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Abstract
The large scale binary black hole effort in numerical relativity has led
to increasing distinction between numerical and mathematical relativity.
This paper discusses this situation and gives some examples of successful
interactions between numerical and mathematical models in general relativity.

PACS numbers: 04.20.−q, 04.25.Dm, 03.65.Pm, 02.30.Jr

1. Introduction

After a lengthy period of fighting various ‘monsters’ [48], such as spurious radiation, constraint
instabilities, boundary effects, collapse of the lapse, etc, the effort in numerical general
relativity directed at modelling mergers of binary black holes is now rapidly entering a phase
of ‘normal science’. Although not all of the monsters have been tamed, a number of groups are
reporting multiple orbit evolutions, and the goal of providing reliable wave forms in sufficient
numbers and of sufficient accuracy for use in gravitational wave data analysis is in sight.

The conceptual framework for the numerical work on the binary black hole (BBH)
problem, which has arguably played an absolutely necessary role as the foundation and stimulus
for this work, has been provided by the global picture of spacetimes, including singularity
theorems, ideas of cosmic censorship, post-Newtonian and other analytical approximations
of the 2-body problem in general relativity, which have been arrived at purely by analytical
and geometric techniques. Further, the theoretical analysis of numerical approximations to
solutions of systems of PDEs, the analysis of the Cauchy problem for the Einstein equations,
developments in computer science concerning parallel processing, have all provided essential
stepping stones on the path towards successful BBH simulations.

1 Supported in part by the NSF, under contract no DMS 0104402 with the University of Miami.
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Due to the large scale of the effort that goes into the BBH work, the division of the general
relativity community into ‘numerical’ and ‘theoretical/mathematical’ groups has become
pronounced. With this in mind, it seems natural to ask oneself what grounds there are for
future interactions between these two communities. On the one hand, one may take the
point of view that the ‘strong field’ regime of general relativity is going to be essentially the
exclusive domain of numerical general relativity, the phenomena one is likely to encounter
being too complex to be amenable to mathematical analysis. A consequence of this point of
view is the recommendation to mathematical relativists interested in these aspects of general
relativity to devote themselves to becoming numerical relativists. On the other hand, one may
take the point of view that the strong field regime of general relativity is likely to contain
new phenomena of interest both in our understanding of the analytical nature of the Einstein
equations and for our understanding of physical reality.

In the latter point of view, which I am proposing in this paper, the relationship between
numerical and mathematical general relativity is similar to that of experimental mathematics to
mathematics, i.e. as a tool for discovering new phenomena, testing conjectures, and developing
a heuristic framework which can be used in precise mathematical analysis. In either case,
there is a clear need for an effort to bridge the emerging gap between the two communities.

1.1. Numerical experiments and mathematics

Mathematics has a long history of interaction between computer simulations and analytical
work. Areas where this interaction has been prominent are number theory, dynamical systems
and fluid mechanics. The interaction has provided both the discovery of new phenomena and
proofs of theorems conjectured on the basis of numerical experiments.

A few examples where the interaction between mathematics and computer simulations
has played an important role are provided by the accidental discovery in 1963 by Lorentz
[51] of chaotic behaviour in a system of equations derived from atmospheric models2, the
discovery by Feigenbaum [33] of universality in period doubling bifurcations, the discovery
and study of strange attractors in dynamical systems, and the analysis of fractals including the
Mandelbrot set [52].

The proof of the existence of solutions to the Feigenbaum functional equation was
computer based, and used rigorous numerical computer techniques [49]. The existence of
strange attractors for the Hénon map [40] was proved by Benedicks and Carleson [11], using
analytic techniques. The proof was preceded by a lengthy period of theoretical work as well
as very detailed computer simulations which gave strong support to the conjectured picture of
the attractor and the dynamics of the Hénon map. The Hénon map was derived as a model
for the Poincaré map of the Lorentz system. It was recently proved that the Lorentz system
contains a strange attractor [67], thus providing a solution to Smale’s 14th problem. The proof
of this fact was again computer based.

