
Active mass under pressure
Jürgen Ehlers
Max-Planck-Institut für Gravitationsphysik, Am Mühlenberg 1 D-14476 Golm, Germany

István Ozsvátha�

Department of Mathematics, The University of Texas at Dallas, Richardson, Texas 75083-0688

Engelbert L. Schucking
Department of Physics, New York University, 4 Washington Place, New York, New York 10003

�Received 6 May 2005; accepted 31 March 2006�

After a historical introduction to Poisson’s equation in Newtonian gravity, we review its analog for
static gravitational fields in Einstein’s theory. The source of the potential, which we call the active
mass density, comprises not only all possible sources of energy, but also the pressure term 3P /c2.
In the Hamburg seminar on relativity in the 1950s we discussed whether this term due to Fermi
pressure in different atomic nuclei could be detected in Cavendish-type experiments. Our reasoning
contained an instructive mistake that we are now able to resolve. We conclude that this term should
not lead to discrepancies for different materials in a Cavendish-type experiment, although it is
important in the early universe and collapsing stellar cores. © 2006 American Association of Physics
Teachers.
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I. HISTORICAL INTRODUCTION

Active mass is a term used for mass as the source of a
gravitational field. This mass can be distinguished from pas-
sive mass, which is a measure of the response to a gravita-
tional field and of inertial mass which is the resistance
against acceleration by any force, gravitational or otherwise.
In Newton’s and Einstein’s theories these distinctions are not
necessary, in agreement with available physical and astro-
nomical evidence and post-Newtonian approximations.
However, these distinctions are useful for considering non-
Newtonian or non-Einsteinian theories of gravity or to assess
which aspects of mass are tested in experiments.

In 1773 Lagrange1 introduced the function V through the
relation

V�x� =� ��x��
�x − x��

d3x�. �1�

He recognized that it is easier to first compute V and then the
force by differentiation than to calculate the force directly.
The function ��x� denotes the density of the active mass,
which is given by

M =� ��x��d3x�. �2�

We recognize Lagrange’s function V as the negative of the
gravitational potential �. Lagrange did not use vector nota-
tion and did not exhibit Newton’s gravitational constant G
because astronomers set it equal to unity as we do in this
paper. The use of the negative of the potential was customary
before the principle of the conservation of energy began to
dominate physics and astronomy.

Lagrange did not give a name for his function V. Gauss
called it the potential in his 1839 paper.2 He had not been
aware of Green’s 1828 article3 that called V the potential
function. Green had published his paper privately and rarely

referred to it in his later papers. It was only several years
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after Green’s death in 1841 that William Thomson �Lord
Kelvin� discovered Green’s paper and arranged for the pub-
lication of its results.

The acceleration vector ẍ for a massive particle was given
by Lagrange in an inertial system by

ẍ = �V . �3�

This relation implies that the inertial mass may be identified
with the passive gravitational mass.

In 1782 Laplace4 introduced the equation

�2V �
�2V

�x2 +
�2V

�y2 +
�2V

�z2 = 0, �4�

which is now known as the Laplace equation. Laplace did
not express it in Cartesian coordinates, but used spherical
polar coordinates. He published the equation in Cartesian
coordinates in 1787.5

It took another 26 years until Poisson pointed out that the
Laplace equation does not hold within the substance of the
attracting body6 and has to be replaced there by

�2V = − 4�� . �5�

Equation �5� is now known as Poisson’s equation. A proof
was first given by Gauss in 1839.2 If we write Eq. �5� in
terms of the potential �, we have

�2� = 4�� , �6�

which is the relation in Newton’s theory between the gravi-
tational potential and the density of the active mass in an
inertial system. If � is required to vanish at infinity, then Eq.
�6� implies Eq. �1�.

