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A brief history of quantum gravity is sketched. While 
familiarity with basic ideas and notions of contempo-
rary physics is assumed, technicalities are kept to a 
minimum and use of equations is avoided. Rather, the 
emphasis is on providing a coherent picture of the evo-
lution of ideas and the current status of the subject. 
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I. The beginning 

GENERAL relativity and quantum theory are among the 
greatest intellectual achievements of the 20th century. 
Each of them has profoundly altered the conceptual fabric 
that underlies our understanding of the physical world. 
Furthermore, each has been successful in describing the 
physical phenomena in its own domain to an astonishing 
degree of accuracy. And yet, they offer us strikingly dif-
ferent pictures of physical reality. Indeed, at first one is 
surprised that physics could keep progressing blissfully in 
the face of so deep a conflict. The reason is that phenom-
ena for which both theories are essential occur at the 
Planck scale and the values of fundamental constants in 
our universe conspire to make the Planck length ´Pl = 

G®/c3 ~ 10–33 cm truly minute and Planck energy 
EPl = ®c/G ~ 1019 Gev absolutely enormous compared to 
laboratory scales. Thanks to this coincidence, we can 
happily maintain a schizophrenic attitude and use the pre-
cise, geometric picture of reality offered by general rela-
tivity while dealing with cosmological and astrophysical 
phenomena, and the quantum-mechanical world of chance 
and intrinsic uncertainties while dealing with atomic and 
subatomic particles. Clearly, this strategy is quite appro-
priate as a practical stand. But it is highly unsatisfactory 
from a conceptual viewpoint. Everything in our past experi-
ence in physics tells us that the two pictures we currently 
use must be approximations, special cases that arise as 
appropriate limits of a grander theory. That theory must 
therefore represent a synthesis of general relativity and 
quantum mechanics. This would be the quantum theory 
of gravity. The burden on this theory is huge: Not only 
should it correctly describe all the known gravitational 

processes, but it should also adequately handle the Planck 
regime. This is the theory that we invoke when faced with 
phenomena, such as the big bang and the final state of 
black holes, where the Planck scale is reached and worlds 
of general relativity and quantum mechanics unavoidably 
meet. 
 It may come as a surprise that the necessity of a quan-
tum theory of gravity was pointed out by Einstein already 
in 1916 – barely a year after the discovery of general relati-
vity. In a paper in the Preussische Akademie Sitzungs-
berichte, he wrote: 
 

‘Nevertheless, due to the inneratomic movement of elec-
trons, atoms would have to radiate not only electro-
magnetic but also gravitational energy, if only in tiny 
amounts. As this is hardly true in Nature, it appears 
that quantum theory would have to modify not only 
Maxwellian electrodynamics but also the new theory of 
gravitation’. 

 
Papers on the subject began to appear in the thirties most 
notably by Bronstein, Rosenfeld and Pauli. However, de-
tailed work began only in the sixties. The general deve-
lopments since then loosely represent four stages, each 
spanning roughly a decade. 
 First, there was the beginning: exploration. The goal was to 
do unto gravity as one would do unto any other physical 
field1 (Since this article is addressed to non-experts, ex-
cept in the discussion of very recent developments, I will 
generally refer to books and review articles which sum-
marize the state of the art at various stages of develop-
ment of quantum gravity. References to original papers 
can be found in these reviews.). The electromagnetic field 
had been successfully quantized using two approaches: ca-
nonical and covariant. In the canonical approach, electric 
and magnetic fields obeying Heisenberg’s uncertainty 
principle are at the forefront, and quantum states naturally 
arise as (gauge-invariant) functions ψ(A) of the vector po-
tential A on a constant time 3-surface of space–time. In 
the covariant approach on the other hand, one first isolates 
and then quantizes the two radiative modes of the Max-
well field in space–time, without carrying out a (3 + 1)-
decomposition of space–time into space and time. The 
quantum states naturally arise as elements of the Fock 
space of photons. Attempts were made to extend these 
techniques to general relativity. In the electromagnetic 
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case the two methods are completely equivalent. Only the 
emphasis changes in going from one to another. In the 
gravitational case, however, the difference is profound. 
This is not accidental. The reason is deeply rooted in one 
of the essential features of general relativity, namely the 
dual role of the space–time metric. 
 To appreciate this point, let us begin with field theories 
in Minkowski space–time, say Maxwell’s theory to be 
specific. Here, the basic dynamical field is represented by 
a tensor field Fµν on Minkowski space. The space–time 
geometry provides the kinematical arena on which the 
field propagates. The background, Minkowskian metric 
provides light cones and the notion of causality. We can 
foliate this space–time by a one-parameter family of constant-
time three-planes, and analyse how the values of electric 
and magnetic fields on one of these surfaces determine 
those on any other surface. The isometries of the Min-
kowski metric let us construct physical quantities such as 
fluxes of energy, momentum, and angular momentum 
carried by electromagnetic waves. Geometry of Minkow-
ski space, on the other hand, is fixed; it is completely in-
sensitive to the properties of the electromagnetic field. 
 In general relativity, by contrast, there is no background 
geometry. The space–time metric itself is the fundamen-
tal dynamical variable. On the one hand it is analogous to 
the Minkowski metric in Maxwell’s theory; it determines 
space–time geometry, provides light cones, defines cau-
sality, and dictates the propagation of all physical fields 
(including itself). On the other hand it is the analog of the 
Newtonian gravitational potential and therefore the basic 
dynamical entity of the theory, similar in this respect to 
the vector potential Aµ of the Maxwell theory. This dual 
role of the metric is in effect a precise statement of the 
equivalence principle that is at the heart of general rela-
tivity. It is this feature that is largely responsible for the 
powerful conceptual economy of general relativity, its ele-
gance, its aesthetic beauty, its strangeness in proportion. 
 However, this feature also brings with it a host of prob-
lems. We see already in the classical theory several mani-
festations of these difficulties. It is because there is no 
background geometry, for example, that it is so difficult 
to analyse singularities of the theory and to define the energy 
and momentum carried by gravitational waves. Since 
there is no a priori space–time, to introduce notions as 
basic as causality, time, and evolution, one must first solve 
the dynamical equations and construct a space–time. As 
an extreme example, consider black holes, whose defini-
tion requires the knowledge of the causal structure of the 
entire space–time. To find if the given initial conditions 
lead to the formation of a black hole, one must first obtain 
their maximal evolution and, using the causal structure 
determined by that solution, ask if its future infinity has a 
past boundary. If it does, space–time contains a black 
hole and the boundary is its event horizon. Thus, because 
there is no longer a clean separation between the kinema-
tical arena and dynamics, in the classical theory substan-

