysis of Refs. 12 and 36 revealed the existence of an SL(2) quadruplet and a
doublet in the E11 spectrum under A9. This somewhat unexpected SL(2) structure
was later confirmed to be compatible kinematically with an analysis of the IIB
supersymmetry algebra.38,39

4.4. Versatility summary

The results presented so far can be summarized as follows. Different level decom-
positions of E10 produce the correct spectra of the maximal supergravity theories,
see Sec. 2.2. These identifications provide a dynamical match between the geodesic
E10/K(E10) model defined in Sec. 3, and written according to these decomposi-
tions and truncated at prescribed levels, and the appropriately truncated bosonic
equations of motion of all maximal supergravities. The relevant decompositions are
summarized in Fig. 3.

5. Discussion and Outlook

Finally, we briefly discuss a few related topics and open problems in the E10

approach.

5.1. Cosmological solutions

Given that there is correspondence between two dynamical systems, as detailed in
the map (51) for the A9 decomposition and the D9 and A8⊕A1 correspondences of
Refs. 11 and 12, one can map solutions of one system to solutions of the correspond-
ing other system. Besides the fact that the E10 model might be simpler to solve in
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subsectors since it is integrable (as explained in Sec. 3), constructing solutions of
the E10 model has the additional advantage that one can map one solution of the
E10 model to three different solutions of the maximal supergravity theories due to
the versatility of the model.

The simplest way to obtain solutions to the E10 σ-model is by restricting to a
submanifold which is a coset of a finite-dimensional subgroup of E10. On such spaces
the geodesic motion is known to be integrable of Toda type (see for example Refs. 52
and 53 for overviews). The simplest example is SL(2)/SO(2) where the problem
reduces to solving the one-dimensional Liouville equation. In the E10 context this
was studied in Ref. 54. Using the SL(2) generated by the e10 generators e10, h10, f10,
and one additional (orthogonal) CSA element to satisfy the Hamiltonian constraint
of (32), the following solution to the bosonic sector of d = 11 supergravity was
found in Ref. 54

ds2 = −e14φ̃−2φ/3dt2 + e4φ/3(dx2 + dy2 + dz2) + e2φ̃−2φ/3(dw2
1 + · · · + dw2

7),

Ftxyz =
E

a cosh2(
√

Et)
= ae4φ, (53)

with

φ(t) = −1
2

ln
[

a√
E

cosh(
√

E(t − t0))
]

,

φ̃(t) =
1
42

√
Ẽ(t − t1). (54)

Here, x, y, z correspond to directions 8, 9, 10, and w1, . . . , w7 are seven transverse
directions. The “energies” E and Ẽ are related by Ẽ = 21E as follows from the
Hamiltonian constraint of the E10 model. Furthermore, the gauge n = 1 was chosen.
This solution is known to have phases of accelerated and decelerated expansion,55,56

and is identical in form to the SM2-brane solution, see Ref. 57 and references therein.
Similar BPS solutions and their properties in the context of E11 were discussed
earlier in Refs. 58–63. References to papers containing cosmological solutions to
supergravity can be found in Ref. 54.

5.2. E10, fermions and generalized holonomy

Recently progress was made on the important question of how to bring fermions into
the picture.64,65 This amounts to adding spin to the massless particle moving on a
geodesic trajectory in the E10/K(E10) coset space. In analogy with what happens
for smaller hidden symmetries En (n ≤ 8) one expects the fermions to transform
under the denominator group K(En). In the case of E10 this poses an algebraic
problem since K(e10) is not a Kac–Moody algebra as mentioned in Sec. 2.1. In
fact, hardly anything is known about the representation theory of this infinite-
dimensional algebra.
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The idea of Damour et al.64 was to bring the fermionic equation of motion into
play and fix a supersymmetric gauge since for the bosonic correspondences one also
needs to fix all gauges. The gauge chosen was ψ0 − Γ0Γaψa = 0 and to write the
remaining 320 equations of motion for the d = 11 gravitino asp Ea = 0 ↔ DΨ = 0,
where Ψ is a K(E10) spinor on which the K(E10)-covariant derivative acts. The
spinor Ψ is thought to be infinite-dimensional components and, if decomposed under
the spatial Lorentz SO(10), to contain the gravitino ψa. The analysis of Damour
et al.63 showed that by evaluating the equations of motion and using the dictionary
(51) one can deduce the action of the K(E10) generators up to “level”q � = 3 and
show consistency with the K(E10) commutation relations. In fact, it can be proven
that the 320 components of the supergravity fermion furnish a representation of
K(e10) by themselves. This representation is necessarily unfaithful.

