JOURNAL OF ADVANCES IN MODELING EARTH SYSTEMS, VOL. 5, 173-194, d0i:10.1002/jame.20016, 2013

Arctic sea-ice evolution as modeled by Max Planck Institute for

Meteorology’s Earth system model'

Dirk Notz,! F. Alexander Haumann, "> Helmuth Haak,! Johann H. J ungclaus,1

and Jochem Marotzke'

Received 27 July 2012; revised 10 December 2012; accepted 8 January 2013; published 18 April 2013.

[1] We describe the evolution of Arctic sea ice as modeled by the Max Planck Institute
for Meteorology’s Earth System Model (MPI-ESM). The modeled spatial distribution
and interannual variability of the sea-ice cover agree well with satellite observations
and are improved relative to the model’s predecessor ECHAMS/MPIOM. An evalua-
tion of modeled sea-ice coverage based on sea-ice area gives, however, conflicting
results compared to an evaluation based on sea-ice extent and is additionally hindered
by uncertainties in the observational record. Simulated trends in sea-ice coverage for
the satellite period range from more strongly negative than observed to positive. The
observed evolution of Arctic sea ice is incompatible with modeled internal variability
and probably caused by external forcing. Simulated drift patterns agree well with
observations, but simulated drift speed is generally too high. Simulated sea-ice volume
agrees well with volume estimates of the PIOMAS reanalysis for the past few years.
However, a preceding Arctic wide decrease in sea-ice volume starts much earlier in
MPI-ESM than in PIOMAS. Analyzing this behavior in MPI-ESM’s ocean model
MPIOM, we find that the modeled volume trend depends crucially on the specific
choice of atmospheric reanalysis forcing, which casts some doubt on the reliability of
estimates of volume trends. In our CMIP5 scenario simulations, we find a substantial
delay in sea-ice response to increasing CO, concentration; a seasonally ice-free Arctic
can result for a CO, concentration of around 500 ppm. Simulated winter sea-ice cover-
age drops rapidly to near ice-free conditions once the mean Arctic winter temperature

exceeds —5°C.
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1. Introduction

[2] Being only a thin veneer between the ocean and
the atmosphere, the Earth’s sea-ice cover reacts rapidly
to changes in prevailing climate conditions. The
observed retreat of the Arctic sea-ice cover [Fetterer
et al., 2002, updated 2012] is therefore a good test bed
to examine the capability of modern Earth system mod-
els to simulate the sensitivity of certain components of
the climate system to changes in the external forcing.
To this purpose, we here document the Arctic sea-ice
simulations of the Max Planck Institute for Meteorol-
ogy’s Earth system model (MPI-ESM) that have been
carried out for the Climate Model Intercomparison
Project (CMIPS) [see Taylor et al., 2012]. In doing so,
we put special emphasis on a number of issues related
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to the quality of observations that are of general rele-
vance for any intercomparison between model and
observations related to Arctic sea ice.

[3] This contribution is part of a special issue of Jour-
nal of Advances in Modeling Earth Systems on the cli-
mate simulated by MPI-ESM. Of particular relevance
for researchers interested in sea ice are, in addition to
this rather focused contribution, the contributions that
describe the atmospheric model component ECHAMG6
[Stevens et al., 2013] the modeled climate variability
[Giorgetta et al., 2013], the tuning of MPI-ESM [Maur-
itsen et al., 2012], the impact of sea-ice melt ponds
[Roeckner et al., 2012], and the ocean model MPIOM
[Jungclaus et al., 2013].

[4] Despite the existence of these more detailed
descriptions of other components of MPI-ESM, we aim
for keeping the present paper sufficiently self-contained.
Therefore, in section 2 we briefly describe the model
components of MPI-ESM, with an obvious focus on
the sea-ice model component. We also discuss the
impact of resolution on our simulations and describe
the process of tuning the MPI-ESM sea-ice model.
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[5] We then move on to the major purpose of this
contribution, namely an assessment of the quality of
our sea-ice simulations relative to the observed evolu-
tion of the Earth’s sea-ice cover. Such assessment cru-
cially depends on reliable measurements of the time
evolution of the sea-ice cover. In section 3, we therefore
briefly discuss the quality of the data sets and reanalysis
data we used for the comparison of MPI-ESM model
results with observations.

[6] In section 4, we compare MPI-ESM simulations to
these data. To do so, we use the CMIPS5 historical simu-
lations [Taylor et al., 2012] that were carried out with
MPI-ESM. Three such historical simulations spanning
the period 1850-2005 were carried out with MPI-ESM.
All are based on identical model configurations but
slightly different initial conditions in 1850. This allows
us to examine the impact of internal variability on
the modeled time evolution of sea ice. In this section,
we focus on differences in sea-ice simulations with
MPI-ESM compared to this model’s predecessor
ECHAMS/MPIOM. The sea-ice simulations carried out
with ECHAMS/MPIOM for CMIP3 were analyzed in
detail by Koldunov et al. [2010], who found in particular
too large a simulated sea-ice cover in summer, and a lack
of variability on interannual time scales. As we will see
in section 4, both these aspects are much improved in
MPI-ESM, and the model does reasonably well in simu-
lating the observed evolution of the Arctic sea-ice cover.

[7] Because of this, we can assume that also the mod-
eled internal variability of the sea-ice cover is close to the
real internal variability. Based on this assumption, we
focus in section 5 on our preindustrial control simula-
tions to derive a range of Arctic sea-ice trends and
extreme values that can be caused by internal variability.
For these simulations, the external forcing was held con-
stant for 1000 years, and all variability in the modeled
sea-ice cover is caused by internal variability. We use the
derived estimates of internal variability to examine the
chances that the observed sea-ice evolution could simply
have happened because of internal variability.

[8] In section 6, we examine the modeled sea-ice cover
in our CMIP5-scenario simulations. For the period
2005-2100, three simulations were carried out for each
of the representative concentration pathways (RCP)
RCP2.6, RCP4.5, and RCP8.5 [Meinshausen et al.,
2011]. These were extended with a single simulation
each until the year 2300. The numbers specifying the
various RCP’s indicate the additional forcing (in W/m?)
that is caused by increasing greenhouse gas emissions in
that particular scenario until the end of this century.
We focus in section 6 on the response of the summer
and the winter sea-ice cover to increasing CO, concen-
trations and to changes in the Arctic surface tempera-
ture in these scenarios. The paper closes with a short
concluding section.

2. Sea-Ice Component of MPI-ESM

2.1. Model Description

[s] The climate system is simulated in MPI-ESM by
the atmospheric model component ECHAMG6 [Stevens

et al., 2013] and the oceanic model component MPIOM
[Marsland et al., 2003; Jungclaus et al., 2013]. MPI-ESM
also includes model components simulating the ocean
biogeochemistry (HAMOCCS) [ Maier-Reimer, 1993] and
land-surface processes (JSBACH) [Reick et al., 2013].

[10] Sea ice is represented as part of this model system
both within ECHAMG6 and within MPIOM. As described
in more detail below, the purpose of the sea-ice submodel
within ECHAMG is solely to provide at each atmospheric
time-step surface temperature and albedo consistent with
the evolution of the atmospheric state. The update of ice
thickness and sea-ice dynamics are carried out within the
“full” sea-ice submodel that forms part of our ocean
model MPIOM.

[11] This “full” sea-ice submodel within MPIOM con-
sists of a thermodynamic-dynamic sea-ice model that is
barely changed with respect to MPI-ESM’s predecessor
ECHAMS/MPIOM that was used for CMIP3 [Meeh!
et al., 2007]. The simulation of sea-ice dynamics within
MPIOM is based on a viscous-plastic rheology [Hibler,
1979]. The thermodynamics of sea ice in MPIOM are
represented by a simple zero-layer model [Semtner,
1976]. As such, the sea ice has no heat capacity, which
might influence the modeled seasonal cycle of sea-ice
growth and decay [Semtner, 1984]. At the ice surface,
the sea-ice temperature is calculated from a flux balance
between conductive heat through the ice, outgoing
longwave radiation, and incoming atmospheric fluxes
as supplied to the ocean model through the model cou-
pler OASIS3 [Valcke et al., 2012]. If the surface temper-
ature calculated in such way would exceed 0°C, the
excess energy is used to melt sea ice. The melt water is
directly transferred into the uppermost ocean grid cell.
The impact of snow accumulation is represented
according to the changes in overall heat transfer
through the ice and snow, and snow ice is formed when-
ever the ice’s freeboard becomes negative. Changes in
ice thickness at the bottom of the ice are calculated
from a balance of conductive heat flux through the ice
and the oceanic heat flux. The latter is based on a sim-
ple “ice-bath” assumption [Schmidt et al., 2004] in that
the uppermost oceanic grid cell is kept at the freezing
temperature whenever there is any sea ice present within
that oceanic grid cell. Any excess heat content is used to
melt the ice at its bottom. Compared to more realistic
parameterizations, this very simplified representation of
ice-ocean heat exchange overestimates the amount of
oceanic heat that can be used to melt sea ice from below
[Notz et al., 2003; Schmidt et al., 2004].

[12] MPIOM does not allow for a subgrid scale distri-
bution of ice thickness. Each grid cell is covered by a cer-
tain fraction 4 of open water and a fraction 1 — 4 of sea
ice of thickness /. The standard output of ice thickness
from MPI-ESM is V/area, where V' is the total volume of
sea ice within a certain grid cell and area is that grid cell’s
area. Hence, the standard output of ice thickness is the
mean thickness that sea ice would have if it maintained
its volume but covered the entire grid cell. The salinity of
any sea ice that forms in MPI-ESM is set to a constant
value of 5 g/kg, with all excess salt being retained by the
underlying ocean. In terms of its thermodynamics, our
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sea-ice model is certainly not state of the art as described
by Hunke et al. [2010, 2011]. As such, our simulations
allow us to estimate how well a sea-ice cover can be
simulated with a very simplified representation of the
underlying physics. We are currently improving our sea-
ice model and hope to have a more up-to-date version
available for the next version of MPI-ESM.