tial care and effort is needed even in the formulation of 
basic physical questions. 
 In quantum theory the problems become significantly 
more serious. To see this, recall first that, because of the 
uncertainty principle, already in non-relativistic quantum 
mechanics particles do not have well-defined trajectories; 
time-evolution only produces a probability amplitude, 
ψ(x, t), rather than a specific trajectory, x(t). Similarly, in 
quantum gravity, even after evolving an initial state, one 
would not be left with a specific space–time. In the absence of 
a space–time geometry, how is one to introduce even habitual 
physical notions such as causality, time, scattering states, 
and black holes? 

2. Early developments 

The canonical and the covariant approaches have adopted 
dramatically different attitudes to face these problems. In 
the canonical approach, one notices that, in spite of the 
conceptual difficulties mentioned above, the Hamiltonian 
formulation of general relativity is well-defined and attempts 
to use it as a stepping stone to quantization. The funda-
mental canonical commutation relations are to lead us to 
the basic uncertainty principle. The motion generated by 
the Hamiltonian is to be thought of as time evolution. The 
fact that certain operators on the fixed (‘spatial’) three-
manifold commute is supposed to capture the appropriate 
notion of causality. The emphasis is on preserving the 
geometrical character of general relativity, on retaining 
the compelling fusion of gravity and geometry that Einstein 
created. In the first stage of the program, completed in the 
early sixties, the Hamiltonian formulation of the classical 
theory was worked out in detail by Dirac, Bergmann, Ar-
nowitt, Deser and Misner and others2–6. The basic canonical 
variable was the 3-metric on a spatial slice. The ten Ein-
stein’s equations naturally decompose into two sets: four 
constraints on the metric and its conjugate momentum 
(analogous to the equation Div E

→
 = 0 of electrodynamics) 

and six evolution equations. Thus, in the Hamiltonian 
formulation, general relativity could be interpreted as the 
dynamical theory of 3-geometries. Wheeler therefore baptized 
it geometrodynamics7,8. 
 In the second stage, this framework was used as a point 
of departure for quantum theory. The basic equations of 
the quantum theory were written down and several important 
questions were addressed6,8. Wheeler also launched an 
ambitious program in which the internal quantum numbers of 
elementary particles were to arise from non-trivial, mi-
croscopic topological configurations and particle physics 
was to be recast as ‘chemistry of geometry’. However, 
most of the work in quantum geometrodynamics contin-
ued to remain formal; indeed, even today the field theoretic 
difficulties associated with the presence of an infinite 
number of degrees of freedom remain unresolved. Fur-
thermore, even at the formal level, it has been difficult to 
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solve the quantum Einstein’s equations. Therefore, after 
an initial burst of activity, the quantum geometrodynamics 
program became stagnant. Interesting results were obtai-
ned in the limited context of quantum cosmology where 
one freezes all but a finite number of degrees of freedom. 
However, even in this special case, the initial singularity 
could not be resolved without additional ‘external’ inputs 
into the theory. Sociologically, the program faced another 
limitation: concepts and techniques which had been so 
successful in quantum electrodynamics appeared to play 
no role here. In particular, in quantum geometrodynamics, 
it is hard to see how gravitons are to emerge, how scatter-
ing matrices are to be computed, how Feynman diagrams 
are to dictate dynamics and virtual processes are to give 
radiative corrections. To use a well-known phrase9, the 
emphasis on geometry in the canonical program ‘drove a 
wedge between general relativity and the theory of ele-
mentary particles’. 
 In the covariant approach4,10,11 the emphasis is just the 
opposite. (Incidentally, in the context of quantum gravity, 
the term ‘covariant’ is somewhat misleading because the in-
troduction of a background metric violates diffeomorphism 
covariance. It is used mainly to emphasize that this approach 
does not involve a 3 + 1 decomposition of space–time.) 
Field-theoretic techniques are put at the forefront. The 
first step in this program is to split the space–time metric gµν 
in two parts, gµν = ηµν + Ghµν, where ηµν is to be a back-
ground, kinematical metric, often chosen to be flat, G is 
Newton’s constant, and hµν, the deviation of the physical 
metric from the chosen background, the dynamical field. 
The two roles of the metric tensor are now split. The 
overall attitude is that this sacrifice of the fusion of gravity 
and geometry is a moderate price to pay for ushering-in 
the powerful machinery of perturbative quantum field 
theory. Indeed, with this splitting most of the conceptual 
problems discussed above seem to melt away. Thus, in 
the transition to the quantum theory it is only hµν that is 
quantized. Quanta of this field propagate on the classical 
background space–time with metric ηµν. If the background is 
in fact chosen to be flat, one can use the Casimir opera-
tors of the Poincaré group and show that the quanta have 
spin two and rest mass zero. These are the gravitons. The 
Einstein–Hilbert Lagrangian tells us how they interact 
with one another. Thus, in this program, quantum general 
relativity was first reduced to a quantum field theory in 
Minkowski space. One could apply to it all the machinery 
of perturbation theory that had been so successful in par-
ticle physics. One now had a definite program to compute 
amplitudes for various scattering processes. Unruly grav-
ity appeared to be tamed and forced to fit into the mold 
created to describe quantum electromagnetic interactions. 
Thus, the covariant quantization program was more in 
tune with the mainstream developments in physics at the 
time. In the early sixties, Gupta and Feynman outlined an 
extension of perturbative methods from quantum electro-
dynamics to gravity. A few years later DeWitt carried this 

