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Abstract Here we shall find the Green’s function of the difference equation of
loop quantum cosmology. To illustrate how to use it, we shall obtain an iterative
solution for closed model and evaluate its corresponding Bohmian trajectory.

PACS 04.60.Pp · 04.60.Ds · 03.65.Ta

1 Introduction

In loop quantum cosmology the evolution of the universe has been investigated
from different points of view. Some of the results are based on the discrete
quantum domain whose dynamics is described by a difference equation [1,2].
As one expects the effects of discreteness are most important at small volumes,
close to the classical singularity. In this limit the evolution of the universe is com-
pletely different from that given by the Wheeler–DeWitt equation. Therefore
one has to learn how to extract results directly from the difference equation.
The behaviour of quantum states near the Planck scale is not entirely known
and only some numerical results exist. In [3] using an isotropic closed model
with a massless scalarfield, the divergent behaviour of the wave function at large
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scale is investigated numerically. One of the most important consequences of
discrete dynamics is the possibility of evolving from negative values of the scale
factor eigenvalues to positive ones for all homogeneous models [1]. In this way
the quantum dynamics does not break at the classical singularity.

At large scales, one can approximate the difference equation with a differen-
tial equation, where the discreteness leads only to small corrections. This is an
intermediate semiclassical phase in which the evolution equation takes a con-
tinuous form [4]. There is another analysis called effective classical analysis. In
this approximation one uses the effective matter Hamiltonian in which instead
of inverse volume operator, it’s eigenvalue is used [4–6]. In this way one gets
the effective classical equation of motion valid at large volumes, describing the
motion of the position of the wave packet in coordinate time [7]. The most
recent phenomenological applications of loop quantum cosmology are based
on these equations [4,8–11]. Inflationary scenarios without the no-graceful exit
problem [4–6,8,9], new perspectives on initial conditions for standard infla-
tion [9,12] and resolution of the Big crunch problem in closed universe [10] are
some of them.

In general the difference equation of loop quantum cosmology has solutions
which have rapid change in their values and even in their sign when the vol-
ume changes slightly [13]. The notion of pre-classicality [13] eliminates such
unphysical solutions which have highly oscillatory behaviour for large scales.
The physical solutions at large scales should be wave packets which their (WKB
and/or Bohmian) trajectories are the classical ones. So far this condition on the
solutions of loop quantum cosmology is done using the generating function
techniques [14–16].

Recently [17] we have obtained the exact solution of the Hamiltonian
difference equation for the vacuum case. In this paper, we shall use that vac-
uum solutions, and find the Green function of the difference equation. This is an
important step in obtaining analytical solutions of the difference equation. Be-
cause using the Green function one can obtain at least an iterative solution. We
shall use this Green function to obtain an iterative solution of closed universe
in loop quantum cosmology in the presence of a massless scalar field. Finally we
shall investigate the Bohmian trajectories corresponding to this solution, and
see that these trajectories are compatible with the preclassicality condition.

2 The difference equation of cosmology

Classically, the symmetry of cosmological minisuperspace is introduced by
choosing an isotropic triad Ea

i = pδa
i and connection Ai

a = cδi
a. The only

physical parameters, p and c are related to the more familiar scale factor by
the relations |p| = a2 and c = 1/2(k − γ ȧ) where k is the curvature parameter
and γ is the Immirizi–Barbero factor. Then, the quantum dynamics of states is
obtained from the Hamiltonian constraint leading to the following difference
equation [18–20]:
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(V�+5�0 − V�+3�0)e
−2i��0ψ(φ, �+ 4�0)−�(V�+�0 − V�−�0)ψ(φ, �)

+(V�−3�0 − V�−5�0)e
2i��0ψ(φ, �− 4�0) = −1

3
8πGγ 3�3

0�
2
pĈm(�,φ)ψ(φ, �) (1)

in which� = 2−4�2
0γ

2�(�−1), Ĉm is the matter (φ) Hamiltonian, and �p is the
Planck length. � is the spin connection parameter defined as � = k/2. ψ(φ, �)
is the coefficient of the expansion of the state in terms of spin network states

|ψ〉 =
∑

�

ψ(φ, �) |�〉 (2)

and V� = (γ |�|/6)3/2 �3
p are the eigenvalues of the volume operator. Finally

|�〉 represents the spin network states for this simple minisuperspace, and it is
simply the eigenstate of p̂.

