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Abstract

We consider a nonsupersymmetric example of the AdS/CFT duality which generalizes the supers
ric exactly marginal deformation constructed in hep-th/0502086. The string theory background we u
found in hep-th/0503201 from theAdS5 × S5 by a combination of T-dualities and shifts of angular coor
nates. It depends on three real parametersγi which determine the shape of the deformed 5-sphere. The
gauge theory has the same field content asN = 4 SYM theory, but with scalar and Yukawa interactio
“deformed” byγi -dependent phases. The special case of equalγi = γ corresponds to theN = 1 supersym-
metric deformation. We compare the energies of semiclassical strings with three large angular m
to the 1-loop anomalous dimensions of the corresponding gauge-theory scalar operators and find
match as it was the case in theSU(3) sector of the standard AdS/CFT duality. In the supersymmetric ca
equalγi this extends the result of our previous work (hep-th/0503192) from the 2-spin to the 3-spin
This extension turns out to be quite nontrivial. To match the corresponding low-energy effective “La
Lifshitz” actions on the string theory and the gauge theory sides one is to make a special choice
spin chain Hamiltonian representing the 1-loop gauge theory dilatation operator. This choice is ada
low-energy approximation, i.e., it allows one to capture the right vacuum states and the “macrosco
wave” sector of states of the spin chain in the continuum coherent state effective action.
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1. Introduction

Study of AdS/CFT duality in situations with reduced (or no) supersymmetry is of obv
interest and importance. Recently, a new example of such duality between an exactly m
(in 4d sense) deformation ofN = 4 super-Yang–Mills theory and an exactly marginal (in
sense) deformation ofAdS5 × S5 superstring theory was suggested in[1] and further explored in
[2,3].

Here we shall be interested in generalizing the results of[2] about the correspondence betwe
semiclassical string states and “long” gauge-theory operators to the case of 3-spin(J1, J2, J3)

string states dual to operators built out of the three holomorphic combinations of 6 real s
(analog ofSU(3) in undeformed theory). The comparison between string and gauge the
this sector turns out to be quite nontrivial.

We shall consider the case of real deformation parameterβ ≡ γ − iσ = γ . It turns out to be
straightforward to generalize the discussion to the case of the more general nonsupersymm
parameter (γi ) deformation of theAdS5 ×S5 geometry constructed in[3] using the same TsT (T
duality, shift, T-duality) transformation as in[1]. This deformation is quite natural as it treats a
isometric angles ofS5 on an equal footing. The corresponding type IIB supergravity backgr
preserves 1/4 of supersymmetries (8 supercharges) only in the “symmetric” LM[1] case

(1.1)γ1 = γ2 = γ3 = γ.

However, as we will see, this symmetric point is not special as far as the correspondence b
string and gauge theory is concerned: the matching of leading-order semiclassical string e
and one-loop gauge theory anomalous dimensions we are going to establish below hold
generalγi case.

This appears to be one of the first nontrivial examples when implications of the AdS
duality are observed at a quantitative level in anonsupersymmetriccase.3 It provides a strong
motivation for further study of thisγi -dependent string theory and the conjectured dual n
supersymmetric largeN gauge theory[3] is of obvious interest and importance. One particula
interesting aspect is the existence (for certain range of parameters) of closed-string tachy
their reflection on the gauge theory side. This nonsupersymmetric theory is certainly st
the nearly-flat and smallγi limit and thus appears to be more under theoretical control tha
type 0 example considered in[5].

We shall start in Section2 with presenting the 3-parameter deformation of theAdS5 × S5

background found by the direct generalization of the LM construction in[3]. We shall then dis
cuss the BPS states and more general geodesics onγi -deformedS5 representing semiclassic
point-like string states. The geodesics happen to be described by a 1d integrable Neuman
which is the same as the system describing rotating[7] and pulsating[8] circular strings inS5

part of AdS5 × S5 [9]. The solutions are labeled in general by 3 conserved angular mom
(J1, J2, J3) and one additional integral of motion (“oscillation number”) and depend on d
mation parametersγi through the combinations

(1.2)νi ≡ εijkγjJk.

3 The present case is obviously different from the examples of (non)supersymmetric orbifolds[4] of theAdS5 × S5–
N = 4 SYM duality where largeN duality relations are “inherited” in untwisted sector. Same applies to the type 0 a
of the AdS/CFT duality[5] obtained by(−1)F -type orbifolding; a discussion of matching of some of string energies
gauge theory anomalous dimensions in the BMN limit of type 0 theory appeared in[6].
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These combinations are the twists that appear in the relations between the angle variablS5

and theγi -deformed five-sphere[3]. By using these relations one can show that in the spe
cases whenνi are integer the circular pulsating and rotating strings of undeformed theor
indeed, the images of the point-like strings in the deformed geometry, withνi being the counter
parts of the circular string winding numbersmi .4 While in the standardAdS5 × S5 (undeformed)
case all geodesics were representing BPS states with energyE equal to the total angular mome
tum J= J1+J2+J3 here we shall find that only a few of them have this “vacuum state” prop
These special “BPS” geodesics have energies that do not depend on the deformation par
i.e., are the same as in the undeformed case. They can be labeled by the angular momen
(J,0,0), (0,J,0), (0,0,J) and (ii) (J1, J2, J3)vac with νi = 0, i.e.,

(1.3)Ji,vac= γi

γ
J, γ ≡ γ1 + γ2 + γ3.

The νi = 0 condition is satisfied for the(J, J, J ) BPS state[1] in the symmetric LM case o
γi = γ . In general, sinceJi should take integer values in quantum theory, such states will
only for special choices ofγi . In addition to these special BPS states which are images o
corresponding point-like (νi = mi = 0) or BPS states of the undeformed theory, there is ano
simple subclass of geodesics for which radial directions are constant in time: these are (for
νi ) the TsT images of rigid rotating circular strings[7,9] in undeformedS5. Their classical energ
has nontrivial dependence onJi andγi and receives also stringα′ corrections.

As in the undeformed case, it is straightforward to explore the fluctuation spectrum[10] near
particular geodesics, i.e., quantum energies of semiclassical “small” (nearly point-like)
states in the limit of large total angular momentum J. The spectrum near the(J,0,0) geodesic is
similar to the standard BMN one[1,11]. In the case of the expansion near theJi ∼ γi geodesic
(1.3)the spectrum of smallσ -dependent fluctuations turns out to be independent of the defo
tion parameters, i.e., to be the same as the BMN spectrum in the undeformed theory. Th
conclusion was reached earlier in the symmetric LMγi = γ case in[12,13]. This, in fact, is im-
plied (to leading order in 1/J) by the TsT transformation of[3]. We shall discuss the spectrum
fluctuations on the gauge-theory side inAppendix A. The zero-mode part of the spectrum (cor
sponding to fluctuations depending only on time, i.e., within the space of geodesics of def
theory) is, however, nontrivial[12]; we shall match it with the one-loop gauge theory predict
in Appendix B.

In Section3, we shall turn to other semiclassical states represented by extended strings m
fast in deformedS5. As in [2], they can be systematically described by reducing the clas
string action to a kind of “Landau–Lifshitz” (LL) sigma model[14,15]for the “transverse” string
degrees of freedom. In the present 3-spin case we shall obtain a deformed version of tCP

2

LL model corresponding to thesu(3) sector of theAdS5 × S5 string theory[15–17]. As in the
deformed 2-spin case of[2], we shall find that the deformed 3-spin LL model contains a pote
term which is responsible for lifting the energies of all of the string states apart from few
ones (the point-like states discussed above and some circular BPS strings existing as in[1] for
specialγi ).

The challenge will then be to find the counterpart of this action on the gauge-theory side
show that it coincides with the string expression; this would imply, in particular, the agree

4 If νi are not integer the formal images of geodesics of deformed geometry inAdS5 ×S5 theory do not satisfy closed
string periodicity conditions. These images are open strings subject to twisted boundary conditions.
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between the leading correction to string energies and one-loop anomalous dimension
corresponding gauge-theory operators.

In Section4 we shall present the direct generalization[18] (see also[19]) of the 1-loop
dilatation operator for the exactly marginalβ-deformation[20,21] of N = 4 SYM to the non-
supersymmetric case of the threeγi deformation parameters. As in the symmetricγi = γ case,
it can be identified with an integrable spin chain Hamiltonian (with 3 spin projections at
site corresponding to 3 chiral scalarsΦi ) which is a deformation of thesu(3) invariant XXX1
Hamiltonian[22]. We shall then describe the corresponding generalization of the Bethe
equations and apply them to show that the ground states of the 1-loop spin chain Ham
are indeed the same as found on the string side. We shall also discuss the distinction betw
U(N) andSU(N) gauge group cases which survives here the largeN limit since theU(1) parts
of matter fields do not decouple.

In Section5 we shall finally turn to the derivation of the effective coherent-state action
low-energy semiclassical states of the spin chain that should be dual to the semiclassica
states in the 3-spin sector. In general, there are many equivalent spin-chain Hamiltonians
sponding to different choices of basis in the space of gauge-theory operators, that lead to t
anomalous dimensions. To establish the correspondence with string theory it turns out t
needs a special choice adapted to low-energy approximation. This is a subtlety not con
in previous discussions of the coherent state approach in the undeformed[15] or deformed 2-
spin [2] cases. We shall describe the choice of coherent states and the basis needed to
the expected BPS states(1.3) in low-energy (slowly-changing coherent field) approximation
Sections5.1 and 5.2. Then in Section5.3we shall find that this choice leads exactly to the sa
Landau–Lifshitz effective action as found in Section3 on the string side. This provides a high
nontrivial check of the AdS/CFT duality not only in the supersymmetric LM deformation
[1] but also in the general nonsupersymmetricγi -deformed theory.

Section6 will contain some concluding remarks.
In Appendix A we shall discuss fluctuations near the vacuum states of the one-loop

chain and match their spectra with the string-theory results. InAppendix Bwe shall consider th
spin-chain 0-mode fluctuations near the(J1, J2, J3) vacuum and again demonstrate remarka
agreement with the string-theory predictions.

2. Three-parameter deformation of AdS5 × S5 string theory

2.1. Background

We shall mostly follow the notation of[2]. The type IIB solution related by T-dualities an
shifts transformation to theAdS5 × S5 background and which generalizes[3] the background o
[1] to the case of unequalγi parameters can be represented as

(2.1)ds2
str = R2

[
ds2

AdS5
+

3∑
i=1

(
dρ2

i + Gρ2
i dφ2

i

) + Gρ2
1ρ2

2ρ2
3

[
d

(
3∑

i=1

γ̃iφi

)]2]
,

(2.2)B2 = R2Gw2, w2 ≡ γ̃3ρ
2
1ρ2

2 dφ1 dφ2 + γ̃1ρ
2
2ρ2

3 dφ2 dφ3 + γ̃2ρ
2
3ρ2

1 dφ3 dφ1,

(2.3)eφ = eφ0G1/2, χ = 0,

(2.4)G−1 ≡ 1+ γ̃ 2
3 ρ2

1ρ2
2 + γ̃ 2

1 ρ2
2ρ2

3 + γ̃ 2
2 ρ2

1ρ2
3,

3∑
ρ2

i = 1,
i=1
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(2.5)C2 = −4R2e−φ0w1 d

(
3∑

i=1

γ̃iφi

)
, dw1 ≡ cosα sin3 α sinθ cosθ dα dθ,

(2.6)F5 = 4R4e−φ0(ωAdS5 + GωS5), ωS5 ≡ dw1 dφ1 dφ2 dφ3.

HereB2 is the NSNS 2-form potential,φ is the dilaton anddχ , dC2 andF5 are the RR field
strengths. The anglesθ,α appearing indw1 parametrizeS2 coordinatesρi as follows

(2.7)ρ1 = sinα cosθ, ρ2 = sinα sinθ, ρ3 = cosα.

Note also that

(2.8)w1 = 1

4
ρ2

1 d
(
ρ2

2

) − 1

8
d
(
ρ2

1ρ2
2

) = 1

8

(
ρ2

1 + ρ2
2

)2
d

ρ2
2

ρ2
1 + ρ2

2

.

The standardAdS5 × S5 background is recovered after setting the deformation parametersγ̃i =
R2γi to zero. For equal̃γi = γ̃ this becomes the background of[1] (γ̃i were denoted aŝγi in
[1,3]). We also assume that

(2.9)gs = eφ0 = g2
YM

4π
, R4 = 4πgsN = Ng2

YM ≡ λ, α′ = 1,

(2.10)γ̃i = R2γi = √
λγi.

Hereγi are the deformation parameters which appear on the gauge theory or spin chain
the symmetric caseγi = γ this parameter is the real part of the deformation parameterβ in the
superpotentialW = hTr(eiπβΦ1Φ2Φ3 − e−iπβΦ1Φ3Φ2). We shall consider only the case of re
β where the duality appears to be much more under quantitative control (see[2]).

As discussed in[2], the parameters̃γi which enter the supergravity background are assu

to be fixed in the semiclassical string limit. SinceR2

α′ = √
λ plays the role of the string tension,

this limit one also fixes other semiclassical parameters likeE andJi which determine the strin
energy and spins

(2.11)E = √
λE, Ji = √

λJi , λ̃ ≡ λ

J2
= fixed, J=

3∑
i=1

Ji

while
√

λ and thus J are assumed to be large to suppress stringα′ corrections. That means tha

(2.12)γ̄i ≡ γiJ= γ̃i√
λ̃

is also fixed in this limit, i.e.,γi ∼ 1
J. For definiteness, we shall assume that bothJi andγi are

nonnegative.
On the gauge theory (spin chain) side, the limit which one takes is formally different[2,23].

Since one uses perturbative gauge theory, one first expands inλ and then takes J large. Here
plays the role of the length of the chain (or length of the operator), and we will be interes
extracting the dependence of the spin chain energies on the parametersλ̃ andγiJ while looking
at 1-loop (orderλ) correction and taking large J limit. In all previously discussed example
similar comparisons the leading order terms in the two expressions matched, and our aim
to extend this matching to the present (nonsupersymmetric for unequalγi ) case.
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2.2. BPS states

By following the TsT transformation that relates theAdS5 × S5 string theory to theγi -

deformed string theory one can relate the angle variables˜̃
φi of S5 (in the notation of[3]) and the

angle variablesφi of the TsT-deformed geometry(2.1). The basic starting point is the equal
between theU(1) conserved current densities of strings onAdS5 × S5 and on theγi -deformed
background[3]:

(2.13)˜̃Ji p = Ji p,

where i = 1,2,3 andp = 0,1 are the world-sheet indices. Taking into account that the
components of the currents are the momentum densities conjugate to the angle variab
expressing the time derivatives through the momenta, one can cast(2.13)in the following simple
form

(2.14)˜̃pi = pi = Ji 0,

(2.15)ρ2
i

˜̃
φ′

i = ρ2
i (φ′

i − εijkγjpk), i = 1,2,3,

where in(2.15)we assume summation inj, k but no summation ini. If none of the “radii”ρi

vanish on a string solution, one can cancel theρ2
i factors in(2.15)to get

(2.16)˜̃
φ′

i = φ′
i − εijkγjpk.