1.2. Overview of this paper

Below, in section 2, I shall discuss three examples from general relativity. The first is the
Bianchi IX, or Mixmaster system, an anisotropic homogeneous cosmological model, and
in particular modelled by a system of ODEs, see section 2.1. The second is the Gowdy
T 2-symmetric cosmological model, which is modelled by a (1 + 1)-dimensional system of
wave equations, see section 2.2. Thirdly, I will discuss critical collapse, see section 2.3, which

2 The famous Fermi–Pasta–Ulam experiment of 1955 is perhaps the non-chaotic counterpart of the Lorentz
experiment.
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was first discovered during numerical simulations of the collapse of a self-gravitating scalar
field.

In section 3, I mention some open problems where it seems likely that the interaction
of numerical and analytical techniques will play an important role. In section 3.1, I discuss
general T 2 symmetric cosmologies, which provide a simple model for the full BKL-type
behaviour followed by a few remarks on generic singularities in section 3.2. The next
section, 3.3, introduces the problem of self-gravitating wave-maps and the U(1) model.
Finally, the stability of the Kerr black hole is discussed in section 3.4. Concluding remarks
are given in section 4.

2. Success stories

2.1. The Mixmaster spatially homogeneous cosmology

The Bianchi IX or Mixmaster model is given by restricting the vacuum Einstein equations to
the spatially homogeneous case with S3 spatial topology. The dynamics of this system were
first discussed in some detail by Misner, see [53] and references therein, see also [69]. Misner
gave a Hamiltonian analysis which indicated that the system exhibits ‘bounces’ interspersed
with periods of ‘coasting’. The thesis of Chitre [21] gave an approximation of the dynamics
as a hyperbolic billiard. It was quickly realized that the billiard system is chaotic in a certain
sense, namely it projects to the Gauss map, x �→ {

1
x

}
, see [8], which has been well studied.

The heuristic picture of the oscillatory, and chaotic, asymptotic behaviour of the
Mixmaster model played a central role in the proposal of Belinski, Khalatnikov and Lifshitz
(BKL) concerning the structure of generic singularities for the gravitational field [9, 10].
An essential aspect of the BKL proposal is that the dynamics near typical spatial points is
asymptotically ‘Mixmaster’-like. In the case of spacetimes containing stiff matter on the other
hand, the asymptotics is ‘Kasner’-like, and quiescent. The quiescent behaviour also occurs
under certain symmetry conditions, an important example being the Gowdy spacetimes to be
discussed below. Apart from the intrinsic beauty of the Mixmaster system, the BKL proposal
provides one of the main motivations for studying the Mixmaster system in detail.

It should be remarked that the chaotic nature of the Mixmaster dynamics was used by
Misner as a basis for the so-called ‘chaotic cosmology’ proposal, in which it was argued that
the dynamics of Mixmaster gave a way around the horizon problem which plagued cosmology
during this period (i.e. pre-inflation).

The full Mixmaster model resisted analysis for a long time, in spite of a large number of
papers devoted to this subject. Numerical experiments indicated that the model has sensitive
dependence on initial data, but also revealed that evolving the system of ODEs describing
the Mixmaster dynamics for sufficiently long times to give useful insights, and with sufficient
accuracy to give reliable results, presented a difficult challenge. It was only with the work
of Berger, Garfinkle and Strasser [14] which made use of symplectic integration techniques
and an analytic approximation that it was possible to overcome the extremely stiff nature of
the system of ODEs for the Mixmaster model. This numerical work gave strong support for the
basic conjectures concerning the Mixmaster system, and led to a renewed interest within
the mathematical general relativity community in the analysis of the Mixmaster dynamics.
The volume [41] as well as the paper [54] played an important role in spreading the word
about this problem.

The main conjectures concerning the Mixmaster model, including proof of cosmic
censorship in the Bianchi class A models, the oscillatory nature of the Bianchi IX singularity,
as well as the existence of an attractor for the Bianchi IX system, were proved by Ringström
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in a series of papers [57, 59]. However, in spite of these very important results, many basic
and important questions concerning both the full Mixmaster system, as well as the billiard
approximation, remain open.

