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Das Zusammenspiel von Natürlichkeit und direktem Nachweis von Neu-
tralinos als Dunkle Materie

In dieser Diplomarbeit untersuchen wir inwieweit Experimente zum direkten Nach-
weis von Dunkler Materie den natürlichen Parameterraum des minimalen super-
symmetrischen Standard-Modells (MSSM) untersuchen können. Dazu berechnen wir
das nötige Tuning, um einen bestimmten Punkt in der von der Neutralinomasse und
dem Spin-unabhängigen direkten Detektionswirkungsquerschnitt σSI aufgespannten
Ebene zu erreichen, indem wir einen elf-dimensionalen niedrig-Energie-Parameterraum
scannen. Hierbei lassen wir insbesondere negative Werte des Higgs-Massenparameters
µ zu. Die simulierten Modelle erfüllen alle aktuellen experimentellen Resultate,
welche auch die Aktualisierungen der XENON100 Kollaboration und die Evidenz für
ein Higgs-Boson vom LHC beinhalten. Für positive µ befinden sich nicht-getunete
Lösungen hauptsächlich in Regionen, die resonante Neutralino-Annihilation per Z-
oder leichtem Higgs-Boson-Austausch ermöglichen, da natürliche Szenarien in anderen
Bereichen von XENON100 (2012) größtenteils ausgeschlossen wurden. In diesen an-
deren Bereichen findet man eine Tendenz zu größerem Tuning bei kleineren Werten von
σSI. Ungetunete Modelle, welche die jetzigen Limits erfüllen, werden von XENON1t
getestet werden. Wenn µ negativ ist, können nicht-getunete Szenarien durch Aufhe-
bungen verschiedener Beiträge in σSI zu kleineren Werten verschoben werden, sodass
ein negatives µ aus der Tuning-Perspektive bevorzugt wird. Viele Modelle vermeiden
so sogar eine Überprüfung durch XENON1t. In diesem Zusammenhang zeigen wir,
dass es sehr wohl möglich ist die Messung des anomalen magnetischen Moments des
Muons mit negativem µ und positiven Gauginomassen einzuhalten und diskutieren
auch die Wahrscheinlichkeitsverteilung unserer Modelle.

The Interplay between Naturalness and Direct Detection of Neutralino
Dark Matter

In this thesis we investigate to which extent dark matter direct detection experiments
can probe the natural parameter space of the minimal supersymmetric standard model
(MSSM). We therefore calculate the amount of tuning necessary to reach a certain point
in the plane spanned by the neutralino mass and the spin-independent direct detection
cross-section σSI by scanning an eleven dimensional low-energy input parameter space
of the phenomenological MSSM. We allow in particular for a negative supersymmetric
Higgs mass parameter µ. The simulated models respect all current experimental results
including the evidence for the Higgs boson from the LHC and the new update of the
XENON100 collaboration. For positive µ untuned solutions are mainly situated at
the Z- and Higgs resonance since the recent XENON100 (2012) update has excluded
most of the natural solutions in other regions. In these other regions, one can find a
clear increase of the tuning level for smaller σSI. Untuned models that survived the
new limit will be tested by XENON1t. When µ is negative cancellations may shift the
untuned scenarios to smaller values of σSI, such that a negative µ is favored from a fine-
tuning perspective. Many models may in this way even avoid detection by XENON1t.
In this context we show that it is possible to respect the muon anomalous magnetic
moment condition for a negative µ-term and positive gaugino masses and also present
the probability distribution of our models.
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1. Introduction

The Standard Model (SM) of particle physics has been tested to a high accuracy and no

significant deviation has been observed yet. Recently the ATLAS and CMS collaborations

presented evidence for a new resonance that behaves in its production and decay channels

very similar to the SM Higgs within the given statistics [1, 2]. Therefore, the SM might

be complete in the next years, when this resonance is measured to a higher precision.

There are nevertheless still problems left over for particle physicists to think about.

These include the explanation of the baryon asymmetry of the universe, the origin of

neutrino masses and oscillations and also the nature of dark matter. In this thesis we

will focus on the latter problem. A lot of evidence [3–5] has been collected over the past

decades asking for a different kind of particle that interacts at most only weakly and

gravitationally with ordinary matter. To test the large number of dark matter theories,

searches for dark matter particles are one of the most important experiments of today’s

research in particle physics. Very recently the world leading dark matter direct detection

experiment XENON100 has published new results [6, 7], but no positive signal has been

reported, such that existing models are further constrained.

Other direct searches like DAMA/LIBRA [8], CRESST [9] and CoGeNT [10] have

reported positive signals but there are doubts about the compatibility of these signals

since the experiments all show a different preferred parameter region [11]. On top of

that, all these signals are in contradiction to the XENON100 [6, 12, 13] and CDMS [14]

experiments. This leads us to the assumption that so far there is no positive signal of

dark matter direct detection experiments.

To explain the dark matter riddle one of the most promising and most extensively

studied theories is the minimal supersymmetric extension of the standard model (MSSM),

which contains a dark matter candidate that is stable due to R-parity conservation [15,16].

This lightest supersymmetric particle will in our analysis be the neutralino (for reviews

see e.g. [17,18]). Since the MSSM can additionally solve the hierarchy problem of the SM

and predicts a light Higgs mass [19–25], it has gained a lot of attention over the last years.

Especially in light of the start of the LHC many researchers have waited for a positive

3



4 1. Introduction

signal, but, as so many theories, also the MSSM has suffered from non-discovery in these

early stages of the new particle collider.

Given the recent results from collider experiments and direct dark matter searches we

perform a scan of the supersymmetric parameter space asking how natural the surviv-

ing region still is after all these negative searches. For this scan we use a measure of

fine-tuning [26,27] that indicates a large separation of the electroweak symmetry and su-

persymmetry breaking scales, and relate it to direct dark matter searches by investigating

how high the level of tuning is to reach a certain region in the plane spanned by the

neutralino mass and the spin-independent direct detection cross-section (direct detection

plane). In this context the tuning measure allows us to restrict the vast supersymmetric

parameter space and to state when signals become unnatural from a theoretical perspec-

tive.

To do so, we investigate the low-energy phenomenological MSSM, a simplified model

of the complete MSSM, see for example [28–32]. Motivated by constraints on flavor

changing neutral currents and CP-violation, the number of MSSM parameters is reduced

to twenty-two allowing for a numerical analysis. Even though we further restrict the free

parameters and take into account all experimental data, we are able to examine thoroughly

the parameter space and point out the natural regions. This will be done for a neutralino

mass range below 200 GeV since a detailed analysis is so far missing in the literature.

Throughout the whole discussion we will distinguish between a positive and a negative

sign of the supersymmetric Higgs mass parameter because there are big differences in the

results.

This thesis is organized as follows: We start by motivating the existence of dark mat-

ter in chapter 2 where we also present the freeze-out mechanism as a standard way to

calculate the relic abundance. The MSSM will be introduced in chapter 3 after giving

a brief summary how supersymmetric Lagrangians can be constructed in the superspace

formalism. In chapter 4 we present the exact model of the MSSM that we scan and discuss

the applied constraints arising from cosmology, collider experiments and direct searches.

Our results will be contained in chapter 5 that especially includes discussions about the

neutralino annihilation mechanisms, the distribution of fine-tuning in the direct detection

plane, the dependence of the direct detection cross-section on the sign of the supersym-

metric Higgs mass parameter, the impact of the muon anomalous magnetic moment on

our scenarios and the probability distribution of our models. Finally, we conclude in

chapter 6.



2. Dark matter

2.1. Evidence for dark matter

The need for dark matter emerges from various observations on different length scales.

The measurement of the angular velocity va with respect to the distance to the galactic

center r, in other words a rotation curve, shows an unexpected behavior for large r. Far

out from the galactic center simple application of Newtonian dynamics1 gives a decrease

of va with r:

v =

√
MG

r
, (2.1)

where G is Newton’s constant and M the mass of the galaxy contained in the orbit of the

test particle. Observations, however, tell us that this decrease is not present, but that va

stays constant instead, see figure 2.1 [3].

This discrepancy between theory and observation could be solved in two ways. A

modification of Newtonian dynamics (MOND) or a postulation of additional matter in

the galaxy that cannot be seen, i.e. dark matter, may both give correct rotation curves.

The tendency is for the latter one due to two reasons: The gravitational potential of galaxy

clusters can be reproduced by lensing effects. This potential can then be compared to the

distribution of the visible matter obtained through X-ray observations. If the distribution

of the visible matter does not coincide with the gravitational potential, dark matter is

favored over the MOND hypotheses. In the bullet cluster a clear mismatch between the

center of gravity and the center of luminosity could be observed, see figure 2.2. Of course,

the determination of the gravitational potential is dependent on the theory of gravity that

is used, but according to reference [4]: “Any non-standard gravitational force that scales

with baryonic mass will fail to reproduce these observations. The lensing peaks require

unseen matter concentrations that are more massive than and offset from the plasma.”

The second advantage of the dark matter hypothesis is its ability to explain the large

scale structure of the universe. In the standard cosmological picture the grains for the

1Newtonian treatment is completely sufficient for these velocities and energy densities.

5



6 2. Dark matter

Figure 2.1.: Two examples of rotation curves of galaxies. A deviation of the thick black
measured rotation curve from the expected Newtonian behavior (dashed line) is clearly
visible. The dotted-dashed curve represents the contribution that is additionally needed
to explain the behavior [3].

formation of galaxy clusters are seeded in the very early universe when density fluctuations

emerge due to quantum fluctuations which are amplified by the inflationary expansion.

For these regions to grow in density, more matter has to be accumulated. However, the

hot plasma prevents matter, i.e. ionized gas, to fall into these denser regions because of

interactions with radiation. In order to obtain a large enough density gradient, matter

that does not interact with radiation has to be present. Then, the denser regions can

start to grow early enough, meaning before recombination takes place, to form the seeds

for galaxy clusters.

In fact, the MOND hypotheses are not able to explain structure formation and galaxy

dynamics. Besides, constructing a covariant theory that has the MOND behavior in its

non-relativistic limit has not been achieved yet. However, this could simply be ameliorated

if more work was done.

2.2. The relic abundance

One of the standard ways to calculate the left over number density of a certain particle

type from the early Universe is the so-called freeze-out mechanism (e.g. [17]). In this

mechanism particles are assumed to initially be in thermal equilibrium with the plasma.

To find the number density an integration over the distribution function, which for a



2.2. The relic abundance 7

Figure 2.2.: The center of gravity (green lines) and the center of luminosity (white-
yellow color map) show a clear mismatch that leads to the postulation of collision less
dark matter [4].

fermion is given by the Fermi-Dirac statistic, has to be done:

nχ̃ =
g

(2π)3

∞∫
−∞

f(~p) d3p =
g

(2π)3

∞∫
−∞

1

e
√
p2+m2

T + 1
d3p . (2.2)

Here, p is the momentum of the particle with mass m and T denotes the temperature.

Shortly after the Big Bang the particles are relativistic( p � m) so that by substituting

x = p/T one finds:

nχ̃ =
g

(2π)3
2 · 4πT 3

∞∫
0

x2dx

ex + 1
=

g

(2π)3
2 · 4πT 3 · 3ζ(3)

2
∝ T 3 , (2.3)

where ζ(3) = 1.202 is the Riemann zeta function. This shows that, when particles are

treated massless the number density of fermions is (similar to the one of photons) given

by a proportionality to the temperature cubed.

As the universe expands and the temperature of the plasma drops (for a detailed de-

scription of cosmology, see for example [33]), the distribution function reduces to the

Boltzmann case and the number density is exponentially suppressed:

nχ̃ ∝ g(mχ̃T/2π)3/2e−mχ̃/T . (2.4)
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Figure 2.3.: Dependence of the relic abundance on the thermally averaged neutralino
annihilation cross-section [17].

Roughly speaking, the creation of two dark matter particles by the plasma is heavily

suppressed when the average energy drops below 2×mχ̃. Hence, only annihilation of dark

matter then occurs and the number density falls of sharply (exponentially). However,

when the annihilation rate drops below the expansion rate of the universe, the dark

matter falls out-of-equilibrium and their number density stays constant, see figure 2.3.

This freeze-out condition

〈σannv〉nχ̃ = Γann ' H =
πT 2

f

Mpl

√
g∗
90

, (2.5)

with 〈σannv〉 as the thermally averaged annihilation cross-section, H the Hubble constant,

Γann the annihilation rate, Mpl the Planck mass, g∗ the effective number of degrees of

freedom (which is around 100) and Tf the freeze-out temperature, basically states that

the universe expands too fast for two particles to collide and interact. This equation gives

the freeze-out temperature Tf in dependence on the annihilation cross-section and mχ̃ if

one substitutes equation (2.2) for nχ̃. One can then calculate the present dark matter

relic abundance via:

Ωh2 =
mχ̃nχ̃0

ρc
=
mχ̃nχ̃f s0

ρcsf
, (2.6)
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where sf is the entropy density at the freeze-out temperature and ρc the critical energy

density. To scale the dark matter number density from freeze-out to the present epoch,

we used the conserved ratio of number to entropy density. Plugging in weak scale orders

of magnitude for 〈σannv〉 and mχ̃ the so-called WIMP-miracle arises: The correct order of

magnitude for Ωh2 is “miraculously” produced. This is the strong motivation for weakly

interacting massive particles (WIMPs)

The sketched procedure above gives a first rough estimate for the relic abundance, but

for a precise statement the Boltzmann equation has to be evaluated:

dnχ̃
dt

+ 3Hnχ̃ = −〈σannv〉[(nχ̃)2 − (neqχ̃ )2] . (2.7)

The particle model gives 〈σannv〉 and one can then solve for the time dependent number

density nχ̃(t) numerically. A different process discussed in the literature is the so called

freeze-in mechanism, where the candidate’s initial abundance is negligible and very weakly

interactions provide for the necessary interactions to feed the number density. In that

case annihilations of the dark matter particle are rare due to the small number density.

However, this mechanisms is not applied to supersymmetric dark matter.

2.3. Candidates

There is a broad band of theories that try to explain the dark matter abundance. These

cover dark matter particle masses from below the eV to above the TeV range. In this

subsection we shortly name some candidates2 in order to give a very brief overview. We

simply want to stress that there are many more possibilities than the one we will consider

in this thesis, i.e. supersymmetric dark matter [17]. See, for example reference [34] for a

summary of dark matter.

Standard Model neutrinos exist in a large quantity in the universe, but since their are so

light they fail to reproduce structure formation. Relativistic particles remove structure on

small scales, which is called “free-streaming” [35], such that larger structures like galaxy

clusters should be formed earlier than smaller objects like galaxies themselves. This,

however, contradicts age determinations of our galaxy and the local group [36].

Sterile neutrinos that interact with Standard Model particles only via Yukawa interac-

tions, on the other hand, are still a promising candidate [37]. Originally introduced to

2There is no chance of giving a complete collection.
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explain neutrino masses via seesaw mechanisms, arising constraints from astrophysics can

be avoided in the νMSM model [38]. Their mass usually lies in the keV range.

To solve the strong CP-problem, that basically asks why the CP violating parameter

appearing in the QCD Lagrangian is as small as 10−11, Peccei and Quinn introduced a

new global U(1)PQ symmetry [39, 40] that, when spontaneously broken, gives rise to a

quasi-Nambu-Goldstone boson, the axion a. Constraints have ruled out a large fraction

of the possible mass range but windows in the eV and 10−3 eV regions are still open [41].

Another possibility is to duplicate the SM and introduce a Z2 symmetry under which

the “mirror” world is charged [42]. These new particles can then interact with the usual

SM only through gravity and mixing of charge and color neutral particles and may explain

the DM in the universe.

There are other, more minimal, approaches that only introduce a new scalar particle S

which forms a singlet under the SM gauge group and may thus interact only via the Higgs

sector: L ⊃ −λS2H†H. These models are, however, strongly tested by direct searches as

a large coupling to the Higgs boson is present [43].

There are also very heavy candidates, so-called WIMPZILLAs that have masses of

approximately 1013 GeV and only interact gravitationally [44]. Hence they do not offer

any chance of detection.

We could go on with this list and talk about dark matter arising from extra dimen-

sions [45], technicolor [46] or candidates like superWIMPs [47], gravitinos [48] and axi-

nos [49]. It is clear that precise studies have to be performed for all of them and that in

the end experiments will hopefully tell us which model is realized in nature.

In this thesis the neutralino of the minimal supersymmetric extension of the standard

model is our considered dark matter candidate. As the lightest supersymmetric particle

it is stable due to R-parity conservation. Details will follow in the next chapter.



3. Supersymmetry

Supersymmetry (SUSY) is a symmetry that transforms bosons into fermions and vice

versa and offers enormous possibilities to construct new theories. For particle physi-

cists especially the minimal supersymmetric standard model offers a great playground for

phenomenology. The ability of the MSSM to solve the hierarchy problem and the dark

matter riddle have made it one of the most extensive studied theory beyond the Standard

Model. This introduction summarizes only the very basic ingredients of the MSSM and

the complete chapter will notationally and structurally be close to the review by Stephen

P. Martin.1 [50]. We will start to give a brief classical example of a supersymmetric theory

by considering a harmonic oscillator to get a feeling how a SUSY algebra emerges. Then,

we will explain the superspace formalism, in which we will identify SUSY transformations

with translations in superspace, and introduce chiral and vector superfields and the super-

potential. These will enter the Lagrangian that we wish to construct as this is the object

that ultimately defines a field theory2. After these technical details, we will describe the

MSSM more specifically and discuss its field content, state the superpotential and the soft

supersymmetry breaking mass terms. In the context of electroweak symmetry breaking,

we will define our measure of fine-tuning. This tuning is seen as a problem of the MSSM

and becomes worse the longer supersymmetric particles stay undetected.