Integrating overσ and taking into account thatφi are angle variables and the strings in
deformed background are assumed to be closed, i.e.,

(2.17)φi(2π) − φi(0) = 2πni,

whereni are integer winding numbers, we get the twisted boundary conditions for the

variables ˜̃
φi of the originalS5 space

(2.18)˜̃
φi(2π) − ˜̃

φi(0) = 2π(ni − νi),

(2.19)νi ≡ εijkγjJk, Ji =
2π∫
0

dσ

2π
pi.

We see that if the twistsνi (already mentioned in(1.2)) are not integer then the twisted strings
AdS5 ×S5 which are formal images of closed strings in the deformed geometry under the in
of TsT transformation are open.

The relations(2.15) imply that if φi solve the equations of motion for a string in theγi -

deformed background theñ̃φi solve those inAdS5 × S5 with the twisted boundary condition
(2.18)imposed on the angle variables. It is easy to show[3] that the Virasoro constraints for bo
models also map to each other under the TsT-transformation; therefore, the energy of a
string inAdS5 × S5 is equal to the energy of the corresponding closed string in theγi -deformed
background. This observation allows one to readily determine all classically BPS states
deformed model, i.e., the states that have minimal energy for the given charges,

(2.20)E = J≡ J1 + J2 + J3.
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To this end we notice that a BPS state in the deformed background must be an image o
state inAdS5 × S5, that is an image of a point-like string or null geodesic inAdS5 × S5. For such

a string ˜̃
φi

′ = 0,ρ′
i = 0; then ˜̃pi = pi = Ji do not depend onσ , i.e., all the charges are distribute

uniformly along the string. Thus, for the BPS states the relation(2.16)takes the form

(2.21)φ′
i = εijkγjpk = νi, pi = Ji,

where we also assume that all the chargesJi are not equal to 0. Since the string in the deform
background is closed, all the twistsνi which play the role of the winding numbers then must
integer:

(2.22)νi = εijkγjJk ∈ Z.

One is now to distinguish the case of nonzeroνi when a solution is a circular string, and the ca
of νi = 0 when the solution is a point-like string.

Forνi �= 0 these equations can have a consistent (circular) string solution only ifγi are rational
(Ji take integer values in quantum theory) and the corresponding BPS state is a circula
similar to the ones studied in[7] (this generalizes the observation in[1] to the case of unequa
γi ).

For νi = 0 the BPS state of deformed geometry is a point-like string. The general solut
νi = 0 is

(2.23)νi = 0: Ji = cγi,

wherec is a proportionality coefficient which can be any real number. SinceJi must be intege
in the quantum theory, such a solution exists only for special values ofγi .5 These(J1, J2, J3)

point-like BPS states generalize the(J, J, J ) state[1] in the supersymmetric LM caseγi = γ ,
Ji = J .

Note that any(J1, J2, J3) solution in the deformed background for which(2.23) is satisfied
can be obtained from a closed string solution inAdS5 ×S5, and the energies of these string sta
in theγi -deformed model and their images in theAdS5 × S5 are equal to each other.6

If one of the 3 momenta is equal to zero, e.g.,J3 = 0, then the string states belong to the
spin sector which is the analog of thesu(2) sector of undeformed theory. It contains the obvio
additional BPS state(J,0,0) which is the direct TsT relative of the corresponding point-l
state inAdS5 × S5 . Similarly, we have also(0, J,0) and(0,0, J ) BPS states.

2.3. Point-like strings (geodesics) and near-by fluctuations

Let us now analyze some string solutions in the deformed geometry starting directly
(2.1), (2.2).

To find the classical point-like string states in the deformed geometry it is enough to co
trate on the string-frame metric (to study quantum corrections one will need of course t
Green–Schwarz fermionic action which will contain couplings to other background fields

5 It is interesting that since for the classical strings there is no quantization condition, any solution satisfyingJi ∼ γi

has the BPS energyE = J1 + J2 + J3. It would be interesting to analyze the semiclassical expansion around s
solution, and to see how the quantization condition gets restored.

6 Such (in general, non-BPS) states should be dual to the gauge-theory operators protected from the defor
least to the leading order inγi .
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γ part and that should be dual to spec

Tr(ΦJ1
1 Φ

J2
2 Φ

J3
3 + · · ·) operators on the gauge theory side.

The metric(2.1) has 3 isometries corresponding to shifts of the anglesφi and thus the state
should be characterized by 3 conserved angular momentaJi . Starting with the string equations
conformal gauge withAdS5 time t = Eτ it is straightforward to show that, while the metric loo
rather complicated, the effective action that determines the time evolution of theS2 coordinates
ρi can be written simply as (

∑3
i=1 ρ2

i = 1)

(2.24)S(ρ) = 1

2

√
λ

∫
dτ L, L(ρ) =

3∑
i=1

[
ρ̇2

i − Vi(ρi)
]
, Vi(ρi) = J 2

i

ρ2
i

+ ν2
i ρ2

i ,

(2.25)Ji = ∂L(ρ,φ)

∂φ̇i

= √
λJi , νi ≡ εijkγ̃jJk = εijkγjJk.

HereL(ρ,φ) stands for the string Lagrangian before one solves for the derivatives of the a
For νi = 0 this is the action of a particle moving onS5. For generalνi this is recognized as
Neumann–Rosochatius integrable system describing an oscillator on 2-sphere (or, equiv
a special Neumann system describing an oscillator on 5-sphere, cf.[9]). The conformal gaug
constraint implies that the corresponding Hamiltonian is equal toE2, i.e.,

∑3
i=1[ρ̇2

i + Vi(ρi)] =
E2. In particular, in the LM case of̃γi = γ̃ we get explicitly for the particle Hamiltonian

H = E2 = ρ̇2
1 + ρ̇2

2 + ρ̇2
3 + J 2

1

ρ2
1

+ J 2
2

ρ2
2

+ J 2
3

ρ2
3

(2.26)+ γ̃ 2[(J2 −J3)
2ρ2

1 + (J3 −J1)
2ρ2

2 + (J1 −J2)
2ρ2

3

]
.

This result is easy to find using the TsT relation[3] of the deformed theory to theAdS5 × S5

theory. The two string Hamiltonians are related by the TsT, so to get the particle Hamilton
the deformed theory all one has to do is to shift theσ -derivatives of theAdS5 × S5 angles by the
momenta as in(2.16)and then to set all terms withσ -derivatives to zero.

The appearance of the Neumann system is not accidental: the same system was fou[9]
to describe circular pulsating and rotating strings in undeformedS5. These strings are, in fac
mapped (for integerνi ) to point-like strings inS5

γ under the TsT transformation of[3]: νi plays
the role of the winding numbermi of the circular strings, and the conformal gauge constr
miJi = 0 here is satisfied automatically.

Generic solution is labeled by(J1, J2, J3) and one extra (in addition to the 1d energy
H = E2) integral of motion which may be interpreted as an “oscillation number”K for a
(quasiperiodic) particle motion onS2. The lower-energy solutions correspond toK = 0 when
ρi = const. The form of the dependence of the energy onK andJi will be the same as in th
case of the pulsating strings in[15,24].

The special solutions that are the same as in the undeformed case and thus repre
lowest-energy (“BPS”) states are found if (i)ρ1 = 1, ρ2 = ρ3 = 0 (and two other cases wit
interchange of 1, 2, 3), representing(J1,0,0) state withE = J1, and also if (ii)Ji are such tha
νi = 0, i.e., if Ji ∼ γ̃i whenE = J= J1 + J2 + J3. These are the same as already discusse
the previous subsection and they should be dual to vacuum (zero anomalous dimension
on the spin chain side.



S.A. Frolov et al. / Nuclear Physics B 731 (2005) 1–44 9

tes
not

-
ory
scribe

tua-

tions
m-
n that
string

n
the

the
ith

ectrum
or

pecial
ncellation
In the general nonsupersymmetric case of unequalγi there is an open question if such sta
are true vacua (i.e., states withE = J which is the absolute minimum of the energy), i.e., do
receive quantum corrections both on the string theory and on the gauge theory side.7

In addition, there are higher energy (non-BPS) states still havingρi = const, i.e.,K = 0,
which (for integerνi ) are images of rigid (non-pulsating) circular rotating strings inS5. As
discussed in[7,9], the classical energy of the latter is a nontrivial function ofJi , the winding
numbersmi and the string tension; expanded inλ̃ it looks like E = J+ λ

Jc1(mi,
Jj

Jk
) + · · ·. The

same expression is found for the point-like strings here withmi → νi . The leading order correc
tions toE = J relation will scale asλJ(γiJn)

2(
Jj

Jk
)2 and may thus be compared to the gauge-the

side. We will do this automatically by matching the corresponding effective actions that de
such semiclassical states.

Next, let us follow[10,25] and study small semiclassical strings representing small fluc
tions near the above geodesics.

2.3.1. (J,0,0) case
In theγi = γ case the corresponding analog of the BMN spectrum of quadratic fluctua

near the(J,0,0) geodesic was found in[1,11]. Here we shall generalize it to the nonsupersy
metricγi -case. We shall first concentrate on the bosonic part of the fluctuation Lagrangia
follows from expanding the bosonic part of the string action which depends only on the
metric(2.1)and the 2-form fieldB2 in (2.2)

(2.27)IB = −1

2

√
λ

∫
dτ

2π∫
0

dσ

2π

[√−ggpq∂pXM∂qXNGMN − εpq∂pXM∂qXNBMN

]
,

whereε01 = 1 and in the conformal gauge which we shall use heregpq = diag(−1,1). Expand-
ing the action near the solutiont = φ1 = J τ, ρ1 = 1, φ2,3 = ρ2,3 = 0 we get for the part of the
fluctuation Lagrangian which is different from the standard BMNγi = 0 case

L = 1

2

(
ẏ2
a − y′2

a + ż2
a − z′2

a

) + 1

2
J 2(1+ γ̃ 2

3

)
y2
a + 1

2
J 2(1+ γ̃ 2

2

)
z2
a

(2.28)+J γ̃3εabyay
′
b +J γ̃2εabzaz

′
b.

Here we assume summation overa, b = 1,2 andya andza are 2+ 2 fluctuations of Cartesia
coordinates in theρ2, φ2 andρ3, φ3 planes. This is essentially the same Lagrangian as in
γi = γ case[1,11] but with the parametersγ2 andγ3 in the each of the 2-planes transverse to
geodesic. The expansion near(0,J,0) and(0,0,J) geodesics leads to similar expressions w
the corresponding interchange of the parametersγi .

The corresponding characteristic frequencies that represent the analog of the BMN sp
E − J= wn

J Nn are (n = 0,±1, . . . labels stringeinσ modes and is different for the two types f
the excitations)

(2.29)w(i)
n =

√
J 2 + (n + γ̃iJ )2 = J

√
1+ λ̃(n + γiJ)2, i = 2,3.

7 It is not a priori clear that stringα′ corrections are absent: while TsT transformation does not affect these s
geodesics, it may (and, in fact, does) change the spectrum of fluctuations near them, and thus may alter the ca
of the quantum correction to the vacuum energy.
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As follows from the structure of the supergravity background, the quadratic fermionic a
contains couplings only to the NSNS 3-form (with two parts proportional toγ2 andγ3 as reflected
in (2.28)) and the standard RR 5-form flux. It thus has the structure as in Eq.(4.12)in [11] with
γ2 andγ3 multiplying the corresponding fermionic projectorsθAΓ +(γ̃2Γy1y2 + γ̃3Γz1z2)θ

A and
a mass term coming from 5-form flux (see also[28] for a general structure of such actions). Th
(as follows, e.g., from Eq. (4.21) in[11]) the corresponding fermionic spectrum is the sam
the above bosonic one, implying that the quadratic fluctuation Lagrangian has 2d world
supersymmetry. The latter is a consequence of space–time supersymmetry of the corres
plane-wave background (for which(2.28)is the l.c. gauge fixed Lagrangian) present even tho
the original supergravity background is not supersymmetric for unequalγi . This has an importan
consequence that the contribution of the quadratic fluctuation energies to the(J,0,0) ground
state energy vanishes, i.e., (at least to the leading order in 1/J) this state is a true analog of t
corresponding BPS state in the undeformed or in the supersymmetric deformedγi = γ theory.

We shall see that these conclusions are corroborated by the analysis of the one-loop d
operator on the gauge theory side. In particular, the same fluctuation spectrum (for the r
part of fluctuations) will appear from the coherent state action for the 3-spin or the holom
3-scalar sector of the spin chain which is the analog ofsu(3) sector in the undeformed theory.

2.3.2. (J1, J2, J3)vac case
While the (J,0,0) case is very similar to the standard BMN case, the expansion nea

(J1, J2, J3) ∼ (γ1, γ2, γ3) geodesic is more involved. The bosonic part of the fluctuation
grangian follows from(2.27) expanded near the corresponding classical solution (again
assume thatγi � 0)

(2.30)t = φi = J τ, ρ2
i = Ji

J = γi

γ
, J ≡

3∑
i=1

Ji , γ ≡
3∑

i=1

γi.

