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Abstract
We extend discrete calculus for arbitrary (p-form) fields on embedded lattices
to abstract discrete geometries based on combinatorial complexes. We then
provide a general definition of discrete Laplacian using both the primal cellular
complex and its combinatorial dual. The precise implementation of geometric
volume factors is not unique and, comparing the definition with a circumcentric
and a barycentric dual, we argue that the latter is, in general, more appropriate
because it induces a Laplacian with more desirable properties. We give the
expression of the discrete Laplacian in several different sets of geometric
variables, suitable for computations in different quantum gravity formalisms.
Furthermore, we investigate the possibility of transforming from position to
momentum space for scalar fields, thus setting the stage for the calculation of
heat kernel and spectral dimension in discrete quantum geometries.

PACS numbers: 02.10.Ox, 02.40.Sf, 04.60.−m, 04.60.Nc, 04.60.Pp

1. Introduction

In a variety of current approaches to quantum gravity, including loop quantum gravity (LQG)
[1, 2] and spin-foam models [3–5], group field theory [6, 7], simplicial quantum gravity, be
it quantum Regge calculus [8] or (causal) dynamical triangulations [9], the basic building
blocks of geometry and spacetime are discrete in nature. Depending on the specific theory
considered, these discrete building blocks can be interpreted as the true degrees of freedom
of quantum spacetime (it is the case in loop gravity and spin foams, as well as in group field
theory) or as a convenient regularization (in simplicial gravities) chosen only for the purpose
of defining the theory or being able to calculate with it. In any case, one is left with the
task of reconstructing a continuum spacetime and its geometry starting from such discrete
structures (on which one can make appropriate superpositions of states, in canonical setting,
or define histories, in path-integral-like frameworks). Despite a wealth of results obtained
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in recent years in all these approaches, the issue of recovering continuum geometry from
discrete structures, or more generally that of extracting geometric information from them,
remains outstanding. (A case where a continuum geometry arises naturally as a ‘blurring’ of
a discrete-symmetry structure is complex-order fractional spacetimes [10].) Note also that the
issue of determining the effective geometry in a given regime is present also in continuum
frameworks like asymptotic safety [11], simply because one allows for quantum fluctuations
between continuum geometric configurations.

One difficulty has to do with the limited number of geometric observables being available
and under control in all these scenarios at the quantum level, where it is clear that the only
meaningful notion of effective geometry is in terms of the evaluation of specific quantum
geometric observables. In LQG and spin foams, for example, one has good control over
the definition of areas and 3-volumes as quantum operators and over their spectrum, and
definitions of length and 4-volume observables exist, but do not come with a good enough
analytic control. Various distance measures exist in the simplicial context, which are usually
dealt with numerically. In general, it is fair to say that much more work is needed and that the
more examples of geometric observables we can construct, the more the task of analyzing the
effective geometries produced in our quantum gravity models will be facilitated.

More such observables could be defined in the case of quantum gravity coupled to matter,
and matter is also expected to permit the construction of local geometric observables (as
opposed to global ones) which are still diffeomorphism-invariant. Again, much on matter
coupling in canonical and covariant approaches is known, even in the discrete context [12–
19], but this is another area where more results are needed. One example of a geometric
observable that has been widely used for ‘reconstruction purposes’, i.e., as a probe of the
geometry of states, phases or histories in quantum gravity models, is the spectral dimension
[20–34]. Being defined from the trace of the heat kernel, it depends on the underlying geometry
through the Laplacian operator and implicitly relies on some notion of matter field.

In this paper, we focus on the notion of Laplacian in a discrete context. First of all,
the Laplacian is an interesting geometric kinematical observable per se. Second, it is the
key ingredient for the definition of momentum space and, as we mentioned, of the spectral
dimension. Third, it is needed to construct coupled gravity plus matter models, as it enters the
propagators for matter fields (be them scalars or gauge fields). We set up a general, systematic
approach to its construction, which can turn out to be useful for applications [35].

The rest of this paper is organized as follows. In sections 2 and 3, we provide a
coherent framework for the definition of functions, p-form fields and differential operators
on fundamentally discrete (and, later, quantum) geometries, more specifically on abstract
simplicial and cellular complexes. Although we base our systematic approach on the recently
developed discrete exterior calculus of [36] (see also [37, 38]), we employ their explicit
treatment of geometric volume factors to generalize to abstract complexes attached with
dynamic geometrical variables.

Using this, we propose (section 3) a general definition of the discrete Laplacian operator
on arbitrary simplicial pseudo-manifolds. The definition makes use of both primal and dual
complexes. We then study the properties of this Laplacian and, through them, compare different
choices of geometry of dual complex (barycentric and circumcentric).

We also describe (section 4) the generalization of the same operator to simplicial pseudo-
manifolds with boundaries and arbitrary cellular complexes and the notion of momentum
transform in terms of eigenfunctions of the Laplacian, which plays a crucial role in the
calculation of the heat kernel trace, which we also discuss.

We then show (section 5) the various expressions that the Laplacian operator takes in
different choices of geometric variables, again having in mind the sets of variables currently
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used in various quantum gravity frameworks. This will facilitate concrete applications and
computations [35]. As already mentioned, the setting is chosen as general as possible. In
particular, complexes are defined only combinatorially in order to be applicable to diverse
theories of quantum geometry at a second stage. This is the type of complexes arising, for
example, in group field theory [6, 7, 39–41], spin-foam models and LQG [3–5]. We give
detailed expressions for the usual edge-length Regge calculus as well as for its first-order
versions (in face normal–connection, flux–connection and area–angle pairs of variables). Flux
and area-angle variables are directly useful also in the context of LQG spin networks, spin
foams and group field theory. Causal dynamical triangulations are the special case of globally
constant volumes and, as such, they are also contained in this formalism.

We conclude with an outlook on the quantization of the Laplacian operator in a quantum
geometry context, and on its explicit evaluation in quantum gravity models, pointing out the
difficulties that arise there.

Before beginning, it may be useful to tell apart original from review material. Similar
versions of exterior calculus of discrete forms are known and have been applied in general
relativity [42, 43] and to other fields such as random lattice field theory [44, 45], topological
field theory [46–48], computational electromagnetism [49, 50] and computational science in
general ([51] and references therein; reference [36] also contains a nice overview of the history
of discrete calculus and further differences of the various versions in the literature). However,
these versions are defined on complexes embedded in some ambient space, contrary to what
we do here.

Here, we do not rely on any embedding: while the formalism can be motivated as a
discretization of functions on a triangulation of a given smooth manifold, we define it on
abstract combinatorial complexes obeying the conditions of pseudo-manifolds, to comply with
the use of such complexes in some quantum gravity approaches. A key advantage of having
definitions in an abstract, combinatorial setting is a natural application of our formalism to
fundamentally discrete approaches to quantum gravity.

While sections 2 and 3 capitalize on the above-mentioned results (but with elements of
originality we shall comment on in due course), the rest of this paper contains original material.
In particular, we obtain a clear picture of the role of momentum space and a systematic
construction of the Laplacian with the variables of various quantum gravity models.

2. A bra–ket formalism for discrete position spaces

In order to define a Laplacian operator, we need to have at our disposal a notion of fields, and
more generally p-forms, in a discrete setting. Moreover, such fields have to be localized in a
suitable sense, as we are dealing with a local operator and we would like to capture, through it,
the local properties of the discrete geometry. In the following, we will explain the formalism
in detail. For now, we just highlight the main ideas.

At a conceptual level, as mentioned, we need some generalization of a ‘field at a point’
in order to be able to define the action of the Laplacian on it. It is well known, in general, that
for fields in the continuum, the notion of position basis (exactly localized state) is unavailable.
As we will see, the only existing inner product for p-forms involves an average (smearing)
over an extended region of space. This smearing is also needed for the very definition of field
theories in the continuum [52]. What can be defined, in principle, is instead a basis of states
restricted to a subregion of the pseudo-manifold. We will not discuss this construction in the
continuum, but we will use the natural analogue of this smearing in the discrete case to define
a position basis and a bra–ket formalism for discrete p-forms.
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From a more mathematical point of view, the definition of such a basis takes the need
for smearing into account together with several other structures (dualities) in both continuum
and discrete geometries. In fact, the crucial point of the construction is a unification of four
kinds of dualities: (1) the bra–ket duality of usual quantum mechanics in continuum position
space, (2) Hodge duality on continuum Riemannian manifolds, (3) the duality of chains and
cochains on complexes and finally (4) the discrete counterpart of Hodge duality constructed
from the combinatorial complex and its dual. All these dualities are well known but we will
take advantage of them in a novel way.

2.1. Two dualities in the continuum

We start with two dualities in the continuum. The setting is thus that of a smooth manifold.
Remaining in the continuum, there is no good way to unify these dualities in a strictly local
manner (i.e., there is no such thing as a position basis), but a unification will be possible for
their discrete analogues (the smearing being built in the discrete setting).

(1) First, we have the duality of states φ in the Dirac formalism of quantum mechanics as
bras and kets [53],

〈φ| ←→ |φ〉, (1)

where |φ〉 is a vector in a complex Hilbert spaceH and 〈φ| is its covector, i.e., its dual linear
form on H with respect to the inner product 〈·|·〉 of H (which uniquely exists according
to the Riesz representation theorem). The duality is an isometric anti-isomorphism: it
preserves the norm and is linear up to complex conjugation of scalar factors.

Later, we will be interested in function spaces, and in the discrete counterpart of
position space. For single particles, one has a complete orthonormal (continuum) position
basis {|x〉},

〈x|y〉 = δ(x, y), (2)∫
ddx |x〉〈x| = 1. (3)

The Hilbert space H of such system can be identified with the square-integrable complex-
valued functions L2(Rd, C) with an inner product

〈φ|ψ〉 = 〈φ|
∫

M
ddx |x〉〈x|ψ〉 =

∫
M

ddx φxψ
∗
x , (4)

where φx := 〈φ|x〉 are the position basis coefficients. Thus, at the level of these position
functions, the duality is just given by complex conjugation:

φx = 〈φ|x〉 ←→ 〈x|φ〉 = φ∗
x , (5)

because of its anti-linearity.

In the following, we are not particularly interested in quantum mechanics but rather in a
convenient notation for elements in L2 function spaces for (p-form) fields.

(2) Second, on a (continuum) Riemannian manifold (M, g), there is Hodge duality which
maps p-forms φ ∈ �p(M) to (d − p)-forms ∗φ ∈ �d−p(M) [54],

φ = φi1...ipdxi1 ∧ . . . ∧ dxip ←→ ∗φ = (∗φ)ip+1...id dxip+1 ∧ . . . ∧ dxid , (6)

with coefficients

φi1...ip ←→ (∗φ)ip+1...id =
√

g

(d − p)!
εi1...id gi1 j1 . . . gip jpφi1...ip . (7)

4
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In general, it is a duality only up to a sign, ∗∗φ = (−1)p(d−p)φ. (For Lorentzian manifolds,
there is an extra minus sign; this fact would be an important guiding line for extending
the discrete formalism consistently to Lorentzian geometries.) The natural inner product
of p-forms is again an integration over a position manifold by pairing a form and a dual
form:

(φ,ψ) =
∫

M
φ ∧ ∗ψ =

∫
M

(φi1...ip )x[(∗ψ)ip+1...id ]x
√

gxdxi1 ∧ . . . ∧ dxid . (8)

This defines an L2-space of forms L2�p(M) [55].

The crucial point to note is that this natural inner product, compatible with the tensorial (p-
form) nature of the fields, involves an averaging (smearing) over the base manifold. Because
of this tensorial structure, a simple-minded notion of a position basis is not viable, as any
perfectly localized field would not be a well defined element of the above space. Only smeared
fields are. We will see how the discrete setting provides a natural notion of smearing, which
in turn allows us to define an analogue of a position basis even for fields.

2.2. Exterior forms on simplicial complexes

One can identify a natural concept of discrete forms by using a third type of duality [36, 45, 46,
50, 51]. For defining it, we choose finite abstract simplicial complexes as our discrete setting
in contrast to the cited literature, where typically topological complexes embedded in some
ambient space are the starting point.