II. THE POISSON EQUATION FOR STATIC FIELDS
IN EINSTEIN’S THEORY OF GRAVITATION

In general relativity7 the ten components g�� of the metric

tensor
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ds2 = g���x��dx�dx� �7�

replace the potential of Lagrange. Moreover, not just the
mass-density, but all ten components of the energy-
momentum-stress tensor T�� become contributing sources to
the gravitational field. For neutral matter T�� is given by

T�� = �u�u� + P��, �8�

with the energy density �, pressure tensor P��, and four-
velocity u� subject to the normalization

u�u� = 1, �9�

and

P��u� = 0. �10�

For a perfect fluid

P�� = P�u�u� − g��� . �11�

Instead of Poisson’s equation relating the gravitational poten-
tial to the active mass density �, we have the Einstein field
equations,

R�� − 1
2g��R + �g�� = − 8�T��, �12�

connecting g�� and its derivatives up to second order with
the components of T��. The Riemann tensor is defined
through the interchange of the order in the second covariant
derivatives of a covariant vector field ��,

��;�;� − ��;�;� = − �	R���
	 . �13�

The covariant derivative of �� with respect to the coordinate
x� is denoted by

��;� =
���

�x� − �
���

 . �14�

The Christoffel symbols ���

 are defined by

���

 =

1

2
g
	� �g�	

�x� +
�g�	

�x� −
�g��

�x	 	 . �15�

The Ricci tensor is obtained by contraction from the Rie-
mann tensor R���

	 ,

R�� = R�	�
	 . �16�

The Ricci scalar R is found by contracting the Ricci tensor
R�

�. We use units such that the speed of light c=1.
For a static gravitational field in which matter is at rest we

can find an analog of Lagrange’s potential and its Poisson
equation. We give a derivation in Appendix A. In this deri-
vation we restrict ourselves to discussing this relation for a
static gravitational field in Einstein’s theory. As we show in
Appendix A such a static gravitational field can be described
by the metric

ds2 = g00�xl��dx0�2 + gjk�xl�dxjdxk �17�

with no g0i terms. Latin indices run from 1 to 3. The com-
ponents of the metric tensor do not depend on the time co-
ordinate t=x0, and the four-velocity u� of the matter is given

by
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u� =
1


g00

�0
�. �18�

We have used the Kronecker �-symbol ��
�=1 for �=� and

��
�=0 for ���. The three-dimensional proper volume ele-

ment is given by


− ĝd3x �19�

with ĝ=det�gjk�.
In a perfect fluid the static potential 
g00 is given by

−
1


− ĝ
�
− ĝgjk�
g00�,k�,j � �2
g00

= 4�
g00�� + 3P −
�

4�
	 . �20�

The spatial metric differs from the flat metric only by terms
of order �. On the left-hand side of the relativistic Poisson
equation, Eq. �20�, the Laplacian operates on the spaces
where t=constant, where it is applied to the function 
g00,
which we identify as the static relativistic potential. This
expression for the left-hand side of Eq. �20� is the Laplace
operator in Riemannian geometry. It was derived by Beltrami
in 1868 and is now known as the second Beltrami
parameter.8

The cosmological � term in Eq. �12� can be written on the
right-hand side of this equation as the tensor T�����,

− �g�� � − 8�T����� . �21�

We then interpret T����� as the energy-momentum tensor of
a perfect fluid with energy density ���� and pressure P���,

T����� = ����� + P����u�u� − P���g��, �22�

and

���� = − P���, P��� = −
�

8�
. �23�

The contribution to the active mass density �“dark energy”�
becomes

���� + 3P��� = −
�

4�
. �24�

Poisson’s 4�� term corresponds to the right-hand side of
Eq. �20�. Apart from Einstein’s lambda term that acts—if it is
positive—as a negative mass density contributing to the ac-
tive mass, there are two differences in comparison with Pois-
son’s equation. One is the factor 
g00 on the right-hand side
of the Eq. �20�. Because of energy conservation, the potential
is defined as the work needed to displace a unit mass
�charge� from infinity and is usually normalized to vanish at
spatial infinity. In Einstein’s theory of gravitation the com-
ponent g00 for a finite mass distribution in a static gravita-
tional field is usually taken as c2 at infinity. The reason is that
we can then include the rest energy of a particle as part of the
potential energy and assume that the metric of an isolated
system becomes Euclidean at large distances. At large dis-

tances r from the center of mass we have
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g00�r� � 1 −
M

r
, �25�

where M is the total active mass. Thus, for weak fields the
factor 
g00 in the relativistic Poisson equation differs only
slightly from unity.