The fluctuations in time andψ = ∑3
i=1 γ̃iφi directions decouple, i.e., are massless 2d fie

the fluctuations in the other 4AdS5 directions are the same as in the undeformed case (i.e
described by massive 2d fields with massJ = J√

λ
) while the remaining 4 nontrivial fluctuation

in S5
γ directions are found by setting (a = 1,2)

φa = J τ + va, v3 = −γ1

γ3
v1 − γ2

γ3
v2,

(2.31)ρa =
√

γa

γ
(1+ ua), ρ3 =

√
1− ρ2

1 − ρ2
2,

wherev1, v2, u1, u2 are 4 independent 2d fluctuation fields. Computing the momenta forφi , i.e.,
the angular momentaJi , from the Lagrangian(2.27)we get, to the leading order in fluctuatio
near the vacuum(2.31):

(2.32)Ji = γi

γ
J + ji, ji ≡ √

λπi, πi = γ̃i

γ̃ + γ̃1γ̃2γ̃3
(v̇i + 2J ui),

whereu3 is such that
∑3

i=1 γiui = 0 and we ignored terms linear inσ -derivatives of the fluc
tuationsvi that integrate to zero. Thus with the assumption that

∑3
i=1 γ̃iφi does not fluctuate

we see that the value of the total momentumJ = ∑3
i=1 Ji is not, as required, changed by t

fluctuations and thus the fluctuations of momenta satisfy
∑3

i=1 ji = 0.
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To put the quadratic fluctuation Lagrangian into the canonical form it is useful to do fu
field redefinition to 4 fieldsza, ya :

(2.33)v1 =
√

∆

2(γ̃1 + γ̃3)

(√
γ̃3

γ̃1
z1 −

√
γ̃2

γ̃
z2

)
, v2 =

√
∆(γ̃1 + γ̃3)

2γ̃2γ̃
z2,

(2.34)u1 =
√

γ̃

2(γ̃1 + γ̃3)

(√
γ̃3

γ̃1
y1 −

√
γ̃2

γ̃
y2

)
, u2 =

√
γ̃1 + γ̃3

2γ̃2
y2,

where

(2.35)∆ = γ̃ + γ̃1γ̃2γ̃3, γ̃ = γ̃1 + γ̃2 + γ̃3.

Then the resulting fluctuation action isI = √
λ

∫
dτ

∫
dσ
2π

L2 where (we assume summation ov
a, b = 1,2)

(2.36)L2 = 1

2

(
ẏ2
a − y′2

a + ż2
a − z′2

a

) − 1

2
B2y2

a + Ayaża + Bεabybz
′
a,

and

(2.37)A = 2J
√

γ̃

γ̃ + γ̃1γ̃2γ̃3
, B = 2J

√
γ̃1γ̃2γ̃3

γ̃ + γ̃1γ̃2γ̃3
, A2 + B2 = 4J 2.

This quadratic action can be interpreted also as an action for a string in a plane-wave back
in the l.c. gaugex+ = J τ with ya, za representing transverse coordinates. It has constant c
cients and can be readily quantized as discussed, e.g., in[27].

For γi = γ (2.36)reduces to the fluctuation Lagrangian found near(J, J, J ) geodesic in the
LM case in[12,13]. In the case ofγi = 0 (whenA = 2J ) it reduces to the BMN Lagrangian i
a rotated coordinate system corresponding to the expansion near the(J, J, J ) geodesic.

By writing down the corresponding equations of motion and settingya, za ∼ ∑
n Cne

iwnτ+inσ

one finds that forn �= 0 the corresponding characteristic frequencies are the same as in the
case, i.e., do not depend onγi (for the LM case of equalγi this was found in[12,13]):

(2.38)wn = J ±
√

n2 +J 2 = J
(
1±

√
1+ λ̃n2

)
.

Since we assumed thatt = J τ , the corresponding fluctuation energies areEn − J= |wn|
J .8

As was shown in[12] in the case ofγi = γ the fermionic part of the quadratic fluctuatio
Lagrangian (in this case fermions are coupled to both the NSNS and the RR 3-forms a
as the RR 5-form) leads to the same spectrum as the bosonic Lagrangian, implying ag
there is a residual world-sheet supersymmetry (associated with supernumerary[26] target space
supersymmetry). In particular, the correction to the ground state energy cancels out. This
be true also in the present unequalγi case.9 The same bosonic spectrum will be found also

8 One may argue that the conclusion that the spectrum of fluctuations near this vacuumJi ∼ γi state does not depen
on γi follows from the TsT construction of this string theory in[3]: the difference in fluctuation spectra should invol
νi and is thus subleading in 1/J. However, this does not apply to the 0-modes, see below.

9 String theory TsT relation suggests this for integerνi in (2.25), but cancellation between the bosonic and fermio
contributions should not depend on whetherνi is integer or not. This cancellation need not persist at subleading o
when non-linear interactions of fluctuation modes are to be included.
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the gauge theory side from the analysis of the corresponding Bethe ansatz equations, a
the coherent state action.

The spectrum of the bosonic 0-modes (i.e.,σ -independent fluctuations) is, however, no
trivial, as was already pointed out in theγi = γ case in[12]. The 0-modes correspond
point-like strings, i.e., represent fluctuations within the set of geodesics. In the undeforme
all geodesics were BPS and thus had the same energy the spectrum of 0-modes wa
erate; here this is no longer the case (cf.(2.24)). The Lagrangian forτ -dependent 0-modes
L2 = 1

2(ẏ2
a + ż2

a)− 1
2B2y2

a +Ayaża and this system can be quantized by writing down the co
sponding Schrödinger equation and separating the oscillator dynamics (corresponding tn = 0
case of the abovewn) from a free particle dynamics as discussed, e.g., in[27]. Same conclusion
is reached also from the form of the corresponding Hamiltonian (the momenta arepi = √

λπi ):
H = 1

2π2
ya

+ 1
2(πza − Aya)

2 + 1
2B2y2

a (we omit the overall factor of string tension
√

λ). Shifting

ya by − A

A2+B2 πza to isolate the oscillator dynamics inya-directions we end up with

H = 1

2

[
π2

ya
+ (

A2 + B2)ỹ2
a

] + 1

2

B2

A2 + B2
π2

za

(2.39)= 1

2

(
π2

ya
+ 4J 2ỹ2

a

) + 1

2

γ̃1γ̃2γ̃3

γ̃ + γ̃1γ̃2γ̃3
π2

za
.

To expressπza in terms of fluctuations of the angular momentaji in (2.32)one should note tha
sinceπza is given by a linear combination ofża andya (cf. (2.36)), redefining the latter byπza

changes also the relation betweenπza andża (and thus commutation relations, etc.). Equivalen
the same result forH is found in a more transparent way by performing the fluctuation ana
directly in the Hamiltonian for theσ -independent modes, i.e., by expanding both the coordin
and the momenta. In terms of the fluctuationsπi of the momenta of the angular coordinates
(2.32), the required phase-space redefinition that separates the oscillator dynamics from
particle dynamics is

u1 = 1

2J

[√
γ̃3γ̃

γ̃1(γ̃2 + γ̃3)
y1 −

√
γ̃2

γ̃2 + γ̃3
y2 + γ̃

γ̃1
π1

]
,

(2.40)u2 = 1

2J

[√
γ̃1 + γ̃3

γ̃1
y2 + γ̃

γ̃1
π2

]
.

This leads to the Hamiltonian

(2.41)H = 1

2

(
π2

ya
+ 4J 2y2

a

) + 1

2J
[
γ̃2(γ̃1 + γ̃3)π

2
1 + 2γ̃1γ̃2π1π2 + γ̃1(γ̃2 + γ̃3)π

2
2

]
.

Thus the 0-mode contribution to the fluctuation energy spectrum expressed in terms of th
lar momenta of the fluctuation modes in(2.32)

(2.42)ji = Ji − γi

γ
J,

3∑
i=1

ji = 0

takes the form (E = √
λH)

(2.43)E0-mode= λ

2J

[
γ2(γ1 + γ3)j

2
1 + 2γ1γ2j1j2 + γ1(γ2 + γ3)j

2
2

]
.
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In the case whenγi = γ Eq.(2.43)becomes simply

(2.44)E0-mode= λγ 2

J

[(
J1 − 1

3
J

)2

+
(

J2 − 1

3
J

)2

+
(

J1 − 1

3
J

)(
J2 − 1

3
J

)]
,

reproducing the expression in[12]

(2.45)E0-mode= λγ 2

3J

[
(J1 − J2)

2 + (J1 − J3)
2 − (J1 − J2)(J1 − J3)

]
.

Let us stress that the correct quantization of the zero mode sector should not be based
expansion to quadratic order in fluctuations but should start directly with the (supersym
version of) the Neumann model(2.24), i.e., from the corresponding 0-mode truncation of the
perstring action. In the undeformedAdS5 ×S5 case this amounts to quantizing the correspond
superparticle action leading to the spectrum of the BPS (supergravity) modes. The first a
in this direction would be to keep only the bosonic fields (and thus ignore the “mixing” wit
AdS5 directions via fermions) and try to use the known information about quantum Neu
model (see, e.g.,[30]). Such 0-mode sector quantization of thisγi deformed string theory woul
be equivalent (for integerνi ) to a “minisuperspace” quantization of the originalAdS5 ×S5 string
theory in the sector of rotating and pulsating circular strings.

Assuming the large J limit to suppress quantum corrections, the expression(2.43) can be
found directly from the particle Hamiltonian(2.24), (2.26)by considering the semiclassical co
figurations with constantρi (to minimize energy for givenJi ). In the limit of largeJi ∼ J with
fixedνi = εijkγ̃ γjJk it is sufficient to evaluate the energy on the semiclassical configuration
extremises the dominantS5 part of potential in(2.24):

(2.46)ρ2
i = Ji

J
.

For zeroγi , i.e., for the semiclassical particle states represented by geodesics onS5 these are BPS
states of undeformed theory. Forγi �= 0 if Ji happen to be equal toγi

γ J these are the vacuum sta

of deformed theory having againE = J. The energy of the configuration(2.46)is E = √
λ
√

V ,
whereV = ∑3

i=1 Vi is the potential in(2.24)evaluated onρi in (2.46), i.e.,

(2.47)

E =
√

J2 + λ

[
γ2γ3j

2
1 + γ1γ3j

2
2 + γ1γ2j

2
3 − 1

J
(γ1 + γ2 + γ3)2j1j2j3

]
, ji ≡ Ji − γi

γ
J.

Here in generalji or Ji are of the same order as J= J1 + J2 + J3. Expanding(2.47)in large J
for fixedγj andλ̃ = λ

J2 we get, as for semiclassical string states, to leading order inλ̃ = 1
J 2

E = J+ λ

2J

[(
γ2γ3j

2
1 + γ1γ3j

2
2 + γ1γ2j

2
3

) − 1

J
(γ1 + γ2 + γ3)

2j1j2j3

]

(2.48)+ O

(
λ2γ 4j4

J3

)
.

Thej2 term here is the same as in(2.43). We shall reproduce this expression from the fast st
limit in Section3 or from the Landau–Lifshitz model in Section5. We shall also obtain the sam
spectrum of 0-mode fluctuations(2.48)on the gauge theory side directly from the Bethe an
in Appendix B.
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Let us note that in the limit which we consider (J→ ∞ with λ̃ = λ

J2 and Jγi fixed) thej2

contribution in(2.43)is finite providedji ∼ J1/2 (or, forγi = γ , if Ji −Jj ∼ J1/2 [12]). However,
as already stressed above, the true condition of validity of(2.43)follows from the exact treatmen
of the 0-mode fluctuations and is only thatji ∼ Jµ, µ � 1. The same condition will appear o
the spin chain side inAppendix B. As for the quantum corrections, they are expected to mo
(2.48) by terms with similar dependence onji but suppressed by extra powers of 1/J. Same
structures should appear on the spin chain side as corrections to leading thermodynam
approximation.

3. Fast motion limit: Landau–Lifshitz action from the string action

Let us start with recalling the derivation of the reduced effective action that governs th
namics of “slow” string degrees of freedom in the 3-spin (su(3) invariant) sector of undeforme
theory following[15]. We shall parametrizeS5 by 3 complex coordinatesXi such that

(3.1)Xi = ρie
iφi ≡ Uie

iψ ,

3∑
i=1

ρ2
i = 1,

whereρi andφi are real. We have isolated the common phaseψ that will be a collective co
ordinate representing fast string motion in the three planes. There is an obviousU(1) gauge
invarianceUi → eiζ Ui, ψ → ψ − ζ . TheS5 metric has then the form of the Hopf fibration
S1 overCP

2:

(3.2)ds2 = dXi dX∗
i =

3∑
i=1

(
dρ2

i + ρ2
i dφ2

i

) = (dψ + C)2 + dU∗
i dUi − C2,

whereC = −iU∗
i dUi . TheCP

2 metric isdU∗
i dUi + (U∗

i dUi)
2 = |DUi |2 whereDUi = dUi −

iCUi . We can then start with the general form of the bosonic part of the string action and
the 2d duality (T-duality) in theψ direction. The result is (including time direction ofAdS5 and
assuming summation overi)

(3.3)L = εpqCp∂qψ̃ − 1

2

√−ggpq
(−∂pt∂q t + ∂pα̃∂q α̃ + DpU∗

i DqUi

)
,

where the first term represents the 2-form coupling induced by off-diagonal form of the m
The next step is solve for the 2d metric, replacing the second term inL by its Nambu counter
part,

√−deth, hpq = −∂pt∂q t + ∂pα̃∂q α̃ + DpU∗
i DqUi . The final step is to fix a static gaug

t = τ, α̃ = J σ , where the letter condition corresponds to fixing the angular momentum a
ated with the fast variableψ , i.e., the total momentum J= J1 + J2 + J3, to be homogeneousl
distributed alongσ (as this is the property of the spin chain description of the correspon
states). Finally, expanding in largeJ and assuming that time derivatives of the slow “transve
variablesUi are small we end with the followingCP

2 analog of the Landau–Lifshitz actio
(λ̃ = λ

J2 ):

(3.4)I = J
∫

dt

2π∫
0

dσ

2π

[
L+ O

(
λ̃2)], L= −iU∗

i ∂tUi − 1

2
λ̃|Dσ Ui |2.

Since this action hasU(1) gauge invariance (in addition to the globalSU(3) invariance), we may
parametrizeUi in the same way as in(2.24), i.e., Ui = ρie

iφi (
∑3

i=1 φi can be assumed to b
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gauge fixed to zero but will in any case decouple) getting explicitly

(3.5)L=
3∑

i=1

ρ2
i φ̇i − 1

2
λ̃

[
3∑

i=1

ρ′2
i +

3∑
i<j=1

(φ′
i − φ′

j )
2ρ2

i ρ2
j

]
.

Note that since
∑3

i=1 ρ2
i = 1 the WZ term depends (modulo a total derivative) only onφi − φj ,

i.e.,
∑3

i=1 φi indeed decouples. Other forms of this action were given in[16,17]. ThisCP
2 action

is integrable, i.e., the corresponding equations of motion admit a Lax pair representation.10

3.1. Deformed case

Let us now find a generalization of thisCP
2 action to the case of nonzero deformation pa

metersγi . We may chooseψ = ∑
i φi (e.g., setφ1 = ψ − ϕ2, φ2 = ψ + ϕ1 + ϕ2, φ3 = ψ − ϕ1)

and start with the metric andB2 background in(2.1), (2.2). After doing T-duality and the sam
gauge fixing as above we finish with the following generalization of(3.5)

(3.6)L=
3∑

i=1

ρ2
i φ̇i − 1

2
λ̃

[
3∑

i=1

ρ′2
i +

3∑
i<j=1

(φ′
i − φ′

j − εijkγ̄k)
2ρ2

i ρ2
j − γ̄ 2ρ2

1ρ2
2ρ2

3

]
,

where

(3.7)γ̄i ≡ γ̃iJ = γiJ, γ̄ ≡
3∑

i=1

γ̄i .