A finite abstract simplicial complex K (in the following, simplicial complex for short)
is a multiset of ordered subsets σ of the set of vertices K0 = {v1, v2, . . . , vN0} such that if
σ ∈ K and σ ′ ⊂ σ also σ ′ ∈ K [56]. In general, σ ′ ⊂ σ is called a face of σ . All subsets
of cardinality p + 1 are called p-simplices σp ∈ Kp and the dimension d of K is defined as
the maximal cardinality of simplices in K. Thus, K consists of 0-simplices to d-simplices,
K = ⋃d

p=0 Kp, and is also referred to as a simplicial d-complex. The ordering of the sets
σp = (vi1 , . . . , vip ) =: (i1 . . . ip) defines an orientation on the complex.

(3) There is a duality between chains and cochains on the simplicial complex K [56]. Formal
linear combinations of p-simplices generate the finite vector space of p-chains c ∈ Cp(K)

(which we take on C) and we introduce a bra–ket notation to write them as follows:

|c〉 =
∑

σp∈Kp

cσp |σp〉 =
∑

σp∈Kp

〈σp|c〉|σp〉. (9)

Accordingly, linear forms on chains are called p-cochains c̃ ∈ Cp(K). As they can be
expanded in the dual basis {〈σp|}, defined by the pairing 〈σp|σ ′

p〉 = δσσ ′ , the cochain c̃
dual to c can be written as the bra

〈c̃| ≡ 〈c| =
∑

σp∈Kp

c∗
σp

〈σp| =
∑

σp∈Kp

〈c|σp〉〈σp|. (10)

The connection to the first two continuum dualities is the following [36, 51]: on a finite
triangulation of a Riemannian manifold (M, g) being a geometric realization |K| of an
abstract simplicial complex K, p-cochains can be naturally interpreted as discretized p-forms
φ ∈ �p(K) ∼= Cp(K) by smearing the continuous form φcont ∈ �p(M) over p-surfaces
S ⊂ |K| ⊂ M represented by chains |S〉 = ∑

i Vσ i
p
|σ i

p〉 ∈ Cp(K) in the triangulation:

φ(S ) := 〈φ|S〉 =
∑

i

Vσ i
p

〈
φ|σ i

p

〉 = ∑
i

∫
σ i

p

φcont =
∫
S

φcont, (11)

5
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where Vσp denotes the p-volume of σp in |K|. In particular, for the surface of a single p-simplex
σp represented by Vσp |σp〉, one has

φ(σp) = Vσp〈φ|σp〉 = Vσpφσp =
∫

σp

φcont. (12)

Therefore, the coefficient φσp := 〈φ|σp〉 has the interpretation as the averaged field value of
φcont over σp. Obviously, the above requires an embedding of the abstract simplicial complex
into the continuum manifold in terms of a geometric realization.

However, note that, even though motivated by discretization, this definition works
perfectly well for the abstract simplicial complex K. We just take

φσp := 〈φ|σp〉 (13)

as the definition of position coefficients of a p-form 〈φ|. Even a geometric interpretation in
terms of p-volumes Vσp as induced by the ambient space M in the case of triangulations is not
needed at this stage, as long as we are only interested in the forms 〈φ| themselves and not in
integrated quantities φ(σp).

2.3. Choice of convention

Before moving on to discuss the other dualities and discrete calculus, let us point out one
difference between our definitions and the ones that can be found in the literature [36, 51].
One has in fact a choice as to where to include the geometric information encoded in the
volumes. The question is whether the p-volume Vσp of a simplex σp is defined explicitly in its
p-chain representation Vσp |σp〉, such that

〈φ|σp〉 = φσp = 1

Vσp

φ(σp) (14)

as chosen here, or whether it is already implicit in |σp〉 such that

〈φ|σp〉 = φ(σp) = Vσpφσp, (15)

as in [36]. The former has the advantage that the position-space measure is explicit. This is not
only the usual way fields are mostly treated in physics in terms of coefficients but is especially
important in the case of fields on a dynamic geometry, namely to disentangle the geometric
from the field degrees of freedom.

The latter choice could be called the ‘math’ convention since it is natural from the point
of view of the mathematical properties of forms. This is reflected in the fact that, in this
convention, Hodge duality must depend on the geometric interpretation in terms of volumes,
while differentials do not [36]. Naturally, this convention would be, in particular, useful in
topological field theory ([47, 48], where, however, a version of the topological action using
the Hodge dual is eventually needed). In our choice, it is exactly the other way round (see
equations (32) and (38)).

There is a third convention, used in random lattice field theory [57–59] by Itzykson [44],
where 〈φ|σp〉 is defined as a function for every p, thus without volumes, but where the duals
carry the whole d-volume as densities. This can be justified by the common convention in the
continuum to attach the metric part

√
g of the invariant measure only to the Hodge dual forms.

2.4. Discrete Hodge duality

In order to be able to define the natural scalar product for p-forms also for these discrete forms,
a discrete version of Hodge duality is necessary. While some approaches [45, 46, 48, 50]
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use the Whitney embedding map to define the Hodge dual which is not available for abstract
complexes, in [36] a definition is given only in terms of a dual complex (but still in a setting
of embedded complex). We can take advantage of such a fourth duality also in our case of
abstract simplicial complexes under the further requirement of imposing pseudo-manifold
properties.

A finite abstract simplicial pseudo d-manifold is a finite abstract simplicial d-complex
which is non-branching, strongly connected and dimensionally homogeneous [39]. That
is, each (d − 1)-simplex is the face of exactly two d-simplices (non-branching), any two
d-simplices have a strong chain of d-simplices neighboring pairwise by (d − 1)-faces (strongly
connected) and every simplex is the face of some d-simplex (dimensionally homogeneous).

(4) A simplicial pseudo d-manifold K has a combinatorial dual complex �K consisting of
(d − p)-cells �σp (which we also denote as σ̂d−p) dual to the primal p-simplices σp,
with orientation induced from the orientation of K and cellular structure induced by the
adjacency relations of K. The latter means that �σ ⊂ �σ ′ if, and only if, σ ′ ⊂ σ .2 Then,
�K can be given as a multiset over its vertex set too.

This duality between a ‘primal’ simplicial and a dual cell complex induces a new
type of dual chains, the chains �c ∈ Cp(�K) on the dual complex. This is possible because
each primal chain basis element (simplex) has a unique dual basis element. Using the
Dirac notation also for this duality, this reads

|c〉 =
∑
σp∈K

cσp |σp〉 �←→ 〈�c| =
∑
σp∈K

c∗
σp

〈�σp| . (16)

Note that, due to the relative orientations of the complexes, the duality holds only up to a
sign ([36], p 8; with a strong focus on the orientation properties [60], in [50, 61] the dual
complex is even called the ‘twisted’ complex):

�2 = (−1)p(d−p). (17)

Analogously, the duality also holds between primal and dual cochains.

Since the Hodge dual (d − p)-form cannot live on p-simplices but only on (d − p)-cells, we
can regard the discrete Hodge dual of a p-form φ ∈ �p(K) as its dual in the sense of this
fourth duality:

∗ φ := �φ ∈ ∗�p(K) ∼= �d−p(�K) ∼= Cd−p(�K). (18)

From the above dualities, at the level of coefficients the defining condition for the Hodge
duality is the equality of the averaged field values3:

(∗φ)�σp := φ∗
σp

. (19)

With the bra–ket convention

〈�σp|φ〉 = ∗φ�σp, (20)

this can be equivalently expressed as

〈�σp|φ〉 = 〈φ|σp〉∗. (21)

2 The fact that every p-simplex contains Cp+1
q+1 = (p+1

q+1

)
q-simplices translates into the condition for the dual complex

to have Nk|l = (d+1−l
k−l

) = (d+1−l
d+1−k

)
k-cells with a given l-cell as a face. This property can be used as an iterative check

for constructing such dual complexes from regular graphs [62].
3 This is analogous to what is done in [36]. The details of the construction differ, however, since in that work the
convention (15) is used which includes p-volumes.
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(a) (b)

Figure 1. Circumcentric (a) and barycentric (b) dual cells to the same simplicial d = 2 complex;
for the purpose of illustration, dual edges are dashed and one dual 2-cell is highlighted.

In the case of triangulations discussed above, we can again analogously view the coefficients
of dual fields ∗φ as smeared fields:

∗ φ(�σp) = V�σp (∗φ)�σp =
∫

σ̂d−p

∗φcont . (22)

Thus, one can take the Hodge duality as two different perspectives to look at the same discrete
field φ: either as a p-form 〈φ| on the primal complex or a (d − p)-form |φ〉 on the dual
complex.

2.5. Geometric interpretation of abstract complexes

So far, we have presented a formalism for fields on abstract discrete spaces without
using any geometric information either associated directly with the simplicial complex or
derived from an original continuum pseudo-manifold being discretized. However, a geometric
interpretation for the elements of the simplicial complex is needed to define the inner
product.

In the first place, we understand an assignment of geometry to a finite simplicial pseudo-
manifold K as an assignment of p-volumes Vσp , dual (d − p)-volumes Vσ̂d−p

and support
d-volumes V (d)

σp
to all the simplices σp. If K has a geometric realization |K| in terms of a

(topological) simplicial complex over a metric space, these volumes can be induced from this
realization. In the fundamentally discrete setting of approaches to quantum gravity, on the
other hand, these volumes have to be defined as functions of the geometric variables in each
approach. To this end, in section 5, we will understand the simplices as locally flat and assign
the volumes according to the functions of geometric variables one obtains in the case of a
geometric realization on flat space. Therefore, we now discuss this case in detail.

While the primary volumes can be taken directly from a geometric realization, dual and
support volumes depend on how the dual complex is realized, i.e., how it is concretely
constructed from (or embedded into) the primal complex. The most common choices
in the literature are circumcentric [36] and barycentric [45, 46, 50] dual complexes
(figure 1).

For constructing the circumcentric dual, one chooses the circumcenters of the d-simplices
as the 0-cells and builds up higher cells (i.e., with p � 1) connecting them according to
the combinatorics induced from the primal complex; sub-cells of the dual complex are then
automatically identified as well.

In the case of a geometric realization in terms of a Delaunay triangulation, the
circumcentric dual complex is a Voronoi decomposition. A Delaunay triangulation is obtained

8
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(a) (b)

(c) (d)

Figure 2. Examples of the dual edges to the faces of a triangle in a simplicial d = 2 complex: in
the first picture (a), the dual edges are the sum of the distance of the dual vertices σ̂i to the face.
In the second picture (b), the dual vertex σ̂0 lies outside the triangle. Its distance to the face line
therefore has to be subtracted, but the dual length l̂σ̂0 σ̂1

is still positive. In the third case (c), both the
vertices of l̂σ̂0 σ̂1

lie outside their simplices such that l̂σ̂0 σ̂1
is negative. Exactly when this happens,

the triangulation cannot be Delaunay because the circumcenter is closer to the neighbor than to
its own triangle. The fourth picture (d) shows the Delaunay triangulation for the primal points of
(c), where the triangle originally considered, and thus its dual vertex, does not exist (though still
shaded for comparison).

by constructing d-simplices from a set of points in a metric space such that no point is in the
interior of the circumsphere of any d-simplex. From the same set of points, a d-cell of a
Voronoi decomposition associated with some point P is constructed as the set of points closer
to P than to any other in the set.

For this reason, the circumcentric dual is often also called the Voronoi dual. But this is
meaningful only for Delaunay triangulations. For an arbitrary triangulation, the circumcentric
dual complex and the Voronoi decomposition with respect to the vertex set of the triangulation
are different. In fact, the Voronoi decomposition does not have the structure of a dual complex
for triangulations which are not Delaunay. This is particularly important in the abstract setting
where the simplicial pseudo-manifold is considered as a gluing of d-simplices and the geometry
of each is to be defined independently of its neighbors. The difference is further detailed in
the discussion of the Laplacian in section 3.2 and figure 2.

The barycentric dual, on the other hand, is defined by a barycentric subdivision of all
simplices, assumed to be flat in their interior. The barycenters of d-simplices define the dual
points, and metrically connecting them iteratively to the barycenters of lower simplices defines
the realization of the higher cells.