The justification for identifying 
g00 with the relativistic
global potential rests on its definition as the specific potential
energy, that is, the potential energy per unit mass. We shall
show in Appendix A that a test particle of unit mass at rest at
x has potential energy �apart from its rest energy�

� = 
g00 − 1. �26�

The Poisson equation in Newtonian gravity refers to a global
inertial frame. The frame used in Eq. �20� was derived in-
variantly, that is, independent of coordinate transformations.
It is the closest analog to such a system in Newtonian theory.
This analogy, which identifies � with 
g00−1, is not perfect
because the acceleration of a particle in the field of the po-
tential is no longer exactly given by its gradient. In general
relativity we instead have for the acceleration of a particle at
rest in a static gravitational field

u̇k = −
1


g00

�

�xk

g00 = −

�,k

�1 + ��
. �27�

III. THE PRESSURE CONTRIBUTION TO THE
ACTIVE MASS DENSITY

The most surprising correction to the relativistic Poisson
equation is the 3P /c2 term. This term was first noted explic-
itly as a consequence of Einstein’s field equations by Levi-
Civita in 1917.9

In the statistical mechanics of an ideal gas of particles with
mass m and momentum p, velocity v, and constant number
density n, the pressure P is given by Bernoulli’s formula,10

P = 1
3np · v , �28�

where the bar indicates an average over the momentum dis-
tribution. In Eq. �28� P is the kinetic contribution to the
pressure. In general, P or Pjk contains contributions from
short-range interactions, which must be added to Eq. �28�.
Attractive interactions contribute negative contributions to P.
Equation �28� holds also for a relativistic ideal gas.11 In the
high energy limit of photons with energy 
, Eq. �28� becomes

=p·v and

P = 1
3n
̄ = 1

3� . �29�

IV. THE HAMBURG PARADOX

We were members of a seminar on relativity that regularly
met at Hamburg University in the 1950s. When we learned
about the 3P term in the Poisson equation, the following test
was suggested: Because nucleons move in atomic nuclei
with about two-tenths of the speed of light, the 3P term
might significantly contribute to the active mass density of
all nuclei except the proton and the neutron. A simple calcu-
lation for the pressure in an ideal Fermi gas of nucleons at
zero temperature �see Appendix B� gives a pressure contri-
bution to the active mass density of 4.3% for nuclear matter.

Therefore, a ball of hydrogen should have an active mass
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that is about 4% smaller then a ball of lead of the same
inertial and passive gravitational mass. This difference could
be checked by weighing them on a scale.

The only way such an effect might be seen in the labora-
tory is by the Cavendish experiment for the determination of
the gravitational constant where the active mass comes into
play. Although it would be forbidding to work with a ball of
ultra-cold solid hydrogen, we might consider a material with
a high hydrogen content that is solid at room temperature
such as polyethylene �CH2� or lithium hydride �LiH�.
Lithium consists of 92.5% of the isotope 3

7Li. The rest is 3
6Li.

Thus, lithium hydride has a molecular weight of essentially 8
and the hydrogen contribution is 1 /8 by mass.

For lithium hydride the active mass should be less by
0.043/8=5�10−3 and for polyethylene 2�0.043/14=6
�10−3 compared with the active mass of matter containing
no hydrogen. If we were to use balls of materials containing
hydrogen to determine the gravitational constant through the
Cavendish experiment, we should obtain lower values for the
gravitational constant G. In the 1950s the value of G was
uncertain by about 0.1%12 and so the effect might just be
measurable. In 1958, one of us �ELS� spoke to Robert Dicke
of Princeton University about a possible experimental test.
Dicke had his doubts about whether it could be done because
machining homogeneous spheres in these materials might be
forbidding. However, a year later it became clear that the
value for G should be the same for balls of hydrogen. Dieter
Brill, who had joined the Hamburg seminar, alerted us to a
paper by Misner and Putnam13 about active mass. �See John
Wheeler’s Memoir14 to learn about Peter Putnam who died in
1987.�

Misner and Putnam showed, assuming gravity to be neg-
ligible, that the 3P term for a gas in a container is canceled
by negative contributions to the mass from the stresses in the
walls of the container that kept the gas together. It had not
been clear to us that negative surface contributions to the
energy would exactly cancel the positive 3P-volume contri-
bution to the total mass for the model of a bubble that we had
in mind.