Note the time-derivative (WZ) term does not get deformed.
Since the 3-parameter deformation of the full string model is integrable[3], this action should

represent an integrable deformation of theCP
2 LL model.11

The 2-spin case action is recovered by settingρ3 = 0; thenρ2
1 +ρ2

2 = 1 and the action depend
only onγ1 and reduces to the anisotropic version of theCP

2 LL model found in[2].
We observe that the case of(3.6) with γ̃ = 0 is special: then the dependence onγ̄i can be

formally absorbed into a formal redefinition ofφi (as was the case in the 2-spin sector in[2]),
e.g.,φ1 → φ1 + γ̄3σ, φ2 → φ2, φ3 → φ3 − γ̄1σ ; in terms of the shifted angles the action th
becomes the same as(3.5).

Another special case is the symmetric oneγi = γ when we get explicitly

(3.8)L=
3∑

i=1

ρ2
i φ̇i − 1

2
λ̃H,

10 To find the corresponding Lax representation it is useful to use the matrix form of the LL model[17] in which the

LL equation takes the form (we rescale time to absorbλ̃): ∂tN = − i
6 [N,∂2

σ N ]. HereNij = 3U∗
i
Uj − δij satisfies

TrN = 0, N† = N2 = N + 2. This equation can be written as∂tN = ∂σ K , whereK ≡ − i
6 [N,∂σ N ]. We observe tha

N is “covariantly constant”∂σ N = 2i
3 [N,K] and define the Lax connection(Aσ ,At ) asAσ = isN, At = isK + 3i

2 s2N

(s is a spectral parameter). It then satisfies (as a consequence of the above two equations onN andK) ∂tAσ − ∂σ At −
[At ,Aσ ] = 0.
11 Indeed, this action describes (a largeJ ) approximation to solutions of the original string action. It would be inter
ing to find explicitly the corresponding Lax pair.
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H =
3∑

i=1

ρ′2
i + (φ′

1 − φ′
2 − γ̄ )2ρ2

1ρ2
2 + (φ′

2 − φ′
3 − γ̄ )2ρ2

2ρ2
3 + (φ′

3 − φ′
1 − γ̄ )2ρ2

3ρ2
1

(3.9)− 9γ̄ 2ρ2
1ρ2

2ρ2
3.

Another generalization of(3.9) (“orthogonal” to the one in(3.6)) can be found by starting wit
more a general supergravity background in[1] dual toN = 4 SYM deformation with complex
parameterβ = γ − iσ . That background depends on bothγ̃ = √

λγ andσ̃ = √
λσ and was ob-

tained in[1] using S-duality transformations.12 In this case the application of the above proced
leads to(3.9)with H replaced by13

H = (ρ1ρ
′
2 − ρ2ρ

′
1 + σ̄ρ1ρ2)

2 + (ρ3ρ
′
1 − ρ1ρ

′
3 + σ̄ρ3ρ1)

2 + (ρ2ρ
′
3 − ρ3ρ

′
2 + σ̄ρ2ρ3)

2

+ (φ′
1 − φ′

2 − γ̄ )2ρ2
1ρ2

2 + (φ′
2 − φ′

3 − γ̄ )2ρ2
2ρ2

3 + (φ′
3 − φ′

1 − γ̄ )2ρ2
3ρ2

1

(3.10)− 9
(
γ̄ 2 + σ̄ 2)ρ2

1ρ2
2ρ2

3,

whereσ̄ ≡ σ̃J = σJ. This deformation of theCP
2 action(3.5) is unlikely to be integrable. Th

action(3.6)admits a similar generalization to the case of the 3 differentσ̄ i parameters.

3.2. Special solutions

Let us now study some solutions of the action(3.6). The solutions are characterized by
conserved angular momenta

(3.11)Ji = J

2π∫
0

dσ

2π
ρ2

i , J= J1 + J2 + J3.

The main difference between(3.6) and its undeformed case(3.5) is the presence of the (no
negative) potential term:

(3.12)V = γ̄ 2
3 ρ2

1ρ2
2 + γ̄ 2

1 ρ2
2ρ2

3 + γ̄ 2
2 ρ2

3ρ2
1 − (γ̄1 + γ̄2 + γ̄3)

2ρ2
1ρ2

2ρ2
3,

whereρi are subject to
∑3

i=1 ρ2
i = 1. While in the case ofγi = 0 the action(3.5) had σ -

independent solutionsφi = const, ρi = const (withρi being arbitrary apart from
∑3

i=1 ρ2
i = 1)

which represented BPS geodesics withE = J now the potential selects only few of them th
will minimize V and thusE = J(1 + 1

2λ̃V ), i.e., will haveV = 0. These absolute minima ofV

correspond precisely to the BPS geodesics discussed above in Section2, namely,

(i) ρ1 = 1, ρ2 = ρ3 = 0;
ρ2 = 1, ρ1 = ρ3 = 0;

(3.13)ρ3 = 1, ρ2 = ρ1 = 0,

(3.14)(ii) ρi =
√

γ̄i

γ̄
, i.e., Ji = γi

γ
J.

12 For comments on the corresponding string theory and AdS/CFT duality in this case see also[2].
13 In this caseB2 has a term proportional tow1 and one is to use(2.8).
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Other geodesics described (in this largeJ approximation) by solutions with constant values ofρi

(note that forσ -independent solutionsφi − φj play in (3.6) the role of the Lagrange multiplier
imposing the condition of constancy ofρi ) will have nonzero value of the energy. Explicitly, w
find from (3.12)that for generic point-like solutions

(3.15)E = J+ 1

2
λ̃

[
1

J

(
γ̄ 2

3 J1J2 + γ̄ 2
1 J2J3 + γ̄ 2

2 J3J1
) − 1

J2
(γ̄1 + γ̄2 + γ̄3)

2J1J2J3

]
.

For fixedγ̄i such dependence of energy on spinsJi is characteristic of macroscopic string so
tions[7]. An alternative representation making it clear that the energy vanishes forJi ∼ γi states
is (cf. (2.48))

E = J+ 1

2
λ̃

[
1

J

[
γ̄2(γ̄1 + γ̄3)j

2
1 + 2γ̄1γ̄2j1j2 + γ̄1(γ̄2 + γ̄3)j

2
2

]
(3.16)− 1

J2
(γ̄1 + γ̄2 + γ̄3)

2j1j2j3

]
,

where as in(2.42)ji = Ji − γ̄i

γ̄1+γ̄2+γ̄3
J. In the LM case of̄γi = γ̄ this can be written also as

(3.17)E = J+ λ̃γ̄ 2
[

1

J

(
j2

1 + j1j2 + j2
2

) − 9

2J2
j1j2j3

]
, ji = Ji − 1

3
J,

where thej2 term is recognized to be equivalent to the 0-mode contribution in(2.44)or (2.45).
Thus the zero-mode contributions are easily captured by the LL model.

If λ̃, γ̄ andj2/J are fixed as one may assume in the discussion of the quadratic zero
fluctuation contribution to the energy spectrum near the(J, J, J ) geodesic, thenj3/J2 term is
subleading. As already mentioned in Section2.3.2, the assumption thatj2/J is fixed is not neede
in general, and inAppendix Bwe shall reproduce the whole expression(3.16)including thej3

term from the Bethe ansatz on the gauge theory side.
It is also straightforward to study the non-zero part of the fluctuation spectrum near(J,0,0)

or Ji ∼ γi geodesic and to show that it is agreement with the leading orderλ̃ term in the corre-
sponding part of spectrum found in Sections2.3.1 and 2.3.2.14

Let us now comment on extended string solutions of the LL action. One observes t
general the circular string ansatz

(3.18)φi = miσ, ρi = const,

gives a solution of LL action(3.9)with γi = γ . Similar circular solutions exist in the full strin
equations and are analogs of the rigid circular strings in undeformedAdS5×S5 geometry[7,9].15

Interestingly, as it is obvious from the comparison of(3.9) and (3.12), this case is formally
equivalent to the case ofpoint-likesolutions in theγi -deformed theory with

(3.19)

γ1 = γ + m3 − m2

J
, γ2 = γ + m1 − m3

J
, γ3 = γ + m2 − m1

J
,

3∑
i=1

γi = 3γ.

14 One can also study fluctuations near more general geodesics, and here the spectrum will be similar to the o
in [9,29] near circular rotating strings in undeformed theory.
15 Some string solutions in LM geometry were discussed in[34].
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In this case we know that there are vacuum(J1, J2, J3) states providedJi = γi

γ1+γ2+γ3
J. Here that

leads to the conclusion that we can have ground-state solutions providedγ takes special rationa
values. These are, in fact, the string BPS states found in the supersymmetric deformed th
[1]. They are TsT images of particular point-like BPS states in the undeformedAdS5 ×S5 theory
(there perturbative largeN BPS states are represented only by point-like strings).

Similar remark applies if we start with the genericγi case of LL action(3.6): specifying to
the sector of circular strings with constant “radii”ρi is equivalent to studying point-like stat
in the theory with shiftedγi parameters:γ1 → γ̂1 = γ1 + m3−m2

J , etc. One then finds addition
ground states for special values ofJi andγi such thatεijkJj γ̂k are zero.

4. Dilatation operator of deformed gauge theory

4.1. The spin chain Hamiltonian for the holomorphic 3-scalar sector

The one-loop planar dilatation operator of theN = 4 SYM theory in the holomorphic 3-scal
sector (i.e., the anomalous dimension matrix for the operators Tr(Φ

J1
1 Φ

J2
2 Φ

J3
3 + · · ·) built out of

chiral scalarsΦi , i = 1,2,3) can be written as ansu(3) invariant nearest-neighbor ferromagne
spin chain Hamiltonian[22]:

(4.1)H =
L∑

k=1

Hk,k+1, Hk,k+1 = λ

8π2
Hk,k+1,

(4.2)H(0)
k,k+1 ≡ Ik,k+1 −Pk,k+1.

HereH acts on products of 3-vectors at each site of the spin lengthL which is equal to the tota
momentum (in discussion of spin chains and Bethe ansatz we shall use the notationL instead
of J)

(4.3)L = J≡ J1 + J2 + J3.

I is an identity andP is the permutation operator. In terms of the generators(em
n )

j
i ≡ δm

i δ
j
n of the

algebragl(3) we have

Ik,k+1 = Ik ⊗ Ik+1 =
3∑

m,n=1

em
m(k)en

n(k + 1),

(4.4)Pk,k+1 =
3∑

m,n=1

em
n (k)en

m(k + 1).

The generalization of(4.1) to the case of theβ-deformedN = 4 SYM theory was found in[18,
19]. It has a formal generalization to the case of 3 complex deformation parametersqi = eiπβi

(heree ⊗ e ≡ e(k)e(k + 1)):

Hk,k+1 = |q1|−2e2
2 ⊗ e3

3 + |q1|2e3
3 ⊗ e2

2 − q1

q̄1
e3

2 ⊗ e2
3 − q̄1

q1
e2

3 ⊗ e3
2

+ |q2|−2e3
3 ⊗ e1

1 + |q2|2e1
1 ⊗ e3

3 − q2

q̄2
e1

3 ⊗ e3
1 − q̄2

q2
e3

1 ⊗ e1
3

(4.5)+ |q3|−2e1
1 ⊗ e2

2 + |q3|2e2
2 ⊗ e1

1 − q3
e2

1 ⊗ e1
2 − q̄3

e1
2 ⊗ e2

1.
q̄3 q3
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This expression appeared in[18] as a step in the construction of the Hamiltonian for the
persymmetric deformation in the 3-spin sector which corresponds to equal parametersqi = q =
eiπβ .16 It was noticed in[18] that the complexβ deformation is not contained in the class
integrable deformations ofsu(3)-invariant Heisenberg chain described by a twisted R-matri
was later argued[19] that the spin chain describing the complexβ case is not integrable.

In the case of realβi ≡ γi which we will be interested in here(4.5)becomes

(4.6)Hk,k+1 = Ik,k+1 − P̃k,k+1, P̃k,k+1 =
3∑

m,n=1

e−2iπαnmem
n (k)en

m(k + 1),

(4.7)αmn ≡ −εmniγi .

This gives the 1-loop dilatation operator of the nonsupersymmetric deformation ofN = 4 SYM
theory[3] which should be dual to string theory defined by(2.1)–(2.8). This gauge theory ha
the following scalar potential[3]

(4.8)V = Tr
3∑

n>m=1

∣∣e−iπαmnΦmΦn − eiπαmnΦnΦm

∣∣2 + Tr
3∑

m=1

[Φm, Φ̄m]2

and similarly deformed Yukawa couplings to ensure the marginality of the deformation a
as the cancellation of the self-energy corrections to the anomalous dimension matrix.

The terms displayed in(4.6) are determined by the interactions in the first sum in(4.8); for
(4.6) to be indeed the dilatation operator it is necessary that, for generalγi , the contribution
of self-energy graphs, vector exchange graphs and the graphs containing[Φm, Φ̄m]2 interaction
vertices continue to cancel out, just like in the supersymmetric theory case. This cancella
relatively easy to understand based on the similarity between theβ deformation and noncommu
tative theories[1,33]: here we have a noncommutative structure related to theU(1) symmetries
inherited from the R-symmetry of the undeformed theory. In noncommutative theories,
graphs in the deformed theory are equal[36] to those in the undeformed theory except that
external fields are multiplied with a *-product.17 The cancellation mentioned above occurs
follows. The vector exchange graphs are independent of the deformation because the
scalar–scalar coupling is independent ofγi . Similarly, the vertices analogous to those com
from the “D-term” [Φm, Φ̄m]2 are undeformed because the charge vectors ofΦm and Φ̄m are
proportional. The deformation of the Yukawa couplings is done again with the *-product w
now contains the fermionU(1)-charges (equal to their R-charges in the undeformed theory)
contribution of fermions to self-energy thus may have a nontrivial phase, but, based on th
commutative structure, the planar self-energies would be the same as in theN = 4 theory excep
for a *-product between the external fields. Due to theU(1)-charge conservation, this phase is
i.e., there is no nontrivial contribution. As a result, there is the same cancellation as in theN = 4

16 In the general complexβ case one needs also a rescaling of the coefficientλ in front of Hk,k+1 as discussed in[2].
17 The noncommutativity due to theγi -deformation is certainly different from the one discussed in[36], so one may
be inclined to question the applicability of the results of[36] to our case. Abstractly, the results of[36] are based on th
fact that the fields carry certain additive charges and that the corresponding symmetry generators obey the c
These are the properties of theU(1) symmetries inherited from the R-symmetry of theN = 4 SYM theory in the presen
case as well as the momentum generators in the case of[36]. The difference between the two cases is that, while all
fields carry momentum, in our case of theγi -deformed theory some fields have trivial charges so are not affected b
*-product. We will return to this point at the end of this section.