[13] The sea-ice state in the atmospheric model com-
ponent ECHAMG is primarily used to provide a lower
boundary condition for surface fluxes to the atmos-
phere and to accumulate atmospheric fluxes to be
passed on to the full sea-ice model within MPIOM at
each coupling time step (every 24 h). As such, the sea-
ice state in ECHAMG6 primarily aims at a proper repre-
sentation of the surface characteristics of the ice, which
are updated at each atmospheric time step (600 s for
the low resolution (LR) model version MPI-ESM-LR,
450 s for the mixed resolution (MR) model version
MPI-ESM-MR). This sea-ice model within ECHAMG6
consists of a simple zero-layer model of sea ice, whose
thickness is not changed until a new thickness is being
provided from the oceanic sea-ice model at each cou-
pling time step. The sea-ice model in ECHAMG6 calcu-
lates the sea-ice surface temperature based on the
incoming atmospheric fluxes, surface albedo, the con-
ductive heat flux through snow and ice, and outgoing
longwave radiation. During melting, as a major change
in the sea-ice model compared to ECHAMS, the surface
albedo is calculated as the weighted average of bare sea
ice, snow, and melt ponds within a certain grid cell
according to the melt-pond scheme described by Peder-
sen et al. [2009]. This scheme also provides for different
conductive heat fluxes of bare ice and melt-pond cov-
ered ice, and for runoff of melt-pond water, but these
two processes were accidentally not considered in our
CMIPS5 simulations. Including them, however, only
leads to rather small changes in the modeled sea-ice
state [Roeckner et al., 2012].

[14] Compared to the previous model version
ECHAMS/MPIOM, the change in the representation of
sea-ice albedo introduced by the melt-pond scheme was
the major change in our sea-ice model. MPIOM
remained almost unchanged, with only some slight
adjustments, such as the zenith dependence of the albedo
of open water. Hence, major differences in model code
between MPI-ESM and ECHAMS/MPIOM only exist
in the atmospheric model component, with a shift from
ECHAMS to ECHAMG [Stevens et al., 2013]. Changes
in ECHAMG relative to ECHAMS concern primarily
the representation of shortwave radiation, a revision of
cloud optical properties, changes in the representation of
convective clouds, and the fact that the standard model
version now includes a representation of the middle
atmosphere and of land-surface processes.

2.2. Resolution

[15] For CMIPS5, MPI-ESM was set up to run at two
different resolutions. The low-resolution version (MPI-
ESM-LR) uses the atmospheric model ECHAMG6 at a
T63 (1.875°) horizontal resolution with 47 vertical levels
reaching up to 0.1 hPa. For comparison, our CMIP3

standard setup with ECHAMS was also based on T63,
but with only 31 vertical levels reaching up to 10 hPa.
For the ocean, MPI-ESM-LR is based on the same
model configuration as our standard CMIP3 model ver-
sion, with a bipolar grid at a horizontal resolution of
about 1.5° and 40 vertical levels. The two poles of this
setup are placed in the Antarctic and in Greenland,
allowing for a resolution of about 20 km in the Fram-
Strait region. For the mixed-resolution model version
MPI-ESM-MR, the vertical resolution of the atmosphere
is increased to 95 levels, leaving the horizontal resolution
at T63. For the ocean, the vertical resolution remains at
40 levels, but the horizontal grid is changed to a tripolar
setup with a resolution of 0.4°. Hence, in the ocean this
model version is eddy permitting [Jungclaus et al., 2013].
The three poles of the tripolar oceanic grid are placed in
Canada, in Siberia, and in the Antarctic. Compared to
the low-resolution model version, the mixed-resolution
setup has somewhat lower resolution in the deep-water
formation regions around Greenland and around Ant-
arctica, but higher resolution almost everywhere else.

[16] The change in resolution has only rather minor
effects on the simulated sea-ice cover. In our 1000-year
long preindustrial control simulation, the MR setup
results in slightly more wintertime sea ice around Sval-
bard than the LR setup. In contrast, there is somewhat
less ice in the MR setup in the Sea of Okhotsk, south of
the Bering Strait and in the Labrador Sea. These differ-
ences are also reflected by the surface air temperature.
In general, the MR simulations are in winter about
0.5°C warmer over the Arctic Ocean than the LR simu-
lations. However, in the Sea of Okhotsk and in the Lab-
rador Sea, the MR-control simulation shows in March
about 3°C higher air temperatures, whereas it is slightly
colder around Svalbard. Regarding the simulated ice
thickness, the differences between the two resolutions
are quite randomly distributed with a total magnitude
of usually less than 10 cm. The most significant
differences occur in all seasons within the Canadian
Archipelago, where MPI-ESM-MR simulates about
50 cm thinner ice than MPI-ESM-LR.

[17] As we will see later, the regional differences in
ice-thickness distribution between the LR and the MR
simulation do not cause any large differences in the
simulated time evolution of total sea-ice coverage and
total sea-ice volume. For example, the March sea-ice
area in our control simulation is 14.0 million km?
MPI-ESM-MR compared to 14.4 million km? in
MPI-ESM-LR. These differences arise primarily
because of the lower ice concentration in the Sea of
Okhotsk in MPI-ESM-MR. The differences in other
seasons are similarly small, as are the differences in
modeled sea-ice volume (compare also Table 1). Since
in this paper we focus mostly on the large-scale features
of our simulations, we will in the following primarily
describe our LR simulations, for which we have more
ensemble members. This allows for improved statistics
of our analysis. To reflect the similarities between
MPI-ESM-LR and MPI-ESM-MR also in the text, we
will simply refer to MPI-ESM whenever a certain state-
ment refers to both model versions.
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Table 1. Overview of March and September Values for Sea-Ice Area, Extent, and Volume®

March September
Area Extent Volume Area Extent Volume

Data Set Time period Mean Trend Mean Trend Mean Trend Mean Trend Mean Trend Mean Trend
Bootstrap 1979-2007 1459 —0.40 1579 —0.42 6.14 —-0.70 7.12 -0.71

Sea-ice index 1979-2007 13.67 —0.34 1558 —0.47 505 —0.65 6.74 —0.72

PIOMAS 1979-2007 28.14 —2.26 1291 -2.52
MPI-ESM-LR-1 1979-2007 1321 —0.21 14.64 -0.26 2352 —128 494 —040 6.66 —-045 7.69 —1.21
MPI-ESM-LR-2 1979-2007 13.14 —0.26 14.52 -0.30 23.64 -0.34 507 0.03  6.80 0.09 8.00 -—0.23
MPI-ESM-LR-3 1979-2007 13.13  —0.37 1450 -—048 2287 -—128 479 -037 655 —-037 688 —1.25
MPI-ESM-LR-ens 1979-2007 13.16 —0.28 14.55 —0.35 2334 -097 493 -025 667 —-024 7.52 -0.90
MPI-ESM-MR-ens 1979-2005 13.09 —0.41 1448 —-048 2371 —-1.64 488 —046 657 -0.52 7.67 —144
ECHAMS/MPIOM-1 1979-2007 1347 —-0.10 14.87 -0.10 37.61 —-1.78 6.69 —026 8.62 —0.23 2296 -—221
ECHAMS5/MPIOM-2 1979-2007 13.60 —0.25 1504 -0.28 3780 —1.17 674 —-022 866 —026 2313 —1.14
ECHAMS5/MPIOM-3 1979-2007 1326 —0.32 14.60 —0.34 3559 -323 655 -038 856 —035 21.02 -3.13
ECHAMS5/MPIOM-ens  1979-2007 1344 —0.22 1484 -0.24 37.00 -2.06 6.66 —028 861 —028 2237 =216
NCEP-forced MPIOM  1979-2007 1353 —0.34 1490 -0.35 34.02 -2.78 625 —-044 793 —040 16.50 —2.52
ERA-forced MPIOM 1979-2007 1390 —044 1519 -—047 2521 -—-2.06 498 -049 665 —-057 7.18 —1.59
MPI-ESM-LR 1000 years pi ~ 14.39  —0.00 1599 -0.00 29.21 -0.01 6.07 —0.00 7.87 —0.00 12.65 —0.01
MPI-ESM-MR 1000 years pi  13.96 —0.00 15.50 —0.00 28.06 0.05 5.81 0.00 7.57 0.00 13.19 —0.05
ECHAMS/MPIOM 500 yearspi  13.50 —0.00 1490 —0.00 3428 —0.00 6.35 0.00 8.36 0.00 19.17 —0.01

“Bootstrap” refers to the sea-ice concentration derived using the Bootstrap algorithm [Comiiso, 1986]. The NSIDC “sea-ice index” [Fetterer
et al., 2002, updated 2012] is based on the NASA Team algorithm [Cavalieri et al., 1984]. The third row is based on sea-ice volume reanalysis by
PIOMAS [Zhang and Rothrock, 2003]. All other rows are model-output based. For MPI-ESM-LR and ECHAMS5/MPIOM, the individual values
of all three ensemble members (denoted —1, —2, —3) are shown, as is the ensemble mean (denoted -ens). The last three lines show data from
model simulations with constant, preindustrial forcing. Units are million km? for area and extent mean, million km?/decade for area and extent

trend, 1000 km? for volume and 1000 km?/decade for volume trend.

2.3. Tuning

[18] Many of the characteristic length scales of sea ice
are far too small to be resolved by current ESMs, and
many of the parameters that are needed to represent the
subgrid-scale properties of sea ice are too poorly known
and too variable to allow for their direct implementa-
tion into a numerical model. For example, the distribu-
tion of melt ponds on top of the sea-ice cover during
summertime is random, with individual ponds having a
size of about 1 m. The interplay between these ponds
and the underlying sea ice crucially governs the decay of
the summer sea-ice cover, primarily through its impact
on the ice albedo. MPI-ESM uses a rather sophisticated
scheme to represent these interactions [Roeckner et al.,
2012]. In this scheme, the albedo of melt ponds, snow,
and bare ice are set to observed values for the different
surface types. The albedo of sea ice in a certain grid box
is then given as the weighted average of the albedo of the
individual surface categories (for details, see Pedersen
et al. [2009] and Roeckner et al. [2012]).

[19] Because of the improved subgrid scale represen-
tation of surface albedo, we no longer use this parame-
ter to tune our model. Instead, all tuning of our sea-ice
model occurs via a parameter that aims at emulating a
subgrid scale distribution of ice thickness. In reality, on
the scale typical for ESM grid cells, ice floes of very dif-
ferent thicknesses are usually present within the ice
cover. This fact is represented in modern sea-ice models
by use of a statistical representation of the ice-thickness
distribution, with typically 5-10 different ice-thickness

classes present within an individual grid cell. In con-
trast, MPI-ESM currently only allows for a single ice
thickness within a certain grid cell. Given that this is a
very simplified representation of reality, parameters to
describe the evolution of the distribution of that single
ice thickness class cannot readily be derived from obser-
vations. Hence, tuning is required to achieve results
from the sea-ice model that agree reasonably well with
observations. A short description of this tuning of our
sea-ice model is provided by Mauritsen et al. [2012],
who discuss in detail the procedure of tuning MPI-
ESM. Here, we will give some additional details of the
specific tuning of our sea-ice model.