V. THE SPHERICAL BUBBLE

We imagine a gas of constant energy density � and pres-
sure P enclosed in a spherical shell of radius r with surface
mass density � and surface tension �. The surface tension
should be just strong enough to keep the bubble in equilib-

Fig. 1. A spherical bubble of radius r is filled with a gas of pressure P. The
bubble is kept in equilibrium by a surface tension � with dimensions of

force times length.
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rium. The gravitational binding energy of the bubble is as-
sumed to be negligible compared to its mass. To find the
relation between the surface tension and the pressure at equi-
librium, we imagine a plane cut through the bubble that re-
moves the southern hemisphere. To keep the northern hemi-
sphere in equilibrium, we have to balance the upward
pressure over the equatorial disc of area �r2 against the sur-
face tension pulling down along the equator over the length
2�r. This balance gives the relation

P�r2 = �2�r , �30a�

� = 1
2 Pr . �30b�

The total active mass M is equal to the sum of the surface
contribution 4�r2��−�� and the volume contribution
4�r3��+3P� /3:

M = 4�r2�� − �� +
4�

3
r3�� + 3P� = 4�r2� +

4�

3
r3�

+ 2�r3P , �31�

leaving us with half the volume contribution of the 3P-term
to the active mass. Something is incorrect. It was only last
summer when we discussed this problem again in a nostalgic
moment that we saw the solution.

If the active mass density of a three-dimensional distribu-
tion needs to be complemented by a 3P term, then a two-
dimensional shell needs a 2P term and a one-dimensional
disk a P term �corresponding to the trace of a two- and
one-dimensional isotropic stress tensor�. If these terms were
stresses instead of pressures, they would enter with a nega-
tive sign.

Now all was clear: the surface contribution to the active
mass of the bubble is 4�r2��−2�� and we obtain instead of
Eq. �31� the result

M = 4�r2�� − 2�� +
4�

3
r3�� + 3P� = 4�r2� +

4�

3
r3� .

�32�

This simple remark also settles the result for the active mass
of a circular disk.

VI. THE ACTIVE MASS OF A CIRCULAR DISK

We consider a circular disk of radius r with mass density �
and pressure P. The disk is kept in equilibrium by a one-
dimensional string around its circumference of linear mass

Fig. 2. The lower hemisphere of the bubble �Fig. 1� is removed and replaced
by its forces on the upper hemisphere.
density � and stress �. To find the relation between the pres-
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sure P and the stress �, we imagine a linear cut through the
center of the disk that removes the lower half. The pressure
over the diameter 2r must now be balanced by the stress � at
the left and the right end of the semicircle. This consider-
ation gives

2rP = 2� , �33a�

� = rP . �33b�

The active mass M of the disk is obtained by taking the
active mass density �+2P over the area �r2 and adding the
active mass density �−� of the bounding string along the
circumference 2�r. We obtain

M = �� + 2P��r2 + �� − ��2�r = ��r2 + �2�r , �34�

the promised result: The total mass M of the disc is equal to
the sum of the mass of the interior and the mass of the
circumference. The pressure and stress contributions of inte-
rior and circumference cancel each other.

VII. CONCLUSION

If we extend Newtonian theory by adding 3P /c2 to the
density of the active mass, we should not expect to see
changes in the total active mass of atomic nuclei. The bubble
model suggests that the integrated contribution of the pres-
sure term is compensated by the negative energy contribution
of the membrane if we also postulate a 2P /c2 term for the
active mass of the membrane. We have also extended New-
ton’s theory by assuming the equivalence of energy and
mass. In a model that goes beyond the Misner-Putnam

Fig. 3. Circular disk of radius r carries a surface pressure P. The pressure is
balanced by the tension � along its perimeter.