The recent work of Damour, Henneaux, Nicolai and others [30] has shown that the BKL
conjecture extends in a very interesting way to higher dimensional theories of gravitation
inspired by supergravity theories in D = 11 spacetime dimensions. A formal argument
indicates that these models have asymptotic Mixmaster-like behaviour, governed by a
hyperbolic billiard, determined by the Weyl chamber of a certain Kac–Moody Lie algebra.
Applying this analysis to 3 + 1 vacuum gravity reproduces the Chitre model. The domains
occurring in these hyperbolic billiards are arithmetic, which has interesting consequences for
the length spectrum of the billiard.

An important open problem is to understand the relation between the ‘Hamiltonian’
approach, which is also used in the work of Damour–Henneaux with the scale invariant
variables approach developed by Ellis–Wainwright–Hsu, and which was used in the work of
Ringström on Mixmaster. The scale invariant variables formalism has been generalized to
inhomogeneous models by Uggla et al [68] and applied to the formal and numerical analysis
of inhomogeneous cosmological models [4, 37].

2.2. The Gowdy T 2-symmetric cosmologies

The cosmological models on T 3 × R, with T 2 symmetry, and with hypersurface orthogonal
Killing fields, the so-called Gowdy model, is one of the simplest inhomogeneous cosmological
models. The Einstein equations reduce to a system of PDEs on S1 × R, consisting of a
pair of nonlinear wave equations of wave-maps type, and a pair of constraint equations.
Eardley, Liang and Sachs [31] introduced the notion of asymptotically velocity-dominated
singularities to describe the asymptotical locally Kasner-like, non-oscillating behaviour of
certain cosmological models. We will refer to this behaviour as quiescent. In particular,
analysis showed that one could expect the Gowdy model to exhibit quiescent behaviour at the
singularity.

A programme to study the Gowdy model analytically, with a view towards proving strong
cosmic censorship for this class of models, was initiated by Moncrief. The methods used
included a Hamiltonian analysis and formal power series expansions around the singularity.
The formal power series expansions of Grubisic and Moncrief [38] supported the idea that a
family of Gowdy spacetimes with ‘full degrees of freedom’, i.e. roughly speaking parametrized
by four functions, exhibited quiescent behaviour at the singularity. In the course of this work,
an obstruction to the convergence of the formal power series was discovered. The condition
for the consistency of the formal power series expansions was that the ‘asymptotic velocity’
k of the Gowdy spacetime satisfies 0 < k < 1. The term asymptotic velocity has its origin
in the fact that the evolution of a Gowdy spacetime corresponds to the motion of a loop in
the hyperbolic plane. The asymptotic velocity k(x) for x ∈ S1 is defined as the asymptotic
hyperbolic velocity of the point with parameter x on the evolving loop in the hyperbolic plane.
It is a highly nontrivial fact that this limiting value exists, see [58].

Numerical studies carried out by Berger and Moncrief [16] and later by Berger and
Garfinkle [13] gave rise to a good heuristic picture of the asymptotic dynamics of Gowdy
models. In particular, the numerical work showed that Gowdy spacetimes exhibit sharp
features (spikes), which formed and appeared to persist until the singularity. The spatial scale
of the spikes turned out to be shrinking exponentially fast, and it was therefore impossible
to resolve these features numerically for more than a limited time. Kichenassamy and
Rendall [43] showed, using Fuchsian techniques, that the picture developed in the work
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on formal expansions could be made rigorous, and in particular that full parameter families of
‘low velocity’ Gowdy spacetimes could be constructed with quiescent singularities. Further,
Rendall and Weaver [56] used a combination of Fuchsian and solution generating techniques
to construct Gowdy spacetimes containing spikes with arbitrary prescribed velocities. This
allowed one to gain detailed understanding of the nature of the spikes, and in particular of the
nature of the discontinuity of the asymptotic velocity at spikes.

These developments gave, through the numerical work, a vivid graphical picture of the
dynamics of Gowdy spacetimes, but also established with rigor some of the fundamental
conjectured aspects of Gowdy spacetimes. Based on these developments, Ringström [60–62]
was able to analyse the nature of the singularity of generic Gowdy spacetimes, and in particular
give a proof of strong cosmic censorship for this class of spacetimes.