analysis to completion by systematically formulating the 
Feynman rules for calculating scattering amplitudes among 
gravitons and between gravitons and matter quanta. He 
showed that the theory is unitary order by order in the 
perturbative expansion. By the early seventies, the covariant 
approach had led to several concrete results10. 
 Consequently, the second stage of the covariant program 
began with great enthusiasm and hope. The motto was: 
Go forth, perturb, and expand. The enthusiasm was first 
generated by the discovery that Yang–Mills theory cou-
pled to fermions is renormalizable if the masses of gauge 
particles are generated by a spontaneous symmetry-breaking 
mechanism. (In fact DeWitt’s quantum gravity work10 
played a seminal role in the initial stages of the extension 
of perturbative techniques from Abelian to non-Abelian 
gauge theories.) This led to a successful theory of electroweak 
interactions. Particle physics witnessed a renaissance of 
quantum field theory. The enthusiasm spilled over to gravity. 
Courageous calculations were performed to estimate ra-
diative corrections. Unfortunately, however, this research 
soon ran into its first road block. The theory was shown 
to be non-renormalizable when two loop effects are taken 
into account for pure gravity and already at one loop for 
gravity coupled with matter12. To appreciate the signifi-
cance of this result, let us return to the quantum theory of 
photons and electrons. This theory is perturbatively renor-
malizable. This means that, although individual terms in 
the perturbation expansion of a physical amplitude may 
diverge due to radiative corrections involving closed loops of 
virtual particles, these infinities are of a specific type; 
they can be systematically absorbed in the values of free 
parameters of the theory, the fine structure constant and 
the electron mass. Thus, by renormalizing these parame-
ters, individual terms in the perturbation series can be 
systematically rendered finite. In quantum general relativity, 
such a systematic procedure is not available; infinities 
that arise due to radiative corrections are genuinely trou-
blesome. Put differently, quantum theory acquires an infinite 
number of undetermined parameters. Although one can 
still use it as an effective theory in the low energy regime, re-
garded as a fundamental theory, it has no predictive 
power at all! 
 Buoyed, however, by the success of perturbative methods 
in electroweak interactions, the community was reluctant 
to give them up in the gravitational case. In the case of 
weak interactions, it was known for some time that the 
observed low energy phenomena could be explained using 
Fermi’s simple four-point interaction. The problem was 
that this Fermi model led to a non-renormalizable theory. 
The correct, renormalizable model of Glashow, Weinberg 
and Salam agrees with Fermi’s at low energies but mar-
shals new processes at high energies which improve the 
ultraviolet behaviour of the theory. It was therefore natural 
to hope that the situation would be similar in quantum 
gravity. General relativity, in this analogy, would be similar 
to Fermi’s model. The fact that it is not renormalizable 
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was taken to mean that it ignores important processes at 
high energies which are, however, unimportant at low ener-
gies, i.e., at large distances. Thus, the idea was that the 
correct theory of gravity would differ from general rela-
tivity but only at high energies, i.e., near the Planck regime. 
With this aim, higher derivative terms were added to the 
Einstein–Hilbert Lagrangian. If the relative coupling con-
stants are chosen judiciously, the resulting theory does in 
fact have a better ultraviolet behaviour. Stelle, Tomboulis 
and others showed that the theory is not only renormaliz-
able but asymptotically free; it resembles the free theory 
in the high energy limit. Thus, the initial hope of ‘curing’ 
quantum general relativity was in fact realized. However, 
it turned out that the Hamiltonian of this theory is unbounded 
from below, and consequently the theory is drastically 
unstable! In particular, it violates unitarity; probability 
fails to be conserved. The success of the electroweak theory 
suggested a second line of attack. In the approaches dis-
cussed above, gravity was considered in isolation. The 
successful unification of electromagnetic and weak inter-
actions suggested the possibility that a consistent theory 
would result only when gravity is coupled with suitably cho-
sen matter. The most striking implementation of this 
viewpoint occurred in supergravity. Here, the hope was 
that the bosonic infinities of the gravitational field would 
be cancelled by those of suitably chosen fermionic sources, 
giving us a renormalizable quantum theory of gravity. 
Much effort went into the analysis of the possibility that 
the most sophisticated of these theories – N = 8 super-
gravity – can be employed as a genuine grand unified 
theory. (For a number of years, there was a great deal of 
confidence, especially among particle physicists, that su-
pergravity was on the threshold of providing the complete 
quantum gravity theory. For instance, in the centennial 
celebration of Einstein’s birthday at the Institute of Advanced 
Study, Princeton13 – the proceedings of which were video-
taped and archived for future historians and physicists – 
there were two talks on quantum gravity, both devoted to 
supergravity. A year later, in his Lucasian Chair inaugu-
ral address Hawking14 suggested that end of theoretical 
physics was in sight because N = 8 supergravity was 
likely to be the final theory.) It turned out that some can-
cellation of infinities does occur and that supergravity is 
indeed renormalizable to two loops even though it contains 
matter fields coupled to gravity. Furthermore, its Hamil-
tonian is manifestly positive and the theory is unitary. 
However, it is believed that at fifth and higher loops it is 
again non-renormalizable. 

3. Paradigm shifts 

By and large, the canonical approach was pursued by rela-
tivists and the covariant approach by particle physicists. In 
the mid-eighties, both approaches received unexpected 
boosts. These launched the third phase in the develop-
ment of quantum gravity. 