20 S.A. Frolov et al. / Nuclear Physics B 731 (2005) 1–44

eory

d
ation.

in

r

site is

ecialize

ted to
theory between the vector exchange, self-energy and the contribution of the[Φm, Φ̄m]2 vertices,
as it should be for(4.6) to correspond to the one-loop dilatation operator of the gauge th
deformation suggested in[3].

Let us note that for the non-holomorphic sectors of theβ deformed theory it is complicate
to construct the dilatation operator by a direct computation, even in the case of real deform
Using different techniques, it was shown in[32] that, for any sector, the Hamiltonian of the sp
chain in the deformed theoryH is related to the Hamiltonian in the undeformed theoryH(0) by

(4.9)Hk,k+1 = Uk,k+1H
(0)
k,k+1U

−1
k,k+1, Uk,k+1 = eiπ

∑3
m,n=1 αmnhm(k)hn(k+1),

where hn(k) are the Cartan generators of the symmetry group acting at sitek. In the case of ou
present interest, i.e., the holomorphic 3-scalar sector

(4.10)Hk,k+1 = Uk,k+1(Ik,k+1 −Pk,k+1)U−1
k,k+1,

(4.11)Uk,k+1 = eiπ
∑3

m,n=1 αmnem
m(k)en

n(k+1) =
3∑

m,n=1

eiπαmnem
m(k)en

n(k + 1),

where we used(4.4)and thaten
n(k)em

m(k) = δm
n em

m(k).

4.2. The Bethe ansatz

As usual, the diagonalization of a spin chain Hamiltonian with more than two states per
done through the nested Bethe ansatz algorithm. From the details described in[18] it is straight-
forward though tedious to derive the Bethe equations for the 3-spin sector; one can also sp
the results of[32] to this case. The resulting Bethe equations are

(4.12)

e−2iπLα21

[
u1,k + i

2

u1,k − i
2

]L

=
J2+J3∏
i=1
i �=k

u1,k − u1,i + i

u1,k − u1,i − i

[
J3∏

j=1

e−2iπ(α32+α21+α13)
u1,k − u2,j − i

2

u1,k − u2,j + i
2

]
,

(4.13)e2iπL(α21+α13) =
J3∏

j=1
j �=l

u2,l − u2,j + i

u2,l − u2,j − i

[
J2+J3∏
i=1

e2iπ(α32+α21+α13)
u1,i − u2,l + i

2

u1,i − u2,l − i
2

]
.

HereL = J1 + J2 + J3 and we should add also the condition that the eigenvectors are rela
single-trace operators (the cyclicity condition):

(4.14)e−2iπ(J2α21+J3α31)

J2+J3∏
k=1

u1,k + i
2

u1,k − i
2

= 1.

The contribution of a given Bethe root solution to the energy is

(4.15)E =
J2+J3∑
k=1

εk = λ

8π2

J2+J3∑
k=1

1

u2
1,k + 1

4

.
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4.3. Ground states of the spin chain Hamiltonian

The vacua of the spin chain Hamiltonian should correspond to the “BPS” states of
theory that have zero anomalous dimensions. For the supersymmetric deformation witγ1 =
γ2 = γ3 = γ there are at least two ways of finding them: (i) finding the generators of the c
ring and (ii) directly finding the solutions of the Bethe equations which have zero energy.
for general nonsupersymmetric deformations the first option is not available, we shall the
concentrate on the second approach (in the supersymmetric limit we shall be able to comp
results with those of the chiral ring analysis).

First, let us note that since the dilatation operator is positive semidefinite, the contribu
any Bethe root distribution to the energy must be non-negative. Indeed, from the Bethe eq
(4.12)–(4.13)one can see that, as in the undeformed case, the Bethe roots occur in co
conjugate pairs which give positive contributions to the energy(4.15). Thus, the vacua of th
spin chain fall into the two categories:

(1) J2 + J3 = 0 case in which the energy(4.15)is obviously zero;
(2) configurations of Bethe roots for whichεk = 0 for all k = 1, . . . , J2 + J3.

The first class corresponds to the classical vacuum of the spin chain (TrΦ
J1
1 operator) which

was chosen to derive the Bethe equations, as well as to its obviousZ3 images.
For the second class the expression(4.15) clearly implies that all rapiditiesu1,k are to be

infinite. This is similar to the case of other BPS states Tr(Φ
J1
1 Φ

J2
2 Φ

J3
3 )symm in the undeformed

N = 4 SYM theory. As in the undeformed case, we will take the difference between an
unequal rapidities to also go to infinity. This is necessary in order to focus on solutions
exist regardless of whetherJ2 + J3 is even or odd. Unlike the undeformed case, however, du
the presence of the deformation parametersγi or αmn, not any such rapidity configuration wi
be a solution of the Bethe equations and the cyclicity condition.

The cyclicity condition(4.14) implies that the angular momentaJ2 andJ3 must be chosen
such that

(4.16)J2γ3 − J3γ2 = 0.

Then, the main Bethe equation(4.12)further implies that

(4.17)J1γ3 − J3γ1 = 0.

Finally, taking the product of the auxiliary Bethe equations(4.13)in the limit in whichu1,k → ∞
implies that the third combination of the deformation parameters and the angular momen
vanish as well:

(4.18)J1γ2 − J2γ1 = 0.

This discussion however is insufficient because it implies a rather large degeneracy due
fact that the auxiliary Bethe equation(4.13) is nontrivial. It is, however, easy to see that, if w
focus on solutions which exist regardless of the parity properties ofJ3, we must have|u2,k −u2,l |
for all k �= l (and thereforeu2,k for anyk) approach the infinity.

We conclude that for the general three real deformation parametersγi the spin chain Hamil-
tonian has three vacua corresponding to the operators TrΦJ , i = 1,2,3, as well as the fourth
i
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vacuum corresponding to an operator containingJi copies ofΦi with i = 1,2,3 provided

(4.19)εijkJj γk = 0, i.e., Ji ∼ γi.

SinceJi are integer, this forth vacuum can exist only for special values ofγi . This matches the
result of the string theory analysis in Section2.2.

In the case of supersymmetric deformationγi = γ the above condition(4.19)becomesJ1 =
J2 = J3. The existence of such(J, J, J ) BPS state can be derived from the construction of
chiral ring. The argument is the same as originally given for rational deformation parame
[33], see also[1]. Indeed, theF -term constraints

eiπβΦ1Φ2 − e−iπβΦ2Φ1 = 0, eiπβΦ2Φ3 − e−iπβΦ3Φ2 = 0,

(4.20)eiπβΦ3Φ1 − e−iπβΦ1Φ3 = 0

imply that, in the chiral ring, any single-trace operator can be brought to the form

(4.21)Tr
(
Φ

J1
1 Φ

J2
2 Φ

J3
3

)
.

Then, the sameF -term constraints allow one to move any of theΦi fields around the trace
In general, this multiplies the initial operator by a phase whose argument is proportional
difference between the number of fields of different types than the one which is trans
around the trace. For the operator to be an element of the chiral ring it is necessary th
phase is unity which in turn implies that

(4.22)J1 = J2 = J3.

For rationalγ there are also additional BPS states[1] corresponding to rotating circula
strings; they are, in fact, images of certain BPS states in undeformed theory under the Ts
formation. We have described them explicitly in Section3.2. They are visible also in the Beth
ansatz. Indeed, for rationalγi it is possible that

(4.23)εijkJj γk ∈ Z.

This is enough to eliminate completely the deformation from the Bethe equations. Thu
energy of the states with such(J1, J2, J3) quantum numbers are identical to those in the un
formed theory, i.e., they should be exact BPS states (despite the theory not being supersy
for unequalγi ).

We shall discuss fluctuations near these vacua as implied by the Bethe ansatz equa
Appendices A and B.

4.4. Comment onU(N) vs. SU(N) gauge theory

It is worth emphasizing that the planar dilatation operator(4.5)and the corresponding Beth
equations(4.12)–(4.13)hold for theβi -deformation of theN = 4 SYM with U(N) gauge group
The distinction between theU(N) and theSU(N) case is nontrivial here even in the largeN limit.
More precisely, it is immaterial for “long” single-trace operators we discuss in the main p
this paper but matters for some “short” operators. Indeed, in the presence of the defor
the U(1) factor no longer automatically decouples, and that has interesting consequen
particular, theU(N) theory is not automatically conformal[38], having running couplings o
U(1) matter fields.
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It was recently observed in[38,39] that, while in the supersymmetricU(N) β-deformed
SYM theory the operators Tr(ΦiΦj ) (i �= j ) have nonvanishing one-loop anomalous dimens
their anomalous dimension is zero in the supersymmetricβ-deformed theory withSU(N) gauge
group. The nonzero (in the largeN limit) contribution in theU(N) case comes entirely from th
nondecoupledU(1) factor.

It is easy to see that the expression(4.5) for the spin chain Hamiltonian representing plan
1-loopU(N) dilatation operator implies that the anomalous dimension of Tr(ΦiΦj ) is

(4.24)∆(Tr(ΦiΦj )) = λ

2π2
sin2 παij ,

whereαij is given by(4.7). In the supersymmetric limit of equal deformation parameters
reproduces the result of[38] for theU(N) theory. The same result(4.24)may be obtained from
the Bethe equations(4.12)–(4.13)(andZ3 symmetry). In the case of a single excitation abo
the(2,0,0) vacuum the Bethe equations simplify considerably; since the result is determin
a single rapidity, it may, in fact, be obtained from the cyclicity condition which trivially lead

(4.25)∆(Tr(Φ1Φj )) = λ

2π2
sin2 πα1j .

The other Tr(ΦiΦj ) anomalous dimensions may be obtained usingZ3 transformations or by
changing the vacuum of the spin chain. The expression(4.25)is, in fact, theL → 2 limit of the
anomalous dimension of Tr(ΦL−1

1 Φj).
In the case of the deformation of theSU(N) SYM theory these anomalous dimensions van

due to an “accidental cancellation”. As was pointed out in[38] in the case of the supersymmet
deformation of theSU(N) theory, the superpotential contribution to the potential can be wr
as

(4.26)V =
N2−1∑
a=1

[∣∣Tr
([Φ1,Φ2]βT a

)∣∣2 + ∣∣Tr
([Φ2,Φ3]βT a

)∣∣2 + ∣∣Tr
([Φ3,Φ1]βT a

)∣∣2],
where[Φ1,Φ2]β = Φ1 ∗ Φ2 − Φ2 ∗ Φ1 = eiπβΦ1Φ2 − e−iπβΦ2Φ1 andT a are theSU(N) gen-
erators. As a result, the anomalous dimension of holomorphic 2-field operators is proporti
TrT a which vanishes. Clearly, such a cancellation does not occur in the deformedU(N) theory.
In the undeformedU(N) N = 4 SYM theory, the dilatation operator(4.1), (4.2)combined with
the cyclicity of the trace still leads to the vanishing anomalous dimension for Tr(ΦiΦj ).18

It is not hard to see that, in the case of the nonsupersymmetricSU(N) gauge theory with
unequalβi = γi the cancellation due to the tracelessness of gauge group generators als
place. As was mentioned above, the nonsupersymmetricγi -deformed theory is obtained by r
placing in the component Lagrangian of theN = 4 SYM the ordinary product of fields with th

18 The reason why there is a difference between theSU(N) andU(N) cases even in the largeN limit has to do with
non-decoupling ofU(1) part of scalar multiplets (in the pure gauge field sectorU(1) part ofU(N) always decouples a
largeN ); it is also special to the case of length-2 operators. A quick way to see why the double-trace quartic scala
present in theSU(N) case((T a)i

j
(T a)k

l
= δi

l
δk
j

− 1
N

δi
j
δk
l
) does contribute to the anomalous dimension of the Tr(ΦiΦj )

operator in the same way as the single-trace vertex is to consider the generating functionalZ(k) for the correlators of the
Tr(Φ2) operators (suppressing all indices). The corresponding action will look likeS = N

λ

∫ [· · · + Tr(Φ2)2 + 1
N

(1 +
k(x))Tr(Φ2)], where we do not make distinction between the structure ofΦ2 term in the vertex and in the operators f
which k(x) is a source. Then it is clear that derivatives overk(x) will scale asN0, which is the same cylinder-diagra
scaling as for the 2-point function of Tr(Φ2) with insertions of TrΦ4 vertex. We thank K. Zarembo for a discussion
this point.



24 S.A. Frolov et al. / Nuclear Physics B 731 (2005) 1–44

n of

ation

erators

defor-
sions
c theory
ed that
expect

imen-
ribe:

tion,
lds, it

y
e so

ries
e

fermions

ory side

kground
s in the

f the fields
owever,

at here we
n

noncommutative product

(4.27)Φi ∗ Φj(x) �→ lim
y→x

e−iπαmnhm(x)hn(y)Φi(x)Φj (y),

where againαmn = −εmnkγk , hn are the three globalU(1) symmetry generators (i.e., hnΦi =
δniΦi ), and summation overm,n is assumed. Thus the potential relevant for the calculatio
anomalous dimensions of scalar operators may be written as

(4.28)V =
N2−1∑
a=1

[∣∣Tr
([Φ1,Φ2]γ3T

a
)∣∣2 + ∣∣Tr

([Φ2,Φ3]γ1T
a
)∣∣2 + ∣∣Tr

([Φ3,Φ1]γ2T
a
)∣∣2].

Using this form ofV for the calculation of anomalous dimensions of the same Tr(ΦiΦj ) opera-
tors it is easy to see that their anomalous dimensions are proportional to

(4.29)
(
e2iπγkεijk − e−2iπγkεijk

)
TrT a,

and thus vanish again in theSU(N) gauge group case regardless the values of the deform
parametersγi .

Such cancellations appear not to exist for longer operators, even in the supersymmetricγi = γ

case. Indeed, in that case the chiral ring argument appears to imply that the only chiral op
are in the representations(J,0,0), (0,J,0), (0,0,J) and(J,J,J).

Given that it is possible to break supersymmetry by an arbitrarily small amount (the
mation parametersγi are continuous) and that the spectrum of 1-loop anomalous dimen
has a gap, it is reasonable to search for protected operators in the nonsupersymmetri
among the protected operators in its supersymmetric limiting case. Since we have argu
we already know all such operators with vanishing anomalous dimensions, we do not
additional operators with vanishing anomalous dimensions for sufficiently smallγ1, γ2, γ3.