3.1. Introduction

3.1.1. Motivation

If one tries to embed the Standard Model into another Field Theory, the so called ”hierar-

chy problem“ arises: The Higgs mass in the Standard Model suffers from loop corrections

that give contributions to its mass which would theoretically make it unnaturally heavy.

When calculating the self-energy of the Higgs boson especially top loops have to be in-

1We believe it is not possible for a student to give a better introduction.
2Of course, there are other possible formulations.

11



12 3. Supersymmetry

cluded. Regularizing the loop integral leads to contributions proportional to the cut-off

scale Λ squared. Then the Higgs mass m2
h is to a first estimate given by:

m2
h ≈

y2
t

8π
Λ2 . (3.1)

The value of the cut-off scale is set by the appearance of new physics beyond the Stan-

dard Model that contribute to the Higgs boson mass. These could be heavy right-handed

neutrinos, grand unified theories or gravitational effects. Whichever scale is chosen, the

prediction for the Higgs mass is very different to the natural mass set by electroweak sym-

metry breaking such that mh is unstable against new physics appearing at high energies.

This major problem, the hierarchy problem, is viewed as one of the main motivation for

physics beyond the Standard Model. To give the Higgs a mass of order of the electroweak

scale, new physics should appear already around a few TeV, in order to have a low cut-off

scale. Low energy supersymmetry can free physics from this problem and stabilize the

electroweak scale by introducing superpartners to all of the Standard Model (SM) parti-

cles. These new particles have opposite spin-statistics such that loop contributions from

superpartners have a relative minus sign and can cancel if their masses are equal. Since

supersymmetry must be broken, these cancellations cannot be exact. Fortunately, this

does not spoil the stability as long as SUSY particles are not too heavy. This separation

of the electroweak and supersymmetry breaking scales will lead us to the introduction of

a fine-tuning measure in section 3.5.

Another motivation for the MSSM comes from the fact that the lightest supersymmetric

particle (LSP) is stable against decays into SM particles due to R-parity conservation.

This upgrades the LSP to a perfect dark matter candidate and we will investigate in our

scan how natural the solutions of the MSSM explaining all dark matter in the Universe

are by calculating the amount of tuning necessary to reach a certain point in the LSP

mass-spin-independent direct detection plane (which we will call direct detection plane

from now on for simplicity).

3.1.2. Supersymmetric harmonic oscillator

To get a feeling for supersymmetry and construct a SUSY algebra in a simple example, we

will take a look at a system of a harmonic oscillator and supersymmetrize it [51]. In the

classical bosonic oscillator an infinite number of states can be excited, whereas a fermionic

oscillator is either excited or in its ground state due to the Pauli exclusion principle. Since
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supersymmetry transforms a bosonic into a fermionic state, we need at least two quantum

numbers nB and nF to describe the system. These come together with a set of creation

and annihilation operators l+B, l
−
B, l

+
F , l
−
F . We briefly summarize the well-known relations

for the ladder operators and the Hamiltonian:

l+B|nB〉 =
√
nB + 1|nB + 1〉 , l+F |nF 〉 =

√
nF + 1|nF + 1〉 ,

l−B|nB〉 =
√
nB|nB − 1〉 , l−F |nF 〉 =

√
nF |nF − 1〉 ,

NB|nB〉 = (l+B + l−B)|nB〉 = nB|nB〉 , NF |nF 〉 = (l+F + l−F )|nF 〉 = nF |nF 〉 ,

H = ~ω(NB +NF ) .

For the fermions we need to impose the Pauli principle by demanding further:

(l+F )2 = 0 . (3.2)

One can then calculate the (anti)commutator relations and finds:

[l−B, l
+
B] = 1 = {l−F , l

+
F } , (3.3)

[l+B, l
+
B] = [l−B, l

−
B] = 0 = {l−F , l

−
F } = {l+F , l

+
F } . (3.4)

To construct a supersymmetric system we need to consider product states |nBnF 〉 to deal

with fermions and bosons at the same time. Then, a SUSY transformation takes us from

a bosonic state (nF = 0) to a fermionic state (nF = 1) and vice versa. We therefore define

the SUSY operators Q± to be:

Q+|nBnF 〉 ≡ l−Bl
+
F |nBnF 〉 ∝ |nB − 1, nF + 1〉 ,

Q−|nBnF 〉 ≡ l+Bl
−
F |nBnF 〉 ∝ |nB + 1, nF − 1〉 .

(3.5)

With these definitions we have Q2
+ = Q2

− = 0. Since we want a supersymmetric theory

the energy of the system should not change when a SUSY transformation is performed,

which means that the commutator of the Hamiltonian and the SUSY generators has to

vanish [H,Q±] = 0. This can easily be fulfilled, if we set the Hamiltonian to:

H = {Q+, Q−} . (3.6)

Then, we have found a first formulation of a SUSY algebra. The (anti)commutators of

each SUSY generator with itself vanishes (Q2
± = 0), the anticommutator of both SUSY
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generators gives the Hamiltonian and the commutator of the hamiltonian with the SUSY

generator is identically zero.

This is just an example and has no real physical background, but it shows in a very

simple way how a SUSY algebra emerges. In the above, no spin has been considered

even though we imposed the Pauli principle. Real particles, however, carry spin so that

if the generators shall transform bosons into fermions, they themselves have to form

spinors under Lorentz transformations. In the next section we will develop the superspace

formalism to properly describe supersymmetry.

3.2. Superspace formalism

In everything that follows we make use of the Weyl representations of spinors. The

essential ingredients and relations can be found in appendix A.

To formulate supersymmetry we extend the spacetime by four fermionic coordinates θα, θ
†
β̇
.

These complex valued spinors are anticommuting objects; the fundamentals of Grassmann

variables (i.e. anticommuting variables) can be found in appendix B.

xµ −→ (xµ, θα, θ†α̇) , α = {1, 2} , α̇ = {1̇, 2̇} . (3.7)

In the superspace formalism we consider functions of these coordinates, the superfields.

These can then be expanded in the fermionic variables. Note that for anticommuting

objects expressions like θ1θ1 are identically zero. For that reason our expansion’s highest

term is θθθ†θ†, where a summation over α and α̇ is included3. The most general expansion

of a superfield is:

S(x, θ, θ†) = a+ θξ + θ†χ† + θθb+ θ†θ†c+ θ†σµθvµ + θ†θ†θη + θθθ†ζ† + θθθ†θ†d . (3.8)

Note that the Pauli matrices necessarily carry spinor indices. Our task is to relate the

expansion coefficients a, b, c, d, ξ, χ, υµ, η, ζ with meaningful physical fields in a way that

the superfield contains fields of superpartners. For that we first have to talk about SUSY

transformations and covariant derivatives to be able to construct chiral and vector super-

fields, which are the objects entering the Lagrangian.

3e.g.: θθ = θαθα = θαεαβθ
β = θ1θ2 − θ2θ1 = 2θ1θ2, but:(θθ)(θη) = 2θ1θ2(θ1η2 − θ2η1) = 0.
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3.2.1. The supersymmetry algebra

In this subsection we define the supersymmetry transformation in the superspace formal-

ism and calculate theN = 1 SUSY algebra. Then, we connect supersymmetry transforma-

tions with translations in superspace. The generators for supersymmetry transformations

that act on functions in superspace are:

Q̂α = i
∂

∂θα
− (σµθ†)α∂µ , (3.9)

Q̂α = −i ∂
∂θα

+ (θ†σµ)α∂µ , (3.10)

Q̂†α̇ = i
∂

∂θ†α̇
− (σµθ†)α̇∂µ , (3.11)

Q̂†α̇ = −i ∂

∂θ†α̇
+ (θσµ)α̇∂µ . (3.12)

An infinitesimal supersymmetry transformation parameterized by ε, ε† of a superfield S

is then defined as:

√
2δεS = −i(εQ̂+ ε†Q̂†) =

(
εα

∂

∂θα
+ ε†α̇

∂

∂θ†β̇
+ i[εσµθ† + ε†σ̄µθ]∂µ

)
S(x, θ, θ†) (3.13)

= S
(
xµ + iεσµθ† + iε†σ̄µθ, θ + ε, θ† + ε†

)
,

which follows by linear approximation. A supersymmetry transformation may therefore

be seen as a translation in superspace. Now, we calculate the anticommutator of Q̂α and

Q̂†
β̇
. Here we make use of some relations that can be found in the appendix A.

{
Q̂α, Q̂

†
β̇

}
=

{
i
∂

∂θα
− (σµθ†)α∂µ,−i

∂

∂θ†β̇
+ (θσµ)β̇∂µ

}
(3.14)

=

{
∂

∂θα
,
∂

∂θ†β̇

}
︸ ︷︷ ︸

A

+

{
i
∂

∂θα
, (θσµ)β̇∂µ

}
︸ ︷︷ ︸

B

+

{
(σµθ†)α∂µ, i

∂

∂θ†β̇

}
︸ ︷︷ ︸

C

−
{

(σµθ†)α∂µ, (θσ
µ)β̇∂µ

}
︸ ︷︷ ︸

D

.

Term A is identically zero because the variables are anticommuting. For expression B

some work needs to be done:
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{
i
∂

∂θα
, (θσµ)β̇∂µ

}
= i

[
∂

∂θα
(θσµ)β̇∂µ + (θσµ)β̇∂µ

∂

∂θα

]
(3.15)

= i

[
σµ
αβ̇
∂µ − (θσµ)β̇

∂

∂θα
∂µ + (θσµ)β̇∂µ

∂

∂θα

]
.

The minus sign of the second term in the squared brackets appears because we have to

interchange two anticommuting variables when moving the superspace derivative to the

right side of (θσµ)β̇. Since the partial derivative with respect to the “usual” spacetime is

commuting with the partial derivative with respect to the superspace coordinate, the last

two terms cancel out and we end up with:{
i
∂

∂θα
, (θσµ)β̇∂µ

}
= iσµ

αβ̇
∂µ . (3.16)

In a similar manner one can derive for the term C:{
(σµθ†)α∂µ, i

∂

∂θ†β̇

}
= iσµ

αβ̇
∂µ . (3.17)

Term D vanishes again due to the anticommuting behavior of both terms and we get as

a final result: {
Q̂α, Q̂

†
β̇

}
= 2iσµ

αβ̇
∂µ , (3.18)

which may be related to the 4-momentum operator that generates spacetime translations:

{
Q̂α, Q̂

†
β̇

}
= 2iσµ

αβ̇
∂µ = −2σµ

αβ̇
P̂µ . (3.19)

All the other anti commutators vanish as may be computed analogously:

{
Q̂α, Q̂β

}
= 0 ,

{
Q̂†α̇, Q̂

†
β̇

}
= 0 . (3.20)

We see that the SUSY algebra just found is similar to the one we derived for the classical

system of a harmonic oscillator, see equation (3.6). Note that now spinor indices and

therefore the spin structure are included correctly and that the Hamiltonian is replaced

by the 4-momentum operator acting on functions in superspace. The next step is to define

meaningful superfields.
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3.2.2. Chiral and vector superfields

To construct supersymmetric invariant Lagrangians, we have to find supersymmetric co-

variant derivatives4:

δε (DαS) = Dα (δεS) , δε

(
D†α̇S

)
= D†α̇ (δεS) . (3.21)

These are given by:

Dα =
∂

∂θα
− i(σµθ†)α∂µ, Dα = − ∂

∂θα
+ i(θ†σµ)α∂µ, (3.22)

D†α̇ =
∂

∂θ†α̇
− i(σµθ)α̇∂µ, D†α̇ = − ∂

∂θ†α̇
+ i(θσµ)α̇∂µ . (3.23)

One may then define a left-chiral superfield Φ by imposing that its covariant derivative

with respect to the right-handed spinor index vanishes, and similar for a right-chiral

superfield Φ∗:

D†α̇Φ = 0, DαΦ∗ = 0 . (3.24)

This constraint forces several of the expansion coefficients from equation 3.8 to vanish.

The most general expansion of a left-chiral and right-chiral superfield is:

Φ = φ(x)− iθσµθ†∂µφ(x)− 1

4
θθθ†θ†∂µ∂

µφ(x) +
√

2θψ(x)

− i√
2
θθθ†σµ∂µψ(x) + θθF (x), (3.25)

Φ∗ = φ∗(x) + iθσµθ†∂µφ
∗(x)− 1

4
θθθ†θ†∂µ∂

µφ∗(x) +
√

2θ†ψ†(x)

− i√
2
θ†θ†θσµ∂µψ

†(x) + θ†θ†F ∗(x) . (3.26)

Only three fields remain that we can interpret as a scalar φ, a spinor ψ and a field F ,

which will turn out to be non-dynamical when we solve for its equations of motion. Such

a field is called “auxiliary” and will later be expressed by a combination of the other fields

and is in this way removed of the physical theory. They are nevertheless important to also

have off-shell supersymmetric invariance. For completeness we give the supersymmetry

4This is as in general gauge field theories where gauge-covariant derivatives are needed to construct
gauge invariant Lagrangians.
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transformations for the individual fields:

δεφ = εψ, (3.27)

δεψα = −i(σµε†)α∂µφ+ εαF, (3.28)

δεF = −iε†σµ∂µψ . (3.29)

To formulate the MSSM, however, one main ingredient, gauge bosons, is still missing.

These are contained in a vector superfield, which is defined to simply be a real superfield:

V = V ∗ . (3.30)

The most general expansion of V in the fermionic variables is5:

V (x, θ, θ†) = a+ θξ + θ†ξ† + θθb+ θ†θ†b∗ + θσµθ†Aµ + θ†θ†θ(λ− i

2
σµ∂µξ

†)

+θθθ†(λ† − i

2
σµ∂µξ) + θθθ†θ†(

1

2
D − 1

4
∂µ∂

µa) . (3.31)

Working out the SUSY transformations in components yields:

√
2 δεa = εξ + ε†ξ† , (3.32)

√
2 δεξα = 2εαb+ (σµε†)α(Aµ − i∂µa), (3.33)
√

2 δεb = ε†λ† − iε†σµ∂µξ, (3.34)
√

2 δεA
µ = −iε∂µξ + iε†∂µξ† + εσµλ† − ε†σµλ, (3.35)

√
2 δελα = εαD −

i

2
(σµσνε)α(∂µAν − ∂νAµ), (3.36)

√
2 δεD = −iεσµ∂µλ† − iε†σµ∂µλ . (3.37)

The vector superfield should contain the gauge bosons and their fermionic superpartners.

However, in equation (3.31) we find additional fields, for example a real scalar field a or

a complex scalar field b. To remove these from the theory a “supergauge“ transformation

can be done. We may always redefine the vector superfield V like:

V → V + i(Ω∗ − Ω) , (3.38)

5Note for example the relation (θθb)∗ = (θ†θ†b∗).
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where Ω is a chiral superfield. It is obvious, that after this transformation the superfield V

stays real and still forms a vector superfield. For a specific choice of Ω this transformation

can be used to eliminate the fields a, b and ξ completely. We may write V in the so-called

Wess-Zumino gauge:

VWZ gauge = θσµθ†Aµ + θ†θ†θλ+ θθθ†λ† +
1

2
θθθ†θ†D. (3.39)

Now, we are left with a vector field Aµ, its superpartner, a fermionic field, λ plus an ad-

ditional auxiliary field D. Let us point out that this supergauge transformation simplifies

to the usual gauge transformation for the vector field Aµ: The term in Ω that has the

same coefficient as Aµ, i.e. θσµθ†, is as we can find in equation (3.25), ∂µφ. Thus, the

corresponding change of Aµ induced by equation (3.38) is:

V + i(Ω∗−Ω) ⊃ θσµθ†Aµ + i(iθσµθ†∂µφ
∗+ iθσµθ†∂µφ) = θσµθ†(Aµ− ∂µ(φ∗+φ)), (3.40)

which correctly reproduces the known U(1) gauge transformation of a vector field, if we

choose φ to be real:

Aµ → Aµ − 2∂µφ . (3.41)

Now we collected all fields that should appear in a supersymmetric field theory. The only

thing left to do is to construct the Lagrangian and properly introduce gauge transforma-

tions in the superspace formalism.

3.2.3. Constructing a Lagrangian

In this section we demonstrate how Lagrangians are formed within the superspace for-

malism. An interesting Lagrangian needs kinetic terms, field strength tensors, has to be

supersymmetric and (super)gauge invariant6 and all fields of superpartners have to be

present. Fortunately, the last condition is automatically fulfilled as the chiral and vector

superfields always contain the superpartner by construction. For the rest, some careful

steps must be taken which we explain here. We start by showing which contributions

from superfields automatically give a supersymmetric invariant action and then discuss

how to construct terms including the interactions of fields, field strength tensors and how

6Total derivatives after a supersymmetry transformation may remain, since they do not contribute to
the action.
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everything can be made gauge invariant, such that the gauge interactions are included.

