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Partition function of dyonic black holes in N = 4 string theory
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The dominant contribution to the semicanonical partition function of dyonic black holes of N = 4 string
theory is computed for generic charges, generalizing recent results of Shih andYin. The result is compared to
the black hole free energy obtained from the conjectured relation to topological strings. If certain perturbative
corrections are included agreement is found to subleading order. These corrections modify the conjectured
relation and implement covariance with respect to electric-magnetic duality transformations.
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1 Introduction

The conjecture of Ooguri, Strominger, and Vafa [1] relates the black hole partition function to that of
topological strings. In their proposal, the relevant black hole ensemble is the one in which the magnetic
black hole charges pI are treated microcanonically while the electric charges qI are treated canonically. This
semicanonical partition sum is related to the microcanonical partition sum d(p, q) by a Laplace transform,

Z(p, φ) =
∑

qI

d(p, q)eqIφI

, (1.1)

where the continuous variables φI are the electrostatic potentials conjugate to the quantized electric charges.
When viewing Z(p, φ) as a holomorphic function in φI , the black hole degeneracies d(p, q) can be retrieved
by performing contour integrations as will be reviewed. The conjecture amounts to comparing the black
hole partition function Z(p, φ) with the square of the topological partition sum: eF(p,φ) =

∣∣eFtop
∣∣2. Many

encouraging results have been presented to this extent [2–6]. The conjecture is, however, still lacking a
precise formulation. Modifications of the original conjecture are needed to implement electric-magnetic
duality covariance and duality symmetries such as S- or T-duality. A comprehensive discussion appears
in [7]. Preliminary accounts of this work have been presented at many occasions.1

In this paper, the partition function of 1/4-BPS states is studied that arises in N = 4 compactifications
of type-II string theory on K3 × T 2. These models have a dual description in terms of heterotic strings
on T 6. For 1/4-BPS states a formula for the exact state degeneracy was proposed by Dijkgraaf, Verlinde,
and Verlinde [8] and recently rederived by Shih, Strominger, and Yin [9]. It involves the automorphic form
Φ10(ρ, σ, υ) that transforms with weight 10 under the modular group Sp(2, Z). The arguments ρ, σ, and υ
form the period matrix of a Riemann surface of genus 2. The state degeneracy of dyons depends only on
the SO(6, 22)-duality invariant products of the electric and magnetic charge vectors,

Q = 2q0p
1 + q2 , P = −2q1p

0 + p2 , R = q0p
0 − q1p

1 + p · q . (1.2)

∗ E-mail: kaeppeli@aei.mpg.de
1 See, for instance, http://www.fields.utoronto.ca/audio/05-06/strings/wit/index.html.
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Here, p2 and q2 are the contractions of pM and qM (with M = 2, . . . , 27) and involve a metric CMN ,
which is related to the intersection matrix on K3, and its inverse CMN . Their precise form will play no
role. The charges can be identified with those of D-branes wrapping the various cycles of K3 × T 2 and
with the quanta of winding and momentum of wrapped NS5-branes and F-strings (see, for instance, [9] for
details). The dyon degeneracies d(p, q) depend only on the invariants Q, P , and R and are given by the
coefficients of the formal Fourier expansion of 1/Φ10(ρ, σ, υ). They can be extracted by performing the
contour integrals

d(p, q) =
∫

dρ dσdυ
eiπ(Qσ+Pρ+(2υ−1)R)

Φ10(ρ, σ, υ)
. (1.3)

In the limit of large charges, the logarithmic degeneracy agrees with the entropy of the corresponding
dyonic black holes, as was first observed in [8]. Subsequently, it was shown in [10] that the degeneracy
formula precisely captures both perturbative and non-perturbative corrections to the Bekenstein-Hawking
area law for black hole entropy, the origin of which can be traced back to the presence of certain higher-
derivative curvature and non-holomorphic interaction terms in the effective action. For the present set-up,
the supergravity description was first discussed in [11]. As expected, the gravity description reproduces
only the semiclassical behavior of (1.3). The analysis in [10] shows there are two type of corrections to the
asymptotic density of states: there are contributions that are exponentially suppressed in the limit of large
charges as well as perturbative corrections that are subleading in this limit. In the following, the dominant
contribution to the black hole partition is evaluated. Here too, both type of corrections will appear.