[20] The MPI-ESM sea-ice model contains two main
parameters that we use to tune the overall mean state of
the sea-ice cover. One of these parameters describes the
change in ice-thickness distribution during freezing, and
the other parameter describes the change in ice-thick-
ness distribution during melting. The impact of these
two parameters can readily be understood as follows:
At every time step, the sea-ice cover within a grid cell of
MPI-ESM is fully described by the fraction A of that
grid cell that is covered with ice, and the thickness of
the ice within that ice-covered fraction, /igjgice. The first
tuning parameter of the sea-ice thickness distribution
describes how quickly the fraction (1 — A) of open water
shrinks during the formation of new ice [e.g., Hibler,
1979]. If new ice of thickness /i,ewice 1S formed within a
certain grid cell, this new ice does not immediately cover
the entire open-water fraction of that grid cell. Instead,
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it is redistributed to have a thickness /1y > lpewice » Which
allows one to calculate the change in open-water area as

A=) =(1-4) i (1)

[21] Given that in MPI-ESM onl}(/) one ice thickness
can be present within an individual grid cell, for the
next time step the mean thickness of the old ice becomes
the weighted average of the existing old ice and
the redistributed new ice. From equation (1) it follows
that for a constant ice-formation rate in open water
Nnewice /AL, where At is the model time step, the open-
water area decreases exponentially in time with a decay
rate of —A? - hyewice /0. Hence, for large ho, the open-
water fraction decreases only relatively slowly, which
results in a larger heat exchange between ocean and
atmosphere and correspondingly larger ice-formation
rates. In MPI-ESM, /4 is formulated as

ho =0.5m + Crreege (holdice —-0.5 m)

[22] Here, cpecse 1S @ tuning parameter with values
between zero and one. For ¢qeere = 0, the value for A
becomes 0.5 m, as suggested by Hibler [1979]. For
Cireeze = 1, the new ice is redistributed to the same thick-
ness as the existing ice in that grid cell, as suggested by
Parkinson and Washington [1979]. If hggice < 0.5 m,
always the value 5y = 0.5 m is used within MPI-ESM.
For CMIPS simulations, we used Cpeeze = 2/3. Decreas-
INg Cpreeze to the original Hibler [1979] value of zero
results in overall less sea ice, with the annual mean
volume being reduced from around 22,000 km?® to
around 16,000 km® (compare with Mauritsen et al.,
2012, Figure 5a]). An increase of ¢feeze to 0.99 and hence
a corresponding increase of /iy to almost /gg;c. leads to
an increase in sea-ice volume to an annual mean of
around 25,000 km®. Despite such rather large change in
sea-ice volume, the corresponding sea-ice area changes
only little: ¢peere = 0 results in an annual mean Arctic
sea-ice area of 10.1 million km?, very close to the annual
mean of just below 10.4 million km? in our standard
control simulation. Increasing cpee,e to 0.99 slightly
increases the simulated Arctic mean area to just above
10.4 million km?. Hence, while we can tune the overall
sea-ice volume in our sea-ice model using Ceeze, Such
tuning has little effect on the simulated preindustrial
control values of sea-ice area and sea-ice extent.

[23] The second parameter that is used to tune the
opening or closing of open water within MPI-ESM is
only active during melting conditions. This parameter,
denoted as ¢y, describes how fast the ice-covered area
A decreases if an ice volume AV gice melts within a
certain grid cell. It is applied according to

A Voldice

AA = Cmelt X
Voldice

[24] The new ice thickness is then given as

h _ Voldice —-A Voldice
oldice — W

[25s] For a larger value of ¢, the ice-covered area
decreases relatively quickly while the ice thickness
decreases only slowly and vice versa. The value of ¢
has very little impact on the modeled sea-ice volume. It
does, however, influence the modeled sea-ice area, in par-
ticular, during summer. Here, a value of ¢, = 0.5, which
is twice our standard value of ¢, = 0.25, increases the
modeled September Arctic sea-ice area during the first 50
years of our control run from 5.9 to 6.3 million km’.
Decreasing ¢;ep¢ to 0.125 results in a mean September sea-
ice area of around 5.1 million km?. Absolute changes are
smaller in all other months, being almost zero in winter.

[26] As outlined above, the two single parameters
Cmelt ANd Crreeze that we use to tune our sea-ice simula-
tions act exclusively to differentiate melting and freez-
ing processes between their lateral and their vertical
impact. Because MPI-ESM only represents a single ice
thickness within any particular grid cell, these parame-
ters can only be found ad hoc as part of our tuning pro-
cess. In models that employ a subgrid scale ice-
thickness distribution, a similar tuning process needs to
be carried out to differentiate between lateral and verti-
cal growth and melt. The impact of such tuning in these
models will, however, be less pronounced than in our
simplified scheme. This can be readily understood as
follows: In reality, sea-ice concentration changes in part
by lateral melting or freezing, more efficiently, however,
by the complete melting or the formation of very thin
ice in a particular region. The latter process is explicitly
represented in models that employ an ice-thickness dis-
tribution, whereas in MPI-ESM both processes must be
parameterized in an ad hoc way by means of ¢, and
Crreere- We therefore expect a smaller bandwidth of pos-
sible sea-ice states that can be achieved by tuning these
parameters in a model employing a subgrid scale ice-
thickness distribution.

[27] Given the expense of running the fully coupled
ESM, we only tuned the mean state of the sea-ice com-
ponent. Our aim was to achieve a ]Soreindustrial Arctic
sea-ice volume of about 20X 10° km®. We are unable to
tune for the observed seasonal cycle or trends of the
sea-ice cover, of drift patterns, the length of the melt
period, and other such variables. Hence, we can use these
variables to evaluate MPI-ESM. Before carrying out
such model evaluation in section 4, we need to briefly
introduce the various sources of observational and
reanalysis data that we use to represent reality for such
comparison. This we will do in the following section.

3. Observational and Reanalysis Data

[28] One of the major purposes of any Earth system
model is to realistically represent the real climate of our
Earth. Only if the model is capable of such realistic
representation, its results can be related to the real evolu-
tion of the Earth’s climate. Unfortunately, it is impossi-
ble to directly compare the output of any climate model
to reality, but we can carry out a comparison to certain
measurements that we trust to be close to reality. This
fine difference is sometimes neglected, which can lead to
misleading results concerning the reliability of models.

177



NOTZ ET AL.: ARCTIC SEA ICE IN MPI-ESM
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centration) of the NASA Team and Bootstrap algorithms, respectively. Time evolution of (c) March and (d) Sep-

tember area and extent from 1979 until 2010.

[29] We can easily clarify this point by first focusing
on measurements of sea-ice concentration from satel-
lites. The standard satellites used for such purpose do
not measure sea-ice concentration directly, but the pas-
sive microwaves that are emitted from the Earth’s sur-
face. A number of algorithms have been developed to
determine the sea-ice concentration based on the
observed brightness temperature, with the NASA Team
algorithm [Cavalieri et al., 1984] and the Bootstrap
algorithm [Comiso, 1986] being the most widely used.
These provide daily estimates of sea-ice concentration
with a resolution of approximately 25 X 25 km? The
Bootstrap algorithm generally results in a higher con-
centration estimate around the ice edge in winter and
all over the Arctic in summer (Figure 1, cf. Comiso et al.
[1997]). During the period 1979-2007, the area-
weighted mean absolute difference in concentration
between the two algorithms averaged over the entire ice
cover is around 6% in March and around 12% in Sep-
tember. Locally, the Bootstrap algorithm can result in
more than 30 concentration-percent higher sea-ice con-
centration than the NASA Team algorithm all year
round. These differences result in the estimate of sea-ice
area to be roughly 1 million km? larger based on the
Bootstrap algorithm compared to that of the NASA
Team algorithm (Figure 1c). The differences in extent
are much smaller, since for the extent, all measurement
grid cells with an ice concentration larger than 15% are
counted as being ice covered. Hence, differences
between the two algorithms at sea-ice concentration
higher than this threshold vanish for the calculation of
sea-ice extent.

[30] Given that both algorithms were developed to
best represent the “real” state of the Arctic sea-ice
cover, the rather high differences between the resulting
sea-ice concentration can be considered as the upper
bound on any reliable comparison between models and
observations. Great care must therefore be taken when

comparing model results to the “observed” sea-ice con-
centration based on just a single algorithm. For the pur-
pose of our paper, we will take the following pragmatic
approach. Whenever we want to compare the spatial
distribution of model results to observations, we use the
National Oceanic and Atmospheric Administration
(NOAA)/National Snow and Ice Data Center (NSIDC)
Climate Data Record of Passive Microwave Sea Ice
Concentration (CDR) [Meier et al., 2011). This record
was compiled from a merging of the Bootstrap and the
NASA Team algorithms to provide a consistent time se-
ries of sea-ice concentration from 1987 to 2007 based
on microwave measurements by the Special sensor
microwave/imager (SSMI) satellite. Given that both
original algorithms tend to underestimate sea-ice con-
centration, the merging was carried out by always
including the larger value of the two algorithms into the
final data set. This causes the CDR to be in all its char-
acteristics very close to those of the Bootstrap algo-
rithm. Prior to 1987, the CDR is extended back to 1979
by also including data obtained from the SMMR satel-
lite. Overall, the CDR hence spans the period 1979-
2007, which we will therefore use as our reference pe-
riod for any comparison between models and data
throughout this paper.

[31] For analyzing the time evolution of sea-ice area
and extent, often the NSIDC sea-ice index [Fetterer
et al., 2002, updated 2012) is used, which provides a
time series of these two quantities from 1979 until
today. This index is primarily based on the NASA
Team algorithm, and hence can probably be considered
a very conservative lower bound on the real sea-ice
extent and area (Figure 1c). Given the widespread use
of this index for time-series analysis of sea-ice evolution,
we also compare time series of MPI-ESM output to this
record, sometimes extended back to 1953 following the
procedure described by Meier et al. [2012]. We will,
however, always also discuss a comparison between
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model output and sea-ice area and extent as obtained
from the Bootstrap algorithm, which gives almost iden-
tical results as calculating area and extent based on the
CDR. Because of this similarity to the CDR record, we
take observational estimates based on the Bootstrap
algorithm to be more reliable than those based on the
NASA Team algorithm. We made sure that no artifacts
arise from the different grids of MPI-ESM simulations
and the observational record by interpolating the obser-
vational grid to MPI-ESM grid. Using nearest-neighbor
interpolation, we find almost no change in the resulting
sea-ice area and sea-ice extent. Note that a bilinear or
bicubic interpolation of the observation grid to the
model grid results in about 10% smaller estimated sea-
ice area and extent, while a distance-weighted average
remapping results in a roughly 10% overestimate of
both parameters.