While the circumcentric dual is not built by a (circumcentric) subdivision, a simplicial
subdivision nevertheless can be constructed analogously to the barycentric subdivision [36].
One can therefore in general define the support volumes V (d)

σp
to be the volume of the symmetric

difference of all d-simplices in this subdivision having σp (or equivalently �σp) on its boundary.
(To account also for the case of circumcentric dual complexes with some circumcenters
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outside their simplices, the symmetric difference instead of the union [36] of simplices in the
subdivision has to be used. This can also happen in the case of primal Delaunay triangulations.)
Since the whole of support volumes for a given p takes all the simplices in the subdivision
into account, they indeed define a space measure summing up to the total volume V of the
complex: ∑

σp∈Kp

V (d)
σp

= V. (23)

In the circumcentric case, the support volumes are not independent of the p-volumes but
proportional to their product [36]:

V (d)
σp

= 1

d
VσpVσ̂d−p

. (24)

We will give explicit expressions of these volumes in terms of various geometric variables
below.

2.6. Inner product and position-space measure

With a well-defined meaning given to bras and kets of discrete fields, only a slight modification
to the forth duality (16) is needed in order to have the geometric L2 inner product on the
simplicial complex K analogous to the continuum case (again analogous to [36] but different
in detail of convention):

〈φ|ψ〉 :=
∑
σp

V (d)
σp

φσpψ
∗
�σp

= 〈φ|
∑
σp

V (d)
σp

|σp〉〈�σp|ψ〉, (25)

where we took a position-space measure into account in terms of the d-volumes V (d)
σp

associated
with the pairs of primal and dual p-simplices. This inner product is obtained by a resolution
of the identity ∑

σp

V (d)
σp

|σp〉〈�σp| = 1, (26)

which in our convention demands, for reasons of consistency, a modification of the pairing of
primal and dual chains:

〈�σp|σ ′
p〉 := 1

V (d)
σp

δσσ ′ . (27)

By the third duality between chains and cochains, this directly yields the same form of
completeness and orthonormality relations for primal and dual cochains. While the p-volumes
in (12) and (19) are not needed to define the field space, the position measure V (d)

σp
is crucial

and it is at this stage where a geometric interpretation is needed.
For the inner product to be well defined, the space of p-form fields does not have to be

constrained further. Since its dimension is the number of p-simplices in the finite complex K,

dim �p(K) = dim �d−p(�K) = Card(Kp) < ∞, (28)

the field space �p(K) ∼= �d−p(�K) is already the discrete L2 space.

2.7. The bra–ket formalism

To define a formalism with unique types of bras and kets, we now go one step further (beyond
[36]) and identify primal chains with dual cochains and dual chains with primal cochains:

|σp〉 ≡ | � σp〉 , 〈σp| ≡ 〈�σp| . (29)

10
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We end up having just one complete orthonormal basis (normed to the inverse-volume factors):

〈
σp|σ ′

p

〉 = 1

V (d)
σp

δσσ ′ , (30)∑
σp

V (d)
σp

|σp〉〈σp| = 1. (31)

With this identification, we can now write the Hodge dual (19) as

〈∗φ|σp〉 := 〈�σp|φ〉 ≡ 〈σp|φ〉 = 〈φ|σp〉∗. (32)

In the case of ket fields, one has to be careful in defining such a notation because of the
sign (17):

〈σp| ∗ φ〉 := 〈φ| � �σp〉 = (−1)p(d−p)〈φ|σp〉 = (−1)p(d−p)〈σp|φ〉∗. (33)

In this way, the sign factor in the duality of complexes induces consistently the usual sign
factor in the Hodge duality:

〈∗ ∗ φ|σp〉 = 〈φ| � �σp〉 = (−1)p(d−p)〈φ|σp〉. (34)

The following commutative diagram shows the identifications and dualities by which the
discrete L2 position function space is defined:

Ωp(K)

∼=

∗
Ωd−p( )

∼=

Cp(K)

∼≡

Cd−p( )

≡

Cd−p( )

∼

Cp(K)
(35)

All the maps are well known [36, 51] except for the last identification denoted as ‘≡’, which
makes it possible to have a Dirac position-space notation for arbitrary p-fields on simplicial
pseudo-manifolds with an assigned set of geometric data.

Note that, since by the last identification the pairing of the chain–cochain duality is
modified too, the fields finally have bra and ket component expansions

〈φ| =
∑
σp∈K

V (d)
σp

φσp〈σp| �←→ |φ〉 =
∑
σp∈K

V (d)
σp

φ∗
σp

|σp〉. (36)

As an example, a field living on the d-simplices represented by chains |σd〉 ∈ Cd(K), i.e. a
primal d-form field φ ∈ �d(K), has an expansion in terms of the cochain basis elements
〈σd | ∈ Cd(K) with an explicit volume measure V (d)

σd
= Vσd , 〈φ| = ∑

Vσd φσd 〈σd |. Its Hodge
dual is a scalar on the dual vertices represented by chains 〈�σd | = 〈σ̂0| ∈ C0(∗K), identified
with primal cochains 〈σ̂0| ≡ 〈�σd |, that is a dual 0-form �φ ∈ �0(�K), having an expansion
with a trivial vertex volume measure in dual cochains 〈σ̂0| ∈ C0(�K) which can be identified
with primal d-chains, |φ〉 = ∑

φ∗
σd

|σd〉.

3. Laplacian on simplicial pseudo-manifolds

In order to define the Laplacian, we have first to introduce discrete calculus on complexes by
defining a differential. Then, the formal expression of the Hogde Laplacian is well defined on
simplicial pseudo-manifolds and we can analyze its properties in the case of dual scalar fields.

11
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3.1. Exterior calculus on complexes

The exterior differential operator on discrete forms is constructed by taking the Stokes theorem
as a definition [36, 51]. For the integration of the differential of a form φ ∈ �p−1(K) over
one simplex σp in the triangulation of a pseudo-manifold with corresponding complex K, the
theorem states that

dφ(σp) =
∫

σp

dφcont =
∫

∂σp

φcont = φ(∂σp). (37)

Therefore, we define the differential of φ ∈ �p−1(K) on an abstract simplicial complex K as4

dφ(σp) = Vσp〈dφ|σp〉 := φ(∂σp) :=
∑

σp−1∈∂σp

sgn(σp−1, σp)Vσp〈φ|σp−1〉. (38)

The sign factor takes into account the orientation of the faces σp−1 = (i1 . . . î j . . . ip) relatively
to the bulk simplex σp = (i1 . . . ip) via the permutation of their vertices:

sgn(σp−1, σp) := sgn(i1 . . . î j . . . ip)sgn(i1 . . . ip). (39)

Similarly, the differential on dual forms φ ∈ �d−p−1(�K) ∼= �p+1(K) can be defined as

Vσ̂d−p
〈σ̂d−p|dφ〉 :=

∑
σ̂d−p−1∈∂σ̂d−p

sgn(σ̂d−(p+1), σ̂d−p)Vσ̂d−(p+1)

〈
σ̂d−(p+1)|φ

〉
(40)

or equivalently

V�σp〈σp|dφ〉 :=
∑

σp+1;σp∈∂σp+1

sgn(σp+1, σp)V�σp+1〈σp+1|φ〉. (41)

One can easily check that indeed the differential on the dual complex is the adjoint to the
differential on the primal one, 〈dφ|ψ〉 = 〈φ|dψ〉. More precisely, if we do not write the inner
product directly as a pairing of bra and ket but as a bilinear form on either �p(K) or �d−p(�K),
the adjoint operator of the differential as usual is

δ := (−1)d(p+1)+1 ∗ d∗, (42)

taking into account the sign of multiple Hodge operations [36].

3.2. Laplacian on dual scalar fields and its properties

Using the above notions of discrete differential and codifferential, we can now simply define
the discrete Laplacian using the standard definition of the Hodge–Laplace–Beltrami operator
in the well-known form [55]


p := 
 = δd + dδ, (43)

which has now a well-defined meaning on arbitrary p-forms on a simplicial pseudo-
manifold. In particular, we are interested in the action of this Laplacian on dual scalar fields
φ ∈ �0(�K) ∼= �d(K), that is, fields living on d-simplices5:

4 The differential operator is just a modified version of the coboundary operator, which is the operator adjoint to
the boundary operator with respect to the third duality between chains and cochains. It is modified because, in the
convention chosen here, we have to explicitly keep a track of the volume factors. In the math convention [36], on the
other hand, the differential is exactly the coboundary operator.
5 In the literature of Regge calculus, a Laplacian of the same form is derived for a primal scalar field (i.e., a scalar
field living on the vertices of the primal simplicial complex) in the circumcentric case [8]. Then, the dual Laplacian

d is guessed to have exactly the form (44).

12
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(−
dφ)σ̂0
= −〈σ̂0|(−1)d(1+1)+1 ∗ d ∗ dφ〉
= (−1)d(d−d) 〈d ∗ dφ|σd〉
= 1

Vσd

∑
σd−1∈∂σd

sgn(σd−1, σd )Vσd−1〈∗dφ|σd−1〉

= 1

Vσd

∑
σd−1∈∂σd

sgn(σd−1, σd )Vσd−1

〈
σ̂1|dφ

〉
= 1

Vσd

∑
σd−1∈∂σd

sgn(σd−1, σd )
Vσd−1

Vσ̂1

∑
σ̂0∈∂σ̂1

sgn(σ̂0, σ̂1)〈σ̂0|φ〉

= 1

Vσd

∑
σ ′

d∼σd

Vσd∩σ ′
d

V�(σd∩σ ′
d )

(φσ̂0
− φσ̂ ′

0
). (44)

In the first line, the usual vanishing of δ ∝ ∗d∗ on 0-forms is used, while in the next four lines
the differential and Hodge star operators are applied one after the other. The last line is just a
reordering of terms. The dual volumes V�(σd∩σ ′

d )
in the denominator are the lengths of the dual

edges between dual points σ̂0 and σ̂ ′
0, and we write them as l̂σσ ′ = V�(σ∩σ ′) (suppressing from

now on the dimension index in σ = σd). Thus, the action of the Laplacian on a scalar field ket
is of the general type of a graph Laplace matrix [63]:

− 
d |φ〉 =
∑

σ

Vσ |σ 〉 〈σ |
dφ〉

=
∑

σ

|σ 〉
∑
σ ′∼σ

Vσ∩σ ′

l̂σσ ′
(〈σ |φ〉 − 〈σ ′|φ〉)

=
[∑

σ

(∑
σ ′∼σ

wσσ ′

)
|σ 〉〈σ |

]
|φ〉 −

(∑
σ

∑
σ ′∼σ

wσσ ′ |σ 〉〈σ ′|
)

|φ〉

=: D|φ〉 − A|φ〉. (45)

On the 1-skeleton graph of the dual complex, it is a difference of an off-diagonal adjacency
matrix A in terms of weights

wσσ ′ := Vσ∩σ ′

l̂σσ ′
(46)

and a diagonal degree matrix D with entries

Dσσ =
∑
σ ′∼σ

wσσ ′ . (47)

The Laplace matrix position elements (−
dφ)σ , on the other hand, come with an additional
inverse volume and are

wσσ ′

Vσ

. (48)

By definition, such discrete (graph) Laplacians obey three desirable properties [63, 64]:

1. Null condition. (
dφ) = 0 if, and only if, φ is constant. This is obvious because 
dφ is
the difference of position values of φ. The zero mode of the spectrum of 
d reflects the
fact that K corresponds to a closed pseudo-manifold.

2. Self-adjointness. The Laplace operator is self-adjoint with respect to the inner product

〈φ|
dψ〉 = 〈
dφ|ψ〉 . (49)

This is reflected by the symmetry of its weights wσσ ′ , though at the level of position
coefficients (
dφ)σ , equation (44), the inverse-volume factor V −1

σ spoils this symmetry.
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3. Locality. The action of 
d at any given position, (
dφ)σ , is not affected by field values
φσ ′ at non-neighboring positions σ ′

� σ . In discrete calculus, this comes directly from
the definition of the Laplacian as a second-order differential operator.