In [12], Shih andYin calculated the leading contribution to Z(p, φ) for vanishing D6-brane charge p0 and
determined the perturbative corrections in this limit. In this paper, this computation is repeated for generic
charges. While the presence of a D6-brane charge does not lead to substantial technical difficulties, it does
uncover certain subtleties concerning subleading terms of the measure. For large charges, the dominant
contribution to Z(p, φ) is of the form

Z(p, φ) ∼
∑

kI

[√
∆(p, φ + 2πik)eF(p,φ+2πik) + . . .

]
. (1.4)

Here, F(p, φ) is precisely the non-holomorphic generalization of the free energy function given in [10]. As
discussed above, the ellipsis indicates that microscopically one has exponentially suppressed corrections to
the leading contribution

√
∆eF . These originate from other rational quadratic divisors of Φ10 and form the

non-perturbative completion of the result.
The relevant contributions to the measure are accounted for by the factor

√
∆. From electric-magnetic

duality covariance one expects that this factor is constructed from the determinant of a generalized period
matrix, and an argument is presented to this extent in Sect. 3. The microscopic analysis shows that beyond
the subleading order the microscopic partition function (1.1) differs from (1.4). A extensive discussion of
these subtle issues is given in [7].

Recently, Jatkar and Sen [13] generalized the dyonic degeneracy formula to a class of CHL-models and
showed that, asymptotically, it reproduces the entropy of the corresponding black holes. The present set-up
is a simple special case of these more general models. The findings of this note can be generalized to that
class of CHL-models, as is discussed in [7].

2 Microscopic black hole partition function

In this section, the dominant contribution to the partition function (1.1) is calculated, neglecting contributions
that are exponentially suppressed in the limit of large generic charges. Following [12], the sum over q0 and
q1 is converted into a sum over invariants. From (1.2) it is clear that only the combination Q and P can be
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used as independent summation variables. The result is

Z(p, φ) =
1

p1p0

p1,0−1∑

φ0,1→φ0,1+2πik0,1

∑

qM

∑

Q,P

d(p, q)e
φ0

2p1 (Q−q2)− φ1

2p0 (P−p2)+q·φ
, (2.1)

where R is given by

R =
p0

2p1 (Q − q2) +
p1

2p0 (P − p2) + p · q . (2.2)

There is a summation over imaginary shifts of φ0 and φ1 which is implemented by replacing φ0 →
φ0 + 2πik0 and φ1 → φ1 + 2πik1 in each summand and, subsequently, by summing over the integers
k0,1 = 0, . . . , p1,0−1. These shift sums enforce that only those summands contribute for which (Q−q2)/2p1

and (P − p2)/2p0 are integers. Furthermore, they implement the required shift invariance of Z(p, φ) under
φ0,1 → φ0,1 + 2πi. Using the integral expression for the degeneracies (1.3), one performs the sums over Q
and P . This yields the sums over delta-functions

∑
n∈Z

δ(σ−σ(υ)+n) and
∑

m∈Z
δ(ρ−ρ(υ)+m), where

σ(υ) = − φ0

2πip1 − (2υ − 1)
p0

2p1 ,

ρ(υ) =
φ1

2πip0 − (2υ − 1)
p1

2p0 .

(2.3)

These sums can be integrated against the contour integrals of σ and ρ, which run in the strip σ ∼ σ + 1 and
ρ ∼ ρ + 1, with the result

Z(p, φ) =
1

p1p0

p1,0−1∑

φ0,1→φ0,1+2πik0,1

∑

qM

∫
dυ

Φ10(ρ(υ), σ(υ), υ)
eiπσ(υ)q2+iπρ(υ)p2+qM(φM+iπ(2υ−1)pM) .