Fig. 4. The lower half of the disk �Fig. 3� has been removed and replaced by

the forces acting on the upper part.
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calculation13 and takes gravitational binding energy and Ein-
stein’s field equation into account, we also find complete
compensation of the pressure term.15 However, the compen-
sation of the pressure term pertains to the static case. If we
wish to find the effect of the 3P term, we have to look at
non-equilibrium situations in the early universe or in the late
stages of a type II supernova core.15

Because of Newton’s third law, the active and passive
masses are equal in Newtonian theory. If this equality did not
hold, the center of mass of a system of two passive unit
masses but different active masses would accelerate, thus
violating Newton’s third law. In Einstein’s theory of gravita-
tion the equality of active and passive mass is not obvious
because Einstein’s cosmological constant can give rise to
self-acceleration for the center of mass of a double star. Al-
though we have no reason to doubt the equality of the three
kinds of masses, tests involving the active mass would be
desirable. Such tests are especially called for situations
where the gravitational binding energy significantly contrib-
utes to the mass.
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APPENDIX A: THE ANALOG OF THE POISSON
EQUATIONS IN EINSTEIN’S GRAVITATION

In the following we give an invariant definition of the
Poisson equation for static gravitational fields in general
relativity. We take the gravitational potential of Newton’s
theory as the analog of the electrostatic potential in Max-
well’s theory. In its relativistic version it appears as the zero
component of the 4-vector potential. As the analog of the
4-vector potential for gravitation in Einstein’s theory, we
take a time-like Killing vector field. Its existence assumes
that we are dealing with a stationary metric.

Killing’s equation. We demonstrate the analogy to the
equations of Maxwell’s electromagnetism. A stationary
gravitational field is characterized by the existence of a time-
like Killing field that generates an infinitesimal transforma-
tion which leaves the metric unchanged. The field is called
static if the Killing vector field is hypersurface-orthogonal,
which means that the covariant vector is a product of a gra-
dient by a scalar function. A Killing vector field �� satisfies

��;� + ��;� = 0. �A1�

If we write Eq. �13� three times with a cyclic permutation of
the indices

��;�;� − ��;�;� = − �	R���
	 , �A2a�

��;�;� − ��;�;� = − �	R���
	 , �A2b�

��;�;� − ���;� = − �	R���
	 , �A2c�

add Eqs. �A2a� and �A2b� and subtract Eq. �A2c�, we obtain

that
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2��;�;� = 2�	R���
	 , �A3�

where we also have used the cyclic symmetry of the Rie-
mann tensor, R���

	 +R���
	 +R���

	 =0. Equation �A3� is known
as the integrability condition for the Killing field. If we de-
fine

��;� − ��;� = 2��;� � F��, 2�	R�
	 � j�, �A4�

we obtain from Eq. �A3� by anti-symmetrization and con-
traction Maxwell’s equations for the field tensor F�� and
four-current j�,

F��;� + F��;� + F��;� = 0, F;�
�� = j�. �A5�

Because ��;�−��;�=��,�−��,�=F��, the Killing vector for
a stationary gravitational field plays the role of an electro-
magnetic four-potential.

Adapted coordinates. The next step makes the time-
independence evident by the choice of adapted coordinates.
To get from the stationary setting to the static one where
space and time are neatly separated, we have to do the analog
of excluding magnetic fields in electrodynamics. This analog
appears here as the condition that the covariant Killing vec-
tor field is the multiple of the four-dimensional gradient of a
scalar field. The hypersurfaces on which this field is constant
are orthogonal to the time-like Killing vector field and define
the time coordinate x0. We choose coordinates so that

�0 = 1, � j = 0 �j = 1,2,3� , �A6�

which can be done for any contravariant vector field in a
finite region. This special choice of coordinates still allows a
gauge transformation with an arbitrary function ��xk�:

x̄0 = x0 + ��xk�, x̄j = x̄j�xk� . �A7�

The Killing equation �A1� can be written as

g��,��� + g���,�
� + g���,�

� = 0. �A8�

This equation gives with the normalization in Eq. �A6�,

g��,0 = 0, �A9�

which is independent of the coordinate x0. Because we re-
quired that the Killing vector �� be time-like, we have that x0

is a distinguished time coordinate with ��=g0� and ����
=g00�0. Its distinction is that the metric tensor g�� is inde-
pendent of time.