There is a contribution from the eigenvalues of inverse volume operator in
the matter Hamiltonian. These are represented by dj,µ(�)

â−3|�〉 = dj,µ(�)|�〉, (3)

where µ ∈ (0, 1) and the positive integer j represent the quantum ambiguities
arising from constructing quantum operator from the corresponding classical
expression [21]. These eigenvalues are bounded at very small scale so the inverse
volume operator is well defined at classical singularity. For large j the behavior
of dj,µ(a) [22] shows a peak at a∗ = (γ �2

pj/3)1/2 and then approaches to zero
for all values of µ. Therefore the scale a∗ determines the size of the scale factor
below which the geometrical density is significantly different from it’s classical
form. For a << a∗ the density approaches to zero according to a power law
behavior dj,µ(a) ∼ a3/1−µ and after passing a peak at a∗ it decays classically
(∼ a−3).

If one chooses the matter part to be a massless scalar field (This is the model
we shall use to demonstrate the use of the Green function obtained in the next
section.):

Ĉm = 1
2

â−3p2
φ = − h̄2

2
â−3 d2

dφ2 (4)

and assume an oscillatory matter field dependence for the coefficient of the
state vector to the matter field

ψ(φ, �) = 	(�)eiω̃φ , (5)

where ω̃ is a constant. So the right hand side of the difference Eq. (1) can be
written as

−8πG
3
γ 3�3

0�
2
pĈm(�,φ)ψ(φ, �) = −�3

0γ
3�6

pω
2dj,µ(�)ψ(φ, �), (6)
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where ω2 = (8πGh̄2/6�4
p)ω̃

2. Using a new variable F(�),

F(�) = (
V�+�0 − V�−�0

)
e−i��/2	(�) (7)

the difference Eq. (1) can be written as

F(�+ 4�0)−�F(�)+ F(�− 4�0) = Q(�), (8)

where

Q(�) = −λ�3
pdj,µ(�)

F(�)
V�+�0 − V�−�0

, (9)

where λ is a dimensionless parameter defined as λ = �3
0�

3
pγ

3ω2.

3 Green function

In this section we shall find the Green function of the difference Eq. (8). By the
green function we mean a function satisfying the relation

G(η + 4�0)−�G(η)+ G(η − 4�0) = δη,0. (10)

The general solution to the Eq. (8) is then written as

F(�) = F(0) +
∑

�′
G(�− �′)Q(�′). (11)

In order to make the above summation meaningful one can assume that G has
support only on a countable subset of the real line. That is to say, one can con-
struct an infinite number of green functions each denoted as G(η0)(m) = G(mη0),
where m is an integer and η0 is a real number. Different values of η0 lead a green
function and a solution covering a subset of the domain of �.

3.1 Closed universe

To derive the Green function we need the vacuum solutions. From reference [17]
we know that for the case of closed universe the vacuum solution is of the form

e±β�; with β = 1
4�0

cosh−1 �

2
(12)

The Green function is then suggested as (the boundary condition is chosen such
that the Green function goes to zero as |η| → ∞)

G(η) =





aeβη η < 0
b η = 0
ce−βη η > 0

(13)
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Substituting this in the relation (10) determines the constants as

a = b = c = −1
2 sinh 4β�0

(14)

and the that η, as expected from the discussion above, should comes in steps of
η0 with η0 ≥ 4�0. The fact that η0 ≥ 4�0 would be clear if one substitutes the
above solution in the relation (10), for η < 4�0 one encounters inconsistency
for the values of a, b and c. Therefore η could not be smaller than 4�0. It is clear
that changing η0 in the range [4�0, 8�0] would cover all the range of |�| > 4�0.