 A group of particle physicists had been studying string 
theory to analyse strong interactions from a novel angle. 
The idea was to replace point particles by 1-dimensional 
extended objects – strings – and associate particle-like states 
with various modes of excitations of the string. Initially 
there was an embarrassment: in addition to the spin-1 
modes characteristic of gauge theories, string theory in-
cluded also a spin-2, massless excitation. But it was soon 
realized that this was a blessing in disguise: the theory 
automatically incorporated a graviton. In this sense, gravity 
was already built into the theory! However, it was known 
that the theory had a potential quantum anomaly which 
threatened to make it inconsistent. In the mid-eighties, 
Green and Schwarz showed that there is an anomaly can-
cellation. Perturbative string theory could be consistent in 
certain space–time dimensions – 26 for a purely bosonic 
string and 10 for a superstring15,16. Since strings were assumed 
to live in the background of Minkowski space–time, one 
could apply perturbative techniques. However, in this re-
incarnation, the covariant approach underwent a dramatic 
revision. Since it is a theory of extended objects rather 
than point particles, the quantum theory has brand new 
elements; it is no longer a local quantum field theory. 
The field theoretic Feynman diagrams are replaced by 
world-sheet diagrams. This replacement dramatically im-
proves the ultraviolet behaviour and, although explicit cal-
culations have been carried out only at 2 or 3 loop order, 
it is widely believed that the perturbation theory is finite 
to all orders; it does not even have to be renormalized. 
The theory is also unitary. It has a single, new fundamen-
tal constant – the string tension – and, since various excited 
modes of the string represent different particles, there is a 
built-in principle for unification of all interactions! Al-
though none of the known low energy reductions appears to 
correspond to the world we actually observe, string theory 
has provided us with a glimpse of an entirely new vista: 
the concrete possibility that unification could be brought 
about by a tightly woven, non-local theory. From the 
viewpoint of local quantum field theories that particle 
physicists have used in studying electroweak and strong 
interactions, this mathematical structure seems almost magi-
cal. Therefore there is a hope in the string community that 
this theory would encompass all of fundamental physics; 
it would be the ‘theory of everything’. 
 Unfortunately, it soon became clear that string pertur-
bation theory also faces some serious limitations. Perturbative 
finiteness would imply that each term in the perturbation 
series is ultra-violet finite. (Incidentally infrared diver-
gences appear to persist. While this is an important limi-
tation from the mathematical physics perspective, as in 
QED, these are regarded as ‘harmless’ for calculation of 
physical effects. I thank Ashoke Sen for discussions on 
this issue.) However Gross and Periwal have shown that 
in the case of bosonic strings, when summed, the series 
diverges and does so uncontrollably. (Technically, it is 
not even ‘Borel-summable’.) They also gave arguments 
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that the conclusion would not be changed if one uses super-
strings instead. Independent support for these arguments 
has come from work on random surfaces due to Ambjorn 
and others. One might wonder why the divergence of the 
sum should be regarded as a serious failure of the theory. 
After all, in quantum electrodynamics, the series is also 
believed to diverge. Recall, however, that quantum elec-
trodynamics is an inherently incomplete theory. It ignores 
many processes that come into play at high energies or 
short distances. In particular, it completely ignores the 
microstructure of space–time and simply assumes that space–
time can be approximated by a smooth continuum even 
below the Planck scale. Therefore, it can plead incom-
pleteness and shift the burden of this infinity to a more 
complete theory. A ‘theory of everything’ on the other 
hand, has nowhere to hide. It cannot plead incompleteness 
and shift its burden. It must face the Planck regime squarely. 
So, if string theory is to be consistent, it must have key 
non-perturbative structures. The current and the fourth 
stage of the particle physics motivated approaches to 
quantum gravity is largely devoted to unravelling such struc-
tures and using them to address some of the outstanding 
physical problems. 
 On the relativity side, the third stage also began with 
an unexpected but innocuous-sounding observation: the 
geometrodynamics program laid out by Dirac, Bergmann, 
Wheeler and others simplifies significantly if we regard a 
connection – rather than the 3-metric – as the basic object17. 
While metrics determine distances and angles, connections 
enable one to ‘parallel transport’ objects along curves. A 
familiar example from text-book quantum mechanics is 
the electro-magnetic vector potential A that lets us trans-
port the wave function ψ(x) of a charged particle, such as 
the electron, from one point to another along any given 
curve: under an infinitesimal displacement, while the 
change in the wave function of an uncharged particle is 
given just by ∆ . ( ),x xψ

→→ ∇  for a charged particle, it is 
given by ∆ .(x

→→ ∇− (iq/®) A
→

)ψ(x) where q is the charge of 
the particle. The presence of a non-zero A

→
 manifests it-

self in a change of phase of ψ, the most dramatic example 
of which occurs in the celebrated Bohm-Aharanov effect. 
In QCD the (matrix-valued) vector potentials couple 
similarly to the wave functions of quarks and dictate the 
change of their state as one moves from one point to an-
other. In the gravitational context, the most familiar con-
nection is the one introduced by Levi-Civita which enables 
one to parallel transport a vector on a curved manifold. 
We now know that, in their quest for an unified field the-
ory, Einstein and Schrödinger, among others, had recast 
general relativity as a theory of Levi-Civita connections 
(rather than metrics) already in the fifties18. However, the 
theory became rather complicated. 
 This episode had been forgotten and connections were 
re-introduced in the mid-eighties. However, now these 
were ‘spin-connections’, required to parallel propagate 
spinors, such as the left handed fermions used in the stan-