In the case of a simplicial decomposition |K| of a pseudo-manifold M, a further natural
condition which is built into the formalism from the start (by the definition of differentials via
the Stokes theorem) is the following:

4. Convergence to the continuum Laplacian under refinement of triangulations.

To see this, consider a region � ∈ M large compared to the scale a ∼ (
Vσp

) 1
p of simplices

σp ∈ K, in which the function φ and its derivatives do not vary strongly. Using equation (24),
Vσ∩σ ′V�(σ∩σ ′) ≈ V (d)

σ∩σ ′d, we have∑
σ∈�

Vσ (−
dφ)σ =
∑
σ∈�

∑
σ ′∼σ

Vσ∩σ ′

l̂σσ ′
(φσ − φσ ′ ) ≈ d

∑
σ∈�

∑
σ ′∼σ

V (d)
σ∩σ ′

φσ − φσ ′

l̂2
σσ ′

≈ 2d Vol(�)
∑
σ̂1∈�

φσ − φσ ′

a2
. (50)

Summing over all the dual edges σ̂1 ∈ � gives effectively a rotationally invariant expression.
In particular, it is an average over hypercubic lattices and the difference term can readily be
seen to be the Laplacian in the continuum limit, just as in standard lattice field theory with
the hypercubic lattice size a. As φσ+aeμ

−→
a→0

φσ + a (∂μφ)σ eμ + O(a2), the difference term
gives

2d∑
σ ′

φσ − φσ ′

a2
= −

∑d

μ=1

1

a

(
φσ+aeμ

− φσ

a
− φσ − φσ−aeμ

a

)
−→
a→0

−
∑d

μ=1

(∂μφ)σ − (∂μφ)σ−aeμ

a
eμ ≈ −

∑d

μ=1

(
∂μ∂μφ

)
σ
. (51)

Despite the validity of the above properties, one has to expect that it is not possible to preserve
all the features of the continuum Laplacian in the discrete setting. This has been shown in the
case of two-dimensional triangulations [64]. As a result, the definition of a discrete counterpart
of the continuum Laplacian cannot be unique. In our case, it is therefore natural to wonder
which properties of the continuum Laplacian are not preserved by the discrete Laplacian 
d .

The answer turns out to depend also on the specific choice of the geometry of the dual
complex, that is, on the choice of its geometric embedding into the primal complex. The two
distinguishing features are linear precision and positivity.

5. Linear precision. (
dφ)σ = 0 for straight-line triangulations |K| of flat space M ⊂ R
d

and linear functions φ(xμ) = c+∑d
i=1 cμxμ in Cartesian coordinates xμ. By linearity, this

is equivalent to a vanishing Laplacian (
dx)σ = 0 of the coordinate field x (considered
as a bunch of scalars xμ).

Linear precision holds for circumcentric dual geometries, in which case the dual lengths
are l̂σσ ′ = |xσ̂ − xσ̂ ′ | and (with unit face normals n̂σσ ′ = xσ̂ −xσ̂ ′

|xσ̂ −xσ̂ ′ | )

(
dx)σ ∼
∑
σ ′∼σ

Vσ∩σ ′

l̂σσ ′
(xσ̂ − xσ̂ ′ ) =

∑
σ ′∼σ

Vσ∩σ ′ n̂σσ ′ = 0 (52)

is true because these are exactly the closure conditions for the polyhedron σ . This property
fails, on the other hand, for the barycentric case. One could heuristically understand this by
noting that generically l̂σσ ′ �= |xσ̂ − xσ̂ ′ | in any dimension for the barycentric dual edges,
so that (
dx)σ reduces to a sum over normals of a set of modified faces, which cannot be
expected to close, in general.
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The second property is

6. Positivity of the weights, wσσ ′ > 0. It is also called the Markov property [65] and is
directly related to Osterwalder–Schrader positivity. The latter is crucial for a Euclidean
quantum field theory to yield unitarity in the corresponding Lorentzian theory after the
Wick rotation [66].

Positivity holds if all the volumes in the weights are positive. This is generally true for
barycentric duals. For circumcentric duals, the situation is less general. Positivity does hold
for circumcentric duals of regular complexes (where the circumcenters lie in the simplices).

However, this is not the case for irregular circumcentric duals. When a circumcenter does
not lie inside the simplex, the part of the dual length associated with this simplex is negative
such that, in some cases, the sum of the two parts is negative (see figure 2), inducing negative
Laplace matrix weights.

Therefore, we see that, as anticipated, the choice of geometry of the dual complex is crucial,
yielding different properties for the discrete Laplacian. In quantum gravity, in particular in the
investigation of its possible fractal structure, the barycentric dual is to be preferred.

Indeed, in this context, the null-condition, symmetry and positivity are generally required.
They are even taken as the defining properties in fractal spectral theory [65] (see appendix A).
In contrast, it could be expected on general grounds that standard locality and linear precision
might be violated. Although we do have locality for 
d in our simplicial context, the relation
between such discrete and continuum notions of locality is not immediate. Indications of a
breakdown of standard locality actually exist in several approaches to quantum gravity (e.g.,
[67]). Also, in fractional calculus, which can be used as an effective description of fractal
and other anomalous spacetimes, the Laplacian may be composed by fractional integro-
differential operators, which are non-local (by the dependence on non-neighboring points)
[33, 68–70].

Linear precision is not needed either because we are not in flat space and its only relevance
is as an asymptotic property in the continuum limit to flat spaces. But as we have argued, this
is already fulfilled up to higher order corrections. That this works despite the lack of linear
precision can be easily understood by noting that the average difference between circumcentric
and barycentric dual lengths is only of higher order in the scale of refined triangulations. Thus,
as far as quantum gravity is concerned, this seems enough since it does not seem reasonable
to enforce properties of the continuum flat-space Laplacian exactly in the discrete theory.
Also, fractional spacetimes are a continuum example where this property is violated, in all
self-adjoint Laplacians (also in the second-order one, due to the presence of a measure weight
to the right of the derivatives) [33, 71].

As for why positivity should then be satisfied, instead, the reasons are the following. One
is simply, in a sense, by exclusion, i.e., once we have decided that linear precision can be
dropped, it makes sense to try to enforce as many as possible of the other properties. A second
reason is that all quantum gravity approaches we consider are phrased as standard quantum
theories on the lattice. The present discrete-calculus formalism is applicable only to their
Euclidean versions, which we will discuss and which indeed are the ones best understood.
Reflection positivity has not been yet directly related to unitarity in this context, still we expect
such a relation to exist, even if it is not realized by a simple Wick rotation. Moreover, it is not
clear at all if there are mechanisms for recovering positivity in a continuum limit, if this is not
enforced in the discrete operator. Therefore, it seems preferable to maintain it in the definition
of the discrete theory.

Third, one immediate application we have in mind for our Laplacian operator is the
investigation of the geometric properties of states and histories in quantum gravity models,
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by means of the calculation of the spectral dimension. Indeed, this has been a major field
of research in several discrete quantum gravity approaches, such as dynamical triangulations
[20, 27] and tensor models [72], and, more recently, spin foams and LQG [23, 25, 28]. The
calculation of the spectral dimension uses the discrete Laplacian operator for defining a test
diffusion process taking place on the discrete structures defining quantum gravity states and
histories. Positivity of such Laplacian is a necessary requirement in order to be able to have a
properly defined diffusion process and thus a sensible spectral dimension observable.

4. Generalizations and applications

4.1. Generalizations of simplicial pseudo-manifolds

So far, we have detailed the formalism for primal simplicial pseudo-manifolds equipped with a
geometry. There are two possible generalizations which are important for applications: pseudo-
manifolds with a boundary and more general polyhedral complexes instead of simplicial ones.
We sketch such generalizations without going into the details, as the construction is actually
straightforward.

Boundaries. An abstract simplicial pseudo d-manifold K is allowed to have a boundary ∂K
when the non-branching condition is relaxed. The (d − 1)-simplices comprised in ∂K have
to be faces of only one d-simplex each. Therefore, the non-branching condition for simplicial
pseudo-manifolds with a boundary states that each (d − 1)-simplex is the face of one or two
d-simplices. The other conditions of section 2.4 remain.

Then, ∂K, or more precisely all the elements of (∂K)d−1, can be obtained from the action
of the boundary operator ∂ on the d-chain comprising all d-simplices:

|∂K〉 = ∂
∑

σd∈Kd

|σd〉, (53)

since the interior (d − 1)-simplices cancel pairwise because of orientation.
The boundary ∂K is just a (d − 1)-subcomplex of K. Without the original non-

branching condition holding, the construction of a dual �∂K is only possible using the
simplicial subdivision explained above yielding half-lines, or in general half-cells dual to
face simplices. These are distinguished as exterior cells σ̂ e ∈ �∂K from the usual interior ones
σ̂ i = σ̂ ∈ �K\ � ∂K.

For the calculus of fields φ ∈ �p(K), p < d, on the simplicial pseudo-manifold nothing
is changed besides exterior cells having volumes accordingly. Only for d-forms φ ∈ �d(K), it
is necessary to define their boundary values extending their domain from Kd to Kd ∪ (∂K)d−1.
In general, it is desirable to have a boundary field also for d-forms. One can then choose
boundary conditions for such fields, for example Dirichlet ones φ|∂K = ∗φ|�∂K = 0.

Cell complexes. Furthermore, one is interested in more general cell complex pseudo-
manifolds on the primal side too. This poses no issue as far as cell complexes are concerned
allowing for some simplicial decomposition for which one can use the formalism we have
presented. Typically, one just wants to generalize from dual (d + 1)-valent vertices to vertices
of arbitrary valence, that is, from primal simplices to arbitrary polytopes. At the level of
geometric realizations, the possibility of decompositions and hence the relation to simplicial
pseudo-manifolds are obvious. One has only to take care of generalizing the definition
appropriately at the abstract combinatorial level. Therefore, along the lines of [51], we sketch
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how the formalism is easily generalized to cell complexes obeying the three pseudo-manifold
conditions of section 2.4 at the topological level.

A primal p-cell σp now is a set of points homeomorphic to a closed unit p-ball Bp; its
boundary ∂σp is the part of σp homeomorphic to the boundary to ∂Bp. It can be represented
by the ordered set of vertices of a p-polytope. A cell d-complex K is a collection of p-cells,
p = 0, 1, . . . , d, with the following two properties:

• The boundary ∂σp of each p-cell σp ∈ K is the union of some (p − 1)-cells σp−1 ∈ K.

• The intersection of any two p-cells is empty or an element of the boundary of both.

As before, an orientation is given by the representation in terms of ordered sets.
If K is non-branching, strongly connected and dimensionally homogeneous, it has a dual

complex �K with a cellular structure induced by the adjacency relations of K, just as in the
simplicial case. Then, the whole formalism of discrete exterior calculus works through with
an appropriate definition of relative signs sgn(σp−1, σp). All the formal definitions are already
general enough to account for this generalization.

4.2. Applications: momentum transform and heat kernel

Momentum transform. Let us assume that the finite simplicial complex K has a geometric
interpretation in terms of a set of finite, non-degenerate primal and dual volumes. In particular,
for the case of the Laplacian acting on a scalar function, the d-volumesVσd and dual edge lengths
Vσ̂1

should be non-vanishing. Then, the computation of eigenvalues λ and eigenfunctions |λ〉
of the Laplacian reduces to a purely linear algebraic issue. It depends on the combinatorics
of the simplicial complex as well as on the geometric data. Note that in the defining
equation

(−
deλ)σ := −〈σ |
d |λ〉 = λ 〈σ |λ〉 =: λeλ
σ (54)

indeed the asymmetric matrix elements wσσ ′/Vσ are essential. The eigenvalues λ are defined
with a relative minus sign such that they are positive on, for example, closed pseudo-
manifolds [63].

If the matrix elements of the Laplacian are finite and well defined in the complex field, that
is, if 
 is just a linear map in a finite vector space, then the Laplacian is diagonalizable and the
eigenspaces of its eigenvectors comprise the vector space. Assuming this, the eigenfunctions
eλ
σ of the Laplacian (where the label λ is meant to run not only over eigenvalues but also

over their multiplicities) form a complete orthonormal basis defining momentum space. The
measure Vλ of this space is thus induced by the norm chosen for the orthogonal eigenspace
basis elements |λ〉 such that orthonormality,

〈λ|λ′〉 =
∑

σ

V (d)
σ eλ

σ eλ′∗
σ = 1

Vλ

δλλ′ , (55)

and consistently completeness,∑
λ

Vλ|λ〉〈λ| = 1, (56)

hold.
For a momentum measure of the usual physical (energy) dimension [Vλ] = d, one could,

for example, normalize the coefficients eλ
σ with respect to the standard Euclidean measure.