An action in the superfield formalism is given by:

A =

∫
d4x

∫
d2θd2θ† S(x, θ, θ†) , (3.42)

and has to fulfill δεA = 0 for supersymmetric invariance. The Lagrangian density L is

then simply
∫
d2θd2θ† S(x, θ, θ†). Note the fact that a total derivative of L vanishes upon

integration. It then follows immediately that every term of L that under supersymmetry

transformations transforms into a total derivative may constitute a part of L, since such

a contribution automatically leaves the action supersymmetric invariant. Looking at a

general vector superfield, for example, we can directly read off from equation (3.31) the

part that survives an integration over the superfield coordinates:

[V ]D ≡
∫
d2θd2θ† V (x, θ, θ†) = V (x, θ, θ†)

∣∣∣
θθθ†θ†

=
1

2
D − 1

4
∂µ∂

µa . (3.43)

By the transformation laws of the auxiliary field D, equation (3.37) we realize that this

part indeed transforms into a total derivative and therefore forms an adequate candidate

for the Lagrangian. We hence conclude that any vector superfield may contribute to L via

this real ”D-term” contribution. Note that a vector superfield does not have to be of the

form given in equation (3.31). We can also form a real superfield using chiral superfields.

The expression Φ∗Φ for instance will be of great use later.

We may also find contributions to the action from chiral superfields. See equation (3.29)

to note that also the auxiliary field F transforms into a total derivative under SUSY

transformations. To single out this part of the chiral superfield when integrating over the

complete superspace, we need to add a delta function for the θ†α̇ such that the integration

does not give zero. This is called an F -term contribution:

[Φ]F ≡ Φ
∣∣∣
θθ

=

∫
d2θΦ

∣∣∣
θ†=0

=

∫
d2θd2θ† δ(2)(θ†) Φ = F, (3.44)

and to have a real action we need to add the complex conjugate to A:

[Φ]F + c.c. =

∫
d2θd2θ†

[
δ(2)(θ†) Φ + δ(2)(θ) Φ∗

]
. (3.45)

We have now found two possibilities to construct supersymmetric invariant actions. Us-

ing only D- and F -term contributions from vector or chiral fields respectively, we ensure
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that we end up with total derivatives after a SUSY transformation and have an invariant

action. The task is now to use this recipe and build a meaningful theory by specifying the

superfields. As a first step we construct the kinetic terms for chiral fields and their su-

perpartners. For this we consider the shortly mentioned combination of chiral superfields

Φ∗Φ to form a vector superfield:

Φ∗iΦj = φ∗iφj +
√

2θψjφ
∗i +
√

2θ†ψ†iφj + θθφ∗iFj + θ†θ†φjF
∗i

+θσµθ†
[
−iφ∗i∂µφj + iφj∂µφ

∗i − ψ†iσµψj
]

+
i√
2
θθθ†σµ(ψj∂µφ

∗i − ∂µψjφ∗i) +
√

2θθθ†ψ†iFj

+
i√
2
θ†θ†θσµ(ψ†i∂µφj − ∂µψ†iφj) +

√
2θ†θ†θψjF

∗i

+θθθ†θ†
[
F ∗iFj +

1

2
∂µφ∗i∂µφj −

1

4
φ∗i∂µ∂µφj −

1

4
φj∂

µ∂µφ
∗i

+
i

2
ψ†iσµ∂µψj +

i

2
ψjσ

µ∂µψ
†i
]
, (3.46)

which is real for i = j. This expression is obtained by going back to equations (3.25)

and (3.26) keeping in mind that θθθ†θ† is the highest possible expansion term. To see

that it is real, note for example relations like (θψφ∗)∗ = (θ†ψ†φ). Equation (3.46) looks

quite complicated at first sight, but remember that only D-term contributions will be

important for the Lagrangian density from a vector superfield. We can simply read off

the coefficients that survive an integration over the superspace coordinates:

[Φ∗Φ]D =

∫
d2θd2θ†Φ∗Φ = ∂µφ∗∂µφ+ iψ†σµ∂µψ + F ∗F + . . . . (3.47)

All other terms that are indicated by . . . are total derivatives, such that they do not

contribute to the action. The above expressions transforms into a total derivative under

a SUSY transformation since it is a D-term contribution. Equation (3.47) contains chiral

fermions ψ, ψ† with their scalar superpartners φ, φ∗ and the auxiliary field F.

To construct a meaningful F -term contribution, we point out, that products from chiral

superfields are also chiral superfields. Thus, we may form combinations of chiral super-

fields, where we already drop the terms that will not appear in any F -term contribution

to L:
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ΦiΦj = φiφj +
√

2θ(ψiφj + ψjφi) + θθ(φiFj + φjFi − ψiψj), (3.48)

ΦiΦjΦk = φiφjφk +
√

2θ(ψiφjφk + ψjφiφk + ψkφiφj)

+ θθ(φiφjFk + φiφkFj + φjφkFi − ψiψjφk − ψiψkφj − ψjψkφi) . (3.49)

To bring this into a function for the Lagrangian density we need to include a summation

over the free indices i, j, k. We therefore introduce two new objects M ij and yijk which

correspond to mass terms and Yukawa interactions of the interacting fields respectively.

We define the scalar function, called the superpotential as7:

W =
1

2
M ijΦiΦj +

1

6
yijkΦiΦjΦk . (3.50)

Now, we just add both terms and take their D- and F -contributions respectively. We end

up with a Lagrangian for free fields with Yukawa interactions and mass terms:

L(x) = [Φ∗iΦi]D + ([W (Φi)]F + c.c.) . (3.51)

We still have to eliminate the auxiliary, non-dynamical field F from the Lagrangians. This

is done by solving for the equations of motion of F , obtained by a variation of A. These

equations do not include any kinetic part, and we can simply express F by a combination

of the other fields. The final result for L is then:

L = ∂µφ∗i∂µφi − V (φ, φ∗) + iψ†iσµ∂µψi −
1

2
M ijψiψj −

1

2
M∗

ijψ
†iψ†j

−1

2
yijkφiψjψk −

1

2
y∗ijkφ

∗iψ†jψ†k , (3.52)

where V (φ, φ∗) is:

V (φ, φ∗) =

M∗
ikM

kjφ∗iφj +
1

2
M iny∗jknφiφ

∗jφ∗k +
1

2
M∗

iny
jknφ∗iφjφk +

1

4
yijny∗klnφiφjφ

∗kφ∗l . (3.53)

Note that at this stage no gauge interactions are included and the theory is therefore

still incomplete. Hence, our next task is to construct field strengths for the gauge fields

7The superpotential can in general be any holomorphic funtion of chiral superfields but the expression
given here corresponds to reasonable phenomenology.



3.2. Superspace formalism 23

and afterwards enforce gauge invariance. To construct a field strength we introduce the

following two objects:

Wα = −1

4
D†D†DαV , W†α̇ = −1

4
DDD†α̇V . (3.54)

This definition seems arbitrary but a lengthy calculation of the F -term contribution shows

the connection to usual field theories:

[WαWα]F = D2 + 2iλσµ∂µλ
† − 1

2
F µνFµν +

i

4
εµνρσFµνFρσ . (3.55)

We see the occurrence of the field strength tensor Fµν = ∂µAν − ∂νAµ and also find the

kinetic terms of the superpartner λ to the vector field Aµ. The last term in equation (3.55)

may be rewritten into a total derivative, such that we add to L:

1

4
([WαWα]F + c.c) =

1

2
D2 + iλ†σµ∂µλ−

1

4
F µνFµν . (3.56)

Again, compared to the standard field theory case we get two additional fields: The

auxiliary field D and the fermionic superpartner of the gauge fields, λ. We know already

that this term possesses supersymmetric invariance, but is it also gauge invariant?

We first show, that the chiral fields Wα are invariant under the gauge transformation

for the vector superfield that we introduced already earlier:

Wα → −
1

4
D†D†Dα

[
V + i(Ω∗ − Ω)

]
= Wα +

i

4
D†D†DαΩ (3.57)

= Wα +
i

4
D†β̇

{
D†
β̇
, Dα

}
Ω (3.58)

= Wα −
1

2
σµ
αβ̇
∂µD

†β̇Ω (3.59)

= Wα . (3.60)

In the first step we ust that Ω∗ is right-chiral. The second step is correct since Ω is left-

chiral; then we used the anti-commutators of the covariant derivatives (see appendix) and

again that Ω is left-chiral. Keeping equation (3.40), the supergauge transformation of a

vector field Aµ, in mind we can reproduce the well-known U(1) gauge transformations for

our system of chiral, scalar and vector fields appearing in the superfields, when we define

the (super)gauge transformations for chiral superfields to be:

Φi → e2igqiΩΦi, Φ∗i → e−2igqiΩ
∗
Φ∗i . (3.61)
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This would simply be a phase rotation for Ω = φ Let us now see, if the other parts of

the Lagrangian are gauge invariant. The F -term contribution from the superpotential

is only gauge-invariant if we enforce the conditions that either qi + qj = 0 or M ij = 0,

and likewise, qi + qj + qk = 0 or otherwise yijk = 0. This basically corresponds to charge

conservation at each vertex; in any other case the interaction is simply forbidden8. The

only part left that is not gauge-invariant is the D-term contribution:

Φ∗iΦi → e2igqi(Ω−Ω∗)Φ∗iΦi . (3.62)

This can be cured when we redefine the D-term:

[
Φ∗ie2gqiV Φi

]
D
, (3.63)

and remember the transformation of the vector superfield V, equation (3.38), which ex-

actly cancels the part left over in equation (3.62). An expansion of the exponential stops

after the second polynomial when we go to the Wess-Zumino gauge, see equation (3.39):

V 2 =
1

2
θθθ†θ†AµA

µ, (3.64)

V n = 0 (n ≥ 3) . (3.65)

We therefore find:

e2gqiV = 1 + 2gqi(θσ
µθ†Aµ + θ†θ†θλ+ θθθ†λ† +

1

2
θθθ†θ†D) + g2q2

i θθθ
†θ†AµA

µ , (3.66)

such that the D-term contribution finally reads as:

[
Φ∗ie2gqiV Φi

]
D

= F ∗iFi +∇µφ∗i∇µφi + iψ†iσµ∇µψi −
√

2gqi(φ
∗iψiλ+ λ†ψ†iφi)

+gqiφ
∗iφiD , (3.67)

where we introduced the gauge covariant derivatives:

∇µφi = ∂µφi + igqiAµφi, ∇µφ∗i = ∂µφ
∗i − igqiAµφ∗i, (3.68)

∇µψi = ∂µψi + igqiAµψi . (3.69)

8Equivalently: Interacting Φi and Φj have to transform under the gauge group in conjugate represen-
tations.
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A complete, supersymmetric and gauge invariant Lagrangian that contains gauge and

Yukawa interaction plus mass terms is then finally given by9:

L =
[
Φ∗ie2gqiV Φi

]
D

+ ([W (Φi)]F + c.c.) +
1

4
([WαWα]F + c.c.) . (3.70)

To generalize to the non-abelian case, we need to alter the transformation rules slightly.

Assuming that the matrix generators of the gauge transformation are T aji when the chiral

superfield is in a representation R, it is instructive to define the gauge transformation for

a chiral superfield Φ as:

Φi →
(
e2igaΩaTa

)
i
jΦj, Φ∗i → Φ∗j

(
e−2igaΩaTa

)
j
i , (3.71)

and redefine the D-term accordingly to:

L =
[
Φ∗i(e2gaTaV a)i

jΦj

]
D
. (3.72)

The gauge fields appear as before in the vector superfields V a. Now, however, there is one

gauge boson with its superpartner, the gaugino, for each generator T a of the gauge group.

When we define Vi
j = 2gaT

aj
i V

a and Ωi
j = 2gaT

aj
i Ωa as matrix-valued superfields we

find that for gauge invariance the gauge transformation of V a has to be:

eV → eiΩ
†
eV e−iΩ , (3.73)

which, when expanded, translates into the transformation of V a:

V a → V a + i(Ωa∗ − Ωa) + gaf
abcV b(Ωc∗ + Ωc)− i

3
g2
af

abcf cdeV bV d(Ωe∗ − Ωe) + . . .(3.74)

where the structure constants [T a, T b] = ifabcT c have been inserted. The complete D-

term contribution is therefore gauge invariant in the non-abelian case. For an invariant

F -term we need to generalize the definition of the field-strength chiral superfields Wα:

Wα = −1

4
D†D†

(
e−VDαe

V
)
, (3.75)

9Since we are not talking about supersymmetry breaking mechanisms in this thesis, we neglected a
possible Fayet-Iliopoulos term in our discussion.
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which transforms under supergauge transformations like:

Wα → eiΩWαe
−iΩ , (3.76)

when expression (3.73) is used. In the Wess-Zumino gauge, we find Wα to be:

(Wa
α)WZ gauge = λaα + θαD

a +
i

2
(σµσνθ)αF

a
µν + iθθ(σµ∇µλ†a)α , (3.77)

and the complete gauge-invariant F -term contribution:

[WaαWa
α]F = DaDa + 2iλaσµ∇µλ†a −

1

2
F aµνF a

µν +
i

4
εµνρσF a

µνF
a
ρσ . (3.78)

Then, we have the complete non-abelian gauge invariant Lagrangian density:

L =
1

4
[WaαWa

α]F + c.c.+
[
Φ∗i(e2gaTaV a)i

jΦj

]
D

+ ([W (Φi)]F + c.c.) , (3.79)

where we only allow for those terms in the superpotential that are gauge invariant10.

3.3. The minimal supersymmetric standard model

In this section we present the minimal supersymmetric standard model (MSSM). In the

last section we described how supersymmetric Lagrangians can be constructed and iden-

tified occurring fields with usual fermions or bosons and their superpartners. Now we

explicitly build the minimal supersymmetric extension of the standard model. The gauge

group stays unchanged: SU(3)C × SU(2)L × U(1)Y . The task is to specify all necessary

fields and the superpotential to obtain phenomenologically valid interactions. Since SUSY

must be broken, we also have to add explicit mass terms for the superfields. After defining

the theory, we will see how electroweak symmetry is spontaneously broken and introduce

a measure of tuning to quantify how well the correct electroweak scale is reproduced. Per-

forming a numerical analysis asks for a reduction of the large number of new parameters,

which will lead us to the phenomenological MSSM (pMSSM).

10Since we are not considering CP violating effects we neglected a possible CP-violating parameter here.
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Names spin 0 spin 1/2 SU(3)C , SU(2)L, U(1)Y

squarks, quarks Q (ũL d̃L) (uL dL) ( 3, 2 , 1
6
)

(×3 families) u ũ∗R u†R ( 3, 1, −2
3
)

d d̃∗R d†R ( 3, 1, 1
3
)

sleptons, leptons L (ν̃ ẽL) (ν eL) ( 1, 2 , −1
2
)

(×3 families) e ẽ∗R e†R ( 1, 1, 1)

Higgs, higgsinos Hu (H+
u H0

u) (H̃+
u H̃0

u) ( 1, 2 , +1
2
)

Hd (H0
d H−d ) (H̃0

d H̃−d ) ( 1, 2 , −1
2
)

Table 3.1.: Chiral supermultiplets in the MSSM [50].

3.3.1. Field content

In table 3.1 and 3.2 we list the field content of the MSSM. The fields are written in

so-called supermultiplets that are basically extensions of the SM multiplets including

additionally the corresponding superpartners. There are chiral supermultiplets containing

a two-component Weyl fermion and a complex scalar field and gauge supermultiplets that

contain a vector boson and its fermionic partner. Scalar superpartners for every fermion

(sfermions) and fermionic superpartners (gauginos) for every gauge boson of the Standard

Model are now present. Hence, we have squarks like the stop or sleptons like the stau as

superpartners of the top-quark and the tau-lepton, respectively. For a consistent theory,

the Higgs sector has to be extended by adding another Higgs-doublet. This has two

reasons: Anomaly cancellation asks for an even number of fermions in the theory. If

there was only one Higgs-doublet, we would introduce only one additional fermion (the

higgsino) which would then spoil the anomaly cancellations. This is cured by adding a

second Higgs-doublet with a second fermionic superpartner and opposite third component

of the weak hypercharge T 3. Besides, we need two Higgs doublets to give masses to all

the fermions since the superpotential is constrained in its form11.

Note that the neutralino, our dark matter candidate, is a mixed state of the neutral

gauginos (bino B̃ and neutral wino W̃ 0) and the two neutral higgsinos H̃0
d and H̃0

u:

χ̃ = N11B̃
0 +N12W̃

0 +N13H̃
0
d +N14H̃

0
u . (3.80)

11Remember: It may only be a function of chiral superfields.
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Names spin 1/2 spin 1 SU(3)C , SU(2)L, U(1)Y

gluino, gluon g̃ g ( 8, 1 , 0)

winos, W bosons W̃± W̃ 0 W± W 0 ( 1, 3 , 0)

bino, B boson B̃0 B0 ( 1, 1 , 0)

Table 3.2.: Gauge supermultiplets in the MSSM [50].

3.3.2. The superpotential and R-parity

In this subsection we briefly discuss the superpotential of the MSSM. As we mentioned

in subsection 3.2.3 there is freedom involved in constructing this part of the Lagrangian.

All terms built from chiral superfields that are gauge invariant are in principal allowed.