dard model of particle physics17,19. Rather than making the 
theory complicated, these connections simplify Einstein’s 
equations considerably. For example, the dynamics of 
general relativity can now be visualized simply as a geo-
desic motion on the space of spin-connections (with respect 
to a natural metric extracted from the constraint equa-
tions). Since general relativity is now regarded as a dynamical 
theory of connections, this reincarnation of the canonical 
approach is called connection-dynamics. 
 Perhaps the most important advantage of the passage 
from metrics to connections is that the phase-space of 
general relativity is now the same as that of gauge theo-
ries17,19. The ‘wedge between general relativity and the 
theory of elementary particles’ that Weinberg referred to 
is largely removed without sacrificing the geometrical essence 
of general relativity. One could now import into general 
relativity techniques that have been highly successful in 
the quantization of gauge theories. At the kinematic level, 
then, there is a unified framework to describe all four 
fundamental interactions. The dynamics, of course, depends 
on the interaction. In particular, while there is a background 
space–time geometry in electroweak and strong interactions, 
there is none in general relativity. Therefore, qualitatively 
new features arise. These were exploited in the late eighties 
and early nineties to solve simpler models – general relativity 
in 2 + 1 dimensions17,20; linearized gravity clothed as a 
gauge theory17; and certain cosmological models. To ex-
plore the physical, 3 + 1 dimensional theory, a ‘loop rep-
resentation’ was introduced by Rovelli and Smolin21. 
Here, quantum states are taken to be suitable functions of 
loops on the 3-manifold. (This is the origin of the name 
‘loop quantum gravity’. The loop representation played 
an important role in the initial stages. Although this is no 
longer the case in the current, fourth phase, the name is 
still used to distinguish this approach from others.) This 
led to a number of interesting and intriguing results, particu-
larly by Gambini, Pullin and their collaborators, relating 
knot theory and quantum gravity22. Thus, there was rapid 
and unanticipated progress in a number of directions 
which rejuvenated the canonical quantization program. 
Since the canonical approach does not require the introduction 
of a background geometry or use of perturbation theory, 
and because one now has access to fresh, non-perturbative 
techniques from gauge theories, in relativity circles there 
is a hope that this approach may lead to well-defined, 
non-perturbative quantum general relativity (or its super-
symmetric version, supergravity). 
 However, a number of these considerations remained 
rather formal until the mid-nineties. Passage to the loop 
representation required an integration over the infinite 
dimensional space of connections and the formal methods 
were insensitive to possible infinities lurking in the pro-
cedure. Indeed, such integrals are notoriously difficult to 
perform in interacting field theories. To pay due respect 
to the general covariance of Einstein’s theory, one needed 
diffeomorphism invariant measures and there were 
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folk-theorems to the effect that such measures did not 
exist! 
 Fortunately, the folk-theorems turned out to be incorrect. 
To construct a well-defined theory capable of handling 
field theoretic issues, a quantum theory of Riemannian 
geometry was systematically constructed in the mid-
nineties23. This launched the fourth (and the current) stage 
in the canonical approach. Just as differential geometry pro-
vides the basic mathematical framework to formulate 
modern gravitational theories in the classical domain, 
quantum geometry provides the necessary concepts and 
techniques in the quantum domain. Specifically, it enables 
one to perform integration on the space of connections 
for constructing Hilbert spaces of states and to define 
geometric operators corresponding, e.g. to areas of sur-
faces and volumes of regions (even though the classical 
expressions of these quantities involve non-polynomial 
functions of the Riemannian metric). There are no infini-
ties. One finds that, at the Planck scale, geometry has a 
definite discrete structure. Its fundamental excitations are 
1-dimensional, rather like polymers, and the space–time 
continuum arises only as a coarse-grained approximation. 
The fact that the structure of space–time at Planck scale 
is qualitatively different from Minkowski background 
used in perturbative treatments reinforced the idea that 
quantum general relativity (or supergravity) may well be 
non-perturbatively finite. 
 Finally, quantum geometry is a general framework that 
is not tied down to general relativity (or supergravity). 
However, since general relativity is the best classical theory 
of gravity we have, it is well worth investigating, at least 
as the first step, whether quantum general relativity exists 
non-perturbatively. Much of research in loop quantum 
gravity has been focussed on this question. Quantum geome-
try effects have already been shown to resolve the big-
bang singularity and solve some of the long-standing 
problems associated with black holes. 

4. The past decade 

The first three stages of developments in quantum gravity 
taught us many valuable lessons. Perhaps the most impor-
tant among them is the realization that perturbative, field 
theoretic methods which have been so successful in other 
branches of physics are not as useful in quantum gravity. 
The assumption that space–time can be replaced by a 
smooth continuum at arbitrarily small scales leads to inconsis-
tencies. We can neither ignore the microstructure of 
space–time nor presuppose its nature. We must let quantum 
gravity itself reveal this structure to us. Irrespective of 
whether one works with strings or supergravity or general 
relativity, one has to face the problem of quantization 
non-perturbatively. In the current, fourth stage both appro-
aches have undergone a metamorphosis. The covariant 
approach has led to string theory and the canonical approach 

developed into loop quantum gravity. The mood seems to 
be markedly different. In both approaches, non-perturbative 
aspects are at the forefront and conceptual issues are 
again near center-stage. However, there are also key dif-
ferences. Most work in string theory involves background 
fields and uses higher dimensions and supersymmetry as 
essential ingredients. The emphasis is on unification of 
gravity with other forces of Nature. Loop quantum gravity, 
on the other hand, is manifestly background independent. 
Supersymmetry and higher dimensions do not appear to 
be essential. However, it has not provided any principle 
for unifying interactions. In this sense, the two approaches 
are complementary rather than in competition. Each pro-
vides fresh ideas to address some of the key problems but 
neither is complete. 
 In the rest of this section, I will illustrate the current 
developments by sketching a few of the more recent results. 
In the case of string theory, my discussion will be very 
brief because these topics are discussed in greater detail 
by several other articles in this issue. 