[32] For a comparison of our simulated sea-ice drift
against observations, we use polar pathfinder daily 25
km EASE-grid sea ice motion vectors from 1979 to
2005 [Fowler, 2003, updated 2011], interpolated by a
nearest-neighbor technique to the model grid. These
observations are primarily based on tracking the move-
ment of sea-ice patterns from one satellite-based esti-
mate of sea-ice concentration to the next. In addition,
buoy data have been used to complement the satellite-
derived estimates. Biases in this data set are particularly
large (and negative) in areas of low ice concentration
and in areas of high drift velocity [Kwok et al., 1998;
Schwegmann et al., 2011]. Examining the drift velocities
in the Weddell sea, Schwegmann et al. [2011] find an
overestimate of satellite-derived estimates of between
30% and 40%. Drift patterns and directions are, how-
ever, generally well represented. In the central Arctic,
Kwok et al. [1998] find that the Polar Pathfinder data
set realistically represents in situ measurements of the
large-scale drift patters.

[33] While observation-based estimates of sea-ice con-
centration and sea-ice drift exist from 1979 onwards, no
such observation-based time series exists for sea-ice
thickness estimates. We therefore focus our comparison
on the Pan-Arctic Ice-Ocean Modeling and Assimila-
tion System (PIOMAS) [Zhang and Rothrock, 2003]
reanalysis of ice thickness from 1979 until today. This
system is based on a coupled sea-ice ocean model that is
driven by NCEP/NCAR atmospheric reanalysis data
(see next paragraph). Additionally, sea-ice concentra-
tion based on the NASA Team algorithm and sea-
surface temperature as provided by the NCEP/NCAR
reanalysis are assimilated into the model. Estimates
from sea-ice thickness from PIOMAS agree well with
satellite-derived estimates of sea-ice thickness for the
past decade [Schweiger et al., 2011]. For earlier decades,
sporadic comparisons with field measurements also show
reasonable agreement with PIOMAS estimates, though
spatial data coverage for such comparison is rather low.

[34] Most of the analysis presented here is based on
the fully coupled setup MPI-ESM. Such setup is funda-
mentally incapable of simulating the correct timing of
observed fluctuations in the sea-ice cover caused by
internal variability of the Earth’s climate system. To

estimate how much of an impact this has on the simu-
lated sea-ice cover, we also carried out simulations with
our standalone ocean model MPIOM. For these simu-
lations, the ocean was forced by atmospheric fields
provided by either the NCEP/NCAR reanalysis [Kalnay
et al., 1996] or by the ERA-Interim reanalysis [Simmons
et al., 2007]. For the latter, the sea-ice concentration
field that is used for the reanalysis is provided by
ECMWEF. Comparing these original ERA-Interim
fields of sea-ice concentration with the directly satellite-
derived data discussed above, we find that the ERA-
Interim ice-concentration fields are in between those
provided by the NASA Team algorithm and that of the
Bootstrap algorithm.

[35] In the next section, we will discuss how the repre-
sentation of reality that is provided by these various
data products during the past few decades compares
with the MPI-ESM CMIPS5 simulations.

4. Evaluating the Model: The MPI-ESM
Historical Simulations

[36] In order for the results of any climate model to
be of relevance for the real world, we must at least show
that such climate model is capable of representing the
known conditions of today’s climate. Of particular
relevance in this respect is a realistic modeling of the
variability of a climate variable’s state around some
long-term trend, and a realistic modeling of the sea-
sonal cycle. Such assessment allows one to estimate the
model’s skill to realistically simulate the response of a
climate variable to changes in the forcing. Such com-
parison between the observed and the modeled state of
the Arctic sea-ice cover will be the topic of this section.
For this comparison, we focus on the “historical” simu-
lations [Taylor et al., 2012] of MPI-ESM-LR, which
cover the period for which sea-ice observations are
available. Since the historical simulations only run up
to the year 2005, here we extend them to the year 2007
by including the first 2 years of our scenario simula-
tions. Between 2005 and 2007, all scenario simulations
are very similar, and we decided to use the RCP4.5 sce-
nario simulations to extend the historical simulations.
For simplicity, we will in the following apply the term
“historical simulation” to this extended simulation.
We will also use this term to refer to the 20th century
simulations of our CMIP3 contribution based on
ECHAMS/MPIOM, extending that simulation to the
year 2007 by adding the first years of the CMIP3-A1B
scenario simulations.

[371 We start with the de facto standard test on any
large-scale sea-ice simulation, namely a comparison of
observed and modeled evolution of sea-ice extent.
Focusing first on the differences between our three
ensemble members, we find that they lie close together
throughout the 20th century (Figure 2). The root-mean-
square difference in simulated sea-ice extent between
two ensemble members varies from around 0.45x10°
km? in June, November, and December to around
0.65x10° km” in February, March, April, and Septem-
ber, with intermediate values in the other months.
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Figure 2. Time evolution from 1900 to 2020 of Arctic
sea-ice extent in March and September. The colored
lines show individual ensemble members of MPI-ESM
simulations, the bold black line shows observations of
sea-ice extent from 1953 until 2012 following Meier
et al. [2012].

Sea-ice extent [million
4]

1960 1980 2000

Year

2020

Repeating such analysis for our RCP45 scenario simu-
lations throughout the 21st century, the difference
between individual ensemble members increases in
particular in summer, reaching values of more than
1.0x10° km? from August to October. This is indicative
of a loss of predictability and an increase in interannual
variability in summer sea-ice extent throughout the 21st
century [cf., Notz, 2009; Goosse et al., 2009; Holland
et al., 2011]. Such increase in interannual variability is
also directly seen within the individual ensemble mem-
bers. There, year-to-year differences in sea-ice extent
are normally distributed with a standard deviation of
between 0.4 and 0.5 X 10° km? all year round through-
out the 20th century. In the 21st century, the standard
deviation decreases to around 0.3 from January to
May, but increases to values between 0.7 and 0.9 X 10°
km~ from August to October.

[38] Compared to observations, we find that during
the period 1953-2012 MPI-ESM simulates too little ice
in winter, with a root-mean-square error in simulated
March sea-ice extent of 1.2 X 10° km?, 1.3 X 10° km?,
and 1.4 X 10° km? for our three ensemble members.
The summer-time difference between simulations and
observations is close to the simulated difference
between individual ensemble members and amounts in
September to 0.7 X 10° km?, 0.9 X 10° km?, and 0.7 X
10° km? for our three ensemble members. Note, in par-
ticular, that the simulated sea-ice evolution of ensemble
member 1 is similar to the observed evolution up to the
year 2012 observational estimate of summer sea-ice
extent. While such comparison of observed and simu-
lated sea-ice extent has become the de-facto standard in
assessing the quality of large-scale sea-ice simulations,
we will see later that there are significant issues with fo-
cusing on this particular variable.

[39] We therefore now turn to the more meaningful
assessment of the spatial distribution of sea-ice concen-

tration. In wintertime, the comparison of MPI-ESM
model simulations (Figure 3a) with any of the two satel-
lite records NSIDC-CDR (Figures 3b and 3c) and
NSIDC-NASA Team (not shown) gives consistent
results: The large-scale features of the observed spatial
distribution of Arctic sea ice are well simulated, with a
mean absolute deviation of around 8 % in sea-ice con-
centration compared to both algorithms. Regionally,
MPI-ESM simulates too low a sea-ice concentration in
the Sea of Okhotsk, East of Greenland in the Odden ice
tongue, in the Barents Sea, and in the Labrador Sea
(Figure 3c). South of the Bering Strait, the model shows
too high a sea-ice concentration. The same results hold
qualitatively and quantitatively also for the ECHAMYS/
MPIOM simulations (Figure 3d). The reanalysis-forced
simulations (Figures 3e and 3f) result in a slightly
smaller mean absolute deviation of around 5% in sea-
ice concentration compared to the satellite data. Both
reanalysis-driven simulations result in too much ice
around Greenland and too little ice in the Bering Strait
and in the Sea of Okhotsk. For the latter, agreement
between observations and model is however much
improved for the ERA-Interim forced simulation com-
pared to all other simulations (Figure 3f).

[40] In summertime, the MPI-ESM simulations show
generally smaller biases in concentration than the
ECHAMS/MPIOM simulations (Figure 4). The value
of the mean bias relative to concentration depends,
however, on the reference observational data set: Rela-
tive to the ice-concentration distribution provided by
the NASA Team algorithm, the mean absolute concen-
tration bias of MPI-ESM is less than 10%, while the
bias is about 14% relative to the Bootstrap algorithm.
Concentration biases in the historical simulations of
ECHAMS/MPIOM exceed on average 16% compared
to both algorithms. Regionally, the improvement in
MPI-ESM relative to ECHAMS/MPIOM is primarily
caused by the improved representation of sea ice close
to Siberian and North-American shore lines. Here,
ECHAMS/MPIOM simulated too much sea ice, with
an absolute concentration bias exceeding 50% com-
pared to observations. The largest biases in the MPI-
ESM simulations compared to observations are around
20% in limited regions of the Kara Sea, North of Green-
land, and in the Canadian Archipelago, where simula-
tions show too little ice, and in parts of the Laptev Sea,
where simulations show too much ice.

[41] Our reanalysis simulations show a rather peculiar
behavior in terms of their regional biases (Figures 4e
and 4f): While the spatial patterns and biases in the
NCEP-forced simulation are very similar to those of the
ECHAMS/MPIOM simulations, the spatial patterns
and biases of the ERA-Interim-forced simulation are
very similar to those of MPI-ESM. This allows us to
draw conclusions regarding the overall quality of these
two reanalysis data sets for the Arctic during the past
30 years: Since the overall ice cover in summertime is an
integrative response to the combined forcing of wind,
temperature, humidity, precipitation, and radiation, the
comparably poor spatial distribution of the sea-ice
cover resulting from NCEP-forcing makes it very likely
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Figure 3. Mean sea-ice concentration in March for the period 1979 to 2007. (a) MPI-ESM-LR; (b) NSIDC-CDR
satellite observations; (c) difference between MPI-ESM-LR and NSIDC-CDR; (d) difference between ECHAMS/
MPIOM and NSIDC-CDR; (e) difference between NCEP-forced MPIOM and NSIDC-CDR; and (f) difference
between ERA-INTERIM-forced MPIOM and NSIDC-CDR. The green contour line denotes the NSIDC-CDR

ice edge and the black one the respective modeled ice edge.

that the overall climate state of the Arctic is better
described by the ER A-Interim reanalysis.