To give a reasonable phenomenology the superpotential of the MSSM is defined as:

WMSSM = uyuQHu − dydQHd − eyeLHd + µHuHd . (3.81)

Here, yu,yd and ye are 3×3 matrices that contain the Yukawa couplings and Hu, Hd, Q,

L, u, d, e are chiral superfields corresponding to the supermultiplets in table 3.1. The last

term in (3.81) is called the µ-term and gives masses to the gauginos. Let us see which kind

of interactions are included in this superpotential by considering the arising interactions

of the term uyuQHu = uia (yu)i
j Qjαa (Hu)βε

αβ when assuming that the Yukawa matrix

has only one vanishing entry at the (3,3)-component. We will now neglect the color index

a and with the assumption just made, we can set the family indices i, j to 3. Then, only a

summation over the SU(2)L indices α, β = 1, 2 remains12 and the emerging interactions,

when following the recipe introduced in subsection 3.2.3, are:

t̃∗Rytt̃LH
0
u , t̃∗RyttLH̃

0
u ,

t†Rytt̃LH̃
0
u , t†RyttLH

0
u .

We find Higgs-quark-quark couplings as in the Standard Model but additional squark-

Higgs-squark and squark-Higgsino-quark couplings that are all equal in strength. There

are four additional vertices when we make the replacements H0
u → H+

u and tL → −bL
(with possible tildes). Note also, that masses arising from these couplings, when the up-

type Higgs boson acquires a vacuum expectation value (VEV), are identical for quarks

12SU(2)L indices are also contracted by εαβ .
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Figure 3.1.: Proton decay arising from possible L- and B-violating terms in the super-
potential. This motivates the introduction of R-parity [50].

and squarks. To explain the splitting of the masses we hence need to introduce explicit

mass terms for the superparticles, see section 3.3.3

The form of the superpotential is our free choice as long as it respects the phenomenol-

ogy. There are further terms possible that would also respect gauge invariance, like:

W∆L=1 =
1

2
λijkLiLjek + λ′ijkLiQjdk + µ′iLiHu (3.82)

W∆B=1 =
1

2
λ′′ijkuidjdk . (3.83)

However, these would lead to proton decay, as they violate baryon number B and lepton

number L (see figure 3.1). Instead of simply neglecting and not including these terms in

the superpotential, a forbidding symmetry is introduced. This “R-parity” is a multiplica-

tive conserved quantum number defined as:

PR = (−1)3(B−L)+2s . (3.84)

With this definition, Standard Model particles have PR = +1 and all superpartners

PR = −1. There are three immediate consequences: The lightest supersymmetric particle

(LSP) is stable as a decay into SM particles is forbidden. The LSP is therefore a good

dark matter candidate. SUSY particles may also only be produced in pairs at colliders

and will always decay into an odd number of LSP’s in the final state.
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3.3.3. Soft supersymmetry breaking terms

As we just noticed, superpartners have by construction the same mass. If this was the

case, however, SUSY particles should have been observed already at colliders, which is not

the case. To separate the SUSY and the SM particle masses we need to introduce explicit

mass terms in the Lagrangian. This is done by introducing so-called soft terms, which

do not spoil the removal of quadratic loop divergences when calculating the self-energy of

the Higgs boson. The most general soft SUSY breaking part of the Lagrangian is given

by:

LMSSM
soft = −1

2

(
M3g̃g̃ +M2W̃W̃ +M1B̃B̃ + c.c.

)
−
(
ũ au Q̃Hu − d̃ ad Q̃Hd − ẽ ae L̃Hd + c.c.

)
−Q̃†m2

Q Q̃− L̃†m2
L L̃− ũm2

u ũ
† − d̃m2

d
d̃
†
− ẽm2

e ẽ
†

−m2
HuH

∗
uHu −m2

Hd
H∗dHd − (bHuHd + c.c.) . (3.85)

Here, g̃ is the gluino, W̃ the wino and B̃ the bino field with corresponding mass parameters

M3,M2,M1. The matrices ai are generalizations of the Yukawa interactions and are called

A-terms. The fields Q̃, L̃, Q̃,Hd, Hu, ũ, d̃, ẽ denote the scalar and gaugino fields only and

not their superpartners. Matrices mi are mass matrices for the corresponding fields, b

is the bilinear coupling of the Higgs sector, and mHu and mHd mass terms for the Higgs

fields.

3.4. Electroweak symmetry breaking

In this section we summarize how electroweak symmetry breaking takes place in the

MSSM. The key features are to understand which parameters determine the Z- and h-

boson masses. During the symmetry breaking both scalar Higgses acquire a VEV when

the potential develops a minimum, which then gives masses to the aforementioned bosons.

We hence need to start with the scalar potential:

V = (|µ|2 +m2
Hu)(|H0

u|2 + |H+
u |2) + (|µ|2 +m2

Hd
)(|H0

d |2 + |H−d |
2)

+ [b (H+
u H

−
d −H

0
uH

0
d) + c.c.]

+
1

8
(g2 + g′2)(|H0

u|2 + |H+
u |2 − |H0

d |2 − |H−d |
2)2 +

1

2
g2|H+

u H
0∗
d +H0

uH
−∗
d |

2. (3.86)
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Due to the SU(2)L symmetry we may rotate the fields in such a way that on Higgs field

has a vanishing VEV. In order to avoid charge breaking minima this is taken to be 〈H−u 〉.
Calculating the minimization condition ∂V/∂H−u = 0 we then find that 〈H+

d 〉 must also

vanish13. Thus, only the neutral charge Higgs boson fields will take a non-zero VEV. The

scalar potential simplifies to:

V = (|µ|2 +m2
Hu)|H0

u|2 + (|µ|2 +m2
Hd

)|H0
d |2 − (bH0

uH
0
d + c.c.)

+
1

8
(g2 + g′2)(|H0

u|2 − |H0
d |2)2. (3.87)

Note here, that the potential depends on four input parameters (µ,mHu ,mHd , b) and that

b can be chosen to be real as a phase can be absorbed by a redefinition of the Higgs

fields. This potential is bounded from below in most of the cases. The quartic couplings

will dominate and assure that the potential is greater than zero for large values of the

fields. A special case, called D-flat directions, may occur when |H0
u| = |H0

d |, i.e. vanishing

quartic couplings. In that case we need to fulfill 2|µ|2 +m2
Hu

+m2
Hd
− 2b > 0 for stability.

For EWSB to occur we need a saddle point in the potential at Hu = Hd = 0 and get

another condition on the mass parameters from:

det

∣∣∣∣ ∂2VH
∂H0

i ∂H
0
j

∣∣∣∣ < 0 ⇒ (|µ|2 +m2
Hu)(|µ|2 +m2

Hd
) < b2 (3.88)

Now a close connection between EWSB and SUSY breaking can be seen. If we assume

both soft SUSY masses mHu ,mHd to be zero we immediately run into problems since

both conditions cannot be fulfilled at the same time. If we want to break the electroweak

symmetry, we hence also have to break supersymmetry. Finally we can start to find the

minima of the simplified scalar potential, equation (3.87). Calculating both minimization

conditions ∂V/∂H0
u = ∂V/∂H0

d = 0, giving VEV’s to both scalar fields and using the

relation from the Standard Model:

v2
u + v2

d = v2 =
2M2

Z

g2 + g′2
, (3.89)

13Note that we only talk about tree-level relations in this chapter and that charge breaking minima are
not generally excluded in the MSSM.
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and introducing tan β = vu
vd

, we can express the two arising conditions as follows:

m2
Hu + |µ|2 − b cot β − (m2

Z/2) cos(2β) = 0, (3.90)

m2
Hd

+ |µ|2 − b tan β + (m2
Z/2) cos(2β) = 0 , (3.91)

and use these to write for mZ :

sin(2β) =
2b

m2
Hu

+m2
Hd

+ 2|µ|2
, (3.92)

m2
Z =

|m2
Hd
−m2

Hu
|√

1− sin2(2β)
−m2

Hu −m
2
Hd
− 2|µ|2 . (3.93)

This important equation (3.93) will be the starting point for our fine-tuning definition.

It is also interesting to solve for the Higgs boson masses. The two complex Higgs

doublets have eight degrees of freedom. Three of them will become massless Goldstone

bosons by Goldstone’s theorem, such that five physical Higgs fields will remain. If we

develop the Higgs fields around the vacuum into real and imaginary parts and perform

a rotation into the mass eigenstates, we find for the tree-level masses of the five Higgs

bosons:

m2
A0 = 2b/ sin(2β) = 2|µ|2 +m2

Hu +m2
Hd

(3.94)

m2
h0,H0 =

1

2

(
m2
A0 +m2

Z ∓
√

(m2
A0 −m2

Z)2 + 4m2
Zm

2
A0 sin2(2β)

)
, (3.95)

m2
H± = m2

A0 +m2
W . (3.96)

Note that the light Higgs boson mass is bounded from above to be smaller than mZ | cos 2β|
and sizable loop corrections need to be present to rise its value into the region where

current experimental limits are respected. The largest contribution comes from stop

loops and is given by:

m2
h ≈ m2

Z cos2 2β +
3m4

t

(4π)2 υ2

[
ln
m2
t̃

m2
t

+
X2
t

m2
t̃

(
1− X2

t

12m2
t̃

)]
, (3.97)

with Xt = At − µ cot β and mt̃ =
√
mt̃1

mt̃2
, the SUSY scale [52]. One can see that heavy

stops and a large mixing parameter Xt are necessary to increase the Higgs mass.
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3.5. Fine-tuning

Equation (3.93) demands for mass parameters at the order of the weak scale to naturally

create the correct Z-mass. Otherwise two large quantities would be subtracted from

each other and the Z-mass would in this sense be tuned. This has been quantified by

introducing a fine-tuning measure defined as the sensitivity of the Z-mass [26, 27]:

∆pi ≡
∣∣∣∣ piM2

Z

∂M2
Z(pi)

∂pi

∣∣∣∣ =

∣∣∣∣∂ lnM2
Z(pi)

∂ ln pi

∣∣∣∣ . (3.98)

This quantity serves as a qualitative indicator how well a specific SUSY scenario can solve

the hierarchy problem of the Standard Model or, equivalently, how large the SUSY and

electroweak symmetry breaking scales are separated. The parameters pi that determine

the Z-mass on tree-level are µ, the two soft Higgs mass parameters mHu and mHd and

the bilinear coupling b. We define the total measure of fine-tuning:

∆tot ≡
√∑

pi=µ2,b,m2
Hu

,m2
Hd
{∆pi}2 , (3.99)

with the individual ∆pi’s obtained as in reference [53]:

∆µ2 =
4µ2

m2
Z

(
1 +

m2
A +m2

Z

m2
A

tan2 2β
)
, (3.100)

∆b =
(

1 +
m2
A

m2
Z

)
tan2 2β , (3.101)

∆m2
Hu =

∣∣∣1
2

cos 2β+
m2
A

m2
Z

cos2 β − µ2

m2
Z

∣∣∣(1− 1

cos 2β
+
m2
A+m2

Z

m2
A

tan2 2β
)
, (3.102)

∆m2
Hd

=
∣∣∣− 1

2
cos 2β+

m2
A

m2
Z

sin2 β− µ2

m2
Z

∣∣∣(1 +
1

cos 2β
+
m2
A+m2

Z

m2
A

tan2 2β
)
.(3.103)

These are only tree-level computations,have often been extended in the literature. In

reference [53], for example, the fine-tuning of the Z-mass is quantified by the ratio between

stop loop contributions to mZ and mZ itself:

∆t =

∣∣∣∣δtM2
Z

M2
Z

∣∣∣∣ , (3.104)

with δtM
2
Z ≈ −δm2

Hu
(1− 1/ cos 2β), where δm2

Hu
is the loop correction to the up-type

Higgs from stop loops, given by:
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δm2
Hu
≈ 3y2

t

16π2

(
m2
Q̃3

+m2
t̃

+ A2
t

)
log

(
2Λ2

mQ̃3

+m2
t̃

)
, (3.105)

where Λ is the cut-off scale of the logarithmic divergence. Here, a cut-off scale must be

chosen and a scale-dependence of the fine-tuning value cannot be avoided. This shows,

that the exact value of fine-tunings has no physical meaning, but depends strongly on the

definition. A similar scale-dependence can be found in reference [32], where leading log

contributions to the Z-mass have been included to calculate the fine-tuning analogously

to equation (3.99). These contributions are always proportional to the logarithm of the

cut-off scale Λ, X ≡ log(Λ/ΛSUSY), which is usually set to 3. Then, their minimal tuning

level is always larger than ∆tot ≈ 50. In our work we only concentrate on the low-energy

phenomenology of supersymmetry and the cut-off scale is the SUSY scale per definition.

Therefore leading log terms of fine-tuning vanish and the fine-tuning will generally be

smaller.

Apart from the sensibility of the Z-mass, a Higgs mass tuning may also be considered

and defined equivalently to equation (3.98). This has been discussed in reference [52]

and found to be of order 100 already. However, we want to point out again that a scale

dependence cannot be avoided. Another discussions of fine-tuning in the Higgs sector

may be found in reference [54].

Next to this parameter-tuning we will discuss an equation-tuning in order to quantify

possible cancellations that may lead to “unnaturally” small predictions for an observable.

Since these relations may only be exact on a specific hypersurface of the parameter space,

we take the viewpoint that being close to this surface is an instance of tuning. We will

apply this to the direct detection cross section of neutralino dark matter and define its

tuning measure analogously to the Z-mass tuning to cope with both tunings on equal

footing. The implications are discussed in section 5.6. For completeness:

∆fi ≡
∣∣∣∣∂ lnσSI(pi)

∂ ln pi

∣∣∣∣ , (3.106)

with pi = {µ, tan β,M1,M2,mA}, see also [55].
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3.6. The phenomenological MSSM

To study the MSSM parameter space one needs to make some assumptions and/or simpli-

fications on the parameters, as it is not yet possible to conduct a complete analysis taking

all 105 free additional parameters into account. Many simplified models of the MSSM

exist. For example, in the constrained MSSM (CMSSM) parameters are assumed to fulfill

some GUT relations, such that only five input parameters at the GUT scale remain and

are evolved down to the electroweak scale by renormalization group evolution. Extensive

studies have been done and can be found here: [56–58]. However, these models clearly

put very strong constraints on the SUSY parameter space and do not represent the full

possibilities of the MSSM.

We will therefore take a closer look at the so-called phenomenological MSSM (pMSSM)

that has 22 input parameters at the SUSY scale. It is motivated by the existent strong

constraints on flavor changing neutral currents (FCNC) and CP-violation effects for the-

ories beyond the Standard Model. Measurements in these sectors already show a very

good agreement with theoretical predictions from the Standard Model, such that new

contributions must be significantly suppressed in new theories. To respect these bounds

in the MSSM, the phenomenological MSSM (pMSSM) was constructed in a way that there

are no new phases of CP violation, which means that the parameters are real, and no

possible FCNC at tree level emerge, by demanding the sfermion mass matrices of the first

two generations to be diagonal. Also, degeneracy of the first two sfermion generations is

assumed, such that after a careful count a total number of 22 variables is left over: three

gaugino masses M1,M2,M3; six masses of the squarks mq̃L ,mQ̃L
,mũR ,md̃R

,mt̃R
,mb̃R

, four

slepton masses ml̃L
,mL̃L

,mẽR ,mτ̃R , two Higgs mass parameters14 m2
Hu
,m2

Hd
, the ratio of

their VEV’s tan β = v1
v2

, and six trilinear couplings Au, Ad, At, Ab, Ae, Aτ .

For existing studies of the pMSSM, we point toward a number of papers [28–32] and

want to stress that, in general, a careful examination of the neutralino mass range under

200 GeV is missing in the literature and a negative µ-term has always been neglected.

Also there has been no work that investigated how direct detection experiments test the

natural SUSY parameter space.

14Note that these may be exchange for µ and the pseudo-Higgs boson mass mA



4. The Scan

This chapter contains details about our scanning method. We explain shortly the working

procedures of the used programs and discuss our parameters and their ranges. Also the

applied constraints arising from cosmology, colliders and direct dark matter searches are

presented and examples are given how they can cut into the (natural) supersymmetric

parameter space.

4.1. Utilities and scanning method

Observables of interest include especially the cosmological abundance Ωh2 and the spin-

independent neutralino-proton cross-section σSI. Both are calculated by the C-program

micrOMEGAs 2.4.5 [59] which will also give us the individual annihilation channels of

each scenario. We will only pay attention to the dominant mechanism in our analysis.

It is clear that for a correct calculation of these quantities we need the supersymmetric

mass spectrum and mixing angles which are obtained by the FORTRAN code SuSpect

2.41 [60]. The leptonic observables that we apply as constraints are evaluated by the

C-program SuperIso 3.0 [61] at two loop precision and explained in section 4.3.