2.3. Critical collapse

Critical behaviour in singularity formation was discovered by Matt Choptuik [22], during
numerical studies of the collapse of self-gravitating scalar fields. He found that for one-
parameter families of initial data, interpolating between data leading to dispersion and data
leading to collapse, data on the borderline between dispersion and collapse exhibited, for
a period depending on the parameter, a discrete self-similar behaviour before dispersing or
collapsing. Further, Choptuik found that the rate of divergence from the self-similar behaviour
exhibited a ‘universal’ behaviour, analogous to the universality discovered by Feigenbaum in
connection with period doubling bifurcations. This work opened up a very rich field of
investigation which is still active.

The basic principle is now well established through a large number of numerical
experiments and investigations, see the review paper [39]. A formal analysis indicates that
the ‘universal’ behaviour mentioned above may be explained in terms of a linearized analysis
around the self-similar critical solution [32, 47]. It turns out that the detailed behaviour, in
particular the rate, depends on the details of the nonlinearity, or in the case of general relativity,
the matter model under consideration, but the basic idea of universality within a matter model,
and the above-mentioned mechanism for the critical behaviour is well established over a wide
range of models. Depending on the matter model, the self-similar behaviour may be discrete,
continuous, or even in some cases a mixture of the two types. Virtually all numerical work on
critical behaviour has so far been in the spherically symmetric case. The reason is the extreme
demands on numerical precision presented by the problem.

By generalizing the notion of critical behaviour from general relativity to semilinear
wave equations, Yang–Mills equations, and wave-maps equations, Bizon and others [19]
have been able in some cases to find the explicit form of the first unstable (self-similar)
mode, and thus give an analytic description of the blow-up solutions. They find good
agreement with numerical data. However, beyond the linearized stability analysis mentioned
above, not many rigorous results are known for critical behaviour for the hyperbolic
equations mentioned above, including the case of general relativity. This state of affairs
should be contrasted with the asymptotic analysis of singular solutions of semilinear
parabolic equations.

In the (2 + 1)-dimensional case, a new phenomenon arises. For wave maps on (2 + 1)-
dimensional Minkowski space with spherical targets, there is no self-similar solution. Instead
there is a one-parameter family of static solutions, and numerical work in the equivariant
case shows that this family mediates the blow-up [20]. This is borne out by the proof due to
Struwe [65] that in the equivariant case, a rescaling limit of a blow-up solution converges to
a harmonic map from R

2 to S2. Due to this fact, the nature of the critical blow-up in (2 + 1)
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dimensions is fundamentally different from the (3 + 1)-dimensional case, and the analysis of
the asymptotic rate of concentration of blow-up solutions is much more delicate. The recent
work of Rodnianski and Sterbenz [63] sheds light on this question.

The further study of the asymptotic behaviour of blow-up solutions of semilinear wave
equations as well as the gravitational field, in the non-spherically symmetric case is one of the
important challenges for the near future. Here it appears likely that a lot of the technology
developed during the course of the BBH work, such as adaptive mesh refinement, etc will play
a decisive role. Indeed, the original work by Choptuik on critical collapse used a version of
adaptive mesh refinement in the spherically symmetric situation.

3. Open problems

In this section, I shall briefly indicate some problems which I consider to be of interest from
the point of view of the interaction between numerical and mathematical work in general
relativity and related fields. The survey papers [1, 55] provide general references for many of
the problems mentioned below.

The problems I will mention are not exactly coincident with the ‘forefront’ of numerical
relativity, and may by some workers in that field be considered as simple problems, not
worthy of their attention. There are several reasons for this. One is that the development of
the mathematical theory of relativity is to a large extent lagging behind the exploratory and
goal-oriented work being performed within numerical relativity. Further, in order to provide
reliable insights into the nonlinear problems under consideration, the numerical experiments
must necessarily be carried out to a high degree of accuracy. This level of precision is so
far not available in general in the (3 + 1)- or even (2 + 1)-dimensional numerical evolutions,
in particular not in the strong field regime where many of the phenomena of interest take
place. In particular, a serious numerical study of the asymptotic behaviour at cosmological
and other types of singularities, with a view to better understanding the BKL proposal in
general relativity, as well as the asymptotic behaviour of blow-up solutions of geometric wave
equations, without symmetry assumptions, is likely to be at least as challenging as the BBH
problem.