[42] Moving now from such first assessment of the re-
gional distribution of sea-ice concentration to a quanti-
tative comparison of observed and modeled estimates
of sea-ice area and sea-ice extent, an issue arises that
gives rise to some concern regarding any study compar-
ing modeled and observed sea-ice coverage. Usually,
such comparisons are based on sea-ice extent because of
the smaller observational uncertainty in this quantity
(Figure 1). Climatically, sea-ice extent is, however,
much less relevant than the sea-ice area that determines,
for example, the ice-ocean heat exchange or albedo
changes. Comparisons of sea-ice extent are therefore
only a substitute for comparisons of sea-ice area (or
sea-ice concentration). This differentiation between sea-
ice area and sea-ice extent would not matter for inter-
comparisons between models and observations if both
metrics would result in the same result regarding a mod-
el’s quality. We find, however, that this is not the case:
there is sometimes good agreement between one of our

simulations and observations in sea-ice area with far
less good agreement in sea-ice extent and vice versa.

[43] This becomes obvious when we examine the sea-
sonal cycle of sea-ice area and extent. Focusing first on
extent, we find good agreement between the MPI-ESM
simulated seasonal cycle and the observed seasonal
cycle from both satellite products (Figure 5a). In partic-
ular in summertime, there is almost perfect agreement
with observations, while there is slightly too little ice in
MPI-ESM in wintertime. In contrast, the comparably
poor performance in summertime regarding sea-ice
extent of both the ECHAMS/MPIOM simulations and
the NCEP-forced simulations stand out. In particular,
the poor performance of our ocean model MPIOM if
driven by NCEP reanalysis is notable, since MPIOM
driven by ERA-Interim reanalysis results in a good
agreement of the modeled ice extent with observations.

[44] Examining now the climatically relevant seasonal
cycle of sea-ice area, we find a very different picture
(Figure 5b). In summertime, there is still almost perfect
agreement of the MPI-ESM simulations with the sea-
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Figure 4. Mean sea-ice concentration in September for the period 1979-2007. (a) MPI-ESM-LR; (b) NSIDC-
CDR satellite observations; (c) difference between MPI-ESM-LR and NSIDC-CDR; (d) difference between
ECHAMS/MPIOM and NSIDC-CDR; (e) difference between NCEP-forced MPIOM and NSIDC-CDR; and (f)
difference between ERA-INTERIM-forced MPIOM and NSIDC-CDR. The green contour line denotes the
NSIDC-CDR ice edge and the black one the respective modeled ice edge.

ice area as estimated from the NASA Team based
sea-ice index, with slightly too little ice in wintertime
compared to this data set. If, however, we focus on the
sea-ice area as derived from the Bootstrap algorithm,
MPI-ESM simulates too little ice throughout the year,
while now there is at least in summer almost perfect
agreement of the MPIOM simulations forced by NCEP
reanalysis with this observational record. The bootstrap
estimate of sea-ice area is also relatively close to the
modeled sea-ice area from ECHAMS/MPIOM.

[45] Putting these findings into numbers, and focusing
on the probably more reliable estimate of sea-ice con-
centration based on the Bootstrap algorithm, the issues
regarding sea-ice area versus sea-ice extent become
obvious (Table 1): While the simulated sea ice of
ECHAMS/MPIOM has a roughly 20% too large sea-ice
extent in summer, it only has a roughly 7% too large
sea-ice area. In contrast, MPI-ESM has worse agree-
ment in sea-ice area, with about 20% too little sea ice,
but much better agreement in sea-ice extent, with a
deviation of only 6% relative to the Bootstrap estimate.

Focusing on the geophysically irrelevant sea-ice extent,
one would conclude from these numbers that the sea-ice
coverage simulated by MPI-ESM agrees better with
observations than that simulated by ECHAMS/
MPIOM, while the opposite holds regarding the geo-
physically relevant sea-ice area. We find qualitatively
the same regarding the differences between our NCEP-
forced simulations (with in summer almost perfect
agreement in sea-ice area with the Bootstrap algorithm)
and our ERA-Interim forced simulations (with good
agreement in sea-ice extent). As discussed by Notz (Sea-
ice extent provides a limited metric of model perform-
ance, submitted manuscript, 2013), this finding of dif-
ferent results regarding model quality based on sea-ice
area as opposed to sea-ice extent also holds for any
other CMIPS model. The quantitative reliability of
studies comparing models and observations primarily
based on sea-ice extent could become questionable.

[46] It might therefore be desirable to focus more on
sea-ice area in model-data intercomparisons. However,
such focus is currently made difficult by the poor
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Figure 5. Comparison of the mean seasonal cycle in
(a) sea-ice extent and (b) sea-ice area for the period
1979-2007.

agreement of the different observational data sets
regarding this quantity: For example, the MPI-ESM
simulated ensemble-mean September area and extent for
the period 1979-2007 are almost identical to the value
obtained from the NSIDC sea-ice index (i.e., NASA
Team algorithm), but they are (as just seen) below the
observational value following the Bootstrap algorithm
(Table 1). Hence, when considering the total summer-
time sea-ice area, a comparison with observations is cru-
cially affected by the uncertainty arising from the
different algorithms for obtaining sea-ice concentration.

[47] Furthermore, any comparison of the mean state
of the seasonal cycle between observations and models
for a particular period might be misleading because the
timing of internal variability cannot be represented by
unforced models. As a measure for such internal vari-
ability, we use the standard deviation around a 29-year
long linear trend that we subtract from the data. This
length was chosen to match the length of the time pe-
riod 1979-2007 that we use as our reference period
throughout this paper. For the observational record, we

find that the variability in sea-ice area around the long-
term linear trend is smallest in wintertime, with stand-
ard deviation of around 0.25 million km? (Figure 6a).
The variability then increases throughout summer,
reaching a maximum of 0.52 million km? in October.
Given that (a) the timing of this variability is caused by
the chaotic nature of the climate system and (b) that the
variability is changing in a changing climate (see
below), we cannot expect any climate model to repro-
duce the exact same variability pattern at exactly the
same time. Hence, it is not surprising that MPI-ESM
does not exactly match the observed variability for the
time period 1979-2007: During that period, compared
to the NSIDC-observations the model has more vari-
ability in winter and less variability in summertime.

[4s] However, shifting the analyzed model-period by
10 years to 1989-2017 results in very good agreement of
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Time evolution of the standard deviation around a 29
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the seasonal cycle compared to observations. Hence, a
mere snapshot of the variability during a specific period
might give a misleading picture, because of the substan-
tial time evolution of internal variability in a changing
climate (Figure 6b). While the summertime variability is
increasing steadily after 1990 in our simulations, the
wintertime variability decreases simultaneously. The
increasing variability in September is most likely caused
by the thinning of the sea-ice pack [e.g., Notz, 2009;
Goosse et al., 2009], which allows for larger year-to-year
variability of the ice pack. The decreasing variability in
wintertime, however, is currently not well understood.
A geometric argument related to the land-mass distribu-
tion as suggested by FEisenman [2010] can be excluded
since the decreasing wintertime sea-ice cover should
then result in an increased variability of the ice-covered
area.

[49] Despite the long-term evolution of internal vari-
ability, the poor performance of the ECHAMS/
MPIOM simulations in simulating the observed sea-
sonal cycle of internal variability is obvious: the vari-
ability is almost constant throughout the year for
today’s climate condition (Figure 6a), and only in 2040
reaches the observed summer-time values (Figure 6b).
This lack of realistic variability in ECHAMS/MPIOM
for the 20th century was found by Koldunov et al. [2010]
to be one of the major issues with our earlier model ver-
sion, and the improvement in MPI-ESM is hence a clear
indication for an overall improved simulation of the
Arctic sea-ice cover.

[50] Another metric that is often used to compare cli-
mate simulations with observations is the long-term
trend. For example, Stroeve et al. [2007] pointed out
that CMIP3 models significantly underestimated the
observed trend in Arctic sea-ice decline. However, it is a
rather difficult task to estimate if such discrepancy
between observed and simulated trends are caused by
model deficiencies or simply by internal variability of
the real climate that lead to an untypically large
observed trend. This latter hypothesis is underpinned
by our CMIP5 simulations. Analyzing 29-year trends
throughout the 20th and 21st century, we find that the
model is, in principle, capable of modeling as large a
trend as has been observed in reality (Figure 7): The
observed trend is reproduced by one of the MPI-ESM
ensemble members for the 29-year long September
trend in sea-ice area starting any time between 1984 and
1992. However, such strong negative trend is unusually
large. Equally long modeled trends starting after 1992
are usually weaker, which lends some support to the
notion that the extreme magnitude of the observed
long-term trend is caused by a combination of internal
variability and an external driver. If indeed internal var-
iability contributed to the extreme loss of sea ice, the
rate of sea-ice decline is likely to slow down in the
future. The large magnitude of internal variability is
also reflected by the fact that one ensemble member of
the MPI-ESM simulation even results in a slightly posi-
tive trend for the 29-year long period starting in 1979.
Hence, in MPI-ESM even positive trends in sea-ice area
are possible on climatic time scales even if the back-
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Figure 7. Time evolution of 29 year trends in sea-ice
area based on the mean of the MPI-ESM historical sim-
ulations, extended by RCP 4.5 scenario simulations.
The thin lines denote individual ensemble members.

ground climate is warming [cf. Kay et al., 2011]. The
large modeled variability of long-term trends ranging
from slightly positive to as extremely negative as has
been observed is a clear indication that a direct compar-
ison of modeled trends with observations are meaning-
less unless the models’ internal variability is carefully
taken into account.