String theory 

Over the past decade, novel non-perturbative ideas have 
been introduced in string theory. Unlike in the perturbative 
epoch, it is no longer a theory only of one dimensional 
extended objects. Higher dimensional objects, called 
‘branes’ have played an increasingly important role. Al-
though for historical reasons it is still called ‘string theory’, 
from a fundamental, conceptual perspective, strings are 
no more basic than branes. Of particular interest are the 
D-branes introduced by Polchinski on which open strings 
satisfying ‘Dirichlet type’ boundary conditions can end 
(whence the adjective ‘D’). These lie at the heart of the 
statistical mechanical calculation of entropy of large ex-
tremal black holes in string theory. 
 The second key development was even more radical: 
Maldecena made the bold proposal that string theory on a 
certain anti-De sitter background space–time is isomorphic 
with a gauge theory living on its boundary. In the first 
and the most studied version, the background space–time 
is assumed to be a product of a five dimensional anti-De 
Sitter space–time with a five-dimensional sphere (whose 
radius equals the cosmological radius of the anti-De Sitter 
space–time) while the gauge theory lives on the 4-dimen-
sional boundary of the five-dimensional anti-De Sitter 
space–time. Since then the setup has been generalized to 
various non-compact dimensions. The boundary condi-
tions – and hence the resulting string theories – are not of 
direct physical interest because our universe has a positive, 
rather than a negative, cosmological constant and because 
the compact spheres do not represent microscopic 
‘curled-up’ dimensions because they now have huge radii. 
Nonetheless, from a mathematical physics perspective, 
the proposed duality is fascinating because it relates a 
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‘gravity theory’ residing on a curved space–time with a 
qualitatively different ‘gauge theory’ living on a (con-
formally) flat space–time. It has had some powerful ap-
plications, e.g., in unravelling the structure of certain 
supersymmetric gauge theories through supergravity! 
 Finally there are interesting proposals relating various 
types of string theories that go under the name dualities. 
Although there are no conclusive proofs, these ideas suggest 
that the five perturbatively constructed string theories and 
supergravity may be special limits of a grander, unknown 
theory, generally referred to as the M theory. The scenario 
has generated a great deal of enthusiasm. For, the conjectured 
theory is likely to be very rich. In particular, it should 
provide isomorphisms between the strong coupling regime 
of one string theory to the weak coupling regime of an-
other. Unravelling of its non-perturbative structures will 
undoubtedly provide qualitatively new insights and per-
haps even radically change our current perspectives. 

Loop quantum gravity 

Over the past decade, the main thrust of research in loop 
quantum gravity has been on using quantum geometry to 
address some of the long standing problems in the field. 
Certain key techniques introduced by Thiemann have 
provided glimpses of the qualitative changes in quantum 
dynamics that occur because of the absence of a background 
geometry. Specifically, thanks to the fundamental discreteness 
of quantum Riemannian geometry, the ultraviolet diver-
gences – also in the definition of matter Hamiltonians – 
are naturally tamed23,24. However, in the full theory, two 
major issues still remain. First, there is a large number of 
ambiguities in the formulation of quantum Einstein’s 
equations and one needs additional inputs to remove them. 
Second, it is still not clear whether any of the current formu-
lations admits a semi-classical sector that reproduces the 
low energy world around us. (Several different avenues 
are being pursued to address these issues23. These include 
the ‘discrete approach’ due to Gambini and Pullin25 in which 
one discretizes the theory prior to quantization; spin-foam 
approaches due to Baez, Barrett, Crane, Perez, Rovelli 
and others26,27 in which one uses a background independ-
ent, the path integral analog of loop quantum gravity; and 
the ‘master constraint program’ of Dittrich and Thiemann28 
which uses some of the key ideas of Klauder’s29 affine 
quantum gravity program.) So far, advances of direct 
physical interest have occurred by adopting a strategy 
which has been effective also in string theory: isolate and 
analyse issues on which significant progress can be made 
in spite of the gaps in the understanding of the full theory. 
In the rest of this sub-section, I will illustrate how this 
strategy is implemented. Rather than describing several 
results briefly, I will focus just on one. This will enable 
me to provide some details that are necessary for the 
reader to appreciate the subtle manner in which quantum 
geometry effects operate. 

 The issue in question is the nature of the quantum big 
bang. Most work in cosmology is carried out in the context of 
spatially homogeneous and isotropic models and pertur-
bations thereof30. In the simplest model, the basic vari-
ables of the symmetry reduced classical system are the 
scale factor a and matter fields φ. Symmetries imply that 
space–time curvature goes as ~ 1/an, where n > 0 depends 
on the matter field under consideration. Einstein’s equa-
tions then predict a big-bang, where the scale factor goes 
to zero and the curvature blows up. Space–time comes to 
an end and the classical physics stops. For over three dec-
ades a key question has been: Can these ‘limitations’ of gen-
eral relativity be overcome in an appropriate quantum 
theory? In traditional quantum cosmologies, the answer is in 
the negative. Typically, to resolve the singularity one ei-
ther has to use matter (or external clocks) with unphysical 
properties or introduce additional boundary conditions, 
e.g., by invoking new principles, that dictate how the universe 
began. 
 In a series of papers Bojowald, Ashtekar, Date, Hossain, 
Lewandowski, Maartens, Singh, Vandersloot and others 
have shown that the situation in loop quantum cosmology 
is quite different: the underlying quantum geometry makes a 
qualitative difference very near the big-bang23,31. At first, 
this seems puzzling because after symmetry reduction, 
the system has only a finite number of degrees of freedom. 
Thus, quantum cosmology is analogous to quantum me-
chanics rather than quantum field theory. How then can 
one obtain qualitatively new predictions? The answer is 
quite surprising: if one follows the program laid out in the 
full theory, then even for the symmetry reduced model one is 
led to a new quantum mechanics! Specifically, the repre-
sentation (of the observable algebra) that naturally arises 
in loop quantum cosmology is inequivalent to that used in 
the older, traditional quantum cosmology. And in the new 
representation, quantum evolution is well-defined right 
through the big-bang singularity. 
 More precisely, the situation in dynamics can be sum-
marized as follows. Because of the underlying symme-
tries, dynamics is dictated just by one of the ten Einstein 
equations, called the Hamiltonian constraint. Let us consider 
the simplest case of homogeneous, isotropic cosmologies 
coupled to a scalar field. In traditional quantum cosmology, 
this constraint is the celebrated Wheeler-DeWitt equa-
tion7,8 – a second order differential equation on wave 
functions ψ(a, φ) that depend on the scale factor a and the 
scalar field φ. Unfortunately, some of the coefficients of 
these equations diverge at a = 0, making it impossible to 
obtain an unambiguous evolution across the singularity. 
In loop quantum cosmology, the scale factor naturally 
gets replaced by µ, the momentum conjugate to the connec-
tion. µ ranges over the entire real line and is related to the 
scale factor via |µ| = const a2. Negative values of µ corre-
spond to the assignment of one type of spatial orientation, 
positive to the opposite orientation, and µ = 0 corresponds 
to the degenerate situation at the singularity. The Wheeler-
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DeWit equation is now represented by a difference equa-
tion on the quantum state ψ(µ, φ): 
 