3.1. General T 2-symmetric comologies

The full T 2 symmetric model on T 3 × R, without the condition that the Killing fields be
surface orthogonal, exhibits oscillatory behaviour at the singularity. While this has not been
rigorously established, it is indicated by formal and numerical studies. The formal work
includes the analysis of the silent boundary due to Uggla et al [68]. There are formal and
numerical studies using both the metric formulation by Berger et al [15] and the scale invariant
formulation by Andersson et al [4]. The last-mentioned work gives numerical support to the
silent boundary picture for the case of T 2-symmetric cosmologies. The review by Berger [12]
provides a general reference on the numerical investigation of spacetime singularities. The
numerical studies lend support to the BKL proposal on the nature of generic cosmological
singularities, and also indicate some new dynamical features of the T 2 singularity. These
new features can be interpreted as spikes. However in contrast to the Gowdy case, where the
asymptotic velocity at the spike is a constant, the spikes in T 2 are dynamical features, which
according to the numerical experiments [4] exhibit a simple dynamics, closely related to the
asymptotic billiard for the silent boundary system for T 2.
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3.2. Singularities in generic cosmologies

The U(1) model has been studied in the spatially compact case by Choquet-Bruhat and
Moncrief [25, 26]. They proved global existence in the expanding direction for small data
on spacetimes with topology � × R with genus(�) > 1. For the polarized case, one has a
self-gravitating scalar field. In the polarized case, one expects to have quiescent behaviour at
the singularity, a full parameter family of such solutions was constructed by Choquet-Bruhat,
Isenberg and Moncrief [23, 42]. For the full U(1) model, one expects an oscillatory singularity,
as in the full T 2 case. The numerical and analytical work of Berger and Moncrief [17, 18]
gave support to this picture. For this model, as for the T 2 model, the BKL proposal, and in
particular, the silent boundary proposal of Uggla et al [68] provides a heuristic picture of the
dynamical behaviour that one expects to see.

In fact, the scale invariant variables introduced by Uggla et al provide, with for example
CMC time gauge, a well-posed elliptic–hyperbolic system which can be used to model the
dynamical behaviour at the singularity. Some preliminary numerical experiments using a
CMC code have been carried out. Even for the polarized case in (2 + 1) dimensions the need
for adaptive codes is apparent. The oscillatory nature of the singularity means that spatial
structure is created at small scales. This will make it impossible to produce even somewhat
realistic evolutions of the full U(1) model without using an adaptive code. See however the
recent work by Garfinkle [37] for some numerical experiments in the (3 + 1) case. For these,
even though they reproduce the heuristic picture derived from the silent boundary conjecture,
the accuracy is too low to provide reliable information. Earlier work by Garfinkle [36] on
cosmological singularities in self-gravitating scalar field models in (3 + 1) dimensions made
use of spacetime harmonic (or wave) coordinates. The fact that this experiment, which for
essentially the first time made use of spacetime harmonic coordinates for a numerical relativity
code, was successful, has later had a significant influence on current work on the BBH problem.
The self-gravitating scalar field model is known to have large families of data which give rise
to quiescent singularities [3].

3.3. Self-gravitating wave maps and U(1)

Vacuum (3 + 1)-dimensional gravity with a spatial U(1) action gives, after a Kaluza–Klein
reduction, a self-gravitating wave-maps model in (2 + 1) dimensions, with hyperbolic target
space. Further imposing on this model a rotational symmetry, i.e. another spatial U(1) action,
which acts equivariantly, results in an equivariant self-gravitating (2 + 1)-dimensional wave
map with hyperbolic target. The equivariant U(1) action does not correspond to a Killing field
in the (3 + 1)-dimensional picture. In this case it is natural to impose asymptotic flatness for
the (2 + 1)-dimensional spacetime [7]. If this is done, turning off the gravitational interaction
gives a flat space wave-maps model with hyperbolic target.