Repeating the same analysis for Dirac fermions shows that the 32 representa-
tion of SO(10) is also an unfaithful representation of K(e10).r The action on the
Dirac spinor is in terms of anti-symmetric 32 × 32 matrices, hence fundamental
SO(32)-matrices. This is somewhat along the lines of proposals for a generalized
holonomy of M-theory67–69 but with a very important difference. The Dirac spinor
representation of SO(1, 10) is not turned into a representation of SO(32) but into
an unfaithful representation of K(E10). This way one circumvents global problems
with SO(32) as a symmetry group rather than a generalized holonomy pointed out
in Ref. 70.s Similar remarks apply to SL(32) which was discovered in the M5-brane
equations71 and discussed in the context of E11 in Ref. 19, as has been shown in
Ref. 72.

5.3. Open problems

Despite all the encouraging results presented in this contribution, there remain a
number of very important open problems with the E10 model.

• The most pressing question is probably the following: What role do the higher
levels play? When establishing the correspondences to the supergravity theories in
Sec. 4, we truncated the σ-model equations of motion after a fixed level. However,
there are infinitely many higher levels whose contributions to the dynamics can
be determined in principle but whose physical interpretation is not clear. The
original paper9 made the conjecture that their effect could be to re-introduce the
full space dependence from supergravity and thereby turn space–time into an
emergent concept. This so-called gradient conjecture is based on the observation
that in the infinite list of representations in the A9 level decomposition there
exist the following representations for k ≥ 0.

pThe index a runs over the spatial directions and hence takes 10 values, the 32 component spinor
index has been suppressed.
qLevel here is not meant as a grading of K(e10) which does not exist.
rSee also Ref. 66 for low level results on Dirac fermions and E10.
sThe gravitino representation could never have been formed an SO(32) representation.
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� A9 Dynkin Generator Interpretation

3k + 1 [k00000100] Ea1···ak
b1b2b3 ∂a1 · · · ∂akFtb1b2b3

3k + 2 [k00100000] Ea1···ak
b1···b6 ∂a1 · · · ∂akεb1···b6c1···c4Fc1···c4

3k + 3 [k10000001] Ea1···ak
b0|b1···b8 ∂a1 · · · ∂akεb1···b8c1c2 Ω̃c1c2 b0

The first Dynkin label entry k translates into k symmetric sets of nine anti-
symmetric indices which each have been lowered using the invariant sl(10) ε-
symbol.t The generators are therefore symmetric in the lower indices, which
makes the suggested interpretation possible at least in principle.u Of course,
the term “Taylor expansion” here must be interpreted cum grano salis, since it is
very well known from previous results on the cascades of dual potentials appear-
ing for the affine Geroch group (see e.g. Ref. 73) that these higher order spatial
gradients involve non-local relations between the fields in the coset model, see
also Ref. 31. There is an infinity of additional representations besides the gradi-
ent representations and these have been conjectured to be associated partly with
new M-theoretic degrees of freedom.

• There are very few results concerning involutory subgroups of infinite dimen-
sional Kac–Moody groups, an K(E10) in particular. For instance, is it possible
to construct faithful spinor representations of K(E10) which could also accom-
modate the spatial dependence of the fermionic fields? This hinges largely on a
better understanding of the relevant representation theory.44

• Can one construct similar correspondences for other Kac–Moody cosets and other
theories? This seems likely and has already been done for the hyperbolic extension
of G2 in Ref. 74 and for pure type I supergravity in Ref. 75.
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