 C+ (µ)ψ(µ + 4µ0, φ) + C0 (µ)ψ(µ, φ)  

    + C–(µ)ψ(µ – 4µ0, φ) = ´ 2
Pl Ĥφ ψ(µ, φ), (1) 

 
where C±(µ), C0(µ) are fixed functions of µ; µ0, a constant, 
determined by the lowest eigenvalue of the area operator 
and Ĥφ  is the matter Hamiltonian. Again, using the ana-
log of the Thiemann regularization from the full theory, 
one can show that the matter Hamiltonian is a well-defined 
operator. 
 Primarily, eq. (1) is the quantum Einstein’s equation 
that selects the physically permissible ψ(µ, φ). However, 
if we choose to interpret µ as a heuristic time variable, eq. 
(1) can be interpreted as an ‘evolution equation’ which 
evolves the state through discrete time steps. The highly 
non-trivial result is that the coefficients C±(µ), C0(µ) are 
such that one can evolve right through the classical sin-
gularity, i.e., right through µ = 0. Since all solutions have 
this property, the classical singularity is resolved. How-
ever, to complete the quantization program, one has to in-
troduce the appropriate scalar product on the space of 
solutions to the constraint, define physically interesting 
operators on the resulting Hilbert space Hfinal and examine 
their expectation values and fluctuations, especially near 
the singularity. 
 All these steps have been carried out in detail in the 
case when φ is a massless scalar field32 (The extension of 
the analysis to include potential terms for the matter field 
φ or anisotropies for the combined system involves only 
technical complications. The overall conceptual picture 
remains the same.). Specifically, in each classical solu-
tion, φ is a monotonic function of time. Therefore, one 
can regard it as an ‘internal clock’ with respect to which 
the scale factor evolves. With this interpretation, the dis-
crete eq. (1) takes the form ∂2

tψ = – Θψ, where Θ is a self-
adjoint (difference) operator, independent of φ ~ t. This is 
precisely the form of the Klein-Gordon equation in static 
space–times. (In technical terms, this provides a satisfac-
tory ‘deparametrization’ of the theory.) Therefore, one 
can use techniques from quantum field theory in static space–
times to construct an appropriate inner product and define 
a complete family of (‘Dirac’) observables. Using the 
two, one can construct semi-classical states – analogs of 
coherent states of a harmonic oscillator – and write down 
explicit expressions for expectation values and fluctua-
tions of physical observables in them. As one might ex-
pect, the evolution is well-defined across the singularity but 
quantum fluctuations are huge in its neighbourhood. 
 Now that there is a well-defined theory, one can use 
numerical methods to evolve quantum states and compare 
quantum dynamics with the classical one in detail. Since 
we do not want to make a priori assumptions about what 
the quantum state was at the big-bang, it is best to start 

the evolution not from the big bang but from late times 
(‘now’). Consider then wave functions which are sharply 
peaked at a classical trajectory at late times and evolve 
them backward. The first question is: how long does the 
state remain semi-classical? A pleasant surprise is that it 
does so till very early times – essentially till the epoch 
when the matter density reaches the Planck density. Now, 
this is precisely what one would physically expect. How-
ever, with a complicated difference equation such as (1), 
a priori there is no guarantee that semi-classicality would 
not be lost very quickly. In particular, this result provides 
support for the standard practice, e.g., in inflationary 
models, of assuming a classical continuum in the very 
early universe. Next, one can ask what happens to the quan-
tum state very near and beyond the big-bang. As explained 
above, the state loses semi-classicality (i.e. fluctuations 
become large) near the big-bang. Does it then remain in a 
‘purely quantum regime’ forever or does it again become 
semi-classical beyond a Planck regime on the ‘other side’ 
of the big bang? This is a question that lies entirely out-
side the domain of the standard Wheeler-Dewitt equation 
because it loses predictivity at the big-bang. In loop 
quantum cosmology, on the other hand, the evolution is 
well-defined and completely deterministic also beyond 
the big-bang. A priori there is no way to know what the 
answer would be. Space–time may well have been a 
‘quantum foam’ till the big-bang and classicality may 
then have emerged only after the big-bang. Or, there may 
have been a classical space–time also on the ‘other side’. 
Detailed numerical calculations show that the wave func-
tion becomes semi-classical again on the other side; gravity 
becomes repulsive in the Planck regime, giving rise to a 
‘bounce’. Thus, loop quantum cosmology predicts that 
the universe did not originate at the big bang but has a 
long prior history. Through quantum dynamics, the uni-
verse tunnels from a contracting phase in the distant past 
(‘before the bang’) to an expanding phase in the distant 
future (‘now’) in a specific manner. Classically, of course 
such a transition is impossible. 
 To summarize, the infinities predicted by the classical 
theory at the big-bang are artifacts of assuming that the 
classical, continuum space–time approximation is valid 
right up to the big-bang. In the quantum theory, the state 
can be evolved through the big-bang without any difficulty. 
However, the classical, continuum completely fails near 
the big-bang; figuratively, the classical space–time ‘dis-
solves’. This resolution of the singularity without any 
‘external’ input (such as matter violating energy conditions) 
is dramatically different from what happens with the 
standard Wheeler-DeWitt equation of quantum geometro-
dynamics1,3,4,7–10. However, for large values of the scale 
factor, the two evolutions are close; as one would have hoped, 
quantum geometry effects intervene only in the ‘deep 
Planck regime’ resulting in a quantum bridge connecting 
two classically disconnected space–times. From this perspec-
tive, then, one is led to say that the most striking of the 



SPECIAL SECTION: THE LEGACY OF ALBERT EINSTEIN 
 

CURRENT SCIENCE, VOL. 89, NO. 12, 25 DECEMBER 2005 2072 

 
 

Figure 1. Comparison between quantum and classical evolutions via plot of |ψ(µ, φ)|. Since µ → –µ changes 
only the spatial orientation, it suffices to consider just µ ≥ 0. Except in the Planck regime very near µ = 0, ψ is 
sharply peaked at the classical trajectories. But the trajectory in the top half represents an expanding universe 
while that in the bottom half, a contracting universe. Thus, quantum geometry in the Planck regime bridges two 
vast but classically disjoint space–times. 

 
consequences of loop quantum gravity are not seen in 
older approaches because they ‘wash out’ the fundamen-
tal discreteness of quantum geometry. 