According to standard conjectures, the flat space (2 + 1)-dimensional wave map with
hyperbolic target is expected to be well posed in energy norms, see [66], and it is therefore also
reasonable to expect that the self-gravitating version of this model is globally well posed. For
the (2 + 1)-dimensional wave-maps model with spherical targets, on the other hand, numerical
experiments indicate that one has blow-ups for large data; see section 2.3 above.

Based on the idea that the blow-up in the wave-maps model with spherical targets is
mediated by static solutions, one may argue that in the self-gravitating case, one cannot have
blow-ups for sufficiently large values of the coupling constant. The reason for this is that the
energy balance between the gravitational field and the wave-maps field does not leave enough
energy for the wave-maps field to produce the static solutions which mediate blow-ups. Some
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numerical experiments have been carried out which support this picture. It would be of great
interest to have detailed numerical experiments in this situation. The full (2 + 1)-dimensional
version of the self-gravitating wave-maps problem is very challenging both numerically and
theoretically.

3.4. Stability of Kerr

As mentioned above, the understanding of the structure of full (3 + 1)-dimensional
cosmological singularities and the strong cosmic censorship represents a major challenge
to the numerical and mathematical relativity community. However, the stability of the Kerr
black hole is perhaps closer to the type of problems which occupy most of the attention of
current work in numerical relativity. As is well known, according to the cosmic censorship
picture, the end state of the evolution of an asymptotically flat data set is a single Kerr black
hole. A proof of the nonlinear stability of Kerr would provide an important step towards a
proof of this far-reaching conjecture.

The nonlinear stability of Minkowski space was proved by Christodoulou and Klainerman,
see [28], see also [35] for an earlier partial result, using a conformally regular form of the
Einstein equations. For quasilinear wave equations which satisfy the so-called null condition of
Christodoulou [27], global existence for sufficiently small data is known to hold in dimension
n + 1, n � 3. It is a very important fact that the Einstein equations do not satisfy the classical
null condition [24].

The proof of Christodoulou and Klainerman relied upon detailed and rather delicate
estimates of higher order Bel–Robinson energies, using a combination of techniques. The
geometry of certain null foliations was studied, exploiting the transport equations for geometric
data along null rays. Further, a variant of the vector fields method of Klainerman [44] was used.

The vector fields method was developed to prove decay estimates for solutions of wave
equations, and requires at least approximate symmetries of the background solution. The
method has been used by Klainerman and Rodnianski in a micro-local setting in order to prove
well posedness for the Einstein equations with rough data. The method of Christodoulou and
Klainerman has later, in a series of papers by Nicolo and Klainerman [45, 46] been shown to
yield the correct peeling behaviour at null infinity, which is expected from the Penrose picture.

Recently, a substantially simpler proof of the nonlinear stability of Minkowski space was
given by Lindblad and Rodnianski [50]. Their proof relies upon the so-called weak null
condition.

Neither of the above-mentioned techniques generalize easily to the case of a non-flat
background solution. One serious problem is that the light cones in a black hole spacetime
differ by a logarithmic term from those in Minkowski space. Further, due to the presence of
the horizon, and in particular the ergo region, one has different types of decay behaviour in
the region close to the black hole and in the asymptotic region.

Several natural problems arise in this context. The decay of scalar fields on Schwarzschild
and Kerr backgrounds, in particular the behaviour at the horizon (Price law) is a natural
starting point. Several recent papers have studied this problem [29, 34] and for the case of a
Schwarzschild background the estimates agree with the conjectured Price law behaviour.

While some mathematical results on for example the decay of scalar fields on
Schwarzschild and Kerr backgrounds are available, the techniques used to prove these are
intimately tied to the symmetries of the background, and make heavy use of spherical
harmonics expansions. Therefore these proofs do not directly generalize to spacetimes which
are close in a suitable sense to Kerr. Further, one could even say that we do not have a good
notion of what ‘close to Kerr’ actually means.
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Thus, the problem of the stability of Kerr opens up a natural arena for the interaction
of numerical and mathematical relativity. The aspects of this problem where numerical
experiments may be able to provide crucial insights include the asymptotic decay behaviour
of the gravitational field and matter fields near the horizon. A question closely related to
this, and of direct relevance for numerical work, is the asymptotic behaviour of dynamical
horizons [2, 5, 6, 64]. It is not unlikely that a good understanding of the asymptotic geometry
of dynamical horizons near timelike infinity will play a crucial role in the global analysis of
black hole spacetimes.