Although this choice of dimension is not necessary, since any physical quantity will be
automatically normalized by the measure factors Vλ, it is the usual convention in continuum
physics to have position and momentum space measures of reciprocal dimension. In this
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case, the momentum transform is an automorphism (see [71, 33] for further discussion).
Transformations of fields φ from position to momentum space and back are straightforwardly
given by the resolution of the identity in either position or momentum space:

φλ = 〈φ|
∑
σp

V (d)
σp

|σp〉〈σp|λ〉 =
∑
σp

V (d)
σp

eλ∗
σ φσ , (57)

φσ = 〈φ|
∑

λ

Vλ|λ〉〈λ|σ 〉 =
∑

λ

Vλeλ
σφλ. (58)

Heat kernel. With a transform between position and momentum spaces at hand, one can
easily deal also with functions of the Laplacian. We illustrate this with the example of
the heat kernel, the solution to the heat equation on K in terms of a continuous diffusion
parameter τ .

The formal expression of the heat kernel eτ
d now has a well-defined meaning on a
simplicial pseudo-manifold K for functions on the dual complex:

Kσσ ′ (τ ) := 〈σ ′|eτ
d |σ 〉 = 〈σ ′|e−λτ
∑

λ

Vλ|λ〉〈λ|σ 〉 =
∑

λ

Vλe−λτ eλ∗
σ ′ eλ

σ . (59)

We can use the heat kernel to calculate the diffusion of some initial matter distribution ρ

parametrized by τ to be

ρσ (τ ) := 〈ρ|K(τ )|σ 〉 = 〈ρ|eτ
d |σ 〉 = 〈ρ|
∑
σ ′

Vσ ′ |σ ′〉〈σ ′|eτ
d |σ 〉

=
∑

Vσ ′

σ ′
Kσσ ′ (τ )〈ρ|σ ′〉 =

∑
σ ′

Vσ ′Kσσ ′ (τ )ρσ ′ . (60)

In particular, the heat kernel itself is the evolution ρσ (τ ) = Kσσ ′ (τ ) for an initial distribution
ρσ = 1

Vσ
δσσ ′ concentrated on one simplex σ ′. In the continuum, this initial condition would

correspond to a diffusing test particle.
The trace per unit volume of the heat kernel, which gives the return probability in diffusion

processes, becomes

P(τ ) := tr Kσσ ′ (τ ) = 1

V

∑
σ

Vσ

∑
λ

Vλe−τλeλ∗
σ eλ

σ = 1

V

∑
λ

Vλe−τλ
∑

σ

Vσ eλ∗
σ eλ

σ

= 1

V

∑
λ

e−τλ. (61)

While the spectrum of the Laplacian gives a closed expression for P(τ ) in many cases,
for numerical computations of combinatorially very large complexes it can alternatively be
treated as a random walk. In this case, local probabilities are given for jumping from one
simplex σ to a neighbor σ ′ given by the matrix elements wσσ ′/Vσ of the Laplacian. This is
the technique used in dynamical triangulations [20, 27], which will be discussed below, and
random combs and multi-graphs [73–76].

5. Classical expressions of the Laplacian

The general form of the discrete Laplacian depends both on the combinatorial structure of
the underlying simplicial complex and on its discrete geometry through the various volume
factors. 
 takes then different concrete expressions, depending on the variables used to
encode the geometry of the simplicial complex. These expressions would be needed for
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explicit calculations in different formulations of classical discrete gravity and, successively,
in applications to quantum gravity models. In the following, we provide some examples for
the discrete Laplacian constructed in the geometric variables used in various approaches to
classical and quantum gravity.

5.1. Regge edge-length variables

The most common variables to describe the geometry of a simplicial pseudo-manifold are the
edge lengths {li j}. In the standard version of Regge calculus [77, 78], these are taken as the
configuration space for the geometries of piecewise flat triangulations.

The expressions for primal volumes are well known in the Regge literature, so the only
geometric data needed for defining the dual scalar Laplacian 
d are the dual edge lengths
l̂σσ ′ . We subdivide the dual edges into two parts l̂σ and l̂σ

′
, associated, respectively, with the

simplices σ and σ ′, so that l̂σσ ′ = l̂σ + l̂σ
′
. These dual edge lengths depend on the chosen

embedding of dual complex into the primal one.
In the barycentric case, when l̂σ

î
is the length of the edge dual to the face σd−1 =

(012 . . . î . . . d) contained inside the simplex σd = (012 . . . d), it is given by (see appendix B)

l̂σ
î

= 1

d (d + 1)

√
d
∑

j

l2
i j −

∑
( jk)

l2
jk. (62)

Then, the matrix elements of the Laplacian (equation (48)) for σ ∩ σ ′ = (012 . . . d) ∩
(0′12 . . . d) = (12 . . . d) have the form

wσσ ′

Vσ

= d (d + 1)
1

V012...d

V12...d

l̂σ
0̂

+ l̂σ ′
0̂′

. (63)

These are well defined on simplicial geometries satisfying the strong generalized triangular
inequalities, that is, Vσp > 0 for all 0 < p � d. In particular, these conditions ensure that the
dual lengths l̂σi are non-zero and positive.

This is not the case for the circumcentric dual where each l̂σ
0̂

∈ R can be negative or

vanishing, and thus it is possible to have l̂σ
0̂

+ l̂σ
′

0̂′ = 0. This pole in the expression for the
Laplacian, moreover, cannot be absorbed into the volumes as they depend only on the edges of
σ but not of σ ′. On the other hand, except for these singularities, the circumcentric Laplacian
might be well defined even on degenerate geometries with Vσd = 0. This is true, for example,
for d = 2, 3, where explicit expressions of the circumradius are known (again appendix B).
In d = 2,

w(i jk)( jkl)

Ai jk
= 8

±(l2
i j + l2

ik − l2
jk

)± Ai jk

A jkl

(
l2

jl + l2
kl − l2

jk

) , (64)

and in d = 3

w(i jkl)(i jkm)

Vi jkl
= 12A2

i jk

[
±
√(

2Ai jkAi jkl
)2 − (

3li jl jklkiVi jkl
)2

± Vi jkl

Vi jkm

√(
2Ai jkAi jkm

)2 − (
3li jl jklkiVi jkm

)2
]−1

. (65)

The sign of each dual length part l̂σ is positive if the circumcenter lies inside the d-simplex
σ and negative if outside. With these descriptions of the Laplacian at hand, one can compare
with other discrete Laplacians in the literature.
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Sorkin’s discrete Laplacian. In [79], a formalism with special ‘barycentric’ coordinates (not
to be confused with the mathematical notion, where unit vectors are attached to corners) is
developed. As done also in [80], it can be expressed in terms of the dihedral angles as a
‘cotangens’ Laplacian (with an inverse-volume factor) for primal scalar fields. In d = 2, with
α

σ2
i j being the angle opposite to the edge (i j) in the triangle σ2, it is given by

− (
0φ)i = 1

V�(i)

∑
j

⎛⎝ ∑
σ2�(i j)

cot ασ2
i j

⎞⎠ (φi − φ j), (66)

and it is easy to show its equivalence to the Laplacian coming from discrete calculus with
circumcentric duals. (Elementary geometric arguments yield l̂(i jk)

î
= √

R2 − (l jk/2)2 =
(l jk/2) cot ασ2

i j .) In d = 3,

−(
0φ)i = 1

V�(i)

∑
j

⎛⎝ ∑
σ3�(i j)

lσ3

î ĵ
cot ασ3

i j

⎞⎠ (φi − φ j), (67)

where the opposite dihedral angle α
σ2
i j now is between faces sharing the opposite edge lσ3

î ĵ
in the

tetrahedron σ3 [81]. From the equivalence in d = 2, it is tempting to conjecture equivalence
also for d � 3, but this remains to be proven.

Laplacian in dynamical triangulations. A different way of encoding the simplicial geometry
of a piecewise flat triangulation, still based on the Regge calculus description, is to fix all edge
lengths to some constant value, and allow only changes in the combinatorics of the simplicial
complex itself. This idea underlies the quantum gravity program of dynamical triangulations
[78, 82]. For such equilateral configurations, the Laplacian coming from discrete calculus
drastically simplifies (up to an overall factor) to a purely combinatorial graph Laplacian [63]
of the form (45):


d ∝ D − A, (68)

where the weights here are wσσ ′ = 1 if σ and σ ′ are adjacent.
While in the Lorentzian version, named causal dynamical triangulations, this should be

modified by introducing negative length squares for time-like edges, this modification is not
implemented since the theory is Wick rotated to Euclidean signature and actual calculations
are performed in a reduced ensemble of Euclidean triangulations (those that can indeed be
obtained by Wick rotating Lorentzian ones) [82].

5.2. First-order Regge calculus with (d − 1)-face variables

An alternative version to edge-length Regge calculus is in terms of the (d − 1)-face normals
ωσd−1 (α) (expressed in the reference frame of the d-simplex σα) and Lorentz rotations (parallel
transports) U (α, α′) from frame to frame across neighboring simplices. In turn, the latter
define holonomies (around closed plaquettes) Wα(h) = Uα,α+1Uα+1,α+2 . . .Uα−1,α , which
are rotations in the plane orthogonal to hinges h ∈ Kd−2 [83–85] and measure the local
curvature. The class angles corresponding to the holonomies are therefore the deficit angles
θh = 2π −∑

α θα
h , as could be obtained from the dihedral angles θα

h at the hinge h in each
d-simplex σα sharing it (see also [8]).

We show how all geometric data needed for the Laplacian 
d have an expression in terms
of the face normals ωσd−1 (α).
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While the (d − 1)-volumes are just the modulus of the face normals themselves,

Vσd−1 = |ωσd−1 (α)| , (69)

the d-volumes of simplices σα can also be expressed by d of the face normals ωi(α) =
ωσd−1=(012...ı̂...d) as [83]

Vα ≡ Vσα =
[

1

d!
εI1...Id εi1...id jω

i1
I1
(α) . . . ω

id
Id
(α)

] 1
d−1

, (70)

where capital indices I, J, . . . are in internal space. By the closure relations, it does not matter
which face (012 . . . ĵ . . . d) is left out if σα is closed. Alternatively, one could also average
over the choices of reference face.

An explicit expression of dual lengths can only be obtained using position coordinates
on σα as functions of the face normals. Barycentric coordinates z(α), that is, coordinates for
which the sum over vertices satisfies

∑d+1
i=1 zI

i (α) = 0, can be derived inverting the expression
of the face normals in terms of discrete vielbeins (see equation (B.1)) in these coordinates
[83]:

ωi
I(α) = 1

(d − 1)!2

∑
k �=i

εJ1...Jd−1Iε
i,i1...id−1,kzJ1

i1
(α) . . . zJd−1

id−1
(α), (71)

leading to

zI
i (α) = 1

(d − 1)!

1

(Vα )d−2

∑
k �=i

εJ1...Jd−1Iεi,i1...id−1,kω
i1
J1

(α) . . . ω
id−1
Jd−1

(α). (72)

The barycentric dual length is particularly simple in these coordinates. It is just the distance
from the barycenter of the tetrahedron with coordinate zI = 0 to the barycenter of a face

l̂σ
î

=
∣∣∣∣∣∣
∑
j �=i

z j[ω
i(σ )]

∣∣∣∣∣∣ . (73)

For the circumcentric case, no such simplification can be expected. Still, primal edge lengths
can be expressed in the coordinates z(α), taking then advantage of the above expressions
(equations (63), (64) and (66)).