In section 3.6 we presented the low energy model of the MSSM that we will examine, the

pMSSM. As already explained, this model is defined at the SUSY scale. No assumptions

are made on SUSY breaking mechanisms or on possible relations arising from a grand

unified theory (GUT). We choose eleven free low-energy input parameters defined at the

SUSY scale with the ranges that we will give in section 4.2. The SUSY scale is hereby

defined as ΛSUSY =
√
mt̃1

mt̃2
. The first step, the calculation of the spectrum, involves an

iteration algorithm. This is necessary, because, for example, the SUSY scale is not known

from the start: Since we use soft SUSY breaking terms as input parameters the physical

stop masses are not known at the beginning. This iteration includes renormalization group

evolution from the SUSY scale down to the electroweak symmetry breaking (EWSB) scale

and back, as long as stability to a satisfying precision is reached. The full two-loop RGE’s

are applied here for the evolution between ΛSUSY and ΛEWSB. During this procedure

36
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SuSpect performs consistency checks with electroweak symmetry breaking. This includes

a test if the scalar potential is bounded from below, if its minimum is not a charge or

color breaking minimum and whether or not tachyonic particles are present. We gave a

short discussion on these matters in section 3.4. If consistent, SuSpect gives the SUSY

spectrum back to the micrOMEGAs code, which deletes scenarios whose Higgs, gluino or

squark masses lie below the current experimental limits, that we will give in section 4.3.

After this, SuperIso will evaluate all the leptonic variables and, if every experimental

constraint is respected, micrOMEGAs finally calculates the relic density and the spin-

independent neutralino proton cross-section σSI and stores the final output if Ωh2 < 0.2.

This line of actions has to be done extremely often due to the vastness of our chosen

parameter space and the strong bounds from experiments.

4.2. Parameter ranges

For this work we made further assumptions on the pMSSM parameters. We took the

masses of the superpartners of the left- and right-handed quarks to be degenerated but

different in generations: mq̃1,2 6= mq̃3 . In the slepton sector we chose different masses

for the superpartners of the left- and right-handed leptons m˜̀
R
6= m˜̀

L
, but did not

distinguish between generations. The trilinear couplings (also called A-terms), that can be

interpreted as the supersymmetric analog to the SM Yukawa couplings, are parametrized

proportional to the third generation of the squark and the geometric mean of the slepton

masses respectively with a universal proportionality factor a0. We may neglect the A-

terms of the first and second generations, because the corresponding Yukawa couplings

are already known to be small. To summarize:

At = a0Ytmq̃3 , Ab = a0Ybmq̃3 , Aτ = a0Yτ
√
m˜̀

L
m˜̀

R
. (4.1)

We are then left with eleven input parameters [62] that we randomly scan in the following

ranges:

M1 ∈ [10, 200] GeV, M2 ∈ [100, 2000] GeV, M3 ∈ [100, 4000] GeV,

mA ∈ [90, 4000] GeV, |µ| ∈ [90, 2000] GeV, a0 ∈ [−4.0, 4.0],

mq̃1,2 ∈ [400, 4000] GeV, mq̃3 ∈ [200, 4000] GeV, tan β ∈ [2, 65],

m˜̀
L
∈ [100, 4000] GeV, m˜̀

R
∈ [60, 4000] GeV.
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The choice of these scanning ranges will be motivated throughout chapter 5, but we will

make some anticipatory comments here. The bino mass parameter, M1 will basically

determine the emerging light neutralino mass range. A decent discussion of the pMSSM

parameter space with the neutralino mass mχ̃ between 60 and roughly 200 GeV has been

missing in the literature so far, asking for a thorough examination. In general negative

gaugino mass parameters are not forbidden, because gauginos are majorana particles1.

A specific aim of our work is, however, to show that it is possible to fulfill the muon

anomalous magnetic moment condition, aµ, for a negative µ-term and positive gaugino

masses. Choosing different parameterizations for m˜̀
R

and m˜̀
L

will help us respecting aµ

and offers a possibility to obtain light staus which will be important to fulfill the relic

density condition in certain areas of the parameter space.

4.3. Constraints

The supersymmetric parameter space can be constrained by many observables. These

include measurements from cosmology, hadron and lepton collider experiments and direct

dark matter searches.

The cosmological dark matter abundance has been determined by analysis of the

WMAP data [5]. We set the neutralino relic density, Ωh2, within the 2 σ range [63]

Ωh2 ∈ [0.089, 0.136], where experimental and theoretical uncertainties are included and,

hence, claim that all dark matter is made out of neutralinos. This does not have to be

the case. It is thinkable that the dark matter sector is formed by a number of different

kinds of particles. Many works on the MSSM therefore only take the upper bound on

Ωh2 as a strict constraint and relax the lower limit. However, if we claim supersymmetry

to be true we have such a nice dark matter candidate, the neutralino, that the possibility

to explain all the relic abundance in the Universe by one single particle should be seized.

We hence put the strongest possible bounds from the cosmological side on our models. In

the following we will discuss constraints from collider physics more detailed.

4.3.1. Supersymmetric particle masses

General searches for supersymmetric particles performed by the LHC have an important

impact on our study [64]. The particles easiest to discover are the gluinos and squarks

1Note that one of the three gaugino masses can always be chosen to be positive by a redefinition of the
fields
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Figure 4.1.: Presenting mass limits on gluinos and light squarks (left panel) [67] and
excluded regions in the light stau-neutralino plane (right panel) [68]. The space above
the thick red line and the colored regions are, within the specific assumptions, excluded.

of the first two generations. By analyzing signatures of missing transverse energy [65,66]

bounds on their minimal masses can be found. The presentation of these results is not yet

done in a model independent way, such that some caution must be taken to not choose

too conservative or too strong limits. Recently published results [67, 68] can be found

in the left panel of figure 4.1. Note that the neutralino was assumed to be massless to

present these results. We choose a lower cut on the gluino mass of 800 GeV and on the

first two generation of squarks of 1 TeV. Additionally, we used exclusion limits for light

stops originating from LHC analysis, see the right panel in figure 4.1.

Our mass limits on charginos comes from the LEP collider. Charginos lighter than

94 GeV are excluded [69]. Further constraints come from pseudo-Higgs boson, A, searches [70,

71] that have excluded a large region of the mA−tan β plane at small mA and large values

of tan β. The limits applied in our analysis may be seen in the left panel of figure 4.2.

4.3.2. Leptonic observables

The LEP collider still gives the strongest bounds on high-precision leptonic observables

like the invisible Z-decay width to neutralinos Γ(Z → χ̃1χ̃1) < 3 MeV [69], the neutralino

pair production cross-section σ(ee→ χ̃1χ̃2,3) < 100 MeV [72] and ∆ρ < 0.002 [64], that



40 4. The Scan

roughly speaking measures deviations from the Standard Model relation between the Z-

and W -boson masses.

For other quantities, like branching ratios of heavy meson decays, the LHC is beginning

to become more important than LEP and increases the limits on supersymmetric param-

eters. We will discuss some quantities in detail and demonstrate how the parameter space

can be constrained by collider physics. One example is the decay of the B-meson into a

tau lepton τ and its neutrino ν. Charged Higgses play an important role for the SUSY

contributions, that always decreases the Standard Model value. Experimental limits are

given in the quantity RBτν , the ratio of the SUSY and the SM predicted branching ratios,

with the currently allowed range 0.52 < RBτν < 2.61. The expression including threshold

corrections to the Yukawas2 ε is:

RBτν ≡
Br(B → τν)SUSY

Br(B → τν)SM

'
[
1− m2

B

m2
H±

tan2 β

1 + ε tan β

]2

, (4.2)

where mB ≈ 5.3 GeV is the mass of the B-meson. A heavy charged Higgs suppresses

the SUSY contribution and the constraint is easily fulfilled. On the other hand, for light

charged Higgs bosons a significant contribution may arise. As argued in reference [73],

two allowed regions for tan β emerge. For small tan β the SUSY contribution is, even for

light charged Higgs bosons, small and the experimental bound is respected. Increasing

tan β will at the end, however, decrease the value of RBτν out of the allowed range.

Nevertheless, for even larger tan β, the deviation itself may become greater than one,

such that a reentry into the allowed region is possible. In this way two bands of allowed

tan β emerge.

A similar behavior is found for the kaon decay quantity R`23 that characterizes the

decay K → `ν. It is defined as follows:

R`23 ≡
∣∣∣∣ Vus(K → `ν)

Vus(K → π`ν)
× Vud(β decay)

Vud(π → `ν)

∣∣∣∣ , (4.3)

with elements of the CKM mixing matrix Vij determined by the processes in the brackets.

The SUSY deviation is given by:

R`23 =

∣∣∣∣1− m2
K

m2
H±

[
1− md

ms

]
tan2 β

1 + ε tan β

∣∣∣∣ , (4.4)

2Since threshold corrections are loop effects they are suppressed by a loop factor and ε can be as a first
estimate be approximated with 1/(16π2).
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Figure 4.2.: Showing the effect of the LHC exclusion limits for the pseudo-Higgs mass
(left panel) [71] and of the leptonic quantities RBτν and R`23 on our parameter space in the
charged Higgs mass-tan β plane (right panel). Both constraints probe similar parameter
regions.

where mK ≈ 0.5 GeV is the mass of the kaon and md and ms masses of the d- and s-

quark, respectively. This quantity again probes medium to high ranges of tan β when light

charged Higgs bosons are present and is complementary to RBτν excluding most of the

high tan β regions. Since the kaon is lighter than the B-meson by a factor of approximately

ten, a reentry into the experimental allowed region is impossible by increasing tan β. Large

values of tan β are therefore tested and, as shown in the right panel of figure 4.2, excluded.

Note, that the previously discussed pseudo-Higgs boson searches also probe this region of

the parameter space, since at tree level the charged Higgs mass is basically given by mA:

m2
H±=m2

A +m2
W . (4.5)

Another quantity that shows a strong dependence on the Higgs sector is the branching

ratio of the B-meson decay into two muons: BR(Bs → µ+µ−). It is proportional to

the sixth power of tan β and constrained by LHC to be smaller than 4.5 × 10−9 at 95%

confidence level [74]. By the end of the year the LHC is supposedly sensitive to the SM

value (which is approximately 1.5× 10−9) and a deviation might be excluded completely.

A first measurement that deviates from Standard Model predictions is the anomalous
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Figure 4.3.: The exclusion limit at 95% confidence level (left) and the local p0 value (right)
summarizing the evidence for a new Higgs-like resonance (the plots are shown from the
ATLAS collaboration [1, 2]).

magnetic moment of the muon aµ. In e+e− → hadrons collisions a 3σ deviation has been

found: δaµ ≡ aexpµ − aSM
µ = 29.5± 8.8× 10−10 [75].

4.3.3. Evidence for a Higgs boson

Recent measurements of ATLAS and CMS [76–81] have found a bump in the γγ invariant

mass at approximately 125 GeV with close to 5σ-level local significance and strongly

points to the existence of the Higgs boson.

We show the exclusion plot of the Higgs mass in the left panel of figure 4.3. The

ratio of the total measured production cross-section σ to the one expected from the

Standard Model σSM for a given Higgs mass at 95% confidence level is plotted on the y-axis.

Measured cross-sections smaller than σSM obviously exclude a Higgs at that specific mass.

Therefore, a Higgs may not be found in those regions, where the thick black measured

exclusion curve is below unity. The dotted line represents the expected exclusion curve

from simulations with indicated confidence levels by the green and yellow bands. If the

y-value is above one, only cross sections larger than the one expected from the SM may

be excluded, such that the detectors are not yet sensitive in these regions.

An eventual discovery may better be seen in the right panel of figure 4.3, where the

so-called local p0-value is plotted. This symbolizes to which probability exclusively a

background fluctuation may create the observed signal-like excess. Hence, the smaller

it is the better. The strong decrease of the p0-value near 125 GeV indicates the strong
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Quantity Reference(s)

Ωh2 [0.089, 0.136] [5]
mh (121.0, 129.0) GeV [1,2, 76–81]

Br(B → sγ) [2.89, 4.21]× 10−4 [82]
Br(Bs → µ+µ−) < 4.5× 10−9 [74]

Br(Bu → τ ν̄) 0.52 < RBτν < 2.61 [83]
Br(K → µν) 0.985 < Rl23 < 1.013 [84]

aµ [0.34, 4.81]× 10−9 [75]
Γ(Z → χ̃1χ̃1) < 3 MeV [69]
σ(ee→ χ̃1χ̃2,3) < 100 MeV [69]

∆ρ < 0.002 [69]

Table 4.1.: The experimental constraints.

evidence for a new resonance. Note that both plots above are taken from the ATLAS

collaboration but that the CMS collaboration has measured comparable results that have

been presented simultaneously.

Due to the decay into two photons it is clear, that the new particle must be a boson.

Whether this really is the Standard Model Higgs will have to be examined at a lepton

collider, where the decay and production channels and the total width can be measured

with higher accuracy. Nevertheless, as the signal excess of occurs in the di-photon channel,

the “silver channel” of the SM Higgs boson, we will interpret this data as the light Higgs

boson of the MSSM. Since the recent results of both collaborations are still preliminary, we

take the range not too restrictive and choose as the mass range mh ∈ [121.0, 129.0] GeV.

A smaller mass range would not affect our results except that the numerical simulations

would be more time-consuming3.

All experimental constraints including flavor and collider physics applied in our analyses

are listed in table 4.1.

4.3.4. The Higgs invisible decay width

A way to exclude models with a small µ-term is to investigate the invisible Higgs decay

width [85]. Since neutralinos have a non-zero coupling to the Higgs boson, a decay of h into

two neutralinos is possible and would alter its decay width. This is defined as the inverse

lifetime of a particle (Γ = 1/τ) and is equivalent to the full width at half maximum of the

resonance curve. In general, if the decay of h into new particles was possible these new

final states would increase the decay width compared to the SM prediction and serve as

3Note again, that our fine-tuning definition is independent of the stop mass.
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Figure 4.4.: The invisible decay width may cut into the SUSY parameter space [85].

a signal to new physics. Since the neutralinos remain undetected in the detector (except

missing energy), their contribution is dubbed ”invisible“ and counted to the invisible

decay width. Then, the invisible branching ratio is defined as follows:

BRinv =
Γinv

Γtot

. (4.6)

Assuming that the excess in the di-photon channel is completely due to a SM like Higgs

boson, an upper limit on the invisible decay width may be given through:

Rateγγ = σ(pp→ h+ X)× Brγγ × L , (4.7)

where L denotes the luminosity. Now, the observable, the γγ rate, is indirectly dependent

on the total, and therefore also to the invisible, decay width. In this way one can derive

upper limits on the invisible branching ratio. This was done by two groups independently

and found to be smaller than 0.13 [86] or 0.39 [87]. The analysis of reference [85] then

shows how the SUSY parameter space is tested.

The dashed red line in figure 4.4 shows the current LEP chargino mass limit, the thick

red line signalizes bounds from the Z-decay width and the black curves show lines of

constant Higgs to two neutralinos branching ratio. If we take the more conservative

limit of [87] all the parameter space below the corresponding black line representing 0.4



4.3. Constraints 45

Figure 4.5.: Presenting direct detection experiments and their exclusion limits or detec-
tion regions (taken from [7]).

is excluded. As the measurements become more precise, this offers an opportunity to

excluded low values of µ for light neutralino masses and the natural SUSY parameter

space can be probed. One must note, however, that these bounds are not competitive

with the chargino mass limit and the Z-decay width for negative µ. This is due to a

decrease of the Higgs-neutralino-neutralino coupling. (compare the approximations to

the neutralino components in section 5.3 and equation (5.13)).

4.3.5. Direct detection experiments

There are many diverse experiments that are looking for a direct dark matter signal. It

is beyond the scope of this thesis to discuss all of them in great detail. We will briefly

describe the XENON100 detector and discuss whether claimed signals from DAMA and

CoGeNT can be interpreted by the MSSM. A summary of all claimed signals and exclusion

curves is given in figure 4.5 from reference [7].

DAMA measures an annual modulation signal due to the rotation of the earth around

the sun. Assuming the DM halo is static in the galactic plane, the relative velocity between

the earth and the DM halo changes between summer and winter, when the angular velocity

of the earth either adds up to the motion of the sun around the galactic halo or subtracts.

A signal of 8.9 σ confidence level has been reported [8].

CoGeNT tests the interaction cross-section of WIMPs by measuring the ionization
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Figure 4.6.: A description of the XENON100 detector [88].

charge from nuclear recoils and, due to the very low energy threshold, they can probe

especially very light WIMP particles. They also claim a signal with a corresponding dark

matter mass of 7-11 GeV [10].

Besides, there has been an event excess reported by the CRESST [9] (Cryogenic Rare

Event Search with Superconducting Thermometers) experiment which detects WIMPs

through a temperature change due to the energy deposit of dark matter collisions on

nuclei in a cryogenic detector.

Apart from the fact that DAMA/LIBRA, CRESST and CoGENT are contradicting

each other by themselves, they are all excluded by XENON100 (2012) [6]. There have

been dark matter models trying to move the individual regions together, but no consent

could be achieved yet. In the framework of low-energy supersymmetry these signals cannot

be explained after taking into account all experimental data [73]. This is confirmed by

our study. We will therefore take the viewpoint that the limits of XENON100 (2012) are

correct and exclude any of the above possible dark matter signals.