In the far and intermediate regions, one expects linear effects to dominate, and here there is
a lot of information available from systematic post-Newtonian calculations. It is of interest to
compare this to the results of numerical simulations, and a great deal of work in this direction
is already being carried out in the context of the BBH programme.

4. Concluding remark

This paper represents a personal view and the rather incomplete discussion leaves out very
large areas of numerical relativity and numerical geometric analysis, including Ricci flow,
heat flow, higher dimensional general relativity models, including black strings and other
areas which are being worked on intensely. Further, the asymptotic behaviour of cosmologies
in the expanding direction, which has not been discussed here, provides interesting open
questions, which can be fruitfully studied using numerical techniques.
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[60] Ringström H 2004 Asymptotic expansions close to the singularity in Gowdy spacetimes Class. Quantum Grav.

(A spacetime safari: essays in honour of Vincent Moncrief) 21 S305–S322
[61] Ringström H 2004 On a wave map equation arising in general relativity Commun. Pure Appl. Math. 57 657–703
[62] Ringström H 2004 On Gowdy vacuum spacetimes Math. Proc. Camb. Phil. Soc. 136 485–512
[63] Rodnianski I and Sterbenz J 2006 On the formation of singularities in the critical o(3) sigma-model Preprint

math.AP/0605023
[64] Schnetter E, Krishnan B and Beyer F 2006 Introduction to dynamical horizons in numerical relativity Preprint

gr-qc/0604015
[65] Struwe M 2003 Equivariant wave maps in two space dimensions Commun. Pure Appl. Math. (dedicated to the

memory of Jürgen K Moser) 56 815–23
[66] Tao T 2004 Geometric renormalization of large energy wave maps Equations aux derives partielles: Proc.

Conf. Forges les Eaux (7–11 June 2004) XI 1–32 submitted (Preprint math.AP/0411354)
[67] Tucker W 2002 A rigorous ODE solver and Smale’s 14th problem Found. Comput. Math. 2 53–117
[68] Uggla C, van Elst H, Wainwright J and Ellis G F R 2003 The past attractor in inhomogeneous cosmology

Phys. Rev. D 68 103502–22
[69] Wainwright J and Ellis G F R (ed) 1997 Dynamical Systems in Cosmology (Cambridge: Cambridge University

Press) (papers from the workshop held in Cape Town, 27 June–2 July, 1994)

http://dx.doi.org/10.1088/0264-9381/20/14/319
http://dx.doi.org/10.1103/PhysRevLett.74.5170
http://dx.doi.org/10.1007/s00220-004-1281-6
http://dx.doi.org/10.1175/1520-0469(1963)020>0130:DNF<2.0.CO;2
http://dx.doi.org/10.1088/0264-9381/14/8/028
http://dx.doi.org/10.1088/0264-9381/18/15/310
http://dx.doi.org/10.1088/0264-9381/17/4/301
http://dx.doi.org/10.1002/cpa.20105
http://dx.doi.org/10.1007/PL00001041
http://dx.doi.org/10.1088/0264-9381/21/3/019
http://dx.doi.org/10.1002/cpa.20015
http://dx.doi.org/10.1017/S0305004103007321
http://www.arxiv.org/abs/math.AP/0605023
http://www.arxiv.org/abs/gr-qc/0604015
http://dx.doi.org/10.1002/cpa.10074
http://www.arxiv.org/abs/math.AP/0411354
http://dx.doi.org/10.1103/PhysRevD.68.103502

	1. Introduction
	1.1. Numerical experiments and mathematics
	1.2. Overview of this paper

	2. Success stories
	2.1. The Mixmaster spatially homogeneous cosmology
	2.2. The
	2.3. Critical collapse

	3. Open problems
	3.1. General
	3.2. Singularities in generic cosmologies
	3.3. Self-gravitating
	3.4. Stability of Kerr

	4. Concluding remark
	Acknowledgments
	References