[51] Analyzing the seasonal cycle of sea-ice melt, we
find generally good agreement with observations. In the
NSIDC observations based on the Bootstrap algorithm,
the minimum area of the Arctic sea-ice cover was on av-
erage reached on 6 September (not shown), 1 day earlier
than the mean for our historical simulations over the
same period. The maximum area of the Arctic sea-ice
cover in the observations was on average reached on 1
March, 6 days earlier than in our simulations. Hence,
the total melt period as defined by the loss of sea-ice
area in the observations was on average 188 days long,
whereas MPIOM-ESM simulates for the same period
on average a melt duration of 181 days. Given the
standard deviation of 11 days of the simulated duration
of the melt period, the differences to the observations
are not significant. We do not find significant trends in
our simulation, and with simulated melt periods rang-
ing during the period 1979-2007 rather randomly from
151 to 204 days, also the trend of +5 days/decade that
is displayed by the NSIDC record is not significant if
the duration of the melt period as modeled by MPI-
ESM reflects the real internal variability.

[52] Regarding sea-ice volume, a comparison with
observations is basically impossible, since we do not
have reliable, Arctic-wide measurements of sea-ice
thickness. As a substitute for direct observations, we
here use the PIOMAS reanalysis of Arctic sea-ice vol-
ume [Zhang and Rothrock, 2003] to compare against
MPI-ESM. In PIOMAS, over the past 30 years, on av-
erage 15,400 km® of ice melt every year and about
15,000 km® new ice form every winter. This imbalance
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results in a mean decrease in sea- 1ce volume by 226
km?®/year in March and by 252 km®/year in September
during the period 1979-2007 (Table 1) For the same
period, in MPI-ESM-LR, 15,770 km?® melt every year,
whereas an average amount of 15,660 km® new ice form
every winter. Hence, in MPI- ESM LR the sea-ice vol-
ume decreases more slowly than in the PIOMAS reanal-
ysis, with an ayerage decrease of 97 km?/year in March
and by 90 km*/year in September. The drop in sea- 1ce
volume from a September value of around 15,000 km®
in 1979 to about 5000 km? in 2011 that is dlsplayed by
the PIOMAS reanalysis is simulated by MPI-ESM over
a much longer period: Whlle we do have a similar vol-
ume of around 5000 km® in our simulations at around
2011, the drop in sea-ice volume from values of around
15,000 km® starts between 1910 and 1930 in all three
ensemble members of MPI-ESM-LR (see discussion
around Figure 13c¢ below). If we include the entire his-
torical simulation in our analysis, the mean seasonal
cycle in sea-ice volume in MPI-ESM-LR is almost iden-
tical to the seasonal cycle as displayed by the PIOMAS
reanalysis.

[53] Some insight into the underlying cause of the
very different trends in sea-ice volume can be gained
by considering our NCEP and ERA-Interim-forced
MPIOM simulations (Table 1). Both these simulations
have an overall trend in sea-ice volume that is much
closer to the PIOMAS reanalysis than the fully coupled
MPI-ESM simulations. Despite a generally higher sea-
ice volume, the NCEP-forced simulations match the
PIOMAS September trend in sea-ice volume exactly.
This agreement is striking because the PIOMAS reanal-
ysis is based on NCEP atmospheric forcing: In contrast,
we find smaller trends in sea-ice volume for ERA-In-
terim atmospheric forcing in our simulations, which is
indicative of the major role that the atmospheric forcing
has on the heat-flux convergence and divergence that
ultimately governs the trend in sea-ice volume. It is wor-
rying that the trend in sea-ice volume is so strongly
dependent on the choice of the reanalysis data set,
which is indicative of the large uncertainty that might
be associated with the reanalyzed trends in sea-ice vol-
ume as displayed by the PIOMAS-reanalysis. We
should also note that one ensemble member of the
mixed-resolution model MPI-ESM-MR shows larger
trends both in September and in March compared to
those obtained from the PIOMAS reanalysis. Hence,
again, the internal variability of individual trends is too
large to allow for a meaningful assessment of the qual-
ity of individual model simulations.

[54] In addition to a comparison of the overall vol-
ume, the PIOMAS data set also allows for a compari-
son of the spatial distribution of sea-ice thickness
(Figure 8). Compared to ECHAMS/MPIOM simula-
tions, the MPI-ESM simulations give a more realistic
spatial distribution of ice thickness. In wintertime, the
central Arctic is now covered by ice with an average
thickness of about 2.2 m, with the thickest ice being
found North of Greenland and the Canadian Archipel-
ago. Such spatial distribution of ice thickness agrees
much better with the PIOMAS reanalysis than the
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rather evenly distributed 4 m thick ice that ECHAMYS/
MPIOM produced for the CMIP3 simulations. In sum-
mertime, the mean ice thickness in MPI-ESM during
the period 1979-2007 is about 1 m, which is too thin
compared to the PIOMAS mean ice thickness of about
1.6 m. ECHAMS/MPIOM produced unrealistically
thick ice with a mean thickness of about 2.4 m in
summer. The mean sea-ice thickness of MPI-ESM since
the beginning of the modeled decline in sea-ice thickness
around 1920 until today compares well with the mean
PIOMAS thickness. As mentioned earlier, we do cur-
rently not understand why sea-ice thickness starts to
decrease much earlier in our simulations than in the
PIOMAS reanalysis.

[5s] As our final comparison of the modeled sea-ice
state against data, we will now briefly turn to the drift
pattern of Arctic sea ice simulated by MPI-ESM
(Figure 9). The general flow direction in March agrees
almost everywhere with the Polar Pathfinder observa-
tions. This is encouraging since the representation of
flow direction has been found to be very reliable in the
Polar Pathfinder data set [Kwok et al., 1998; Schweg-
mann et al., 2011]. In comparison to satellite-derived
drift speed, the modeled sea ice moves generally too
fast. Differences are particularly large in the Fram
Strait and in the Davis Strait, where the model esti-
mates flow speeds that are more than twice as fast as
the Polar Pathfinder data. Especially in these regions of
rather high flow speeds, however, the Polar Pathfinder
data might underestimate the real flow speeds. How-
ever, the underestimate of 30%-40% that Schwegmann
et al. [2011] found for Antarctic sea ice cannot fully
explain the biases in modeled drift speed.

[s6] Overall, there is improvement in many aspects of
the simulated Arctic sea-ice cover in MPI-ESM com-
pared to ECHAMS/MPIOM. Because the ocean and
the sea-ice model are almost identical between these
two model versions, we can easily identify the two fac-
tors that are possibly responsible for this improvement:
changes in the atmospheric model and a tuning of the
sea-ice model to an average lower sea-ice volume. Of
these two, the tuning is probably less important for the
overall improvement, because MPI-ESM simulates de-
spite the tuning a sea-ice cover similar to ECHAMY/
MPIOM if forced by NCEP reanalysis atmospheric
data. Therefore, the main reason for the improved sim-
ulation of the Arctic sea-ice cover must be the improved
representation of atmospheric processes owing to
changes in ECHAMG6 compared to ECHAMS. These
changes are described in detail by Stevens et al. [2013],
and primarily concern the representation of solar radia-
tion, the representation of deep convection and the
extension of the vertical grid to 0.1 hPa. These changes
have led to clear improvements of the simulated atmos-
pheric state compared to ECHAMS/MPIOM. Com-
pared to the ERA-Interim reanalysis (which seems
superior to the NCEP reanalysis in particular in the
Arctic), we find for example that MPI-ESM has basi-
cally gotten rid of the significant winter cold bias over
European and Asian high latitudes that existed in
ECHAMS/MPIOM (Figures 10a—10c). There remains,
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(a) March MPI-ESM-LR (b) March ECHAM5/MPIOM (¢) March PIOMAS

(d) September MPI-ESM-LR (f) September PIOMAS

1 2 3
Sea-ice thickness [m]

Figure 8. Comparison of mean sea-ice thickness for the period 1979-2007.

(a) MPI-ESM (b) Polar Pathfinder (c) MPI-ESM - Polar Pathfinder

8 km/day
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Sea-ice drift speed [km/day] A drift speed [km/day]

Figure 9. Comparison between mean modeled and observed March Arctic sea-ice drift vectors (only every eighth
vector is plotted) and drift speeds in the period 1979 to 2005: (a) simulated MPI-ESM-LR; (b) satellite-derived
Polar Pathfinder; and (¢) simulated minus satellite-derived drift speed. The contour lines denote the modeled
(orange) and observed (green) ice edges (15% ice concentration).
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Temperature March

MPI-ESM-LR

ERA-Interim
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A temperature [°C]

MPI-ESM-LR — ERA-Interim

Figure 10.
Interim for the period 1979-2007.

however, a cold bias over Alaska and some warm bias
over Northern Canada and Northern Greenland. This
improvement in simulated high-Northern temperature
goes along with significant improvements in simulated
winter surface pressure patterns (Figures 10g-101). As
described by Koldunov et al. [2010], ECHAMS/MPIOM
had significant positive biases in Northern hemisphere
surface pressure patterns. These strong biases are
almost absent in MPI-ESM-LR, with only some posi-
tive bias larger than 2 hPa remaining in winter surface
pressure over Southern Alaska and a slight negative
bias over the central Arctic/Beaufort gyre region. The
same general improvement in simulated temperature
and pressure fields also holds in summer (Figures 10d-
10f, 10j-101). While there is still some slight summer-
time cold bias over much of the Arctic, this cold bias is

Temperature September

SLP March

SLP September

: i
1005 1010 1015 1020
Sea-level pressure [hPa]

1000

0 3
A sea-level pressure [hPa]

(left) Mean surface temperature and (right) sea-level pressure in MPI-ESM-LR compared to ERA-

significantly reduced compared to ECHAMS/MPIOM.
There are still some minor issues with simulated pres-
sure patterns in summertime, with generally too low
surface pressure in MPI-ESM reaching from Canada
and Alaska all over Siberia, but the large positive bias
in surface pressure in the central Arctic Ocean that was
present in ECHAMS/MPIOM is now almost gone.

[57] Tt is beyond the scope of this study to analyse in
detail which changes in ECHAMG relative to ECHAMS
are responsible for the improved representation of the
atmospheric circulation in high Northern latitudes. An
initial analysis suggests that much of the improved pres-
sure patterns is caused by a stronger focus on a realistic
representation of Arctic pressure patterns during the
tuning of the orographic gravity wave drag in
ECHAMBS6. The improved variability in our simulations
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are likely related to the improved representation of
processes in the upper stratosphere, which allows for
the better representation of the variability of near-sur-
face processes that are triggered by stratosphere-tropo-
sphere interaction (see also Omrani et al., Stratosphere
key for wintertime atmospheric response to warm
Atlantic decadal conditions, submitted to Climate
Dynamics, 2013). We should note that ECHAMG still
has issues with spatial patterns of modeled precipita-
tion. This leads, in particular, to too large a runoff of
Siberian rivers into the Arctic Ocean [Hagemann et al.,
2012].