The XENON100 detector [88] has two planes of photo multipliers, see figure 4.6, that

will measure two different light signals from a possible WIMP-Xenon collision. There

is a first light signal S1 when the collision occurs that is observed by both detectors

simultaneously. The energy of the collision ionizes Xenon and the set free electrons are

pulled toward the second array of photomultipliers by an electric field. When the charges
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enter the gas phase of Xenon, scintillation light is produced that is then detected as

the S2 signal at the top of the detector. To tell apart electronic WIMP collisions from

nuclear recoil through neutrons, the ratio of S2/S1 is crucial and shows a characteristic

behavior for both cases. The background can be significantly reduced and controlled by

the opportunity to specify the location of the collision with high precision and distinguish

it in this way from radioactive contributions from the boundaries of the detector. The

behavior of the XENON exclusion limit in figure 4.5 is determined by two effects: At

small neutralino masses the recoil energy is low, such that the signal strength is low

and exclusion becomes more difficult. Going to larger masses a strong decrease of the

expected neutralino flux due to cosmological bounds pushes down the expected event rate

and makes it harder to put limits on σSI. Therefore, a minimum at approximately 50 GeV

occurs.

We will in the next chapter present the results of our scan and always show the recently

new measured XENON100 (2012) exclusion limit. This then directly shows which parts

of the natural SUSY parameter space have already been excluded. We will additionally

show a prediction for the exclusion limit of the future XENON1t experiment [89] in order

to see how far direct searches can test the parameter space.



5. Results

In this chapter we will present the results of our scan. This discussion includes a presen-

tation of the neutralino annihilation mechanisms and their arrangement in plane spanned

by the neutralino mass and the spin-independent direct detection-cross section σSI (di-

rect detection plane). The necessary amount of tuning for each accesible point in this

plane will be presented in order to see where there are natural regions that have avoided

direct detection so far. We will analyze each annihilation mechanism separately, such

that the emerging picture is fully understood. This will also include a description of the

behavior of the direct detection cross-section on the sign of the supersymmetric Higgs

mass parameter µ and the wino component N12 of the neutralino. In this context we will

introduce a new tuning measure to account for accidental cancellations σSI. Finally, we

show the probability to reach a certain point in the direct detection plane by performing

a homogeneous scan of the input parameter space. The results presented here have been

publicized on the 12th of July [90].

5.1. Obtaining the correct relic abundance

In this section we will discuss which mechanisms may bring the relic density into the cos-

mological interesting region. As explained in section 5.1, the relic density is basically set

by the thermally averaged annihilation cross-section, 〈σannv〉, using a freeze-out mecha-

nism. We indicate the most important annihilation channel by a color coding in figure 5.1

where the relic density is plotted on a log scale versus the neutralino mass. For simplic-

ity we only show Ωh2 < 0.2 since other models would always over produce dark matter.

Efficient mechanism, e.g. resonant annihilation, are needed to get a high enough 〈σannv〉,
which can produce the correct relic abundance.

The most dominant annihilation channel has lepton final states (dark-blue points in

figure 5.1) and is present in our complete neutralino mass range. The two resonant Z-

and light Higgs-boson, h, allow annihilations into a pair of light quarks (red points)

and are situated at masses around 40 and 60 GeV, respectively. As the mass of the

48
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Figure 5.1.: The different (co)annihilation mechanisms presented by the color code and
the corresponding relic abundance. All collider and flavor constraints have been applied.
The black lines indicate the bounds that will be applied as the relic density cuts; Ωh2 ∈
[0.089, 0.136]. Here qq̄ stands for a light quark and `¯̀ for a lepton pair. The plot contains
only scenarios with a negative µ-term, but is similar for the positive sign case.

h-boson is not yet precisely known, its resonance is not as sharp as the Z-resonance.

For neutralinos heavier than roughly 80 GeV the neutralino may annihilate into two W -

bosons (light-blue). There are further scenarios with dominant annihilations into light

quarks for mχ̃ & 80 GeV hidden behind the lepton final states. The lower branch (dark-

green) corresponds to neutralino-chargino coannihilations, which for our chosen range

of the lightest neutralino mass always produce under abundant dark matter. Therefore,

these coannihilations are unimportant for our further discussion, as we are also taking into

account the lower bound from the WMAP measurement. Slepton coannihilations, on the

other hand, will play an important role at neutralino masses above 90 GeV (light-green).

They are accompanied by a region of top final states at approximately 180 GeV (orange).

Mapping the different models with their mechanisms into the mχ̃ − σSI plane a well

ordered picture emerges. We show an example for scenarios with a negative µ-term in

figure 5.2, where all constraints except the anomalous magnetic moment of the muon have

been applied and where we split the results into two figures for better visibility.

The most prominent mechanism, the annihilation into a pair of leptons, is homoge-
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Figure 5.2.: The dominant neutralino annihilation mechanism in the direct detection
plane. All constraints except the anomalous magnetic moment of the muon have been
applied.

neously distributed over the complete plane and mainly mediated through t-channel light

stau or s-channel Z, h, A, H exchange and their interference terms. Quark final states

at neutralino masses between 40 and 60 GeV are due to s-channel Z- and light Higgs bo-

son, h, resonances. Chargino mediated t-channel and neutral Higgs mediated s-channel

annihilations into W -bosons fill a band at σSI ' 10−9 pb (light-blue). There also quark

final states H and A exchanges are present. Slepton coannihilations are situated at higher

neutralino masses mainly below the predicted XENON1t exclusion limit. We note here,

that some scenarios of chargino coannihilations have been present even after cutting the

relic density, however, these were extremely rare (they only made up 0.02% of the total

scenarios) and we decided to remove them for the rest of our analyses. For positive µ the

situation is similar except for the different scaling behavior of σSI, which will be discussed

in section 5.3.

A remark must be made here for some scenarios that we completely excluded from

our analyses. Via coupled Boltzmann equations we obtained scenarios in the simulations

for which the dominant freeze-out mechanism is none of the ones stated above. There

have been dominant annihilation channels, such as gluino fusion into gluons, g̃g̃ → GG,

that allowed the neutralino to produce the correct relic abundance. However, since the

neutralino does not directly take part in those processes, we neglect them in our study.

We also calculated the annihilation cross-sections of two DM into two photons, 〈σχχ→γγv〉,
in order to decide whether the claimed γ-ray line in the Fermi-LAT data [91] is consistent
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initial state final states

chargino coannihilation χ̃0
1 χ̃

+
1 sc, ud, tb, eνe, µνµ, ZW

slepton coannihilation χ̃0
1 τ̃1 γτ , τh,Wντ , Zτ

χ̃0
1 ẽR γe
χ̃0

1 ν̃τ Wτ , Zντ , ντh
χ̃0

1 ν̃e We, Zνe

Table 5.1.: List of the dominant annihilation channels as obtained by our simulation.

with our models. However, we found that 〈σχχ→γγv〉 is too small to serve as an explana-

tion. Nevertheless, it is not clear that this excess is due to DM annihilations and does

not exclude our models.

5.2. The level of fine-tuning in the direct detection plane

In this section we discuss the level of fine-tuning, equation (3.99), and its relation to dark

matter direct detection experiments. By mapping the simulated scenarios into the direct

detection plane and indicating the amount of fine-tuning by a color scheme, we are able

to draw conclusions where the natural pMSSM parameter space is situated, where a dark

matter signal should be expected and whether direct searches can exclude completely

the untuned, well-motivated parameter combinations. We show our results applying all

experimental constraints discussed above except the muon anomalous magnetic moment.

To stress its impact we consider this quantity separately in section 5.5. Let us discuss the

two possible sign cases of µ in turn and start with positive µ.

In figure 5.3 we plot the distribution of the level of fine-tuning in the direct detec-

tion plane. Untuned scenarios can be found in three regions: First, a long, horizontal

branch of t-channel light chargino mediated neutralino annihilation into two W -bosons

plus s-channel heavy Higgs and CP-odd Higgs mediated annihilations into a pair of quarks

appears at σSI > 10−8 pb and at neutralino masses above 80 GeV. Second, two vertical

stripes belonging to the Z- and h-resonances emerge at the corresponding masses. Note

also the third untuned region at mχ̃ ∈ [65, 80] GeV and σSI ≈ 10−8 pb due to light stau

annihilations. Away from the Z- and h- resonances higher tuning will become necessary

if future direct searches do not report a positive signal: A tendency for more tuning

for smaller σSI is clearly visible (see also [55]). This effect is not noted at the Z- and

h-resonance regions. Instead we find an increase of ∆tot when the neutralino mass ap-
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Figure 5.3.: The level of fine-tuning for our models with positive µ in the direct detection
plane. The color coding indicates the amount of tuning ∆tot necessary to reach a certain
point. Scenarios with ∆tot < 10 are given the value 10 and ∆tot > 1000 the value 1000.
The lines represent the XENON100 (2011), XENON100 (2012) and the prediction for
XENON1t, respectively.

proaches mZ/2. This will be explained when the quark final states are discussed in greater

detail in section 5.4.1. Taking the XENON100 (2012) limit into account the horizontal

untuned branch is already excluded, such that low fine-tuned dark matter for positive

µ preferably sits at masses between 20 and 60 GeV. As the XENON experiment will

further investigate the parameter space, these regions will be probed as well and, if no

signal is detected, a neutralino with a mass less than 200 GeV for positive µ is excluded

completely, if the fine-tuning measure is considered to be meaningful. Let us now switch

to a negative µ:

We again show the level of tuning in the direct detection plane in figure 5.4 and see

that, compared to positive µ, a different picture arises: Direct dark matter searches have

just begun to probe the parameter space. Scenarios that explain the dark matter riddle

with low electroweak fine-tuning and that have avoided direct detection so far can be

found in the complete neutralino mass regions. This could be interpreted as the reason

why no positive signal has been reported yet: A great part of the untuned parameter

space has not been tested. Note that σSI is shifted to smaller values that may be as
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Figure 5.4.: Again the level of fine-tuning analogously to figure 5.3, but for scenarios with
negative µ.

small as 10−18 pb. For a neutralino mass smaller than 65 GeV very low direct detection

cross-sections and, at the same time, low fine-tuning is possible. Thus, direct searches

alone will not be capable to test the complete MSSM parameter space, but complement

searches, for example production at the LHC or indirect detection are necessary.

Another feature that can be observed in figure 5.4 is a thick red band that crosses the

allowed region at a direct detection cross-section of about 10−12 pb. This band contains the

most tuned scenarios of the simulations. However, different to positive µ, highest tuning

does not correspond to the smallest possible direct detection cross-sections, as models

with even smaller σSI exists that show less tuning. How this arises will be discussed when

we turn to the detailed discussion of lepton final states in section 5.4.2. First, however,

we must understand the dependence of the direct detection cross-section on the sign of µ.

5.3. The direct detection cross-section

In this section we will explain why a negative µ-term shifts the spin-independent neutralino-

proton cross-section σSI to smaller values and why the lower border of σSI, which could be

noted for positive µ vanishes. To understand this behavior we first need to clarify which
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parameters determine the mixture of the neutralino and how these influence σSI. The

neutralino mass matrix in the basis given in section 3.3.1 is:

MÑ =


M1 0 −MZ sin θW cos β MZ sin θW sin β

0 M2 MZ cos θW cos β −MZ cos θW sin β

−MZ sin θW cos β MZ cos θW cos β 0 −µ
MZ sin θW sin β −MZ cos θW sin β −µ 0

 .

There exist exact solutions for the mixing angles in the literature, but since these are too

complicated for our discussions, we used the large SUSY scale approximation (Mi±|µ|)2 �
M2

Z (i = 1, 2) from reference [92] to find first estimates for each of the components. Note

their dependence on the sign of the µ-term:

N12 ' −M2
Z cos θW sin θW

M1 + µ sin 2β

(M1 −M2)(M2
1 − µ2)

, (5.1)

N13 ' −MZ sin θW
M1 cos β + µ sin β

M2
1 − µ2

, (5.2)

N14 ' MZ sin θW
M1 sin β + µ cos β

M2
1 − µ2

. (5.3)

The unitary condition on the mixing angles then yields the bino component N11:

N11 =
√

1−N2
12 −N2

13 −N2
14 . (5.4)

These approximations are in good agreement with the mixing angles found in our sim-

ulations. One strong deviation occurs for scenarios with a dominant annihilation into

W -bosons near a neutralino mass of around 80 GeV. For all other mechanisms these for-

mulas give sufficient precision for a reliable qualitative discussion. Note that especially

the higgsino components N13 and N14 strongly depend on the µ-term. Since |µ| is usually

much greater than M1 these components will always decrease when µ is increased. The

same is valid for the wino component N12. This means that whenever a large µ (or equiva-

lently a high level of tuning) is present, the neutralino almost forms a pure singlet, namely

a bino. Since a smaller higgsino component leads to a smaller neutralino-neutralino-Higgs

coupling (for both light and heavy Higgses) it is true as a general statement that a bino-

like neutralino has a smaller σSI, but also that the corresponding tuning level is worse.

A neutralino with a larger higgsino component should, on the other hand, be easier to

detect and is from a fine-tuning perspective also more natural. However, we will see that
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Figure 5.5.: The level of fine-tuning and the direct detection cross-section for negative
(left) and positive (right) values of µ. The possibility to obtain smaller cross-sections for
scenarios with a negative µ-term is visible.

there are exceptions to this statement when cancellations between different contributions

to the direct detection cross-section allow σSI to be decreased so far that even neutralinos

with a large higgsino component will be very difficult to trace with direct dark matter

searches. This will be the explanation for the appearance of the vertical green region at

the Z- and h-resonances from figure 5.4.

In figure 5.5 we notice again the clear difference in the scales of σSI when the sign of

µ is flipped. Now it is already clear that also higgsino-like neutralinos, i.e. those with a

small µ-term, may have avoided direct detection experiments if µ is negative. Note that

the red points showing up at small absolute values of µ possess a large mA and a small

tan β, such that equation (3.101) becomes large and dominates the fine-tuning.

Let us now explain the origin of the different scaling behavior of σSI for the two sign

cases: The dominating terms in σSI are t-channel light and heavy Higgs boson exchanges.

In references [17,93,94] we find:

σSI ' 8G2
F

π
M2

Zm
2
red

[
FhIh
m2
h

+
FHIH
m2
H

]2

, (5.5)

where GF is the Fermi constant and mred is the neutralino-nucleon reduced mass:

mred ≡
mχ̃mN

mχ̃+mN

. (5.6)



56 5. Results

The functions Fh,H and Ih,H are defined as follows:

Fh ≡ ([−N11 sin θW +N12 cos θW ) (N13 sinα +N14 cosα) , (5.7)

FH ≡ (−N11 sin θW +N12 cos θW ) (N13 cosα−N14 sinα) , (5.8)

Ih,H ≡
∑
q

kh,Hq mq〈N |q̄q|N〉 . (5.9)

The angle α is the mixing of the mass eigenstates (hand H), and the coefficients kh,Hq are

given by:

khu-type = cosα/ sin β , khd-type = − sinα/ cos β ,

kHu-type = − sinα/ sin β , kHd-type = − cosα/ cos β ,

for the up-type and down-type quarks, respectively. Threshold corrections will be ne-

glected for simplicity in our discussion. Evaluating the complete expression with our

approximations for the neutralino components in the decoupling limit1 yields the follow-

ing formula:

σSI ' 8G2
F

π
m2

red

M4
Z sin2 θW

(M2
1 − µ2)2

·
[
IH
m2
H

µ cos 2β +
Ih
m2
h

(M1 + µ sin 2β)

]2

(N11 sin θW −N12 cos θW )2 . (5.10)

Note, that cos 2β is smaller than zero, i.e. cos 2β ≈ −1 (tan β > 2), such that both con-

tributions in the square brackets seem to have a different sign. However, the k-coefficients

tell us that Ih and IH preferably have an opposite sign in the decoupling regime and

actually add up for positive µ. On the other hand, cancellations between both terms

are possible and σSI may be suppressed when µ is negative. This is only correct when

M1 +µ sin 2β is positive. In this case we see from equation (5.1) that the wino component

is negative since M2 > M1 and |µ| > M1 for most of our models. These statements are

nicely summarized in figure 5.6. The boundary at M1 + µ sin 2β ≈ 200 GeV occurs for

the maximal values of M1 and tan β when, at the same time, |µ| is small.

In the next sections we will use this knowledge to correctly explain in detail the behavior

of the level of tuning with respect to the spin-independent cross-section when we discuss

every annihilation mechanism separately. In these discussions we will mainly concentrate

on the quark and lepton final states, since they form the most common annihilation

channels of our scenarios.
1sin2(α− β) ' 1, i.e. sinα ' cosβ, cosα ' − sinβ.
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Figure 5.6.: The dependence of σSI on the quantity M1 +µ sin 2β and the wino component
N12 as obtained by our simulations. Only negative N12 allow for cancellations of the light
and heavy Higgs contributions to σSI.

5.4. The annihilation mechanisms

5.4.1. Quark final states

In this section we will take a closer look at the scenarios with neutralino annihilation into

light quarks and a negative µ-term. The situation is similar for positive µ except for the

different scale of the direct detection cross section. We choose to discuss the negative µ

case in order to explain the more complicated behavior of σSI.

Regions of quark final states are, as we mentioned in section 5.1, situated at the Z- and

h-resonances and in a band at σSI & 10−10 pb above neutralino masses of 80 GeV. The

behavior of the fine-tuning at the Z-resonance is an interplay between the values of µ and

the relic density condition. The neutralino-neutralino-Z coupling C χ̃χ̃Z is determined by

the higgsino components of the neutralino [95]:

C
χ0
1χ

0
1Z

A =
g

2 cos θW
(N2

14 −N2
13), (5.11)

which in turn are mainly given by the µ-term, see equations (5.2) and (5.3). If we fixed the

µ-term, i.e. kept the C χ̃χ̃Z almost constant, and moved closer to the exact resonance at

mχ̃ = mZ/2, the neutralino would be under abundant due to the resonant enhancement
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Figure 5.7.: The level of fine-tuning in the direct detection plane for models with dominant
neutralino annihilations into light quarks only. Z, light Higgs h, heavy Higgs H and CP-
odd Higgs A mediated annihilations appear and are to a great part untuned. The latter
two mechanisms may be tested completely by the predicted XENON1t exclusion limit.

that occurs for 〈σannv〉. To obtain the correct relic abundance we therefore need to

decrease the C χ̃χ̃Z through a decrease of the higgsino components by an increase of µ.