(2.4)

Note that in view of (2.3) the integrand is invariant under φ0,1 → φ0,1 + 2πip1,0 as desired. As pointed
out by [12], an extra phase factor exp[−iπR] is included in (1.3) relative to the degeneracy formulae that
appear in [8,13]. In order to compare with the macroscopic results it is useful to Poisson-resum with respect
to qM . The result is

Z(p, φ) =
1

p1p0

∑

φI→φI+2πikI

√
det iCMN

∫
dυ e

i(φ+iπ(2υ−1)p)2

4πσ(υ) +iπρ(υ)p2

σ(υ)(n−1)/2Φ10(ρ(υ), σ(υ), υ)
, (2.5)

where n = 27 for the present example, and the sum over kM is over all integers. The shift-symmetry in
φ0,1 is no longer obvious.

In a last step, the contour integral over υ is performed. The contour runs horizontally in the strip defined
by υ ∼ υ + 1 and is confined to Imρ Imσ > Imυ2, which for (2.3) is given by (a + b)Imυ < ab with
2πa = Reφ0/p0 and 2πb = −Reφ1/p1. One can show, using an Sp(2, Z) transformation, that Φ10(ρ, σ, υ)
is an even function in υ. Using this and the periodicity υ ∼ υ + 1, the υ-contour can be closed thereby
picking up the encircled residues of 1/Φ10. The result is twice the desired integral. In general, the discussion
of the various contours in the definition (1.3) is subtle, since Φ10 has zeroes even in the interior of the Siegel
upper half plane. Fortunately, when focusing on the leading contribution to Z(p, φ), these subtleties do not
play a role as long as the dominant residues are picked up.As discussed in [8,10,12], the leading contribution
to the partition function comes from points that lie on the rational quadratic divisor

D = ρσ − υ2 + υ = 0 . (2.6)
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Around these points, Φ10 has the expansion (see [10] for details)

Φ10(ρ, σ, υ) =
η (σ′)24 η (γ′)24

σ12 D2 + O [
D4] , (2.7)

where σ′ and γ′ are defined by

σ′ = − ρ

ρσ − υ2 , γ′ =
ρσ − υ2

σ
. (2.8)

Inserting ρ(υ) and σ(υ) given in (2.3) into these expressions one finds

D = (2υ − 1)
φ0p1 − p0φ1

4πip0p1 +
φ0φ1 + π2p1p0

4π2p1p0 . (2.9)

The piece in D quadratic in υ has canceled, and the critical value υ∗ is given by

(2υ∗ − 1) = −i
φ0φ1 + π2p1p0

π (φ0p1 − φ1p0)
. (2.10)

Therefore, the contour integral over υ is given by the residue

Z(p, φ) =
∑

φI→φI+2πikI

√
det iCMN

(−8)π3ip0p1

(φ0p1 − φ1p0)2

× d
dυ




σ(υ)12−(n−1)/2e

i
4πσ(υ) φ2+iπ

[
ρ(υ)− (2υ−1)2

4σ(υ)

]
p2− 2υ−1

2σ(υ) φ·p

η(σ′(υ))24η(γ′(υ))24





υ∗

+ . . . , (2.11)

where other exponentially suppressed contributions that come from other divisors have been suppressed.
The result takes the form

Z(p, φ) =
∑

kI

M(p, φ + 2πik)eF(p,φ+2πik) + . . . . (2.12)

It is now shown that F(p, φ) is exactly the non-holomorphic generalization of the free energy given in [10].
In addition, there is a measure factor M(p, φ), which is discussed below. To this extent the following
definitions are adopted:

Y I =
φI

2π
+

i
2

pI , Ȳ I =
φI

2π
− i

2
pI , (2.13)

which define the moduli S = −iY 1/Y 0, S̄ = iȲ 1/Ȳ 0, and TM = −iY M/Y 0, T̄M = iȲ M/Ȳ 0. These
relations are to be understood as defining the quantities such as S and S̄ as functions of the complex variables
φI . In particular, S and S̄, for instance, are related by complex conjugation only if the φI are real. In this
sense one finds that on the divisor