[58] To summarize, from this analysis of our histori-
cal CMIP5 simulations we can conclude that the MPI-
ESM is well capable of simulating observed large-scale
features of the Arctic sea-ice cover. The modeled sea-
sonal cycle of sea-ice extent and sea-ice area is very
close to observations, as are the modeled variability
around the long-term trend. One ensemble member of
our simulations reproduces the observed long-term
trend in sea-ice extent and area, while other ensemble
members display a much slower decline of the ice pack.
In the light of these findings, it seems fair to assess that
MPI-ESM can be used as a tool to examine the past
and possible future evolution of the real sea-ice cover.
Hence, having positively evaluated our historical simu-
lations against reality, we can in the following draw
conclusions about the real sea-ice cover from our con-
trol and scenario simulations.

5. Assessing Internal Variability: The MPI-ESM
Control Simulation

[59] As part of our CMIP5-simulations, we carried
out a 1000-year long preindustrial control simulation.
For this simulation, the annual cycle of the forcing was
held constant at preindustrial conditions. For all sea-ice
related parameters, the long-term trends over the entire
control simulation are less than 0.001%, and we can
safely assume the control simulation to be stationary.
The annual mean volume of sea ice in our control run is
21.7 X 10° km?, close to our aim of around 20 X 10°
km® when tuning the sea-ice component of our coupled
model. Compared to the control simulation of
ECHAMS/MPIOM, we now have about 20% less sea-
ice volume (see Table 1). However, with about 16.5 X
10® km?, the overall change in sea-ice volume between
March and September is only slightly larger for the
MPI-ESM control run compared to the ECHAMS/
MPIOM control run, where the amplitude of seasonal
melting and growth amounts to 15.1 X 10° km?. This
indicates that the mean annual cycle of near-surface
heat-flux convergence in the Arctic is only slightly
affected by the changes made in the atmospheric com-
ponent of MPI-ESM. For sea-ice extent, however, the
seasonal cycle is different between ECHAMS/MPIOM
and MPI-ESM control simulations, whereas the annual
mean sea-ice extent is almost the same. Regional differ-
ences between the ECHAMS/MPIOM pre-industrial
control simulation and the MPI-ESM preindustrial

control simulation are very similar to the differences in
the historical simulations discussed in section 4.

[60] Since the annual cycle of the forcing was held
constant for the preindustrial control simulations, we
can use this simulation to analyze the internal variabili-
ty of the Arctic sea-ice cover. We first focus on the sig-
nificance of short-term and long-term trends (Figure
11a). Doing so, we find that changes in sea-ice area
from 1 year to the next are significant at the 5% level of
an underlying normal distribution if they exceed 0.94
million km? in March and 0.82 million km? in Septem-
ber. In comparison, we find that 10-year long trends are
significant if their absolute magnitude exceeds 0.14 mil-
lion km? per year in March or 0.11 million km? per year
in September.

[61] In the following, we will use the modeled internal
variability to examine if internal variability can explain
the observed retreat of Arctic sea ice. Such analysis
hinges crucially on the assumption that the modeled
internal variability is representative for the internal var-
iability of the real sea-ice cover. Unfortunately, we have
insufficient observational data to reliably test this
assumption and some uncertainty will necessarily
remain as to the validity of any transfer from the model
to the real world. Nevertheless, the good agreement of
the seasonal and long-term variability of our 20th cen-
tury simulations with observed variability lends support
to our assumption that the modeled internal variability
for preindustrial climate conditions is representative for
pre-industrial climate conditions also in the real world.

[62] Based on this, we first use the estimate of signifi-
cant trends in the model simulations for pre-industrial
climate conditions to examine if trends in the observed
sea-ice coverage are significant. We find that all positive
and negative short-term and long-term trends in
observed wintertime sea-ice area are not significant at
the 5 % significance level of an underlying normal dis-
tribution. In September, we find no significant positive
trends on time scales longer than 1 year. However, all
negative trends longer than 20 years are unlikely to be
caused by preindustrial internal variability at the 5%
significance level since 2000 (Figure 11b). On shorter
time scales, all negative trends longer than a decade are
significant that include the extreme minimum of 2007.

[63] Focusing on extreme values rather than extreme
trends, we can use the MPI-ESM pre-industrial
control simulation to estimate for each month which
sea-ice area could simply occur by chance for prein-
dustrial climate conditions. We find that at the 5%
significance level of an underlying normal distribution
the March sea-ice cover of a single observation could
vary naturally between 13.4 and 15.4 million km?.
Given the length of 33 years of the entire NSIDC
record of sea-ice area, chances are less than 2% that
the low winter sea-ice area that was observed in 2006,
2007, and 2011 simply happened by chance. For
September sea-ice extent, we find a range of internal
variability between 5.2 and 6.9 million km”. Here, 16
out of the 23 years since 1990 show a sea-ice area
that is below internal variability at the 5% significance
level (Figure 12).
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(a) Analysis of trend significance
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Figure 11. (a) Analysis of trend significance. A trend

over the number of years indicated on the x axis is sig-
nificant if its absolute value exceeds the reduction in
sea-ice area (left) or the reduction in sea-ice volume
(right) indicated on the y-axis. (b) Analysis of observed
trends in September sea-ice area. The color bar indi-
cates the number of standard deviations that a trend is
larger than modeled internal variability of the MPI-
ESM control simulations. A trend that is less than *2
standard deviations different to modeled internal vari-
ability is not significant (black areas).

[64] Carrying out a similar analysis based on the his-
torical simulations with MPI-ESM, we find for Septem-
ber sea-ice coverage similar statistical values at similar

times as in the observations. In March we find higher
significance of the modeled retreat than observed,
because the historical simulations by MPI-ESM display
generally a somewhat smaller ice area than observed.

6. Sea-Ice Response in the MPI-ESM Scenario
Simulations

[65] The overall good agreement of the variability and
temporal evolution of the Arctic sea-ice cover in our his-
torical simulation not only allows us to use MPI-ESM
to estimate internal variability of Arctic sea ice. It also
lends credibility to the projection of the future evolution
of Arctic sea ice that we simulated following the Repre-
sentative Concentration Pathways RCP2.6, RCP4.5,
and RCP8.5 that are all part of the CMIPS5 protocol
[Taylor et al., 2012]. With MPI-ESM-LR, we carried out
three simulations of each of these three scenarios up to
2100, with one simulation each being extended to 2300.
With MPI-ESM-MR, we carried out one simulation for
each scenario up to 2100. Since we do not find large dif-
ferences in any of the parameters analyzed between the
LR and the MR model version, we will in the following
only discuss details of the LR version, because we have
a larger ensemble and longer simulations available.

[66] We first discuss our RCP2.6 simulations, which are
based on increasing CO, concentration up to 443 ppm in
2053, and declining CO, concentration afterward to reach
421 ppm by 2100 and 361 ppm by 2300. In this scenario,
the summer sea-ice area continues to decline to a level of
around 3 million km? by 2020, staying close to this value
throughout the remainder of this century (Figure 13b,
green line). In the 22nd and 23rd centuries, summer sea-
ice area recovers slowly to reach by 2300 values close to
the extreme sea-ice minima as observed in 2007 and 2011.
Given the substantial restructuring of the world’s econ-
omy that would be needed to achieve a concentration

month
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year
0 0.2 0.4 0.6 0.8 1

Figure 12. Analysis of observed values of sea-ice area.
The color coding indicates the chances that a certain
observed area could have happened by chance given the
internal variability modeled by the MPI-ESM preindus-
trial control simulation.
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(a) Evolution of sea-ice area in March
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Figure 13. Modeled time evolution of (a, b) sea-ice area and (c, d) volume in MPI-ESM. The lines indicate the 10
year running mean ensemble mean simulated by MPI-ESM-LR, with the shading indicating *£2 standard devia-
tions of the three ensemble members. The dashed lines show the evolution as modeled by MPI-ESM-MR. From

2100 onward, only one ensemble member was simulated.

pathway as assumed in RCP2.6, we can assume that this
scenario provides a lower bound on future global warm-
ing. Hence, in the absence of any events or actions that
will cool the climate additionally, it is unlikely that the
Arctic summer sea-ice area will increase much over
today’s sea-ice area throughout the coming centuries.
Given, on the other hand, that the scenario RCP2.6 is at
least physically plausible, our results also suggest that a
total loss of Arctic summer sea ice is, in principle, still
avoidable. The absolute loss of winter sea ice is about
40% smaller than the absolute loss of summer sea ice
throughout the 21st century (Figure 13a, green line). This
behavior, which is also found in the two other scenarios,
is explicable by geometric constraints [Eisenman, 2010]. In
absolute numbers, we find a decrease in winter sea-ice
area to values of around 12 million km? throughout the
21st century, which then increases slowly toward 13 mil-
lion km? by the end of the 23rd century.

[67] The RCP4.5 scenario, which is comparable to the
CMIP3 scenario B1, is based on a scenario with CO,
concentration increasing further to reach 539 ppm by
2100, staying almost constant at this level thereafter. In

this scenario, the Arctic continues to rapidly lose ice in
summer, reaching an overall area of around 1 million
km? by the end of the 21st century. Once CO, concen-
tration remains constant from then onward, the sea-ice
loss slows down, with the Arctic becoming fully ice free
around 2150 in the single ensemble member whose sim-
ulation continues beyond 2100 (Figure 13b, orange
line). Wintertime sea-ice cover follows this general
pattern of fast retreat throughout the 2Ist century
and slower retreat for the 22nd and 23rd century
(Figure 13a).

[68] The RCP8.5 scenario, which is comparable to
CMIP3 scenario A2, is based on a much stronger
increase in CO, concentration than the other two sce-
narios. Here, CO, concentration rises to values of 935
ppm by 2100 and 1962 ppm by 2250, staying constant
thereafter. In this scenario, the Arctic becomes in our
simulations ice free in summertime during the second
half of the 21st century (Figure 13b, red line) and stays
ice free in summer throughout the remainder of the sim-
ulations. In wintertime, sea-ice area decreases roughly
linearly to values of around 9.5 million km? by the end
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of the 21st century. In the first half of the 22nd century,
the retreat of winter sea-ice area accelerates substan-
tially, with only around 1 million km? of winter sea ice
remaining by 2150. The Arctic then becomes fully ice-
free all year round throughout the 23rd century (Figure
13a).