An interesting question is what is the dual string theory prediction for the anomalous d
sions of operators Tr(ΦiΦj ) or, alternatively, which theory does the dual string theory desc
theU(N) or theSU(N) gauge theory.19 The answer is nontrivial here and appears to beSU(N):
even though the diagonalU(1) gauge fields still decouple in the presence of the deforma
the U(1) scalars and fermions do not. Due to the absence of coupling with the gauge fie
is expected that the RG beta-functions of the couplings of theseU(1) fields is positive and the
flow to zero at low energies.20 For the supersymmetric deformation this is indeed the cas

19 There are several notable differences between theγi -deformed theory and “standard” noncommutative field theo
where one finds nondecoupling of theU(1) gauge fields. As was mentioned above, the *-product describing thγi

deformation can be thought of as a Moyal product based on the Cartan generators of the remnant of theN = 4 SYM R-
symmetry group. It acts nontrivially only on the fields carrying nonzero charges under these generators, i.e., the
and the scalar fields, butnot the gauge fields. Therefore, one is allowed to truncate away theU(1) gauge field, but not the
U(1) scalars and fermions. An analog of this non-decoupling in matter sector may be observed on the string the
as well. Realizing the gauge theory on a collection of coincident D3-branes, the decoupling of the diagonalU(1) degrees
of freedom is associated to the translational invariance of the collection of branes. The form of the string bac
(2.1)–(2.7)dual to the deformed gauge theory suggests that in a similar set-up there should exist nontrivial fluxe
space transverse to the branes. These fluxes will break translational invariance and lead to the nondecoupling o
carrying charges under the flat space “transverse”, i.e., internal, symmetry group. Translational invariance if, h
maintained along the branes and thus the gauge fields continue to decouple. This is also reflected in the fact th
have the standardAdS5 factor in the geometry while in the noncommutative case the solution of[37] does not have a
AdS5 asymptotics.
20 We thank O. Aharony, J. Maldacena and E. Sokachev for discussions on this point.
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only theSU(N) theory is conformal[35,38]. For the nonsupersymmetric deformation new
fects may appear. For example, the three terms|[Φi,Φj ]βk

|2 are related by aZ3 symmetry which
also acts on the deformation parameters. Thus, it is possible that their coefficients unde
ferent renormalization and, while equal at one-loop level, at higher loops they may have di
values at the fixed point. Similarly to the case of the supersymmetric deformation, furthe
phenomena may appear for rational values ofβi related to the appearance of additional opera
with vanishing anomalous dimensions.

The observation that the coupling of theU(1) matter fields runs suggests that the string t
ory in the deformed background(2.1)–(2.7)describes the deformation of the conformalSU(N)

gauge theory. The anomalous dimensions of holomorphic operators Tr(ΦiΦj ) with i �= j were
computed to two loops in the supersymmetric case in[39] and found to be subleading in the 1/N

expansion. It may be possible that these operators remain marginal to all orders in the
limit. It would be interesting to check this explicitly, by analyzing in supergravity the correc
to the masses of the fields in the20 of SO(6) once the deformation is turned on.

5. Coherent state effective action

In the case of undeformedN = 4 SYM –AdS5×S5 string duality the matching of prediction
for energies of states with large quantum numbers can be done in a universal way by com
the effective action for the long wave length spin chain excitations with the effective actio
the “slow” world sheet modes obtained as a limit of the classical string action after sepa
the “fast” collective string modes[14].

The relevant spin chain degrees of freedom can be described by the spin coherent st|n〉〉
with the action

(5.1)Scoh= i〈〈n|∂t |n〉〉 − 〈〈n|H |n〉〉,
which appears in the exponent in the coherent state path integral. The limit one is intere
i.e., J→ ∞, λ̃ = λ

J2 , is the semiclassical limit for the spin chain path integral in which one
take the continuum limit keeping only the leading 2-derivative terms inScoh.

In the case of the 2-spin sector, i.e., operators Tr(Φ
J1
1 Φ

J2
2 +· · ·), this strategy was successfu

applied to the supersymmetric deformed theory[2], demonstrating the equivalence of the t
effective actions. The case of the 3-spin sector (and larger nonholomorphic sectors) is, h
somewhat different. In the context of the coherent state continuum limit the problem ari
that a naive derivation that follows the same strategy as in the undeformed 3-spin case[16,17]
or the deformed 2-spin case[2] leads to an effective action that does not properly describ
expected vacuum states as seen in the Bethe ansatz and also on the string theory side.

Indeed, as in the case of the 2-spin sector in[2], the fact that the “Wess–Zumino” term in th
string action(3.6) is independent of the deformation parameters suggests that we may u
same coherent state as in thesu(3) sector in the undeformed theory. Then the resulting effec
action as found in the continuum limit from(5.1)with H given by(4.1), (4.6)happens to contai
the potential

(5.2)Vnaive= γ 2
1 ρ2

2ρ2
3 + γ 2

2 ρ2
3ρ2

1 + γ 2
3 ρ2

1ρ2
2,

3∑
i=1

ρ2
i = 1,

where we used the same notationρi as in the string-theory potential(3.12)for the corresponding
coherent state parameter. Compared to(3.12)this potential misses the lastρ6 term. As a result
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it captures the vacua(J,0,0), etc., but misses the nontrivial one with(J1, J2, J3) ∼ (γ1, γ2, γ3)

or (J, J, J ) in the equalγi case.
To understand the source of the problem it is useful to recall the story of BPS vacua

su(3) sector of the undeformed theory. There the spin chain Hamiltonian(4.2)containing permu
tation operator has vacua represented by all totally symmetrized products of the three chir
Tr(ΦJ1

1 Φ
J2
2 Φ

J3
3 )symm. Apart from TrΦJ

1 , TrΦJ
2 and TrΦJ

3 , i.e., (J,0,0), (0,J,0) and (0,0,J)
vacua these arenot “slow” modes of the spin chain: the field componentΦi in general change
rapidly from site to site. The coherent state operators that are mapped onto semiclassic
states (in this case geodesics or point-like strings all of which here are BPS) are particu
ear combinations of these quantum spin chain vacua:21 if the generic coherent state opera
is Tr(

∏J
k=1[

∑3
i=1 ni(k)Φi]) then the vacua correspond to constantni , i.e., to Tr(

∑3
i=1 niΦi)

J,
which are indeed linear combinations of symmetrized products.

In the present deformed case we do not have all possible(J1, J2, J3) BPS quantum vacu
to built a coherent linear superposition, and, moreover, the nontrivial vacuum(J1, J2, J3) ∼
(γ1, γ2, γ3) is not a “slow” state. Yet, the fact that it is naturally found also on the string
ory side suggests that there should be a way to capture it in the coherent state action.

The source of the problem thus appears to be in the choice of a description of the releva
chain modes by coherent states. One is either to generalize the definition of coherent st
alternatively, to use the “undeformed” coherent states but choose a different representativ
class of equivalent spin chain Hamiltonians with the same spectrum.

The latter option is equivalent to changing the basis. The spin chain Hamiltonian repr
the gauge-theory anomalous dimension matrix in the basis of single-trace single-term op
As we shall show below, there is a way to choose a more suitable basis so that the re
coherent state action(5.1) adequately describes the “low-energy” approximation with all va
included, and, moreover, matches its string-theory counterpart(3.6).

We shall start with reviewing the choice of the coherent states which will be the same
the undeformedsu(3) case. We shall then describe a change of basis leading to an equivale
more appropriate for the low-energy description with standard set of coherent states) Ham
H̃ = U−1HU . Finally, we shall useH̃ to computeScoh in (5.1)and find its continuum limit.

5.1. The coherent state

While the standard definition of coherent states based on global symmetry of the H
tonian22 does not formally apply in the present deformed case, we can still use theSU(3)-
invariant coherent state which is a tensor product over the spin 1 (3-component) chain si
state obtained by a 3× 3 rotation which keeps fixed some specified 3-vector:

R = R(h)R(k),

R(h) = diag
(
eih1, eih2, eih3

)
,

3∑
i=1

hi = 0,

21 All quantum BPS vacua correspond to Kaluza–Klein modes (spherical harmonics), while their particular c

combinations have semiclassical interpretation as point-particles moving along geodesics ofS5. All such geodesics ar
related bySO(6) rotations.
22 In general, it is given by anG/G0 transformation applied to a ground state, whereG is a symmetry ofH andG0 is
a symmetry of the ground state.
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(5.3)R(k) = I − 2|k〉〈k|, 〈k|k〉 = 1.

This state can be parametrized by an element ofCP
2. With appropriate redefinitions (k1 =

1
2

√
1− n1, k2 = − n2

2
√

1−n1
, k3 = − n3

2
√

1−n1
) the coherent state can be written as:

(5.4)|n〉 = n1|1〉 + n2|2〉 + n3|3〉,
whereem

n in (4.4)acts on|i〉 as

(5.5)em
i |j〉 = δij |m〉,

and

(5.6)ni = mie
ihi ,

3∑
i=1

m2
i = 1,

3∑
i=1

hi = 0.

On the string theory side (cf.(3.6)) mi will correspond toρi , andhi to φi but for generality we
shall use this separate notation.

The total spin-chain state coherent state is then

(5.7)|n〉〉 = |n〉1 ⊗ |n〉2 ⊗ · · · ⊗ |n〉L, |n〉k =
3∑

i=1

ni(k)|i〉.

It thus corresponds to the operator

(5.8)Tr

[(
3∑

i=1

ni(1)Φi

)
· · ·

(
3∑

j=1

nj (L)Φj

)]
,

up to the cyclicity of the trace composed with cyclic permutations of the site labels 1,2, . . . ,L.23

With this choice of the coherent state the first WZ term in the continuum effective action(5.1)
has the same standard form as in the undeformed case:

(5.9)SWZ = J

2π∫
0

dσ

2π

3∑
i=1

m2
i ḣi .

5.2. The change of basis: choice of an equivalent Hamiltonian

Let us first recall the meaning of the change of basis for the spin chain Hamiltonian
precise statement about the relation between string energies and the gauge-theory an
dimensions is that the string energies are equal to the eigenvalues of the dilatation opera
latter are computed by finding the anomalous dimension matrix and then diagonalizing
spin chain Hamiltonian is the anomalous dimension matrix, that is the dilatation operator

23 One may also include the factor of1√
L

that makes the state (and the operator) unit normalized. This factor

up playing no role; it cancels because there are alwaysL identical terms contributing to the expectation value of a
operator.
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(5.10)�OA = HB
A OB,

whereA,B are multi-indices. The spin chain Hamiltonian(4.1), (4.5), (4.6)was computed in th
“standard” basis, that is the basis of single-term single-trace operators Tr(Φi1 · · ·ΦiL). Chang-
ing this basis leads to a change of the expression for the spin chain Hamiltonian. From(5.10)
we see that a general change of basisOA = UB

A ÕB acts on the Hamiltonian by the transform
tion

(5.11)H → H̃ = U−1HU.

Since the originalH in (4.6)contains only nearest-neighbor interactions it is clear that the o
atorU which we need should be nontrivial since it should be able to generate in the cont
limit of Scoh higher than 4th powers of the “radii”mi in order to get an effective potential th
will have more than just three obvious vacuami = (1,0,0), etc.

Consequently,U cannot be a site-wise tensor product. It is natural to try the next si
possibility, i.e., a product of operators overlapping only on one site

(5.12)U =
L∏

k=1

Uk,k+1,

with the additional assumption thatUk−1,k commutes withUk,k+1. Without this additional as
sumptionU−1HU would be a double sum over the spin chain sites and, therefore, would
to a nonlocal effective action. Combined with the observation that the original spin chain H
tonian can be written in the form(4.10), i.e.,

(5.13)H =
L∑

k=1

Hk,k+1 =
L∑

k=1

U−1
k,k+1H

(0)
k,k+1Uk,k+1,

this suggest the following natural ansatz:

(5.14)

Uk,k+1(ξ) = (Uk,k+1)
ξ = eiξπ

∑3
m,n=1 αmnem

m(k)en
n(k+1) =

3∑
m,n=1

eiξπαmnem
m(k)en

n(k + 1),

(5.15)U−1
k,k+1(ξ) = Uk,k+1(−ξ), Uk,k+1(1) = Uk,k+1.

Here αmn are the same phases as in(4.6) and ξ is a parameter. This ansatz is, in fact, qu
unique. For example, allowing for off-diagonal generators in the exponent would viola
locality requirement.24

It is relatively easy to find the transformed Hamiltonian. The main observation is that in
term in the sum definingH̃ in (5.13) all factors ofU cancel out except for those which ha

24 For generic complexξ the transformation above acts on the basis operators by adding a phase and a resca
pending on the order of fields in a monomial, so this is a rather simple change of the basis.
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H̃ = U−1(ξ)HU(ξ)

=
L∑

k=1

Uk−1,k(−ξ)Uk,k+1(−ξ + 1)Uk+1,k+2(−ξ)H
(0)
k,k+1

× Uk−1,k(ξ)Uk,k+1(ξ − 1)Uk+1,k+2(ξ)

(5.16)≡
L∑

k=1

H̃[k],

where[k] is used to indicate the dependence on the sitesk − 1, k, k + 1, k + 2. Using trivial
identities following from the properties ofen

m, H̃[k] can be simplified to:

H̃[k] = λ

8π2
H̃[k]

= λ

8π2

3∑
m,n,p,r,q,t=1

eiπξ(αmr−αmn)eiπξ(αqt−αpt )eiπ(ξ−1)(αrq−αnp)

(5.17)× em
m(k − 1)

[
en
n(k)e

p
p(k + 1)H

(0)
k,k+1e

r
r (k)e

q
q (k + 1)

]
et
t (k + 2).

5.3. Continuum limit and the effective action

The important piece of information in constructing the effective action is the cyclicity prop
of the states described by it. In the initial form(5.13)of H the states the Hamiltonian acted
were periodic. An arbitrary change of the basis may affect this and lead to nonperiodic stat
transformation(5.14)has the crucial property that it commutes with the shift operator. There
the states the transformed Hamiltonian acts on continue to be cyclically symmetric. This i
that we are allowed to use the coherent state(5.7) to construct the effective action.