This then directly translates into a higher amount of tuning close to the exact resonance.

Note that the µ-term is fixed at the Z-resonance through this connection between the

relic density condition and C χ̃χ̃Z .

Near the h-resonance (mχ̃ ≈ 60 GeV) the explanation of the fine tuning behavior is more

difficult. First, one notes that ∆tot can be two orders of magnitude larger than before.

These tuned scenarios gather at a spin-independent cross-section of about 10−10 pb. Let

us discuss in detail the origin of this difference: The MSSM contains an additional Higgs-

doublet, as we explained in chapter 3. The propagating light Higgs mass eigenstate h is a

superposition of both gauge eigenstates Hu, Hd. In the calculation of a Higgs-quark-quark

interaction the Higgs mixing angle and the ratio of the two VEVs, i.e. tan β, appear. The

coupling to the light quark pair bb̄ is then given by:

Chbb̄ =
gmb cosα

2mW sin β
=
g cosαYbv cos β

2mW sin β
√

2
=
gYbv cos β

2
√

2mW

∝ Yb cos β , (5.12)
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where we used the fact that we are in the decoupling regime and expressed the b-quark

mass with the Yukawa coupling and the VEV. We see that the parameter β, so to say

tan β, plays an important role for Chbb̄. The Higgs-b-b̄ coupling is increased through a

small tan β (meaning that cos β is rather large), which then asks for a suppression of the

neutralino-neutralino-Higgs coupling C χ̃χ̃h to keep the complete annihilation rate fixed at

the value that produces the correct relic density. This is again achieved by increasing the

µ-term [95]:

C χ̃χ̃h = −g[(N12 −N11 tan θW )(− sinαN13 − cosαN14)] . (5.13)

For small values of tan β, a correct relic abundance is therefore only produced when µ

is large, which explains the fine-tuned models in figure 5.7. We still need to explain

why these almost purely bino-like neutralino scenarios do not map to the lowest possible

spin-independent cross-sections.

As noted in section 5.3, only a negative wino component of the neutralino allows for

cancellations in σSI. The just discussed scenarios, however, show a very small2 µ plus

a small tan β. In this case M1 + µ tan 2β takes its smallest possible values, such that

the wino component is positive and these scenarios are situated at the very left end of

figure 5.6 and map accordingly to rather large values of σSI.

Whereas for positive µ it is in general true, that a large mA and a large µ decrease σSI

through a suppression of both contributions to σSI, the smallest possible values of σSI for

negative µ occur when the cancellations between the light and heavy Higgs contribution

are almost exact. Hence, the parameters need to be tuned against each other and it is not

enough to just suppress both contributions. To clarify this statement, we plot in figure 5.8

the distribution of the CP-odd Higgs mass in the direct detection plane. We see that only

at the exact Z-resonance mA is large to get the smallest possible value for σSI, but away

from the resonance models with heavier A map to larger σSI. Let us explain this in detail.

To get the smallest σSI both contributions should be preferably small and have oppo-

site signs to cancel each other. As we explained previously, at the exact Z-resonance the

higgsino component of the neutralino is decreased in order to compensate for the resonant

enhancement of 〈σannv〉 to respect the relic density condition. Thus, the µ-term is rather

large and the neutralino-neutralino-light Higgs coupling rather small. To have exact can-

cellations also the heavy Higgs contribution must be small which is achieved by increasing

mA. At the exact resonance we hence find a picture similar to positive µ: both, µ and

2To avoid confusion: small here means a large |µ| and a negative sign.
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Figure 5.8.: The distribution of the CP-odd Higgs mass mA of the scenarios with neu-
tralino annihilation into light quarks in the direct detection plane. It is not true that the
smallest possible σSI have the largest mA as soon as the µ-term is negative. The branch
at neutralino masses above 80 GeV consists of scenarios with very small mA indicating
that these are CP-odd and heavy Higgs mediated annihilations.

mA, have to be large to get the smallest possible spin-independent cross-sections, which

agrees perfectly with figure 5.8.

Further away from the resonance, however, the neutralino is more higgsino like and the

contribution to σSI from the light Higgs is enhanced. To have cancellations away from

the exact resonance, the heavy Higgs contribution must not be too small and hence mA

not too large. If it was, the heavy Higgs contribution would be too small to cancel out

the light Higgs contribution. This explains figure 5.8. In section 5.6 we will quantify the

possibility of fulfilling specific relations between parameters that result in an unnaturally

small cross-section by introducing a measure of equation-tuning.

We still have to discuss the heavy and CP-odd Higgs resonances. These overlay each

other and have a completely different shape compared to the Z- and h-resonances. Due

to the lightness of the heavy Higgs, its contribution to σSI is always dominant and can

never be canceled by the light Higgs. Hence, the spin-independent cross-section is always

high. Only for neutralino masses above 120 GeV the annihilation in the early Universe

may be on the exact resonance, when all constraints are taken into account (note again
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that small mA are strongly constrained), and we can again observe an increase of ∆tot

when 2mχ̃ ≈ mA is fulfilled, compare figure 5.7.

5.4.2. Lepton final states

In this section we discuss in detail the the mapping of the scenarios with lepton final

states of neutralino annihilation into the direct detection plane and their tuning level. In

figure 5.9 one can see that at the Z- and h-resonances again untuned models for every

value of σSI are present. Other natural scenarios occur in the branch of the heavy Higgs

and CP-odd Higgs resonance. Compared to the quark final states we see that the plane

is more homogeneously filled and provides viable solutions at almost every point. A thick

red stripe appears at direct detection cross-sections of about 10−11 pb. This overlays a

whole region with medium-tuned models.

In principle neutralino annihilation into a pair of leptons is possible either via s-channel

Higgs or t-channel light slepton exchanges (Since the majority of `¯̀ final states are τ τ̄ , we

talk about light stau τ̃1 exchange only). As a general rule we can say that whenever stau

exchange is important the τ̃1 will be light and whenever stau exchange does not contribute

significantly to the annihilation cross-section, the stau mass is unrestricted and may be

as large as our parameter space allows, i.e. roughly 4 TeV. For lepton final states we

find in figure 5.10 that the τ̃1 is always lighter than 450 GeV, such that they always

influence 〈σannv〉. Therefore, even on the exact Z-resonance, the contribution from stau

exchanges to 〈σannv〉 cannot be neglected and the interference between s-channel Higgs

and t-channel stau exchanges always has to be considered. At the exact Z-resonance

those two contributions need to be arranged precisely in a way that gives the correct relic

abundance. This introduces relations among µ, that is important for the Z-exchange, and

tan β, which plays a role in the stau exchange. As a consequence cancellations in σSI are

not possible and cross-sections below 10−13 pb do not occur.

Apart from the stripe from H and A mediated annihilations, the rest of the plane is

mainly filled with slepton annihilation. Especially in the neutralino mass range between

65 and 80 GeV we find models for every possible σSI. This is completely different to

the previously discussed quark final states and has been missed in past studies of the

pMSSM [32, 56]. We want to stress that if a signal from direct detection experiments is

reported in this mass region we can already say that slepton annihilation is the mechanism

to get the correct relic abundance and we would have an idea for a promising production

channel of neutralinos at the LHC.
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Figure 5.9.: All scenarios with dominant neutralino annihilation into a pair of leptons and
their level of tuning in the direct detection plane.

The area filled with highly fine tuned models at mid range direct detection cross section

corresponds to the models that feature the lightest possible staus. To explain how these

come about, an investigation of the slepton mass matrix has to be done. For staus this is

given by:

M 2
l̃

=

(
m2
l̃L

+ (−1
2

+ sin2 θW )M2
Z cos 2β +m2

τ mτ (Aτ − µ tan β)

mτ (Aτ − µ tan β) m2
l̃R

+ sin2 θWM
2
Z cos 2β +m2

τ

)
(5.14)

To find the mass eigenstates we need to diagonalize the matrix by finding its eigenvalues.

These are:

m2˜̀
1,2

=
1

2

[
m2
l̃L

+m2
l̃R
− 1

2
M2

Z cos 2β + 2m2
τ

±
√

(m2
l̃L
−m2

l̃R
+ (−1

2
+ 2 sin2 θW )M2

Z cos 2β)2 + 4m2
τ (Aτ − µ tan β)2

]
.

(5.15)

Approximating cos 2β with −1, neglecting the factor of m2
τ and using −0.5 + 2 sin θ2

W ≈
0.04 = 1/25 = 1/52, equation( 5.15) simplifies into:
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Figure 5.10.: The stau mass of scenarios with neutralino annihilation into leptons and
their level of fine-tuning. We show the cases for a positive (left) and negative (right)
µ-term separately and see that there is no difference. Stau interference is important in
all regions.

m2
l̃1,2

=
1

2

[
m2
l̃L

+m2
l̃R

+M2
Z

1

2
±

√√√√(m2
l̃L

M2
Z

−
m2
l̃R

M2
Z

+
1

52

)2

+ 4
m2
τ

M4
Z

(Aτ − µ tan β)2


 . (5.16)

The second term in the square root is heavily suppressed by a factor of m2
τ/M

4
Z ≈

10−8 GeV−2. Since the A-terms are roughly of the order of the soft-masses of the sleptons,

i.e. 103 GeV, this term is only important, when the product of µ and tan β is large. To

see how the slepton masses behave for the smallest possible soft terms, we further assume

m2
l̃L
≈ m2

l̃R
≈M2

Z :

m2
τ̃1,2
' 1

2

[
2M2

Z +M2
Z

(
1

2
±
∣∣∣∣mτ

M2
Z

(Aτ − µ tan β)

∣∣∣∣)] . (5.17)

For a small Aτ − µ tan β the slepton masses are always greater than the Z-mass, namely√
5/2MZ ≈ 100 GeV. To end up with smaller stau masses, we therefore need a high

µ-term.

A second possibility to obtain light staus is when ml̃L
� ml̃R

is fulfilled. As an approx-

imation for the stau masses we find here:
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m2
τ̃1
≈ m2

l̃R
+
M2

Z

4
− m2

τ (Aτ − µ tan β)2

16m2
l̃L

. (5.18)

One can see that mτ̃1 is primarily determined by ml̃R
and for m2

τ (Aτ−µ tanβ)2

16m2
l̃L

∼ 1002 GeV2

the mass is suppressed by the off-diagonal elements. These two approximations show why

scenarios with the lightest possible staus are severely fine-tuned.

Below neutralino masses of around 35 GeV we find for both signs of µ a separation of

high and low fine-tuned models. For the scenarios with mτ̃1 < 100 GeV only stau mediated

neutralino annihilation can be important and we find that ml̃L
∼ml̃R

. A detailed study

on light staus may be found in reference [62].

The scenarios with sleptons whose stau mass is strongly influenced by the off-diagonal

elements posses, as we argued above, a very large µ-term, so that their wino component

is positive and no cancellations in σSI appear, compare figure 5.6. Therefore they do not

map to very small σSI.

5.4.3. W-boson final states

Here, we shortly discuss the annihilation of neutralinos into a pair of W -bosons. In

figure 5.11 it is visible that all of these scenarios show a small level of fine-tuning and

cancellations for σSI are possible, such that future direct search limits can be avoided.

The annihilation is mediated via light charginos whose masses depend strongly on the

µ-term, as we can see when looking at the chargino mass matrices. For the basis ψ± =

(W̃+, H̃+
u , W̃

−, H̃−d ) this matrix is given by:

Lchargino mass = −1

2
(ψ±)TMC̃ψ

± + c.c. (5.19)

MC̃ =

(
0 XT

X 0

)
with X =

(
M2 gvu

gvd µ

)
=

(
M2

√
2 sin βmW√

2 cos βmW µ

)
. (5.20)

One then finds as a good approximation for the eigenmasses in the case of µ < M2 (which

is mostly the case for these scenarios) through diagonalizing [50]:

mC̃1
≈ µ− m2

W (µ+M2 sin 2β)

M2
2 − µ2

. (5.21)

Therefore the lightest chargino mass is primarily determined by the µ-term. Hence, the

situation is clear: To have efficient chargino mediated annihilation, light charginos and
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Figure 5.11.: All scenarios with W -boson final states as the dominant neutralino an-
nihilation mechanism. A large number of untuned scenarios will survive future direct
searches.

therefore a small µ-term are necessary, which results in low fine-tuning. Most of the

scenarios are situated at values of σSI that will be tested by future direct searches, but

cancellations between the heavy and light Higgs contributions allow some scenarios to

avoid those.

5.4.4. Slepton coannihilations

A coannihilation describes a process in that the neutralino annihilates with a different

supersymmetric particle into Standard Model particles. These processes are also impor-

tant when the relic density is calculated. Neutralino coannihilations with sleptons include

both, sneutrinos and staus. We find them to be of equally importance in our parameter

space. For coannihilations to take place the participating slepton has to be almost mass

degenerate with the neutralino. In figure 5.12 we plot their level of tuning in the direct

detection plane.

Concentrating first on the stau coannihilation we observe here that for the interacting

τ̃1 a light mass is obtained through ml̃L
� ml̃R

, whereas models with m˜̀
L
' ml̃R

are

very rare. This is simply a matter of probability: If we want the latter condition to be
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Figure 5.12.: All scenarios with dominant slepton coannihilation as the annihilation mech-
anism. XENON1t may probe all untuned scenarios.

responsible for creating light staus, both slepton soft mass parameters have to be small,

i.e. of the order of 100 GeV. This is just a very small fraction of the parameter space,

such that these models are rare due to the linear scanning method3. Stau coannihilations

only appear for neutralino masses above approximately 80 GeV, since staus cannot be

lighter than that.

For the sneutrino coannihilations we observe that m˜̀
R
� m˜̀

L
must be given to have

light sneutrinos. The mass of the sneutrino is given by [96]:

mν̃ = mẽL +M2
Z cos 2β cos2 θW , (5.22)

such that it is mainly given by m˜̀
L

(since this determines ẽL). As cos 2β is negative,

the sneutrino is always lighter than the selectron. It is even possible that the sneutrino

becomes the LSP, but we did not consider this possibility in our study. The µ-term is

virtually unimportant and can take all possible values. Cancellations in σSI are possible

for both, sneutrino and stau coannihilations, but the complete untuned parameter space

may be probed by the predicted XENON1t exclusion limit.

3Note that we did not perform a focused scan with these boundaries at this neutralino mass region.
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5.5. The muon anomalous magnetic moment and the

µ-term

In this section we discuss the influence of the muon anomalous magnetic moment condition

on our scenarios. We explain how it is possible to correctly achieve the positive pull of

aµ compared to the Standard Model prediction for both, a positive and a negative sign

of the µ-term. In reference [97] we find the MSSM loop contributions to aµ:

aµ(W̃ − H̃, ν̃µ) =
g2

8π2

m2
µM2µ tan β

m4
ν̃

Fa

(
M2

2

m2
ν̃

,
µ2

m2
ν̃

)
, (5.23)

aµ(B̃, µ̃L − µ̃R) =
g′2

8π2

m2
µµ tan β

M3
1

Fb

(
m2
µ̃L

M2
1

,
m2
µ̃R

M2
1

)
, (5.24)

aµ(B̃ − H̃, µ̃L) =
g′2

16π2

m2
µM1µ tan β

m4
µ̃L

Fb

(
M2

1

m2
µ̃L

,
µ2

m2
µ̃L

)
, (5.25)

aµ(W̃ − H̃, µ̃L) = − g′2

16π2

m2
µM2µ tan β

m4
µ̃L

Fb

(
M2

2

m2
µ̃L

,
µ2

m2
µ̃L

)
, (5.26)

aµ(B̃ − H̃, µ̃R) = − g′2

8π2

m2
µM1µ tan β

m4
µ̃R

Fb

(
M2

1

m2
µ̃R

,
µ2

m2
µ̃R

)
. (5.27)

Here, the positive defined functions Fa and Fb are given by:

Fa(x, y) = −G3(x)−G3(y)

x− y
,

Fb(x, y) = −G4(x)−G4(y)

x− y
,

G3(x) =
1

2(x− 1)3
[(x− 1)(x− 3) + 2 lnx] ,

G4(x) =
1

2(x− 1)3
[(x− 1)(x+ 1)− 2x lnx] .

For a positive µ the contributions from equations (5.26), the wino–higgsino–left-handed

smuon loop, and (5.27), the bino–higgsino–right-handed smuon loop, give a negative

pull to aµ and hence must be dominated by the sum of equations (5.23), the wino–

higgsino–muon sneutrino loop, (5.24), the bino–left-handed smuon–right-handed smuon

loop, and (5.25), the bino–higgsino–left-handed smuon loop. As is well known, there is in

general no difficulty to achieve this and to get the correct predictions for aµ. In figure 5.13
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Figure 5.13.: Presenting the fine-tuning of our models in the direct detection plane after
applying the aµ condition for positive values of the µ-term.

we plot the models for positive µ that survive the aµ condition and find, comparing to

figure 5.3, that the results essentially do not change.