The green function would be simplified then to

G(η0)(n − m) = −e−βη0|n−m|

2 sinh 4β�0
(15)

The solution is thus:

F(mη0) = F(0)(mη0)+
∑

n

G(η0)(n − m)Q(η0n) (16)

As it is noted previously, this solution works only for |�| > 4�0. For |�| < 4�0,
one has to use the difference equation to get

F(±ε) = Q(4�0 ± ε)− F(8�0 ± ε)−�F(4�0 ± ε), (17)

where 0 < ε < 4�0.

3.2 Flat universe

For this case the vacuum solution is [17]:

eiα� and �eiα� with α = jπ
2�0

, (18)

where j is an integer number. Again the Green function is a linear combination
of vacuum solutions. Putting the suggestion in the difference equation of Green
function fixes some of the constants and we are left with the Green function

G(η0)(n − m) = eiαη0(n−m)
(

a + η0|n − m|
8�0

)
, (19)

where a is some undetermined constant. The appearance of a constant in the
Green function comes from the fact that we have not fix the boundary condition
in the large � limit. It only demanded that it should be oscillatory. It must be
noted that again this Green function can be used only for |�| > 4�0, and for
|�| < 4�0 one should use the difference equation itself.
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4 Iterative solution

Using the Green functions derived in the previous section, one can obtain an
iterative solution for the wave function. One can rewrite the equation for F as
follows in terms of the wave function:

	(m) = 	(0)(m)+ λ

�V(m)

∑

n

G̃(n − m)S(n)	(n), (20)

where we have dropped η0 for simplicity and �V(m) = Vmη0+�0 − Vmη0−�0 ,
S(n) = �3

pdj,µ(n) and G̃ = e−i�η0(n−m)/2G. This can be written in terms of infinite
dimensional matrices as

�V	 = �V	(0) + λG̃ S
�V

�V	. (21)

This has the formal solution

�V	 = 1

1 − λG̃ S
�V

�V	(0) (22)

which can be expanded as

	(m) = 	(0)(m)+ λ

�V(m)

∑

n

G̃(n − m)S(n)	(0) + · · · (23)

In order to guarantee the convergence of this solution one should choose λ as
small as needed. This makes some limitation on ω.

In the following we shall apply this general solution to the case of closed and
flat universe and derive the wave function up to the first order of iteration.

4.1 Closed universe

For a closed universe the zeroth order solution is

	
(0)
± (m) = eim�η0/2 e±mβη0

�V(m)
. (24)

If one ignores the small terms like e−2βη0n appearing in the sum needed for cal-
culating the first order of iteration, in comparison to 1, and using the different
behavior of dj,µ in different regimes one can obtain the closed form

	
(1)
± (m) = eim�η0/2 e±mβη0

�V(m)

{
1 − λ

2 sinh 4β�0

(
S(m)
�V(m)

±�(±m)
)}

, (25)
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where

�(m) =






�(1,|m+1|)
3�0η

2
0

|m| > m∗

S(m∗)
�V(m∗) + �(1,m∗)

3�0η
2
0

+
∑m∗

|m+1| n(2+µ)/(2−2µ)

3�0η
(−2−µ)/(2−2µ)
0

|m| < m∗ (26)

and �(1, x) = d2ln�(x)/dx2, in which � is the Gamma function. In the above
relation m∗ corresponds to a∗.

4.2 Flat universe

For this case, the iterative solution is not useful. Because in the summations,
terms like 1/n appears and this diverges. This clearly does not mean that the
solution does not exist in this case. The flat isotropic cosmology with a massless
scalar field was investigated by Ashtekar et al. [23], recently. They used a semi-
classical state as an initial state and evolved it backward in time and showed
that bigbang is replaced by big bounce. Our iterative method diverges for this
model, and this means that the above results cannot be obtained from it unless
one finds a way to regularize the iteration.