Using the expression(4.2), (4.4) for the undeformed Hamiltonian in thesu(3) sector or
[H(0)

k,k+1]nprq = δn
r δ

p
q − δ

p
r δn

q it follows that the expectation value of̃H[k] in the above coheren
state|n〉〉 (5.7) is

〈〈n|H̃[k]|n〉〉

=
3∑

n,p=1

[(
mn(k)

)2(
mp(k + 1)

)2

−
3∑

q=1

(
mq(k − 1)

)2
eiπξ(αqp−αqn)e−2iπ(ξ−1)αnpmn(k)mp(k)mp(k + 1)mn(k + 1)

(5.18)× ei(hn(k)−hn(k+1)−hp(k)+hp(k+1))
3∑

r=1

(
mr(k + 2)

)2
eiπξ(αnr−αpr )

]
.

Expanding this expression inαmn (i.e., in the deformation parametersγi = 1
2εinmαmn) and in the

spin chain spacinga up to the second order and suitably combining the resulting terms we
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(∂m(k) ≡ m(k+1)−m(k)
a

)

〈〈n|H̃[k]|n〉〉 �
3∑

i=1

(
∂mi(k)

)2 +
3∑

p<n=1

[
∂hp(k) − ∂hn(k) + 2π

a
αpn

]2(
mp(k)mn(k)

)2

(5.19)− 2ξ(1− ξ)

(
2π

a

)2
(

3∑
p<n=1

αpn

)2[
m1(k)m2(k)m3(k)

]2
.

As usual, the sum over sites is replaced by an integral overσ ∈ [0,2π], and using the relatio
between the lattice spacinga and the length of the chain (L ≡ J= ∑3

i=1 Ji )

(5.20)a = 2π

J

we get for the continuum limit of the coherent state expectation value of the transformed H
tonian (herẽλ = λ

J2 , ′ = ∂σ )

〈〈n|H̃ |n〉〉 = 1

2
Jλ̃

2π∫
0

dσ

2π

[
(m1m

′
2 − m2m

′
1)

2 + (h′
1 − h′

2 + Jα12)
2(m1m2)

2

+ (m2m
′
3 − m3m

′
2)

2 + (h′
2 − h′

3 + Jα23)
2(m2m3)

2

+ (m3m
′
1 − m1m

′
3)

2 + (h′
3 − h′

1 + Jα31)
2(m3m1)

2

(5.21)− 2ξ(1− ξ)(Jα12 + Jα23 + Jα31)
2(m1m2m3)

2].
As required in our scaling limit, the action is finite (modulo the overall factor of J) for fi
λ̃ = λ

J2 and Jαmn = −εmniJγi . It thus describes a particular sector of low-energy excitation
the spin chain (“macroscopic spin waves”) which correspond to semiclassical fast-moving
in the 3-spin sector.

We are now in position to determine the free parameterξ in the definition ofU(ξ) by requiring
that the effective action reflects the correct vacuum structure. Intuitively, the existence
vacua(J,0,0), (0,J,0) and (0,0,J) should not impose any constraints onξ becauseU acts
trivially on these states. This can indeed be verified by the explicit calculation (the corresp
critical points arem1 = 1,m2 = 0,m3 = 0, etc.). The existence of the(J1, J2, J3) vacua with
Ji ∼ γi does, however, require the specific value ofξ . For example, in the case ofγi = γ the
corresponding critical point of the potential term in(5.21) is mi = ± 1√

3
and the value of the

potential at this point isV = 1
2Jλ̃(Jγ )2[1

3 − 2
3ξ(1− ξ)]. By requiring that it vanishes we get

(5.22)ξ = 1

2
(1± i), 2ξ(1− ξ) = 1.

One can directly verify that in the generalγi case the effective potential with these values ofξ is
nonnegative and vanishes only at the required four critical points.

The full coherent state action which correctly reproduces the spin chain vacuum str
is thus given by the difference of(5.9) and (5.21)with the coefficient of the last term bein
2ξ(1 − ξ) = 1. Remarkably, it then also reproduces the fast string action(3.4), (3.6)with the
identificationρi = mi , φi = hi .

Let us note that the complex value ofξ implies that the transformation in(5.12), (5.14)is not
unitary. This manifests itself at higher orders in theγi expansion and therefore implies that



S.A. Frolov et al. / Nuclear Physics B 731 (2005) 1–44 31

e is not
leads to

ic

n
s
e
ric

r

are

ding

tch the
ide one
theory
ation,
ctor of

may be
are, of

S/CFT
at
ples of

vantage

ntriv-
of a

y (see
spec-
ns

ear to be
higher loops a further change of basis is necessary. While the unitarity of the basis chang
a required condition, we suspect that there may exist also a unitary change of basis that
the same real coherent state effective action.

6. Concluding remarks

In this paper we have studied an example of largeN AdS/CFT duality in a nonsupersymmetr
context.

The string theory we considered is obtained from theAdS5×S5 string theory by a combinatio
of T-dualities and shifts of angular coordinates and is parametrized in addition to the radiuR =
λ1/4 (α′ = 1) of theAdS5 space by the three real parametersγ̃i = R2γi which determine the shap
of the deformedS5

γi
space. The special case of equalγi = γ corresponds to the supersymmet

deformation ofAdS5 × S5 string theory introduced in[1] and further studied in[2,3].
The dual gauge theory has the same field content as theN = 4 SYM theory, but with scala

quartic interactions and Yukawa couplings being “*-deformed” usingγi as phase multiplying
theU(1)-charges of the fields[3]. The threeU(1) symmetries and the corresponding charges
inherited from theSU(4) R-symmetry ofN = 4 SYM theory. In the case ofγi = γ the gauge
theory becomes the exactly marginalN = 1 supersymmetric deformation of theN = 4 SYM
theory with real deformation parameterβ = γ .

We have compared the energies of the semiclassical strings inAdS5 × S5
γi

geometry having

three large angular momenta inS5
γi

to the 1-loop anomalous dimensions of the correspon
gauge-theory scalar operators and found that they match just as it was the case in theSU(3)

sector of the standardAdS5 × S5 duality [7,16,17,24].
In particular, in the supersymmetric special case ofγi = γ this extends the result of[2] from

the 2-spin sector to the 3-spin sector. This extension turns out to be quite nontrivial. To ma
corresponding low-energy effective actions on the string theory and the gauge theory s
is to make a special choice of the spin chain Hamiltonian representing the 1-loop gauge
dilatation operator. This choice is “adapted” to the low-energy or semiclassical approxim
i.e., it allows one to capture the right vacuum states and the “macroscopic spin wave” se
states of the spin chain in the continuum coherent state effective action.

Our results suggest that some quantitative aspects of the AdS/CFT correspondence
less sensitive to the presence of supersymmetry than it was previously expected. There
course, many ways to break supersymmetry of the original maximally supersymmetric Ad
set-up. The important observation of[1] extended in[3] to the nonsupersymmetric case is th
the TsT duality preserves the regularity of the geometry and thus leads to tractable exam
the duality. Also, the present theory has continuous tunable parameters which is an ad
over the orbifold[31] models.25

One of the by-products of our investigation of the spectrum of fluctuations near no
ial (J1, J2, J3) vacuum of deformed theory on the gauge theory side is the discovery
new type of solutions of the Bethe equations for the 3-spin sector of deformed theor
Appendices A and B). Switching on the deformation parameters lifts the degeneracy of the
trum of conformal dimensions of theN = 4 SYM theory and leads to new nontrivial relatio

25 OtherN = 1 orN = 0 models based on replacingS5 by less-symmetric spaces of different topology (likeT 1,1 [43]

or S2 ×S3) and corresponding to non-perturbative isolated conformal fixed points on the gauge theory side, app
under less theoretical control.
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between the structure of solutions of the Bethe equations and dimensions of gauge-theor
tors with givenU(1) charges. A very interesting related question is the construction of the
Bethe equations describing states which in the undeformed case belong to the same irre
representation ofPSU(2,2|4). The zero-mode states corresponding to fluctuations aroun
(J1, J2, J3)vac are only one of the simplest examples; in general, the Bethe solutions desc
extended multi-spin string states in the same multiplet as the highest-weight states will
similar subtleties. Their proper description appears to require a modification of the standa
modynamic limit arguments which should also be reflected in the construction of the string
equations.

There remain many interesting questions and directions for future research.
It would be important to study this nonsupersymmetricγi -deformed SYM theory in detai

finding out, in particular, if it remains conformal (for properly adjusted coupling and deform
parameters) even for finiteN . In the largeN limit this follows (to all orders in perturbatio
theory) from the noncommutative nature of the deformation, the result of[36] and the fact thatγi

cannot be renormalized.26 At finite N it is, in principle, straightforward to check the conform
invariance (for properly adjusted parameters of the deformed Lagrangian) to the first tw
orders using existing general relations for theβ-functions of generic nonsupersymmetric gau
theories[42] (note that here, compared to orbifold models, all the fields are in the same a
representation ofU(N)). The existence of exactly marginal nonsupersymmetric deformatio
N = 4 SYM theory implied by the AdS/CFT duality seems an interesting subject worth de
study.27

On the string theory side, it remains to construct the explicit form of the Green–Sc
action describing theγi -deformed theory. To do that one may apply the TsT transformatio
the superstring action onAdS5×S5 [46] to using the world-sheet rules of T-duality formulated
the Green–Schwarz superstring in[47].28 The approach used in[3] should then lead to a local an
periodic Lax representation for the complete Green–Schwarz sigma model on theγi -deformed
background, related to the Lax pair for theAdS5 × S5 string[48] by the TsT transformations.29

Having found the Lax representation one may then analyze the properties of the mono
matrix and derive the string Bethe equations for theγi -deformed model analogous to those fou
for superstring onAdS5×S5 in [49,50]. The string Bethe equations could then be compared t
thermodynamic limit of the Bethe equations for theγi -deformed SYM theory (this was alread
done for the simplestsu(2)γ case in[2]). One may also hope that the analysis of the string B
equations will shed light on the structure of the dressing factor that appears in the Bethe

26 To see this we note that the operator(4.27)deforming the ordinary product must have definite total dimension. S
theU(1) generators have vanishing anomalous dimensions, it follows that the same must hold forγi . The same argumen
implies that, in noncommutative field theories, theθ -parameter is not renormalized. Explicit calculations show that
is indeed correct to two loops and general analysis of the renormalization of such theories suggests that this is
true.
27 Supersymmetric exactly marginal deformations ofN = 4 SYM theory which can be obtained by orbifolding we
discussed in[40].
28 Incidentally, that would give the first nontrivial example of the GS action in a nonsupersymmetric backgrou

find the explicit form of this action it may be useful to start with theAdS5 × S5 action in a particularκ-symmetry gauge
where its fermionic structure is explicit. One candidate for such a gauge is(Γt +Γφ)θ = 0 whereφ is the direction which
is T-dualized.
29 Again, a more direct way to derive the Lax pair for the GS string may be to start from theAdS5 × S5 action and do
the transformations in the sigma model rather than start with the sigma model in the supergravity background co
using the T-duality rules.
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for quantum strings[51] (in the deformed case the dressing factor may depend onγi and that
may lead to an additional consistency condition for it).

It would be of much interest to study the stability of this string theory, i.e., the presen
tachyons in its spectrum. The tachyons should be absent for small enoughγi (as well as at the
supersymmetric point of equalγi ).30

This deformed model may thus be useful for understanding aspects of closed-string t
physics in the AdS/CFT context (complementing orbifold model examples like type 0 on[5]
with the advantage of having a tunable deformation parameter; an interesting possibility
in the nonsupersymmetricγi -deformed theory double-trace operators are not generated in p
bation theory, cf.[44]). Some particular questions are if tachyons are present in the superg
approximation for generic values ofγi and how to identify the corresponding operators on
gauge-theory side.

The present work gives also another illustration of the utility of the approach based o
low-energy effective actions of Landau–Lifshitz type. Another interesting problem (already
tioned in[2]) is to try to use the LL action found on the gauge theory side to reconstruct the
geometry. This remains a challenge for the secondN = 1 exactly marginal deformation of[20]
which preserves only oneU(1) isometry.31
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Appendix A. Fluctuations near ground states of spin chain

In Section2 we discussed fluctuations around vacua from the string theory perspectiv
fluctuations are found by expanding near the corresponding null geodesics representin
like string states with lowest energy. Here we shall attempt to analyze these excitations fr
gauge-theory standpoint, using the one-loop Bethe ansatz.

There is a qualitative difference between the vacua of the type(J,0,0) and those of the typ
(J1, J2, J3): the latter are quantum states, corresponding to a nontrivial condensate of roo

30 Since the masses should be smooth functions of the deformation parametersγi , it seems that it is the lightest mode
of the undeformed background, i.e., the supergravity modes, that may become tachyonic first. In general, ther
a mixing between “momentum” and “winding” modes under the TsT transformation (cf. the discussion of geo
in Section2). There is some analogy with the case of the Melvin twist of the flat-space theory[41], where tachyons
appear in the winding sector for large enough twist parameterγ > γcrit = 1

2w R
α′ ; tachyons are present for generic tw

parameters, but are absent at special supersymmetric points. These winding tachyons can be seen at the superg
if one applies T-duality to the flat Melvin background[41].
31 For an attempt in this direction in the BMN limit see[11]; a perturbative supergravity approach was developed in[45].
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A.1. Fluctuations near the(J,0,0) vacuum

Let us first consider the small fluctuations around the obvious classical vacuum(L,0,0)

(L ≡ J) of the spin chain, i.e., consider the states withJ2 andJ3 being small.32

The rapidities of typeu1 in fact are divided into two groups. The first group of rapidit
which we denoteu(2)

1,k (k = 1, . . . , J2) corresponds to fluctuations changing the chargeJ2, and the

second group of rapiditiesu(3)
1,k (k = 1, . . . , J3) corresponds to fluctuations changing the cha

J3. The auxiliary rapiditiesu2,k ≡ u
(3)
2,k (k = 1, . . . , J3) are associated to rapiditiesu(3)

1,k .
Following the intuition from the undeformed theory, we conclude that if the number o

citations is small, their momenta are also small and therefore their rapidities are large. To
this explicit we introduce, as usual, the rescaled rapidities

(A.1)x
(2)
1,k = u

(2)
1,k

L
, x

(3)
1,k = u

(3)
1,k

L
.

To get a consistent system of equations in the largeL limit we also have to assume that t
auxiliary rapiditiesu2,k have the following scaling behavior

(A.2)u
(3)
2,k = u

(3)
1,k + w

(3)
2,k = Lx

(3)
1,k + w

(3)
2,k,

wherew
(3)
2,k do not depend onL. That means that in the largeL limit an auxiliary rapidityu

(3)
2,k

may differ fromu
(3)
1,k only by a constant.