As an example, we can give the (further simplified) expressions in d = 3. On σα = (i jkl)
(suppressing the frame label α),

zI
i = 1

2

1

Vα

∑
r �=i

εIJKεimnrω
m
J ωn

K = 1

2Vα

(
ω j × ωk + ωk × ωl + ω j × ωl

)I
, (74)

and the tetrahedron volume in terms of three of its face triangles is

(Vα )2 = 1

6
εIJKεi jklω

i
Iω

j
Jω

k
K . (75)

Therefore, the dual length is

l̂αi = 1

3
|z j + zk + zl| = 1

6Vα

|ω j × ωk + ωk × ωl + ωl × ω j|

=

√ ∑
(mn)∈( jkl)

[
ω2

mω2
n − (ωm · ωn)2 + (ωm · ωr)(ωr · ωn) − (ωm · ωn)ω2

r

]
6Vα

. (76)

Using the closure condition
∑

ωi = 0, this further simplifies to

l̂αi = 1

2Vα

|ω j × ωk| =
√

ω2
jω

2
k − (ω j · ωk)2 (77)
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for some faces j, k. The matrix elements (48) of the Laplacian 
d can then easily be computed
combining all the above expressions.

Finally, we note that the volume form ωh(α) of a hinge h = σd−2 can be expressed in
terms of two normals to two faces σα+1,α , σα,α+1 sharing it, in the frame of σα [83]:

ωh
IJ(α) = 1

Vα

ωα−1,α
[I (α)ωα,α+1

J] (α), (78)

where square brackets denote anti-symmetrization of the indices. This gives a connection to
flux variables, discussed in the next section, which are exactly these (d − 2)-face normals.

5.3. Flux and area-angle variables

In d = 4, a useful alternative set of variables in simplicial geometry are the bivectors
bIJ

i jk = eI
i j ∧ eJ

ik associated with triangles (i jk) (or their internal Hodge duals XIJ
i jk = εIJ

KLbKL
i jk ),

known as fluxes, and playing a prominent role in both canonical loop quantum gravity and
spin-foam models [1, 86, 87]. In a geometric 4-simplex (i jklm), the triangle areas are

Ai jk = |Xi jk|, (79)

and volumes of tetrahedra can be computed using three of the fluxes associated with the four
triangles on their boundary [88], regarding the bivectors as linear maps:

V 2
i jkl = 8

9
Tr
(∗Xi jk

[∗Xjkl, ∗Xkli
])

. (80)

Volumes of 4-simplices can be taken from the wedge product of two fluxes not lying in the
same 3-hyperplane (thus not belonging to the same tetrahedron):

Vi jklm = |Xi jk ∧ Xilm|. (81)

Primal edge lengths can be expressed using the generalized sine formula as

l2
i j = 2

|Xi jk|2|Xi jl |2 − (Xi jk · Xi jl )
2

Tr
(∗Xi jk

[∗Xjkl, ∗Xkli
]) . (82)

This gives all the building blocks for explicit expressions (equations (63), (64) and (66)) of
the barycentric and circumcentric discrete Laplacian 
d with elements (48).

In the spin representation in d = 3+1 LQG and d = 4 spin foams (adapted to a simplicial
context), the easiest variables to use are triangle areas and 3-volumes of tetrahedra. However,
it is known that they form an overcomplete set of data to specify a four-dimensional simplicial
geometry and should be supplemented by additional constraints whose explicit form is not
known [89, 90]. A more natural choice is to use areas Ai jk and dihedral angles φ

i j
k,l between

faces (i jk) and (i jl) hinged at the common edge (i j) [91]. This set of data encodes the same
information as the fluxes Xi jk. In these variables, the relevant geometric data to compute the
discrete Laplacian have the following expressions. The 3-volumes are

V 2
i jkl = Ai jk

9

√∑
j

A2
i jl sin2 φ

i j
k,lA

2
jkl sin2 φ

jk
i,l −

∑
(i j)

A4
i jl sin4 φ

i j
k,l, (83)

from which the 4-volumes are obtained via the generalized sine law6

6 The angles θ
i jk
l,m between 3-simplices (i jkl) and (i jkm) are functions of the area dihedral angles according to [91]

cos θ
i jk
l,m = cos φ

i j
k,l − sin φ

i j
l,m sin φ

i j
m,k

cos φ
i j
l,m cos φ

i j
m,k

. (84)
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Vi jklm = 3

4

1

Ai jk
Vi jklVi jkm sin θ

i jk
l,m[φ], (85)

as well as the primal edge lengths

li j = 2

3

1

Vi jkl
Ai jkAi jl sin φ

i j
k,l . (86)

Again, this is all the information needed to build the Laplacian 
d .

6. Laplacian in models of quantum geometry

With the classical expressions of the dual scalar Laplacian 
d in the appropriate geometric
variables at hand, one can take one’s favorite model of quantum gravity and promote 
d to a
quantum observable. For instance, one can either take 
d as an operator acting on quantum
states of spatial geometries in a canonical theory (e.g., in an LQG context) or as a classical
function to be path integrated over with the quantum measure of a covariant theory (within a
spin-foam or simplicial path-integral setting). We now discuss briefly how such calculations
could be set up, leaving explicit computations for future study.

In both types of approaches, the main challenge beyond a purely formal quantization is to
deal with possible singularities of the matrix entries of the Laplacian, coming from the inverse
d-volumes in the barycentric case and from the inverse dual length part in the circumcentric
case. In a canonical setting, these singularities may prevent the definition of the Laplacian
operator as a bounded operator; in the covariant setting, they may produce divergences in
explicit evaluations. Obviously, whether or not such difficulties arise depend on the details of
the quantum theory considered, and depending on the precise structure of the Hilbert space of
states or the path-integral measure, as well as on the exact classical expression to be quantized,
they may not necessarily pose a problem.

Furthermore, for many purposes, it is not the Laplacian 
d as such but its functions
f [
d] which are of interest. These need not have the same quantization issues (e.g., possible
singularities) as the Laplacian itself.

A good example is the trace of the heat kernel P(τ ), discussed in the classical simplicial
setting above (section 4.2). Since it is of the general form P(τ ) ∼ eτ
, one would expect
that it vanishes exactly in those cases where the Laplacian is singular (see the example
in appendix C). Thus, one may even envisage cases in which observable functions of the
Laplacian f [
d], inserted within quantum geometric evaluations (e.g., path integrals), might
even help to suppress pathological configurations corresponding to degenerate or divergent
geometries.

In the context of a quantum theory of pure geometry without any dynamical matter,
there are reasons to believe that, quite in general, only global functions of the Laplacian are
suitable complete observables (beyond the kinematical level) since they are invariant under
diffeomorphisms. The heat trace is a good example of an observable meeting these conditions.

6.1. Laplacian in canonical formalism

The best developed canonical approach to quantum gravity is LQG [1, 2]. The kinematical
Hilbert space of states of spatial geometry is defined as a projective limit of Hilbert spaces H�

of states associated with graphs �. Under certain assumptions [62], they can be considered
as the 1-skeleton � = (�K)1 of the dual of a combinatorial pseudo-manifold K. Since the
valency of the nodes in � is left arbitrary in LQG, the complex has to be polyhedral in general,
though often one restricts to the lowest non-trivial (non-vanishing volume) valency of d + 1,

23



Class. Quantum Grav. 30 (2013) 125006 G Calcagni et al

corresponding to primal simplicial pseudo-manifolds. (In principle, one can take an expression
of the Laplacian obtained from the geometric interpretation in a pseudo-manifold setting and
apply it even to graphs � which are not in the skeleton of the dual to a pseudo-manifold, as
long as all the variables are defined.)

The LQG states are cylindrical functions ψ�(hσ̂1
) of holonomies of the gauge group

G = SU (2) on the links σ̂1 of the graphs �. These variables encode the extrinsic geometry
of the spatial slice. The same states can be transformed into functions of representations jσ̂1

on the links and intertwiners iσ̂0
between them on the nodes σ̂0, called spin network states

ψ�( jσ̂1
, iσ̂0

). A further possibility is to transform into a basis of fluxes Xσ̂1
on the links, valued

in the Lie algebra of the group [87]. These sets of dual variables encode the intrinsic geometry
of the spatial slice.

The spin network states are the eigenstates of a commuting set of local geometric
observables. In d = 2 + 1, these are the primal edge-length operators l̂σ1 dual to graph
links σ̂1 = �σ1, with a squared spectrum proportional to the Casimir of the group
G = SO(3) ∼= SU (2):

l̂2
σ1

ψ�( jσ̂1
, iσ̂0

) ∼ [
j�σ1 ( j�σ1 + 1) + c

]
ψ�( jσ̂1

, iσ̂0
), (87)

with c = const being a quantization ambiguity.
In d = 3 + 1, the same holds with the difference that it is now primal triangles (more

generally, polygons) to be dual to the graph links σ̂1 = �σ2, and the spins are then their areas
Âσ̂2

for which

Â2
σ2

ψ�( jσ̂1
, iσ̂0

) ∼ [ j�σ2 ( j�σ2 + 1) + c]ψ�( jσ̂1
, iσ̂0

). (88)

The 3-volume operator V̂σ3 for the tetrahedron (more generally, 3-cell) dual to a graph vertex
has a (more complicated) spectrum in terms of the intertwiners i�σ3 [2].

Concerning length operators l̂σ1 for primal edges, there are several definitions available
in the literature. In one such definition [92], eigenstates of l̂σ1 are linear combinations of the
intertwiners and the operators l̂σ1 corresponding to edges of the primal 3-cell neither commute
with the volume operator of the same 3-cell V̂σ3 nor with one another in the case of intersecting
edges.

A natural way to promote the spatial Laplacian to a quantum operator would therefore
be to regard it as a function of these basic geometric observables. In d = 2 + 1, on states
with simplicial combinatorics, that is, 3-valent graphs �, this is fairly straightforward as
the commuting set of length operators captures the whole simplicial geometry. Thus, the
two-dimensional spatial Laplacian 
2 can be formally quantized as a composition of length
operators:


̂2 = 
2[̂lσ1 ]. (89)

In practice, to avoid the issue of zeros in the denominator in either the barycentric or
circumcentric description, a regularization7 or linearization of the classical expression 
2[lσ1 ]
(equation (63) or (64)) is needed to achieve a well-defined operator 
2[̂lσ1 ].

In d = 3 + 1, this quantization cannot work as easily because the commuting set of
operators Â2

σ2
and V̂σ3 is not sufficient to determine a simplicial spatial geometry. Therefore,

the quantum Laplacian 
̂3 can only be expressed as a function of operators at least a pair
of which is non-commuting. A consequence is that 
̂3 cannot be diagonalized in the spatial
geometry states on a given graph. This fact is less problematic than it may look at first
sight. Ultimately, pure states of quantum geometry cannot be expected to have a geometry
in a classical, e.g., simplicial sense. Only semi-classical coherent states peaked on a classical

7 In [92], for example, a Tikhonov regularization [93] is used to cure inverse-volume issues.
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geometry are supposed to have this meaning. On such states, it should be possible to obtain a
well-defined action and expectation value of 
̂3.

Since we do have expressions of 
3 in three dimensions in terms of face normals (equation
(77) and so on), that is, fluxes in the canonical setting, appropriate types of coherent states to
be used are those in flux variables studied in [94, 95]. As 
̂3 is now built from non-commuting
operators, there are also ordering ambiguities, and the same issue of regularization of possible
inverse-volume divergences will also have to be dealt with.

Comparison with other proposed Laplacians in the LQG context. We will close this
subsection discussing briefly our Laplacian with other proposals appeared in the LQG
literature, usually defined in the context of matter Hamiltonians. These proposals are indeed
different from ours.

From the Hamiltonian of a non-relativistic point particle on an LQG space, one can read
off the following Laplacian 
̂3 [19]. Assuming that the Hamiltonian is diagonal in the Hilbert
space of spin network states |s〉, the result of a discretization procedure is (in the notation of
[19])


̂3 ∼
∑
s,l∈s

A2
l |s, l∼〉〈s, l∼| (90)

on a position basis of the particle on the links of the graph | l∼〉, where the underlining with a
tilde indicates that an inverse-volume factor is included in the definition of this basis.

In the position basis of dual points σ̂0 (dual to primal simplices) natural for the dual scalar
function, its expectation value on a spin network state |s〉 is

〈s|
̂3|s〉 ∼
∑

σ

∑
σ ′∼σ

A2
σσ ′

V 2
σ

|σ 〉〈σ | −
∑

σ

∑
σ ′∼σ

A2
σσ ′

VσVσ ′
|σ 〉〈σ ′| , (91)

where Aσσ ′ = Vσ∩σ ′ are the areas of the primal faces dual to the links connecting σ and σ ′.
Obviously, this differs from the Laplacian operator (45) coming from discrete calculus.