4ρ∗ − (2υ∗ − 1)2

σ∗
= − 1

σ∗
= i

(
S + S̄

)
,

2υ∗ − 1
2σ∗

= − i
2

(
S − S̄

)
, (2.14)

where ρ∗ = ρ(υ∗) and σ∗ = σ(υ∗), and that γ′(υ∗) = iS and σ′(υ∗) = iS̄. For F(p, φ) in (2.12) these
substitutions lead to

F(p, φ) =
(
S + S̄

) [
φ2

4π
− πp2

4

]
+

i
2

(
S − S̄

)
φ · p − log

[(
S + S̄

)12
η(iS)24η

(
iS̄

)24
]

. (2.15)
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To arrive to this result, the factor σ12
∗ that arises in (2.7) is absorbed into the exponent, while the factor

σ
−(n−1)/2
∗ is a necessary part of the measure. The measure factor M is given by

M = 4π2
√

det CMN

(
S + S̄

)(n−1)/2

[
−

(
T + T̄

)2

2
+ 2π

(
S + S̄

) (
12 − n−1

2

)
(
p0

)2

(φ0p1 − φ1p0)2

− 12
π (Y 0)2

∂S log η(iS) − 12

π
(
Ȳ 0

)2 ∂S̄ log η
(
iS̄

)
]

. (2.16)

Using that

2π
(
S + S̄

)
(
p0

)2

(φ0p1 − φ1p0)2
= − 1

2π
(
S + S̄

)
(
Y 0 − Ȳ 0

)2

|Y 0|4 , (2.17)

the measure can be rewritten as

M = 4π2
√

det CMN

(
S + S̄

)(n−1)/2

×
[
−

(
T + T̄

)2

2
+ DΩ +

(n − 1)
4π

(
S + S̄

)
(
Y 0 − Ȳ 0

)2

|Y 0|4 +
36
2π

1(
S + S̄

) |Y 0|2
]

, (2.18)

where the operator D is given by

D =
2

(Y 0)2
∂S +

2
(
Ȳ 0

)2 ∂S̄ − 2
(
S + S̄

)

|Y 0|2 ∂S∂S̄ (2.19)

and Ω is the same function that appeared in [10]:

Ω = − 6
π

log η(iS) − 6
π

log η
(
iS̄

) − 3
π

log
[
S + S̄

]
. (2.20)

This completes the computation of the dominant contribution to the semicanonical black hole partition
function. The expressions exp F(p, φ) and M(p, φ) coincide with the expressions found in [12] in the limit
p0 → 0, while, not surprisingly, the ranges of the sums over k0 and k1 are different.

In the next section it is argued that the first two terms in the bracket of (2.18) are to be treated as the
leading terms and that this gives rise to a precise agreement with the leading perturbative corrections induced
by the measure factor

√
∆ of (1.4). The third, n-dependent term in (2.18) is not T-duality invariant and its

presence reflects the fact that for the set-up discussed here (1.1) breaks T-duality invariance. Both this and
the forth term in (2.18) are not captured directly by the approach discussed in the following.

3 Semiclassical black hole partition function and duality

The Ooguri-Strominger-Vafa proposal [1] must be modified in order to ensure the covariance with respect to
electric-magnetic duality transformations and, in particular, to obtain S- and T -duality invariant results [7].
These modifications should account for the leading perturbative corrections calculated in the previous
section. One way to derive these modifications is to start from a symplectically covariant expression for the
black hole partition sum,