It is believed that aµ cannot be fulfilled for a negative µ-term if M1 and M2 are posi-

tive [98]. However, the total amount of the achieved positive pull of aµ can be sufficient to

correctly deviate from the Standard Model prediction, when equations (5.26) and (5.27)

dominate. This situation occurs in the limit of ml̃L
/ml̃R

� 1, see left panel of figure 5.14.

In this case the τ̃1’s are always light (. 400 GeV) due to equation (5.18) and, compare to

section 5.4.2, scenarios with dominant neutralino annihilation into lepton final states via

light stau exchange are therefore the models left-over after applying the aµ condition. In

figure 5.15 we show the level of tuning of the models that pass all experimental limits for

a negative µ-term.

It is very important to note that aµ is strongly depends on the smuon parameters.

Satisfying aµ becomes easier once one abandons the slepton mass generation universal-

ity since the relic density condition, which restricts the stau mass, would then become

independent of aµ.

In our set-up we found that for large negative values of µ the contributions of equations
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Figure 5.14.: The green scenarios satisfy the aµ condition. The left plot shows that
ml̃L

/ml̃R
must be much greater than one in order to respect aµ for a negative µ-term; the

right panel shows how a lower limit of µ arises through the aµ condition.

(5.23) and (5.24) become important again due to the loop functions Fa and Fb. Then the

negative sign of µ pulls of aµ to negative values again, such that the experimental limits

cannot be respected anymore. Hence, a lower limit on µ of about -1500 GeV emerges,

see the right panel of figure 5.14. Low fine-tuned scenarios are then favored when the aµ

condition is applied and models with large negative values of µ are automatically removed.

These include the scenarios whose stau mass is strongly influenced by (Aτ−µ tan β), highly

fine-tuned scenarios from Higgs-resonant neutralino annihilation and many models with

slepton coannihilations. This shows that a negative sign of µ is not at all in contradiction

to the muon anomalous magnetic moment condition even though we did not distinguish

between slepton generations. In figure 5.15 we especially see that models at the Z- and

h-resonances can avoid direct detection by XENON1t.

5.6. Sensitivity of the direct detection cross-section

We have seen in section 5.3 that a cancellation between the two most important contri-

butions to the direct detection cross-section is possible when M1 + µ tan β is positive and

that in this way a suppression of σSI for a negative µ-term may occur. Scenarios might

show up where these cancellations are almost exact and values of σSI as low as 10−22 pb

may appear. While these models are, of course, not excluded from the theory, we are faced

with another instance of a highly sensitive quantity. If σSI is very small the cancellations
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Figure 5.15.: Showing the level of fine-tuning in the direct detection plane for negative µ
after the aµ condition has been applied

are extremely well tuned against each other, which only happens in a tiny fraction of the

complete parameter space. We therefore define another measure tuning in analogy to the

sensitivity of the Z-mass:

∆fi ≡
∣∣∣∣∂ lnσSI

∂ ln pi

∣∣∣∣ , ∆f ≡
√∑

pi=µ,tanβ,M1,M2,mA {∆fi}2 . (5.28)

This sensitivity is different in its interpretation to the Z-mass tuning. The latter

one measures how well the value of the Z-mass is reproduced, so that there is a direct

connection to the physical process of electroweak symmetry breaking. This electroweak

fine-tuning connects the “old” theory, the Standard Model, with the theory in which one

wants to embed it, here the MSSM. When we introduce the MSSM as an extension of

the SM we must be able to reduce the extended theory to the well established one and

the electroweak fine-tuning is an indicator how well this can be done. It indicates an

unnaturally large separation of the electroweak and the SUSY breaking scale and how

well the hierarchy problem of the SM may still be solved.

The tuning of σSI instead measures how close the specific parameter choice is at the
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Figure 5.16.: The effect of adding the functional tuning (green models) to the electroweak
fine-tuning (ref models). A minimal amount of fine-tuning can be found for a given value
of σSI that increases when σSI decreases.

hypersurface where the cancellations are exact. Without a symmetry asking our parame-

ters to be close to this surface, it appears rather unlikely and unnatural that the relation

is almost fulfill exactly which leads us to the introduction of the tuning measure ∆fi as

an indicator for this improbability.

To evaluate the sensitivity of σSI we chose a variation of its determining parameters by

0.01 % of their total range4 and approximated expression (5.28) by:

∆fi '
pi
σSI

σSI(pi + δ)− σSI

δ
. (5.29)

We then calculated with micrOMEGAs the relative variation for pi = {M1,M2, µ, tan β,mA}.
The overall fine-tuning measure that includes both, the electroweak and the functional

tuning, is then defined as:

ΣFT ≡
√

∆2
tot + ∆2

f . (5.30)

In this way we deal with both tunings on equal footing.

4This choice is to some extend arbitrary, but as we found the maximal tuning ∆tot to be of order 104,
we chose the relative variation to be 1/∆tot(pmax − pmin).
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Figure 5.17.: The distribution of the fine-tuning measureΣFT, that additionally includes
the functional tuning of σSI, in the direct detection plane. This only applies to scenarios
with negative µ since no cancellations are possible for the positive sign case. The aµ
condition has been applied in the right panel.

We present our results in the ΣFT−σSI-plane and find a minimal amount of tuning

corresponding to each given value of the direct detection cross section. In general, sce-

narios with a small σSI that initially had a small tuning level ∆tot are mapped to higher

values of the new tuning measure ΣFT. The smallest direct detection cross section for

ΣFT ≤ 100 is approximately 6× 10−14 pb.

In figure 5.17 we additionally show how the overall fine-tuning measure, ΣFT, maps

into the direct detection plane. It is visible, compare to figures 5.4 and 5.15, that for

those scenarios in which the cancellations suppress σSI below approximately 10−14 pb

the functional tuning measure becomes dominant and brings the overall tuning into an

unacceptable range. For larger cross-sections the fine-tuning is still dominated by the

sensitivity of the Z-mass and no change to the previously discussed results is observed.

Comparing the left- and right-panel of figure 5.17 one can again observe the removal of

the highly fine-tuned band containing models with light staus whose mass is strongly in-

fluenced by the off-diagonal stau mass matrix elements, when the aµ constraint is applied.

We see that even when the functional tuning measure is taken into account scenarios that

possess a fine-tuning ΣFT lower than 100 are possible in the pMSSM avoiding all of our

applied constraints and direct searches.
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Figure 5.18.: The level of fine-tuning and additionally the density of our scenarios arising
from a homogeneously scan of the parameter space. This may be interpreted as a proba-
bility measure for a given area. We show the cases for positive (left panel) and negative
µ (right panel) separately and have applied the aµ condition in both cases.

5.7. Probability distribution

So far we have neglected completely the probability distribution of our simulated models

in the direct detection plane. We have shown several plots from scans that covered the

complete parameter ranges as explained in section 4.2. To calculate the fine-tuning for ev-

ery accessible part of the pMSSM, we also scanned some smaller regions of the parameter

space separately, i.e. we also performed focused scans. This implies, of course, that the

parameter space is not covered homogeneously and hence a possible statistical interpreta-

tion of the collected simulated data is destroyed. Only the envelope has a meaning since

points lying outside can never be reached. To recover a probabilistic interpretation, we

show in figure 5.18 only those scenarios, that were obtained by the global (randomized)

scans of the parameter space and a subsequent removal of the points that do not respect

the experimental bounds. It is immediately apparent that some regions are statistically

more important. We distinguish again between positive (left panel) and negative µ (right

panel), because the results are qualitatively different. For a positive µ-term, we see that

the regions from Z, h,H and A resonant annihilations and the light chargino mediated

annihilation into W -bosons have a stronger weight than light stau annihilations. For

negative µ, however, these do play an important role, especially in the neutralino mass

region between 65 and 80 GeV.

Adding this measure of probability to the previously discussed level of tuning, we should

now expect signals in the untuned, densely populated parameter regions.



6. Conclusions

In this thesis we performed a scan over an eleven-dimensional parameter space of the

low-energy phenomenological minimal supersymmetric standard model and analyzed how

much tuning is necessary to reach a certain point in the plane spanned by the neutralino

mass and the spin-independent direct detection cross-section σSI (direct detection plane)

in order to find out to which extent direct detection experiments can test the natural

supersymmetric parameter space. As input parameters we chose the bino (M1), wino

(M2) and gluino (M3) soft-masses, the ratio of the vacuum expectation values of the two

Higgs doublets (tan β), the supersymmetric Higgs mass parameter (µ), the pseudo-Higgs

mass (mA), a universal trilinear coupling constant (a0), soft-mass parameters for the first

and second (mq̃1,2) and third (mq̃3) generation of scalar quarks as well as mass parameters

for the superpartners of the left-handed (m˜̀
L
) and right-handed (m˜̀

R
) leptons. These

have been randomly scanned to cover the neutralino mass range below 200 GeV and we

particularly allowed for a negative µ-term.

In the scan we applied all current experimental data that probes the supersymmetric

parameter space. From the cosmological side we used the strongest bounds possible by

taking into account the upper and lower limit of the relic density. The simulated scenarios

respect accurate measurements on the electroweak sector of the Standard Model by the

LEP collider and also very recent measurements of the LHC on supersymmetric particle

searches, branching ratios and especially the recent strong evidence for a Higgs boson

at a mass of about 125 GeV. Another constraint arises from the new exclusion limits

published by the XENON100 collaboration. Additionally, the measured deviation of the

muon anomalous magnetic moment from the Standard Model prediction has been included

and, to stress its impact, discussed separately for both signs of the µ-term.

We first discussed the most important contribution to the thermally averaged neutralino

annihilation cross-section that is crucial to produce the correct relic abundance. We

showed in figure 5.2 how the mechanisms arrange in the direct detection plane and found

that each mechanism has a preferred region. If direct dark matter experiments report

a positive signal in future experiments, a connection could in this way be drawn to find
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promising production channels of neutralinos at the LHC. In this context we excluded

neutralino annihilation to be responsible for the claimed excess of photon signals in the

Fermi LAT data at a neutralino mass of about 130 GeV.

We plotted the distribution of the fine-tuning measure in the direct detection plane

for positive (figure 5.3) and negative (5.4) µ finding distinctions between both cases.

For positive µ a great part of the untuned parameter space has already been tested

and mostly excluded by direct detection experiments. Scenarios with little fine-tuning

especially survive in regions where the neutralino annihilates through resonant Z- or

light Higgs boson exchanges. Away from these regions a clear tendency for higher fine-

tuning for smaller cross-sections is visible, which is due to a necessary increase of µ to

decrease the higgsino components of the neutralino. For negative µ cancellations in the

direct detection cross-section shift many untuned solutions below the current direct search

limits and a great part of the natural parameter space has not yet been tested. At the Z-

and h-resonances we can again observe a vertical stripe in which the fine tuning stays low

for every possible value of the direct detection cross-section σSI. In general, for a given

point in the direct detection plane negative values of µ are favored from the fine-tuning

perspective due to the shift of σSI. In the following we presented why these cancellations

in the direct detection cross-section only occur for negative µ and showed in figure 5.6

the necessity for the wino component of the neutralino to be negative.

We continued explaining in detail the mapping of the scenarios with a negative µ-term

into the direct detection plane for all possible annihilation mechanisms separately. In

figure 5.7 we found that quark final states can still explain the dark matter riddle at the

Z- and h-resonance even if XENON1t does not observe a signal. Neutralino annihilation

into a pair of leptons offers valid solutions in the complete neutralino mass range through

light stau-exchange, see figure 5.9. Most of the scenarios with chargino mediated anni-

hilation into W -bosons will be tested by XENON1t, however, cancellations in σSI allow

some untuned models to avoid possible detection, compare figure 5.11. Slepton coannihi-

lations are mainly situated below the predicted XENON1t exclusion limit, however these

scenarios have large tunings as was presented in figure 5.12.

Next we investigated the effect of the muon anomalous magnetic moment on our models

and saw that for both signs of µ many models survive. As was known before, there is

no great difficulty in respecting aµ for positive µ and we did not find any impact of

the condition on our models, see figure 5.13. For negative µ we showed that it is, in

contrast to earlier works in the literature, possible to fulfill the condition as long as

m˜̀
L
� m˜̀

R
(see figure 5.14). In this case we know from approximating the slepton
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masses by equation (5.18) that staus are always light and help to produce the correct

relic abundance. Hence, most of the scenarios that survive show dominant annihilation

into a pair of leptons. We pointed out that further distinction between slepton generations

will make it simpler to respect aµ since the relic density condition, which constraints the

stau mass, will then become independent of aµ, which mainly depends on the smuon

parameters. We also found a lower bound on µ of about -1.5 TeV, which automatically

eliminates the most tuned models.

To quantify the cancellations in σSI we introduced a measure of “equation-tuning”

analogously to the definition of electroweak fine-tuning in section 5.6 and found that

scenarios that have a direct detection cross-section smaller than ≈ 10−15 pb are always

unacceptably tuned. Finally, we showed the probability to reach a certain point in the

direct detection plane when performing a homogeneous, randomized scan in figure 5.18.

We concluded that for positive µ the Z- and h-resonance area is the statistically preferred

region when direct searches are included. For negative µ light stau annihilation also forms

a statistically important mechanism.
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A. Notations and conventions

As we stated in the thesis, we use the notation of reference [50]. Hence, see this review for

more details. This appendix gives details about our notation and conventions regarding

the Weyl representation of spinors. The position and momentum four-vectors are:

xµ = (t, ~x), pµ = (E, ~p) , (A.1)

and the spacetime-derivative:

∂µ = (∂/∂t, ~∇) . (A.2)

The sign convention for our metric is:

ηµν = diag(+1,−1,−1,−1) . (A.3)

The Dirac equation for four-component spinors is given by:

LDirac = iΨDγ
µ∂µΨD −MΨDΨD , (A.4)

where we use the following γ and σ matrices:

γµ =

(
0 σµ

σµ 0

)
, γ5 =

(
−1 0

0 1

)
, (A.5)

σ0 = σ0 =

(
1 0

0 1

)
, σ1 = −σ1 =

(
0 1

1 0

)
,

σ2 = −σ2 =

(
0 −i
i 0

)
, σ3 = −σ3 =

(
1 0

0 −1

)
. (A.6)
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The four-component Dirac spinor is given by two two-component Weyl spinors where the

different indices α, β̇ denote the different behavior under Lorentz transformations:

ΨD =

(
ξα

χ†α̇

)
(A.7)

ΨD = Ψ†D

(
0 1

1 0

)
=
(
χα ξ†α̇

)
, (A.8)

When we apply the projection operators

PL = (1− γ5)/2, PR = (1 + γ5)/2 (A.9)

to this Dirac spinor, we find:

PLΨD =

(
ξα

0

)
, PRΨD =

(
0

χ†α̇

)
. (A.10)

Hence, the dotted and undotted indices correspond to left- and right handed two-component

spinors, respectively. It then follows that the Hermitian conjugate of a left-handed Weyl

spinor is right-handed, and vice versa:

ψ†α̇ ≡ (ψα)† = (ψ†)α̇ , (A.11)

(ψ†α̇)† = ψα. (A.12)

Spinor indices are contracted by the antisymmetric ε-symbol:

ε12 = −ε21 = ε21 = −ε12 = 1, ε11 = ε22 = ε11 = ε22 = 0, (A.13)

in the following way:

ξα = εαβξ
β, ξα = εαβξβ, χ†α̇ = εα̇β̇χ

†β̇, χ†α̇ = εα̇β̇χ†
β̇
. (A.14)
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Our notation for contracted indices is:

α
α or α̇

α̇ (A.15)

.

This then yields that contracted spinors do not get a minus sign when they are inter-

changed:

ξχ ≡ ξαχα = ξαεαβχ
β = −χβεαβξα = χβεβαξ

α = χβξβ ≡ χξ (A.16)

One may use all the above to show some useful relations:

ξ†χ† = χ†ξ† = (ξχ)∗. (A.17)

ξ†σµχ = −χσµξ† = (χ†σµξ)∗ = −(ξσµχ†)∗ (A.18)

ξσµσνχ = χσνσµξ = (χ†σνσµξ†)∗ = (ξ†σµσνχ†)∗, (A.19)



B. Anticommuting variables

We again refer to [50] as a reference. As we saw in the thesis, given an anticommuting

variable η an expression η2 is zero. We will use this to define derivatives and integration

with anticommuting variables. Consider a function of η and expand:

f(η) = f0 + ηf1. (B.1)

Then, we simply define:

df

dη
= f1. (B.2)

and therefore the product rule for two distinct anticommuting variables η, η′

d(η′η)

dη
= −d(ηη′)

dη
= −η′. (B.3)

For integration we define ∫
dη = 0,

∫
dη η = 1, (B.4)

and find again by expanding: ∫
dη f(η) = f1. (B.5)

Then it follows: ∫
dη f(η + η′) =

∫
dη f(η), (B.6)

and for integration by parts: ∫
dη

df

dη
= 0, (B.7)
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84 B. Anticommuting variables

The delta-function is defined by:∫
dη δ(η − η′) f(η) = f(η′), (B.8)

which gives:

δ(η − η′) = η − η′. (B.9)
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