5. Outlook 

The road to quantum gravity has been long, spanning some 
four decades. Along the way came many new insights, 
jubilations as well as frustrations. Because of the page 
limit, I could only provide a general flavour of these trials, 
tribulations and triumphs. In particular, I had to restrict 
myself to the ‘main-stream’ programs whose development 
can be continuously tracked over several decades. There 
also exist a number of other fascinating and highly origi-
nal approaches – particularly causal dynamical triangula-
tions33,34, Euclidean quantum gravity35,36, twistor theory37,38 
and the related theory of H-spaces39, asymptotic quantiza-
tion40, non-commutative geometry41 and causal sets42 – 
that I could not discuss. (Accounts of the present status of 
several of these approaches can be found in the articles by 
Dowker, Ford, Gambini and Pullin and Penrose in ref. 43.) 
 But I hope I managed to convey that, in spite of all the 
twists and turns in the winding road, there have been 
definite advances. We have learned that, because relativistic 
gravity is so deeply intertwined with space–time geometry, 
quantum gravity has unforeseen dimensions that would 
have surprised even the great leaders of the early period. 
We tried hard to extend perturbative methods of local 
quantum field theory which have been so successful in 

QED1. The efforts did lead to a successful perturbative 
framework for non-Abelian gauge theories10,12. But we 
found conclusive evidence that these methods are insufficient 
for quantum gravity: they lead to uncontrollable ultravio-
let divergences12. Thanks to string theory, we now have, 
for the first time, a concrete alternative – a computational 
framework to calculate scattering amplitudes which 
yields finite results to any order in perturbation theory16. 
Furthermore, the theory provides a brand new avenue to 
the unification of all interactions; the plethora of elemen-
tary particles is now reduced to various vibrational modes 
of the superstring. For decades we have been troubled by 
the fact that space–time of general relativity comes to an 
abrupt end at singularities and classical physics literally 
stops there. Loop quantum gravity has shown that this is 
an artifact of pushing the classical theory beyond the domain 
of its validity23,31. Quantum geometry extends its life. What 
we thought of as a ‘tiny, Planck scale region’ can actually 
be a bridge joining our space–time to another vast classical 
region32; quantum space–time may be vastly larger than 
what general relativity had us believe. (In section IV B I 
discussed cosmological singularities. However, the situation 
is similar also for space-like black hole singularities44,45) 
Finally, both approaches have provided fascinating in-
sights into the nature of quantum black holes23,46, a topic 
that would require a separate article in its own right. 
 All currently active directions point to the necessity of 
radical revisions of the 20th century paradigm of theo-
retical physics. String theory abandons local quantum 
field theories altogether and focuses instead on the study 
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of extended quantum objects. Loop quantum gravity asks 
us to forego our cherished space–time continuum and 
embrace a quantum geometry instead. Twistor theory and 
non-commutative geometry suggest that we abandon the 
familiar space–time already at the classical level and re-
formulate general relativity well before the word ‘quantum’ is 
uttered or the symbol ® introduced. No matter which of 
these approaches find an expression in the final quantum 
gravity theory, it is clear that quantum gravity will have 
deep ramifications on all of fundamental physics. General 
relativity led to a radical revision of our notions of space 
and time, thereby reshaping the conceptual foundation of 
all of physics. Impact of the successful quantum gravity 
theory on fundamental physics will be even deeper. 
 But today we cannot be certain which – or indeed, any – 
of these directions will constitute major components of 
the final theory. Thanks to the sustained work spanning 
many decades, most notable advances have occurred in 
the ‘covariant’ and ‘canonical’ approaches. However, even 
here one encounters serious incompleteness and some 
troubling features. How is the supersymmery broken in 
string theory and how does reduction to four large dimen-
sions occur? While the theory is very tight in terms of its 
fundamental constants, there is a huge freedom in the 
choice of ‘moduli-parameters’. There appear to be over 
10200 ‘vacua’, each giving rise to its own low energy theory! 
How is this freedom to be reduced? No compelling prin-
ciple seems to be in sight. More generally, our understanding 
of the presumed M-theory is very incomplete. Incom-
pleteness also pervades loop quantum gravity. How are 
the ambiguities in the formulation of quantum Einstein’s 
equations removed in the full theory? Does this theory 
admit a viable semi-classical sector? Through minisuper-
spaces we have learned that cosmological and black hole 
singularities are resolved through quantum geometry effects 
and loop quantum gravity enables one to perform a determi-
nistic evolution across these singularities. Do these fea-
tures survive beyond the minisuperspace approximation? 
How do inhomogeneous perturbations evolve in the cos-
mological context? Is this evolution compatible with ob-
servational constraints on structure formation? While there is 
vigorous ongoing research to answer such questions in 
both approaches, one cannot say that a satisfactory reso-
lution is imminent. Even more important is the issue of 
observations. So far, not a single non-trivial and firm pre-
diction of any quantum gravity theory has been verified di-
rectly. Therefore, as we celebrate the 100th anniversary 
of Einstein’s Annus Mirabilis it is important that we 
maintain a long range perspective and not repeat our past 
error of overconfidence. In particular, we would do well 
to avoid the traps that the celebrated biologist François 
Jacob47 warned all scientists about: 
 

‘The danger for scientists is not to measure the limits of 
their science, and thus their knowledge. This leads to mix 

what they believe and what they know. Above all, it cre-
ates the certitude of being right [prematurely].’ 
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