We now use the condition that the Killing vector is
hypersurface-orthogonal �static field�,

�����,� − ��,�� + �����,� − ��,�� + �����,� − ��,�� = 0.

�A10�

After contraction with �� we have

g00�g0�,� − g0�,�� − g0�g00,� + g0�g00,� = 0. �A11�

This equation gives after division by �g00�2,

�g0�/g00�,� − �g0�/g00�,� = 0. �A12�

Therefore, we have that g0� /g00 is a gradient of a scalar
function �:

g0� = g00�,�, �,0 = 1. �A13�
We can write
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� = x0 + ��xk� . �A14�

A comparison of Eq. �A14� with Eq. �A7� shows that we can
choose the gauge transformation � such that �= x̄0. By drop-
ping the bar on x̄0, we then obtain the form for the metric
given in Eq. �17�:

ds2 = g00�xl��dx0�2 + gjk�xl�dxjdxk. �A15�

The purely spatial coordinate transformations are still free.
The time-like hypersurface-orthogonal Killing vector is
unique up to a constant factor. The square of this factor mul-
tiplies g00.

Poisson equation. We now define the Laplace operator for
a scalar function that is the square root of the length of the
static time-like Killing vector 
g00. A state of rest is then
described by a time-like unit vector

u� =
1


g00

��, u�u� = 1. �A16�

We study the second set of Maxwell’s equations �A5� in
the above coordinates. We have because of time indepen-
dence

F;�
�� =

1

− g

�
− gF���,� =
1


− g
�
− gF�k�,k. �A17�

From Eq. �A4� we have F��= �g00��
0 �,�− �g00��

0�,�, and the
only non-vanishing covariant components are

F0j = g00,j = − Fj0. �A18�

If we substitute this result into Eq. �A17�, we find

F;�
�� = �0

� 1

− g

�
− gg00,j
1

g00
gjk	

,k
, �A19�

with


− g = 
g00

− ĝ, ĝ = det�gjk� . �A20�

We obtain

F;�
�� = �0

� 2

− g

�
− ĝgjk�
g00�,j�,k = −
2


g00

�0
��2
g00.

�A21�

Here �2 is the Laplace operator as in Eq. �20� for a positive
definite metric. The minus sign on the right-hand side of Eq.
�A21� occurs because we use the Lorentz signature ����
of the four-dimensional metric.

The Laplace operator is applied to the scalar potential
function 
g00 which appears here as the zero component of
the four-vector g0� /
g00 whose 3-vector part vanishes. In
special relativity the Poisson equation of electrostatics is ob-
tained similarly for a four-potential A� whose space compo-
nents Aj vanish.

The four-current j� from Eq. �A4� becomes with the Ein-
stein field equations �12�

j� = 2�	R�
	 = 2�− �T�

	 + 1
2��

	�T + ���
	��	, �A22�

or

j� = 2�− �T0
� + 1

2�0
���T + 2��� . �A23�

The relativistic gravitational constant � is given by 8�G /c2
in terms of of Newton’s gravitational constant G and the
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vacuum speed of light. In the units used here it is simply 8�.
Here T is the trace �contraction� of the tensor T�

�. The second
set of Maxwell’s equations states that

T0
j = 0, �A24�

which implies that the density of momentum and energy flux
vanish in this static situation. If we call the trace of the
pressure tensor 3P,

T = � − 3P, � � T0
0, 3P � − Ta

a, �A25�

we have

j0 = − ��� + 3P� + 2� . �A26�

If we use Eqs. �A5� and �A21�, Eq. �20� gives the relativistic
Poisson equation for a static gravitational field:

�2
g00 = 
g00�4��� + 3P� − �� . �A27�

The energy of a particle in a static gravitational field. To
justify the identification of 
g00 with the gravitational poten-
tial, we show that it agrees with the definition of the specific
energy necessary to move a mass to infinity. A particle of
constant mass m and four-velocity v� moving on a geodesic
in a static gravitational field obeys

v�v� = 1, v̇� � v;�
�v� = 0. �A28�

The energy integral for unit mass is given by

E = v���, �A29�

because the derivative Ė of E along the four-velocity v�

vanishes:

Ė = �mv����. = mv;�
�v��� + m��;�v

�v� = 0. �A30�

The first term on the right-hand side of Eq. �A30� vanishes
because of the geodesic equation �A28�, and the second term
is zero due to the Killing equation �A1�.

In terms of the components of the local rest frame we have

E =
m


1 − 
2

g00, �A31�

where 
 is the local velocity in terms of the speed of light.
Acceleration of a particle at rest. We demonstrate here

that for weak fields the accelerations are obtained from the
negative gradient of the potential bringing us back to Eq. �3�
of Lagrange.

A particle at rest is characterized by its four-velocity

u0 = 
g00, uj = 0, j = 1,2,3. �A32�

The acceleration of the particle is given by

u̇� � u�;�u� = u�,�u� − ���
� u�u�. �A33�

Because g00 is independent of time, the first term on the
right-hand side of Eq. �A33� vanishes. We then obtain using
Eq. �A32�

u̇� = − ���
� u�u� = −

1

g00
��0

0 = −
1

2g00
g00,�, �A34�

or

u̇k = −
1

g00,k = −
�
g00�,k . �A35�
2g00 
g00
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APPENDIX B: THE ATOMIC NUCLEUS AS A
DEGENERATE FERMI GAS

We wish to calculate the pressure inside atomic nuclei.
The simplest model assumes that the nucleons move freely in
a potential well subject to the Pauli exclusion principle. For
the ground state of the nucleus only the lowest energy levels
are occupied.

The pressure P and the ratio of 3P to the energy density
�c2 for an ideal Fermi gas at zero temperature was derived
by Fermi.16 He obtained

3P

�c2 =
3

5
� h

mc
	2� 3n

4�g
	2/3

, �B1a�

or in terms of �,

3P

�c2 =
3

5
� �

mc
	2�6�2n

g
	2/3

. �B1b�

Here m is the mass of the fermions, n their nuclear density,
and g the statistical weight. The generalization to arbitrary g
is due to Pauli.17

Heisenberg considered an atomic nucleus as a Fermi gas
of nucleons.18 The interactions among nucleons that keep
them confined are taken into account by a potential well in
which they move freely. For a rough estimate we disregard
the mass difference between protons and neutrons and take
the statistical weight g to be g=4. For a nucleus with N
nucleons the density of nuclear matter is

n =
N

N�4�/3�r0
3 =

3

4�r0
3 . �B2�

The constant r0 is given by19 r0=1.2 fm. We have from Eq.
�B1b�

3P

�c2 =
3

5
� �

mcr0
	2�9�

8
	2/3

, �B3�

which gives

3P

�c2 = 1.39� �

mcr0
	2

= 0.043. �B4�

With the known mass density of nuclear matter we found the
relative contribution of the 3P /c2 term to the active mass. In
this model it is the same for all nuclei except those with only
one nucleon.

APPENDIX C: SUGGESTED PROBLEMS

Problem 1. For the three-dimensional metric

ds2 = gjkdxjdxk = A2�x,y,z�dx2 + B2�x,y,z�dy2

+ C2�x,y,z�dz2 �C1�

calculate the Laplace operator for a scalar function f�x ,y ,z�,

�2f =
1

g

�
ggjkf ,k�,j, g = det gjk �C2�

and specialize to the case of spherical polar coordinates and
cylindrical coordinates of an Euclidean space.

Problem 2. Show that the variation of the three-

dimensional integral I extended over the volume V,
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I =� � � gjk�xl�f ,j f ,k

gd3x , �C3�

for a function f fixed at the boundary of the volume V gives

�I = − 2� � � �2f�f
gd3x . �C4�

Useful problems in relativity with solutions can be found in
Ref. 20.
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