If the inverse volumes are understood to belong to the position states, the above expression is
just a graph Laplace matrix with weights A2

σσ ′ . This is the definition used in [19]. On the other
hand, for the Laplacian to have the right dimension, the volumes would have to be considered
as part of its definition (and not hidden in the position basis) and the weights are then, as in the
formula above, A2

σσ ′/(VσVσ ′ ). The advantage of the first choice of position basis and Laplacian
with exclusive dependence on the areas, for an application to LQG, is that this Laplacian
only needs, for its evaluation, the geometric information that is present in pure spin network
states, bypassing the issues discussed in the previous section. On the other hand, one might
then question whether this choice captures the whole geometric content of the Laplacian, as
the one coming from discrete calculus does, and gives an operator with the right properties.
Our analysis would suggest that this is not the case, but the above simpler operator could
nevertheless represent a useful approximation in some contexts.

A Laplacian of a similar type was also considered in [23] in the context of an evaluation
of the spectral dimension in LQG and spin foams. More precisely, the scaling of the Laplacian
was all that was needed in that setting, and it was taken to be given just by the area spectrum,
so that in practice it amounted as dealing with a diagonal Laplacian.

Another LQG Laplacian appears in [12], within the Hamiltonian for a scalar field. In order
to deal with the issue of inverse volumes, one uses Thiemann’s trick of substituting inverse

25



Class. Quantum Grav. 30 (2013) 125006 G Calcagni et al

3-volumes with Poisson brackets of holonomies and (powers of) 3-volumes. The Laplacian
operator then takes the form(


̂3φ
)
σ̂0

∼ N(σ̂0)

E(σ̂0)2

∑



v
=σ̂0

tr(ĥ[ĥ−1, V̂
3
4 ])4(φs(
) − φσ̂0

), (92)

where N(σ̂0) and E(σ̂0) are some combinatorial factors depending on the vertex σ̂0, ĥ is the
holonomy operator and the sum effectively runs over neighbors too. The precise structure, in
particular of the spectrum, is not known, so a more detailed comparison with the Laplacian
coming from discrete calculus, from which it clearly differs, is not possible.

6.2. Laplacian in covariant models

In covariant theories of quantum gravity, the Laplacian lives in spacetime itself rather than on
spatial slices only. Even for the spatial Laplacian in LQG, a covariant counterpart in terms of
a spin-foam model might be necessary to evaluate it within a physical scalar product.

Such covariant approaches are typically formulated as discretized path integrals. The sum
over 4-geometries for a given boundary 3-geometry is defined for geometries on a simplicial
pseudo-manifold K (e.g., in Regge calculus), or on its dual complex (e.g., in spin-foam models,
which can also be re-expressed as simplicial gravity path integrals), and may include a sum
over these complexes as well (dynamical triangulations and group field theories). We discuss
briefly the templates for the evaluation of the discrete Laplacian as a geometric observable in
these contexts.

Quantum Regge calculus. The formalism of discrete calculus is most easily applied to the
Regge approach. This is, first of all, because Regge calculus works directly on a simplicial
pseudo-manifold K. Second, because the configuration space summed over consists only
of simplicial geometries, even in the quantum version. In the latter, this condition has
to be imposed by special constraints, namely the strict generalized triangle inequalities.
These demand the volumes of all p-simplices to be positive, Vσp > 0. On such simplicial
geometries, the discrete Laplacian is automatically well defined (no issues with degeneracies
or singularities). Neither in edge-length variables l2

i j nor in the (d−1)-face normal variables ω,
there are any problems in expressing the Laplacian as a classical observable in Regge calculus.

In principle, one could therefore go straight to the quantum theory on a given triangulation
|K| in the path-integral formulation, given an appropriate measure μ

|K|
Regge = [Dli j] eiSRegge[li j] or

μ
|K|
Regge = [DUαβ][Dωαβ] eiSRegge[Uαβ ,ωαβ ], and consider the quantum expectation value

〈 f [
d]〉|K| =
∫

μ
|K|
Regge f [
d]. (93)

While the Regge action SRegge is well known in both cases, the definition of the exact measure
of such a model of quantum gravity is still a pending challenge, with respect to the imposition
of the generalized triangle inequalities as well as the issue of simplicial symmetries [8, 96].

Spin foams and related path integrals. This path-integral expectation value can be considered
also in spin foams, an approach generalizing the concept of Regge geometries [97] where a
precise form of the measure can be motivated from a discretization of the Holst–Plebanski
action.

By the motivation of spin foams as a path-integral version of LQG defined via spatial
graphs �, that is, 1-complexes, the discrete counterpart of spacetime is usually defined as
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a 2-complex C (hence the name ‘foam’). Analogously to the discussion of the canonical
case, in a strict sense the discrete Laplacian 
d is therefore applicable only to 2-complexes
being the 2-skeleton of a dual d-complex, C = (�K)2. In spin foams, only (d + 1)-valent
vertices are considered such that the primal complex K would be indeed a simplicial complex.
Nevertheless, an expression of the simplicial 
d could still be generalized to the setting of
arbitrary 2-complexes C, as long as they are equipped with enough geometric data for all the
volumes in 
d to be defined.

Just as in LQG, the geometry variables could be fluxes, holonomies, or their spin
representations of the full gauge group G on the edges σ̂1 ∈ C. A spin foam in the strict
sense of the name refers to the latter. Most generally, it is defined as a path-integral state sum
over representations jσ̂2

and intertwiners iσ̂1
by a measure factorizing into amplitudes Aσp on

faces, edges and vertices on C [5]:

ZC =
∑

{ jσ̂2
},{iσ̂1

}
μC

SF

=
∑

{ jσ̂2
},{iσ̂1

}

∏
σ̂2∈C

Aσ̂2
( jσ̂2

)
∏
σ̂1∈C

Aσ̂1
( jσ̂2

, iσ̂1
)
∏
σ̂0∈C

Aσ̂0
( jσ̂2

, iσ̂1
). (94)

On the other hand, this is just the spin-foam representation of an underlying more general path
integral which could equally well be expressed in holonomies g or fluxes X with corresponding
measures:

ZC =
∫ [

Dgσ̂2

]
μC

g =
∫ [

DXσ̂2

]
μC

X . (95)

Since these variables are directly related to the LQG variables in the canonical theory,
the discussion of the possibility to express the Laplacian through them is similar. Particularly
simple is the d = 3 case of the so-called Ponzano–Regge model with a measure μC

PR defined
in terms of the dimension of representations associated with edges of the dual complex and of
6 j-symbols associated with vertices [98]. From the length operator in LQG, an interpretation
of primal lengths dual to the foam faces σ̂2 can be induced such that

l2
σ1

= l2
σ̂2

= jσ̂2
( jσ̂2

+ 1) + c. (96)

This defines 
3 = 
3( jσ̂2
) on C in its edge-length version (equation (63) or equation (66))

and one has a formal expectation value of functions of the Laplacian:

〈 f [
3]〉CPR =
∑
{ jσ̂2

}
μC

PR f [
3( jσ̂2
)]. (97)

It is then straightforward generalizing to the well-understood case with LQG spin network
states |s〉 on the boundary of C, where the state sum is running only over internal labels with
fixed boundary configurations induced from |s〉 [99].

As already noted, the geometric interpretation of spin-foam configurations is more general
than Regge geometries. While the trivial intertwiners iσ̂1

= i�σ2 implicit in the 6 j-symbols
constrain the primal triangles σ2 to close, there are no conditions for the tetrahedra σ3 (more
generally, top-dimensional simplices) to close too. Therefore, the volumes Vσ3 (l

2
σ1

) might take
complex values or even vanish. Since they appear in the denominator of the Laplace matrix
elements (equation (63)), this may result in poles of the Laplacian.

In d = 4, it is more challenging to obtain a version of 
4 in terms of the spin representation
labels via the LQG-induced relation to primal areas Aσ2 (dual to foam faces σ̂2) and 3-volumes
Vσ3 (dual to foam edges σ̂1). While the number of labels is in principle large enough, the issue
of configurations not uniquely specifying a simplicial geometry discussed above becomes
relevant again. A convenient set of variables in which to compute the expectation value of 
4
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is obtained in the flux representation of the state sum, which then takes the form of a BF-like
simplicial path integral. The fluxes Xσ̂2

are now the volume forms of primary faces σ2, which
can also be equivalently associated with their dual faces σ̂2 = �σ2 in the foam.

A general remark is the following. In any discrete path integral, whether configurations
on which 
d is divergent lead to divergences of the overall sum over quantum geometric
configurations or not depends very much on the dynamics encoded in the measure. If there
were divergences, they could be treated with an appropriate regulator or, when possible,
by directly excluding the singular configurations from the path integral. On the other hand,
many spin-foam amplitudes are generically divergent even before inserting other geometric
observables, and some regularization/renormalization might be needed from the start, anyway.
Proper calculations of Laplacian-based observables would have to be then phrased in this
regularized context. We will do this in future work.

7. Conclusions and outlook

We have employed discrete calculus, known from computational science [36, 51], as a
formalism for differential operators and arbitrary fields at a fundamentally discrete level,
more precisely on simplicial complexes and their combinatorial dual complexes. This should
open up novel ways to investigate the physical and geometric properties of simplicial theories
of quantum gravity.

With respect to [36], we chose a different, more physical convention where a geometric
space measure is explicitly taken into account. The formalism was presented in a convenient
bra–ket notation and, therefore, slightly generalized, thus providing a setting to rigorously
define a discrete Laplacian operator 
. We analyzed the action of the Laplacian on scalar
fields living on vertices of the dual complex. The discrete Laplacian can be required to satisfy
several properties, coming from continuum properties, from usual lattice gauge theory, from
the fractal literature or from reasonable physical requirements. Whether these properties are
satisfied or not by the discrete Laplacian we considered depends on the precise geometric
embedding of the dual complex into the primal one. In particular, we have shown that the
barycentric version may be preferred to the circumcentric one because it does lead to a
positivity property that is the discrete counterpart of Osterwalder–Schrader positivity.

The formalism can be made sufficiently general to be extended to polyhedral complexes
and complexes with a boundary. Also, the Laplacian enters the definition of an invertible
momentum transform to a representation of fields on its eigenspaces. This generalization of
the Fourier transform works on arbitrary discrete geometries and can be effectively used to
handle functions of the Laplacian such as the heat kernel and, from that, the spectral dimension
of spacetime. The latter will be the subject of a companion paper [35]. The use of (functions of)
the discrete Laplacian as a geometric observable to unravel the geometry of quantum gravity
states and histories is indeed one application we envisage for our results. Another application
is as a necessary ingredient for defining matter coupling in discrete models of quantum gravity.

These results are ready to be applied to various gravity approaches. We gave explicit
expressions of the Laplacian in geometric variables used in loop quantum gravity, spin foams,
Regge calculus and dynamical triangulations: edge lengths, face normals, fluxes and area-
angle variables. We discussed how to apply these expressions to specific models, either in a
canonical or covariant formalism, and the issues to be tackled. Fluxes seem to be the type
of variables with the most general applicability, i.e., for combinatorics other than those of
d-complexes, as they can be used to define general polyhedral geometries. Operator issues
about inverse volumes and dual lengths (present inside 
) could be cured in various ways:
in canonical theory, by regularization or linearizations, in the covariant one by regularization,
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renormalization procedures or appropriate modifications of models. At any rate, we also noted
that considering functions of the Laplacian, rather than the Laplacian itself, may make these
issues irrelevant for practical purposes, as discussed in the example of the heat kernel and in
[35]. In particular, the spectral dimension in LQG and spin-foam models can be computed and
is well defined.

We conclude with a comment on the continuum limit. In a continuum flat space, the
discrete Laplacian (44) reduces to the second-order continuum Laplace operator:


 →
d∑

μ=1

∂2
μ . (98)

However, the limit to the continuum in a discrete quantum gravity model is much less trivial
because it must include quantum dynamics, a wealth of geometric information (curvature,
effective measures respecting quantum symmetries and so on) and physical matter fields.
Thus, the correct physical description of a quantum geometry in a large-scale/low-energy/semi-
classical regime may remain elusive in several interesting cases.