[9] The evolution of Arctic sea-ice volume follows
the general trend of the sea-ice area. However, the rela-
tive loss of sea-ice volume is generally much larger than
that of sea-ice area throughout the 20th century, and
generally slower throughout the 21st century (Figures
13c and 13d). Throughout the 20th century, in our sim-
ulations the Arctic sea-ice volume in summer has
decreased by about 60%. During the same time, summer
sea-ice area has only decreased by about 30%. Hence,
the relative changes in summer volume have been
roughly twice as fast as the changes in summer area
throughout the 20th century. In the 21st century, the
relative change of summer sea-ice volume becomes
roughly equal to the relative change of summer sea-ice
area. This behavior is consistent with the fact that in
general, thick sea ice thins much faster than thin sea ice
[cf., Bitz and Roe, 2004], which causes a rapid loss of
sea-ice volume in the presence of rather thick sea ice.
This is also reflected in MPI-ESM, where we find
throughout the 21st century a roughly 20% faster abso-
lute reduction of the volume of thick winter sea ice com-
pared to the loss of summer sea-ice volume. Analyzing
the relationship between areal and volume decrease in
the PIOMAS reanalysis, we again find that the loss of
summer sea-ice volume has been about twice as fast as
the observed relative loss in sea-ice area. Hence, it seems
reasonable to assume that real sea ice follows a behav-
ior similar to that in MPI-ESM, with the relative
change in sea-ice volume decreasing considerably over
the coming decades. Therefore, the future evolution of
sea-ice volume cannot be estimated reliably by a linear
or even exponential extrapolation of the past evolution
of Arctic sea-ice volume. Contributions to the public
debate as to when the Arctic might become ice free in
summertime based on such extrapolations therefore do
not reflect our current understanding of the past and
future evolution of the Arctic sea-ice cover.

[70] We will now finally use our scenario simulations
to examine the direct relationship between the external
forcing and the sea-ice state. Focusing first on the direct
relationship to external CO, forcing, we find as
expected a general tendency of less summer sea ice for
higher CO, concentration (Figure 14b). However, there
is no one-to-one mapping of a certain CO, concentra-
tion to a certain sea-ice area or volume. This is nicely
illustrated by the RCP4.5 scenario. Here, CO, concen-
tration is kept constant at around 540 ppm from 2100
onward, and nevertheless sea-ice area and volume con-
tinue to decrease until all summer sea ice is gone.
Hence, in the observations we currently only see the
transient response of the sea-ice cover to the CO, forc-
ing, which because of the rapid increase in CO, concen-
tration corresponds to the maximum sea-ice cover that
is possible for any given CO, concentration. The equi-
librium state of the Arctic sea-ice cover for any given

CO, concentration is much lower, and in equilibrium,
the Arctic can become ice free in summer at a CO, con-
centration of around 500 ppm [Li et al., 2013]. In con-
trast to the response to CO,, the response of sea ice to
Arctic temperature is much more constrained (Figures
l4c and 14d). This is a reflection of the fact that, in gen-
eral, Arctic temperature and sea-ice coverage react on
similar time scales to changes in CO, concentration.
The time scale of both is set by the slow oceanic
response [Li et al., 2013].

[71] For the winter sea-ice cover, we find a rapid
decrease from a sea-ice area of around 6 million km~ to
around 3 million km? in just a few years. This occurs at
a CO, concentration of around 1200 ppm (Figure 14a)
and a mean Arctic winter temperature of around —5°C
(Figure 14c). A similar behavior was also observed in
the previous model version ECHAMS/MPIOM, and
there has been some speculation whether this behavior
constitutes a so-called tipping point [Winton, 2006]. A
more recent analysis has found that the rapid loss of
Arctic sea ice in ECHAMS/MPIOM version goes along
with the sudden onset of significant convective precipi-
tation in the Arctic [Li et al., 2013]. We find the same
for MPI-ESM, where convective precipitation north of
80° in March is less than 0.1 mm/month throughout the
20th and 21st century. From around 2120 onward,
monthly mean values of convective precipitation in the
same region regularly exceed 1 mm/month, and values
exceeding 10 mm/month are common throughout the
23rd century. As in ECHAMS/MPIOM, this is sugges-
tive of an atmospheric convection feedback. Such feed-
back, as suggested by Abbot and Tziperman [2008],
would cause an increased number of convective clouds
and increased humidity, which both trap outgoing long-
wave radiation and cause a rapid loss of Arctic winter
sea ice.

7. Conclusions

[72] In this contribution, we have provided an over-
view of the past and future evolution of Arctic sea ice in
MPI-ESM. Doing so, we have come to the following
conclusions:

[73] The regional distribution of the modeled Arctic
sea ice, and the trend and variability in the sea-ice cov-
erage, are improved in MPI-ESM compared to the
model’s predecessor ECHAMS/MPIOM. We find that
these improvements stem from changes in the atmos-
pheric model component between ECHAMS5 and
ECHAMG6, with the latter simulating more realistic sur-
face pressure patterns and a more realistic temperature
distribution in the Arctic. Tuning of MPI-ESM to over-
all less sea-ice volume has contributed to the improve-
ments, but we find the overall contributions of tuning
to the improved simulations to be rather small. Re-
gional differences between MPI-ESM and observations
occur in wintertime primarily along the ice edge, with
too little modeled ice in the Sea of Okhotsk, the Barents
Sea, and east of Greenland, in particular, and too much
ice south of the Bering Strait. In summertime, the
model has slightly too little sea-ice concentration almost

191



NOTZ ET AL.: ARCTIC SEA ICE IN MPI-ESM

(a) March area vs. CO,

Sea-ice area in March [million km?]
-
o

B L

6 -

4 F

2 -

0 . . h

0 500 1000 1500 2000
CO,-concentratium [ppm]
(c) March area vs. Arctic temperature
18 - - T - -

Sea-ice area in March [million km?]

e
[

|

™
S

|
at
I

I
o

!

o
o
o

Mean Arctic temperature 60°N-90°N[°C]

(b) September area vs. CO»

Sea-ice area in September [million km?2]
s

0
0 1000 1500 2000
CO,-concentratium [ppm]
(d) September area vs. Arctic temperature
8 T - r

Sea-ice area in September [million km2]

Mean Arctic temperature 60°N-90°N[°C]

3x historical

3x rep26 up to 2100
3x rep45 up to 2100
3x rep85 up to 2100

1x rcp26 2100-2300
1x rcp45 2100-2300
1x rcp85 2100-2300

Figure 14. Sea-ice area in (a, ¢) September and (b, d) March as a function of (a, b) global CO, concentration and
(c, d) mean surface temperature north of 60°N. Data are plotted for the number of ensemble members indicated in

the legend.

everywhere; too much ice is simulated only in the East
Siberian Sea.

[74] The commonly used practice of focusing on sea-
ice extent in model-data intercomparison can result in
misleading results: For example, the sea-ice extent as
modeled by MPI-ESM is much closer to the observatio-
nal estimate of the Bootstrap algorithm than is the one
modeled by ECHAMS/MPIOM, whereas in terms of
the geophysically more relevant sea-ice area, the simula-
tions of ECHAMS/MPIOM agree better than MPI-
ESM with the observational estimate of the Bootstrap
algorithm.

[75] Despite being desirable, a primary focus on sea-
ice area in model-data intercomparison studies is cur-
rently hindered by the uncertainty related to the esti-
mated sea-ice concentration from satellite remote
sensing. The NASA Team and the Bootstrap algo-
rithms that were compared for this study show regional
differences that in summer can be larger than the differ-
ences to MPI-ESM model simulations. A more reliable

estimate of sea-ice concentration, including a reliable
error estimate, is therefore highly desirable.

[76] Large internal variability makes it impossible to
directly judge the quality of a single sea-ice simulation
from a direct comparison of trends between observa-
tions and simulation. For the same external forcing but
slightly different initial conditions, MPI-ESM simulates
sea-ice trends during the satellite period that range from
more strongly negative than has been observed to posi-
tive. This also shows that 30 year-long periods of
increasing sea-ice coverage can occur despite a warming
of the background climate.

[771 The modeled sea-ice volume for the past few
years agrees well between MPI-ESM and the PIOMAS
reanalysis. However, in MPI-ESM an Arctic-wide
decrease in sea-ice volume started already in the 1920s,
far earlier than the decrease shown by the PIOMAS
reanalysis. Analyzing this behavior in more detail, we
find from reanalysis-forced simulations with MPI-
ESM’s ocean model MPIOM that the magnitude of the
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sea-ice volume decline crucially depends on the choice
of the atmospheric reanalysis used to force the model.
Using the NCEP reanalysis, on which also PIOMAS is
based, we find the same decay rate in summer sea-ice
volume as the PIOMAS reanalysis. However, forcing
MPIOM with ERA-Interim reanalysis, we find a 40 %
smaller decay rate. This dependence of the modeled
evolution of sea-ice volume on the particular choice of
the atmospheric reanalysis indicates that a reliable esti-
mate of sea-ice volume trends is currently not possible.

[8] The MPI-ESM modeled sea-ice drift patterns
agree well with Polar Pathfinder observations. MPI-
ESM has, however, on average too high a drift speed,
in particular in regions of very high drift speed.

[79] Because MPI-ESM does a reasonable job in sim-
ulating the observed variability of Arctic sea ice, we can
use the pre-industrial model simulations to estimate the
likelihood that the observed trends and extreme minima
in sea-ice extent could be caused by internal variability.
We find that internal variability can be excluded for
both parameters for the observed evolution of summer
sea ice. The observed evolution of winter sea ice could
still be caused by internal variability.

[80] Examining the dependence of the simulated sea-
ice cover on external forcing, we find a significant delay
in sea-ice response to increasing CO, concentration.
The Arctic can become ice free at a CO, concentration
of around 500 ppm. We also find a sudden drop in win-
ter sea-ice area once the mean Arctic winter tempera-
ture becomes warmer than —5°C. This drop in winter
sea-ice area goes along with a sudden increase in con-
vective precipitation.

[81] The comparison of the modeled evolution with
observations and reanalysis provided here has
convinced us that the sea-ice cover as modeled by MPI-
ESM is reasonably close to the observed one. As such,
we see this paper as a starting point for more detailed
scientific studies based on MPI-ESM that will help us
to better understand the past and future evolution of

Arctic sea ice.
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