Z(χ, φ) =
∑

p,q

d(p, q)eqIφI−pIχI . (3.1)
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The additional sum over the magnetic charges is weighted by the magnetostatic potentials χI . The electro-
and magnetostatic potentials (φI , χI) transform as a vector under electric-magnetic duality transformations.
Assuming that the microscopic degeneracies transform as a function [as is expected to be the case for
(1.3)], the left-hand side of (3.1) is invariant under symplectic transformations. By definition, one has
Z(χ + 2πi, φ) = Z(χ, φ + 2πi) = Z(χ, φ). Viewing Z(χ, φ) as a holomorphic function in χI and φI , the
degeneracies d(p, q) or Z(p, φ) can be retrieved by an inverse Laplace transform. For example,

d(p, q) =
∏

I,J

1
(2πi)2

∫
dχI dφJZ(χ, φ)e−qKφK+pKχK , (3.2)

where contours run in the strips χI ∼ χI + 2πi and φJ ∼ φJ + 2πi. Of course, it would be desirable to
derive Z(χ, φ) directly from a degeneracy formula such as (1.3), but this seems difficult.

Inspired by [1], a symplectically covariant function Z(χ, φ) is suggested in [7] that reproduces, us-
ing (3.2), the expected black hole entropy in the semiclassical regime of large charges. The existence of
such a function is intimately related to existence of a variational principle for black hole attractors and black
hole entropy. The leading contribution to Z(χ, φ) is of the form

Z(χ, φ) ∼
∑

lI ,kJ

e2πH(χ+2πil,φ+2πik) + . . . , (3.3)

where H(χ, φ) is a generalized version of the Hesse potential and includes the effects of higher-derivative
curvature interactions and possibly of non-holomorphic corrections. The sums over lI and kJ are expected
to be present and reflect the fact that H(χ, φ) generically does not have any periodicity properties in χ and φ.
The example of the previous section shows that the ranges of some of the summations can be restricted even
though the corresponding periodicities might become apparent only after resummation. The ellipsis indicates
that, similar to (1.4), one expects exponentially suppressed contributions that form the full non-perturbative
completion of the expression. The assumption (3.3) is rather compelling: inserting (3.3) into (3.2) and
performing a saddle-point approximation with respect to both the electro- and magnetostatic potentials,
one finds that this semiclassical result is in precise agreement with the general black hole entropy formula.
Clearly, when comparing with microscopic entropy formulae, corrections to this semiclassical black hole
entropy arise [10, 13]. Such effects lead to additional subleading contributions to (3.3) and are discussed
in [7].

In order to make a connection with (1.4) one can now use (3.3) as the starting point and perform an
inverse Laplace transform with respect to the magnetostatic potentials only. For generic directions χI , the
sums over the shifts combine with the integrals along the strips χI ∼ χI + 2πi to give contours running
parallel to the whole imaginary axis. When performing these integrals in saddle-point approximation one
recovers precisely (1.4), where ∆ is given by the determinant of the period matrix that is suitably generalized
to include certain higher-derivative curvature interactions and non-holomorphic corrections. For the set-up
discussed in the previous section, the result is given, up to a numerical factor, by the sum of two squares:

∆(p, φ) ∼ det CMN

(
S + S̄

)n−1

[(
− 1

2

(
T + T̄

)2 + DΩ
)2

− 4
(
S + S̄

)2

|Y 0|4 |DS∂SΩ|2
]

, (3.4)

where

DS∂SΩ =
(

∂2
S +

2
S + S̄

∂S

)
Ω . (3.5)

Up to an overall rescaling by |Y 0|4(S + S̄)2, the two terms in the bracket (3.4) are each invariant under S-
and T-duality transformations. In order to relate this to the microscopic result, one compares log

√
∆ with

log M given by (2.18). Thereby, one treats the first term in the bracket of (3.4),

(S + S)|Y 0|2
(
− 1

2

(
T + T̄

)2 + DΩ
)

, (3.6)
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422 J. Käppeli: Black hole partition function

as the leading, duality invariant part and expands log
√

∆ in inverse powers of this quantity. The same is
done for the expression log M given in (2.18) and one finds precise agreement to leading order in these
expressions. The two partition functions therefore agree to subleading order. Beyond this order there are,
not unexpectedly, certain deviations. A discussion of the origins of these effects is given in [7].
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