The diffusion equation is a crystalline example in this respect. In a discrete setting, it is
defined via a test field φ obeying (∂τ − 
)φ = 0, with some initial condition φ|τ=0 in the
abstract diffusion time and where curvature effects are ignored [31, 33, 70]. In the naive sense
of equation (98), this expression reduces to the continuum diffusion equation in flat Euclidean
space, with the consequence that the spectral dimension of the continuum manifold R

d on
which the diffusion process takes place is the classical one d. However, if one first computes
the effective spectral dimension in a genuinely discrete (and quantum) setting (such as causal
dynamical triangulations, for instance [20], or spin foams [23, 25, 28, 35]), and taking into
account the full quantum dynamics, the output would differ from d at any given scale, even
in semi-classical or continuum approximations and even in the zero-curvature limit. R

d is
not necessarily the effective manifold Mcont representing the physical continuum limit of
the quantum-fluctuating geometry in the large-scale regime. As briefly discussed in section
3.2, the physical continuum limit is a black-box procedure which can also generate effective
continuous Laplacians (in the sense of the operator governing diffusion processes) which may
violate one or more properties of the discrete 
, and of the standard continuum one, including
locality and the effective order of the operator [33, 70].

The task of getting control over this important aspect of quantum gravity models goes
beyond the scope of this work. Yet, the stage in which this issue can be tackled in the near
future has been hopefully improved by the results presented here.
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Appendix A. Laplacians on fractals

In the spectral theory of deterministic fractals, Laplacians are defined as a limit of Laplace
matrices 
�m on a sequence of graphs �m approximating the fractal which can then be identified
with lim

m→∞�m. In general [65], one defines Laplacians −
�m on the vertex set of the graphs �m

as symmetric linear operators with three properties: positive definiteness, the null condition
and the Markov property. These are exactly the conditions satisfied by the barycentric version
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of the discrete Laplacian presented in section 3.2 since positive definiteness follows from
symmetry and positivity [64].

The graph Laplacian 
�m needs two modifications to define the Laplacian on the fractal:
a ‘renormalization factor’ r−m according to the graph approximation and a volume factor V (m)

σ̂0

for the evaluation of a function at a point on the graph σ̂0 ∈ �m, similar to discrete calculus.
The volume factor depends on the self-similar (space) measure μ on the fractal since

〈σ̂0|
�m |φ〉 =
∫

dμ χσ̂0

�mφ =

∫
dμ ψ

(m)

σ̂0

�mφ

≈
(∫

dμ ψ
(m)

σ̂0

) (

�mφ

)
σ̂0

=: V (m)

σ̂0
(
�mφ)σ̂0

. (A.1)

Here, the characteristic function χσ̂0
for σ̂0 on the fractal is approximated by the so-called

harmonic splines ψ
(m)

σ̂0
, which are functions sufficiently peaked on σ̂0 on the fractal and

identical to the Dirac distribution on the graphs �m [100].
Eventually, the Laplacian on the fractal is defined as the limit

(
φ)σ̂0
:= lim

m→∞
1

V (m)

σ̂0
rm

〈σ̂0|
�m |φ〉. (A.2)

While the volume factor in the known and understood examples of deterministic fractals is
just an overall constant independent of the approximation level m, the exact renormalization
factor is crucial to obtain a neither vanishing nor trivial Laplacian [100].

Appendix B. Geometric data of simplices

For a simplicial complex K with a geometric realization as a piecewise linear space, the frame
field can be considered as a set of discrete edge vectors

eI = eI
μdxμ �→ eI

i j(α) = [xi(α) − x j(α)]I, (B.1)

where the coordinates x(α) are given by a choice of origin and frame for every d-simplex σα

the edge (i j) is face of. The index α = 1, 2, . . . , Nd labels the d-simplices. Accordingly, the
volume form of a p-simplex σp in the coordinates of a d-simplex of which it is a face is

ω
σp

Ip+1...Id
(α) = εI1...Id

∏p

k=1
eIk

k (α), (B.2)

in terms of p linear-independent edge vectors ek belonging to σp. The p-volume σp is the norm
of the volume form

Vσp = |ωσp | = 1

p!

√ ∑
Ip+1<...<Id

∣∣ωσp

Ip+1...Id

∣∣2. (B.3)

B.1. Edge-length variables

In the edge-length variables {l2
i j}, the primal (simplicial) volumes can be obtained from the

Cayley–Menger determinant

Vσp = 1

p!

(−1)
p+1

2

2
p
2

∣∣∣∣∣∣∣∣∣∣

0 1 · · · 1
1 0 l2

i j · · ·
... l2

i j

. . .

1
... 0

∣∣∣∣∣∣∣∣∣∣

1
2

. (B.4)
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In particular,

Vσ2 = 1

4

√∑
i

(
2l2

i jl
2
ik − l4

jk

)
(B.5)

and, after some manipulations,

Vσ3 = 1

12

√∑
(i j)

l2
i j

(
l2
ikl2

jl + l2
il l

2
jk − l2

i jl
2
kl

)−
∑
(i jk)

l2
i jl

2
ikl2

jk, (B.6)

Vσ4 = 1

96

⎡⎣ ∑
(i j)(kl)

l4
i jl

4
kl +

∑
(i j)(k)

(
l2
lil

2
ikl2

k jl
2
jm + l2

mil
2
ikl2

k jl
2
jl − l4

i jl
2
kl l

2
km

)

−2
∑
(i jkl)

l2
i jl

2
jkl2

kl l
2
li − 4

∑
(i j)

l2
i jl

2
kl l

2
lml2

mk

⎤⎦
1
2

, (B.7)

where all sums run over all subsimplices of the given kind.

B.2. Barycentric dual volumes

The dual volumes are much more involved and we will consider only dual lengths. In the
barycentric case, the length l̂σi of the part in one simplex σd = (012 . . . d) of an edge dual to
the face σd−1 = (012 . . . ı̂ . . . d) is given by

l̂σi = 1

d (d + 1)

√
d
∑

j

l2
i j −

∑
( jk)

l2
jk. (B.8)

This can be seen as follows. In coordinates x, the position of the barycenter xbc of a p-simplex
is

xbc = 1

p + 1

p∑
i=0

xi. (B.9)

The distance from the barycenter of σd to the barycenter of σd−1 = (12 . . . d) in these
coordinates then is

l̂σ0 =
∣∣∣∣∣ 1

d + 1

d∑
i=0

xi − 1

d

d∑
i=1

xi

∣∣∣∣∣ =
∣∣∣∣∣d x0 − 1

d(d + 1)

d∑
i=1

xi

∣∣∣∣∣ , (B.10)

and choosing coordinates where x0 is the origin and using xi · x j = gi j = 1
2 (l2

0i + l2
0 j − l2

i j)

[101], this reduces to

l̂σ0 = 1

d(d + 1)

√√√√( d∑
i=1

xi

)2

= 1

d (d + 1)

√∑
i

x2
i − 2

∑
(i j)

xi · x j

= 1

d(d + 1)

√
d
∑

i

l2
0i −

∑
(i j)

l2
i j. (B.11)

Besides the simple two-dimensional case, this formula was also proven before for the
tetrahedron [102, theorem 187].
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B.3. Circumcentric dual volumes

In the circumcentric case, in d = 2 one obtains dual edge lengths from the circumradius
Ri jk = li j lik l jk

4Ai jk
:

l̂(i jk)

jk =
√

R2
i jk −

(
l jk

2

)2

= l jk

2

√√√√ l2
i jl

2
ik

4A2
i jk

− 1

= l jk

4Ai jk

√
l4
i j + l2

jk + l2
ki − l2

i jl
2
ik − 2

(
l2

jkl2
i j + l2

jkl2
ik

)
. (B.12)

Since

4l2
jkl2

ik − 16A2
i jk = l4

i j + l4
jk + l4

ki − 2
(
l2

jkl2
i j + l2

jkl2
ik − l2

i jl
2
ik

)
= (

l2
i j + l2

ik − l2
jk

)2
, (B.13)

this simplifies to

l̂(i jk)

jk = l2
i j + l2

ik − l2
jk

4Ai jk

l jk

2
. (B.14)

The matrix elements of the Laplacian are

w(i jk)( jkl)

Ai jk
= 1

Ai jk

2

±
√

l2
i j l

2
ik

4A2
i jk

− 1 ±
√

l2
jl l

2
kl

4A2
jkl

− 1

(B.15)

= 4

±
√

l2
i jl

2
ik − 4A2

i jk ± Ai jk

A jkl

√
l2

jl l
2
kl − 4A2

jkl

= 8

±
(

l2
i j + l2

ik − l2
jk

)
± Ai jk

A jkl

(
l2

jl + l2
kl − l2

jk

) . (B.16)

For d = 3, there is a formula relating the circumradius R of the tetrahedron (i jkl) to the area
Ai jkl of a triangle with the product of opposite edge lengths in the tetrahedron as its edge
lengths [102]:

6Vi jklRi jkl = Ai jkl . (B.17)

The circumcentric dual length to a face (i jk) thus is

l̂(i jkl)

l̂
=
√

R2
i jkl − R2

i jk =
√(

2Ai jkAi jkl
)2 − (

3li jl jklkiVi jkl
)2

12Ai jkVi jkl
, (B.18)

and the Laplace weight

w(i jkl)(i jkm) = 12A2
i jk

[
±
√(

2Ai jkAi jkl

Vi jkl

)2

− (3li jl jklki)2

±
√(

2Ai jkAi jkm

Vi jkm

)2

− (3li jl jklki)2

]−1

. (B.19)

A simplification to avoid the square roots, as in d = 2, remains to be found.
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Appendix C. Simple example: degenerate triangulation of the d-sphere

To illustrate the formalism, we consider as an example the triangulation of the
d-sphere Sd by two d-simplices labeled a, b with the same vertices 1, 2, . . . , d + 1 which
are glued along all their faces (1, . . . , ı̂, . . . d + 1). The weights of the Laplacian are
w(1,...,ı̂,...,d+1) = V(1,...,ı̂,...,d+1)/V�(1,...,ı̂,...,d+1) but in the end only the degrees D = Da =
Db = ∑

(1,...,ı̂,...,d+1) w(1,...,ı̂,...,d+1) enter in this specific example:

(−
φ)a = 1

Va

∑
(1,...,ı̂,...d+1)

w(1,...,ı̂,...,d+1) (φa − φb) = D

Va
(φa − φb) , (C.1)

and for the simplex b accordingly. The eigenvalues of the Laplacian are λ0 = 0 and
λ1 = V D/(VaVb), which directly give the heat trace and spectral dimension.

The eigenvectors eλ0
σ = (1, 1)/

√
2 and eλ1

σ = (Vb,−Va)/
√

2VaVb are normed to a constant
momentum basis measure of the inverse of the average volume per simplex

Vλ0 = Vλ1 = 2

V
, (C.2)

and it is easily checked that they are orthogonal. Then, the heat kernel coefficients are

Kσσ ′ (τ ) = 1

V

⎛⎝Va

(
1 + Vb

Va
e− V D

VaVb
τ
)

Va

(
1 − e− V D

VaVb
τ
)

Vb

(
1 − e− V D

VaVb
τ
)

Vb

(
1 + Va

Vb
e− V D

VaVb
τ
)⎞⎠ , (C.3)

and we can explicitly check that

Kσσ ′ (τ ) →
τ→∞

(
1

Va
0

0 1
Vb

)
(C.4)

and that its trace is just

P(τ ) = 1

V

(
1 + e− V D

VaVb
τ
)

. (C.5)

For example, in d = 2 using the edge-length variables {l12, l13, l23} and the barycentric
dual,

D = 3l12√
2
(
l2
13 + l2

23

)− l2
12

+ 3l23√
2
(
l2
12 + l2

13

)− l23

+ 3l13√
2l2

12 − l2
13 + 2l23

(C.6)

and the 2-volume is

Va = Vb = V

2
= 1

4

√
2l2

12

(
l2
23 + l2

13

)− l4
12 − (

l2
23 − l2

13

)2
. (C.7)

In the equilateral case l12 = l13 = l23 = l∗, this trivializes to D = 9 and Va = Vb = √
3/4.
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