5 Trajectories

Here we shall find the Bohmian trajectories corresponding to the iterative wave
function of closed universe obtained here. To do this, it is needed to have the
wave function in the configuration space |c〉. Using the fact that 〈c|�〉 = ei�c/2,
one has

ψ(c,φ) =
∑

η0

∑

m

∫
dωf (ω)g(η0)eiη0m(c+�)/2eiω̃φ	(mη0). (27)

Here we choose f (ω) = δ(ω − ω0) and g(η0) = δη0,ζ (ζ > 4�0). Using the rela-
tion (25), one can obtain the wave function in the configuration space up to first
order. It is plotted in Fig. 1.

The corresponding Bohmian trajectory can be found simply by the guidance
relation. Using relations of reference [17], we have

p = δS
δc

, (28)

φ̇ = δS
δφ

. (29)

The coordinate time can be eliminated between these equations and a as a func-
tion of φ derived. The result is plotted in Fig. 2. Also in this figure the classical
trajectory is plotted. The classical trajectory can be obtained from the classical
Hamiltonian constraint [3]:
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Fig. 1 The real part, imaginary part and norm squared of the wave function of a closed
universe in the configuration space and up to first order of iteration. The horizontal
axis is ζc/2, and the vertical axis is scaled by the factor:

1
3�0

√
ζ

[
1 − λ

2 sinh 4β�0

(
ζ3/2(1−µ)−S(m∗)

3�0
√
ζ

− �(1,m∗)
3�0ζ

2 − ζ (2+µ)/2(1−µ)
3�0

∑m∗
n=0 n

(2+µ)
2(1−µ)

)]
. In plot-

ting the above, the oscillatory matter part eiω̃φ is not included

− 3
2γ 2πG

p2
(

c2 − c + 1 + γ 2

4

)
+ p2

φ = 0 (30)

with pφ = ω̃ one gets the Friedman equation

ȧ2 + 1 = 8πGω̃2

3a4 (31)

which is independent of γ as it should be. The solution to this equation is either
a = constant = (8πGω̃2/3)1/4 or

t =
∫

a2da√
8πGω̃2

3 − a4
(32)

which can be expressed in terms of elliptic integrals.
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Fig. 2 The classical and quantum scale factors as a function of the matter field. The horizontal
axis is

√
ζφ/

√
2ω̃γ and the vertical axis is

√
2a/

√
ζ . Note that for times greater than the classicality

time (κ1/4ω̃1/2), the quantum solution is oscillations of amplitude ∼ 3.5�p with period ∼ (1/6)Tp,
where Tp is planck’s time. For small times, the Bohmian quantum trajectory has no singularity

It is important to note that the scale factor has oscillations of amplitude of
order of �p. For times far away from the classical singularity, the Bohmian tra-
jectory is the classical one up to quantum oscillations (fluctuations) around it.
This is in accordance with the pre-classicality condition.

At this end it is fruitful to note some points. First that this is an iterative
method based on the standard idea of Green’s function. Naturally this may be
of limited use. It is not possible to obtain the exact solution from the iterative
one, in general. This method is usefull only if the iteration is convergent to the
exact one.

Second, which is related to the first, the reader may ask what is the meaning
of smallness of λ? It is assumed that if one chooses λ small enough, which means
choosing the matter frequency ω small enough, it is possible to make the itera-
tion convergent. Physically this means that if the matter frequency is small, the
matter contribution to the difference equation would be small and one expects
that iteration around the vacuum solution is convergent. But mathematically,
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one should examine whether each model is convergent by rigour mathematical
methods.

Finally, it must be noted that the method presented here can, in principle,
be extended to more complicated models. For example, for anisotropic models,
the only difference is that we have a partial difference equation. The Green’s
function of this equation can be obtained via separation of variables. The result
would be some kind of multiplication of the isotropic Green’s function for each
direction of the anisotropic model.
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