Then, in terms of the rescaled rapidities the logarithm of the Bethe equations(4.12)–(4.13)
and of the momentum constraint(4.14)expanded for largeL become

−2πLα21 + 2πJ3(α32 + α21 + α13) − 2πn
(2)
1,k + 1

x
(2)
1,k

=
J2∑

i=1
i �=k

2/L

x
(2)
1,k − x

(2)
1,i

+
J3∑

i=1

1/L

x
(2)
1,k − x

(3)
1,i

,

−2πLα21 + 2πJ3(α32 + α21 + α13) + 2πn
(3)
1,k + 1

x
(3)
1,k

=
J3∑

i=1
i �=k

1/L

x
(3)
1,k − x

(3)
1,i

+
J2∑

i=1

2/L

x
(3)
1,k − x

(2)
1,i

− i ln
w

(3)
2,k + i/2

w
(3)
2,i − i/2

,

2πL(α21 + α13) − 2π(J2 + J3)(α32 + α21 + α13) + 2πn
(3)
2,k

=
J3∑

i=1
i �=k

1/L

x
(3)
1,k − x

(3)
1,i

+
J2∑

i=1

1/L

x
(2)
1,i − x

(3)
1,k

+ i ln
w

(3)
2,k + i/2

w
(3)
2,k − i/2

,

32 The fluctuations around the other two similar vacua,(0,L,0) and(0,0,L), are related to those around the(L,0,0)

by simple relabeling.
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(A.3)2πL(J2α21 − J3α13) − 2πm =
J2∑

k=1

1

x
(2)
1,k

+
J3∑

k=1

1

x
(3)
1,k

,

where, as in(4.7), α12 = −γ3, α23 = −γ1, α31 = −γ2 andLαij is assumed to be fixed in th
scaling limit. These equations hold regardless of any assumptions on the size of the q
numbersJi . In the case of the(J1, J2, J3) fluctuations around the vacuum(L,0,0) we further
require thatJ1 ∼ O(L) while J2, J3 ∼ O(1). This assumption implies that most of the terms
the equations can be safely neglected, and the system takes the following simple form

−2πLα21 − 2πn
(2)
1,k + 1

x
(2)
1,k

= 0,

−2πLα21 + 2πn
(3)
1,k + 1

x
(3)
1,k

= −i ln
w

(3)
2,k + i/2

w
(3)
2,k − i/2

,

2πL(α21 + α13) + 2πn
(3)
2,k = i ln

w
(3)
2,k + i/2

w
(3)
2,k − i/2

,

(A.4)2πL(J2α21 − J3α13) − 2πm =
J2∑

k=1

1

x
(2)
1,k

+
J3∑

k=1

1

x
(3)
1,k

,

where we took into account thatαij ∼ 1/L.

To find the energy spectrum we need to know only the rapiditiesx
(2)
1 andx

(3)
1 which can be

easily determined from these equations

1

x
(2)
1,k

= −2π
(
Lα21 + n

(2)
1,k

) = −2π
(
n

(2)
1,k + γ3L

)
,

(A.5)
1

x
(3)
1,k

= −2π
(
Lα13 + n

(3)
1,k + n

(3)
2,k

) = −2π
(
n

(3)
1,k + n

(3)
2,k + γ2L

)
.

Shiftingn
(3)
1 → n

(3)
1 − n

(3)
2 , we find the energy spectrum

(A.6)E = λ

2L2

[
J2∑

k=1

(
n

(2)
1,k + γ3L

)2 +
J3∑

k=1

(
n

(3)
1,k + γ2L

)2

]
,

which agrees precisely with the leading term in the expansion of the string theory result in(2.29).
Furthermore, the number of such states is also correct, being equal to the number of stat
undeformed theory.

The discussion above can be thought of as an explicit implementation of the general arg
of [52] regarding the structures appearing in the thermodynamic limit of theN = 4 SYM spin
chain. Adapting their analysis to our context it follows that, for an arbitrary number of excita
the relevant equations in the thermodynamic limit are the first two equations(A.3) corresponding
to the 1-stacks, and the sum of the second and third equations(A.3), corresponding to the 2
stacks.33 Indeed, we have seen that these combinations led to the solutions(A.5).

33 The scaling(A.2) implements the fact that the separation of roots inside a stack isO(1).



36 S.A. Frolov et al. / Nuclear Physics B 731 (2005) 1–44

ilt

nd

rix
c-
s on
e
tion of
onden-
ctor of
renders

ters.
e of ad-
fore
A.2. Fluctuations near the(J1, J2, J3) vacuum

Let us now turn to the analysis of the fluctuations around the quantum vacuum(J1, J2, J3)

(4.19), i.e., now we will assume thatJi ∼ O(L) for all i = 1,2,3. Since such states are bu
out of large numbers of excitations above the classical vacuum(L,0,0) of the spin chain, it
is convenient to take the thermodynamic limit, i.e.,L → ∞. From the previous discussion a
Ref. [52] the relevant equations are a subset of(A.3)

2π(J3α32 − J1α21) + 2π(J3α13 − J2α21) − 2πn
(2)
1,k + 1

x
(2)
1,k

=
J2∑

i=1
i �=k

2/L

x
(2)
1,k − x

(2)
1,i

+
J3∑
i=1

1/L

x
(2)
1,k − x

(3)
1,i

,

2π(J3α32 − J1α21) + 2π(J3α13 − J2α21) + 2πn
(3)
1,k + 1

x
(3)
1,k

=
J3∑

i=1
i �=k

1/L

x
(3)
1,k − x

(3)
1,i

+
J2∑

i=1

2/L

x
(3)
1,k − x

(2)
1,i

− i ln
w

(3)
2,k + i/2

w
(3)
2,i − i/2

,

2π(J1α13 − J2α32) + 2π(J3α13 − J2α21) + 2πn
(3)
k + 1

x
(3)
1,k

=
J3∑

i=1
i �=k

2/L

x
(3)
1,k − x

(3)
1,i

+
J2∑

i=1

1/L

x
(3)
1,k − x

(2)
1,i

,

(A.7)2πL(J2α21 − J3α13) − 2πmL =
J2∑

k=1

1

x
(2)
1,k

+
J3∑

k=1

1

x
(3)
1,k

,

with n
(3)
k = n

(3)
1,k + n

(3)
2,k . As we have discussed in Section4, the vacuum(J1, J2, J3)vac exists

whenever the angular momentum vectorJ i,vac is a zero eigenvector of the deformation mat
αmn (i.e., α12J2,vac + α13J3,vac = α12J2,vac − α31J3,vac = 0, etc.). Fluctuations around this va
uum haveji = Ji − Ji,vac ∼ Lµ with µ < 1 and therefore the deformation-dependent term
the left-hand side of the equations above are of order 1/L1−µ (sinceαijL is fixed). Such a sourc
term appears in the equations determining the vacuum rapidities as well and is an illustra
the usual fact that excitations around any quantum vacuum back-react on the vacuum c
sate. In this case, the deviation of the angular momentum vector from being a 0-eigenve
the deformation matrix acts as a source in the equations for the vacuum rapidities and
them finite (albeit larger than the other ones by a factor ofL).

From the discussion in Section4 it is clear that not all mode numbers are free parame
Because of the fact that the rapidities building the vacuum state are infinite in the absenc
ditional excitations, Eqs.(A.7) imply that the corresponding mode numbers vanish. We there
have the following structure:

n1,k = 0, k = 1, . . . , J2,vac+ J3,vac,

n2,k = 0, k = 1, . . . , J3,vac,
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n1,k = free, k = J2,vac+ J3,vac+ 1, . . . , J2 + J3,

(A.8)n2,k = free, k = J3,vac+ 1, . . . , J3.

Further analyzing(A.8) requires making a distinction between the case in which all the m
numbers which are free parameters are nonzero and the case in which at least one of th
numbers vanish. We will analyze here the first case and defer toAppendix B the case of al
vanishing mode numbers.

If all the free mode numbers are nonvanishing, it follows that the corresponding rapiditiex1,k

are of order unity as well as that in the corresponding equations the deformation-depende
are subleading compared to the mode numbers. Then, using the fact that all vacuum ra
are large, it follows that in the equations with nonvanishing mode number only very few
survive on the right-hand side, insufficient to compensate for the explicit 1/L suppression. This
implies thatx(2)

1,k andx
(3)
1,k are given by

(A.9)
1

x
(2)
1,k

= 2πn
(2)
1,k,

1

x
(3)
1,k

= 2πn
(3)
k ,

i.e., are the same as in the undeformed theory.
The consistency of all other equations is also guaranteed by the fact that the deforma

ters at higher orders in the 1/L expansion. If mode numbers of the auxiliary Bethe equat
are nonzero, they lead to quite complicated expressions for the corresponding rapiditiesu2. For-
tunately, we do not need them since they do not enter the expressions for the energy
momentum constraint given by

(A.10)E = λ

2L2

J2+J3∑
k=J2,vac+J3,vac+1

n2
1,k,

J2+J3∑
k=J2,vac+J3,vac+1

n1,k = mL = 0.

The vanishing of the momentum numberm is implied by the fact that we considered only fe
excitations above the vacuum.

The conclusion is that the small fluctuations around the(J1, J2, J3) vacuum having nonzer
mode numbers are identical to those in the undeformed theory. This is the same result
found on the string-theory side in Section2.3.2.

Appendix B. The anomalous dimensions of operators dual to lowest energy pointlike
strings

The special case in which all mode numbers in(A.7) vanish is quite interesting and no
trivial. The corresponding operators are BPS in the absence of the deformation and thu
anomalous dimensions are solely due to the presence of the deformation. In Section2.3.2we
have seen that the zero-mode fluctuations around the(J1, J2, J3)vac geodesics are part of a larg
class of pointlike string configurations which in the large angular momentum limit becom
proximate) solutions. Their energies in this limit are given by(2.48). In this appendix we will
go beyond the zero-mode approximationJi/L � Ji,vac/L and find the anomalous dimensions
the gauge theory operators corresponding to all such pointlike strings captured by the de
su(3) sector.

There exists a conceptual issue related to the(J1, J2, J3)vac state being aquantum rather
than classical vacuum. As mentioned before, the Bethe equations(4.12)–(4.13)employ the state
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(L,0,0) as the vacuum (“classical” vacuum, i.e., a state with no excitations); the quantum
uum appears as a nontrivial configuration of Bethe roots. From this perspective, fluctu
around this quantum state are on the one hand similar to a generic state with large angu
menta and on the other hand special because they are accidentally close to a zero ene
While an analog of the Bethe equations having(J1, J2, J3)vac as its “classical” vacuum woul
be a desirable starting point for studying the fluctuations near that state, deriving such eq
remains an interesting open problem.

In the following we will discuss the excitations with vanishing mode numbersnk close to the
(J1, J2, J3)vac state, using the Bethe equations(4.12)–(4.13). Remarkably, we will find that th
results agree with the exact string theory predictions(2.48).

Depending on the departure from the(J1, J2, J3)vac state, it is easy to see what is the scal
of the Bethe roots with the length of the chain. The relevant equations follow from(A.7)

(B.1)2πj3γ + 1

x
(2)
1,k

=
J2∑

i=1
i �=k

2/L

x
(2)
1,k − x

(2)
1,i

+
J3∑

i=1

1/L

x
(2)
1,k − x

(3)
1,i

,

(B.2)−2πj2γ + 1

x
(3)
1,k

=
J3∑

i=1
i �=k

2/L

x
(3)
1,k − x

(3)
1,i

+
J2∑
i=1

1/L

x
(3)
1,k − x

(2)
1,i

,

(B.3)2π(j2γ3 − j3γ2),=
J2∑

k=1

1/L

x
(2)
1,k

+
J3∑

k=1

1/L

x
(3)
1,k

,

where we explicitly used the expression of the vacuum quantum numbers(J1, J2, J3)vac and, as
before,

(B.4)ji = Ji − γi

γ
L, γ = γ1 + γ2 + γ3.

The parametersji describe the deviation of the state(J1, J2, J3) from the vacuum; therefore
their scaling with the length of the chain isj ∼ Lµ with 0 � µ � 1. Then, from(B.3) it trivially
follows that the constant source terms scale likejγ ∼ Lµ−1 which leads to rapiditiesx(2)

1,k, x
(3)
1,k ∼

L1−µ. Still, to leading order, the expression for the energy does not involve any fractional p
of L. Indeed, the energy is an even function of the constant source in the Bethe equations
vanishes in its absence. Thus, schematically and to the leading order, the energy behave

E = λ

8π2

J2+J3∑
k=1

1

u2
1,k + 1

4

= λ

8π2L2(2−µ)
F

(
x

(2)
1 , x

(3)
1

)

(B.5)∼ λ

8π2L2(2−µ)

(
γjL1−µ

)2[O(J2 + J3) + · · ·] ∼ λ̃

8π2
(γL)2j2

L

[
O(1) + · · ·].

ThisL-dependence is similar to the one derived on the string theory side in(2.43). The existence
of a rescaling of the rapidities which makes all terms in the Bethe equations of the sam
also implies that we can safely neglect terms of the type 1/(Lx). This observation will be usefu
shortly.

The Eqs.(B.1)–(B.3)are similar to those in[53]. The differences are the nonintegrality
the constant term on their left-hand side and potential term on the left hand side of(B.2). The
solution is, however, similar to that of[53]. To analyze them it is useful to proceed in the stand
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(B.6)Gi(x) = 1

L

Ji∑
k=1

1

x − x
(i)
1,k

, i = 2,3,

in terms of which the anomalous dimensions are

(B.7)E = − λ

8π2L

(
G′

2(0) + G′
3(0)

)
.

To find G′
2(0) andG′

3(0) we begin by multiplying the first equation in(B.1)–(B.3)by 1
x−x

(2)
1,k

and the second by 1
x−x

(3)
1,k

and summing all the equations. This leads to

2πj3γG2(x) + 1

x

(
G2(x) − G2(0)

)

= G2(x)2 − 1

L
G′

2(x) + 1

L2

J2∑
k=1

J3∑
i=1

1

(x − x
(2)
1,k)(x

(2)
1,k − x

(3)
1,i )

,

−2πj2γG3(x) + 1

x

(
G3(x) − G3(0)

)

= G3(x)2 − 1

L
G′

3(x) + 1

L2

J3∑
k=1

J2∑
i=1

1

(x − x
(3)
1,k)(x

(3)
1,k − x

(2)
1,i )

,

(B.8)−2π(j2γ3 − j3γ2) = G2(0) + G3(0).

Further summing the first two equations and neglecting subleading terms we find

(2πj3γ )G2(x) + (−2πj2γ )G3(x) + 1

x

[
G2(x) + G3(x) − G2(0) − G3(0)

]
= [

G2(x) + G3(x)
]2 − G2(x)G3(x),

(B.9)−2π(j2γ3 − j3γ2) = G2(0) + G3(0).

The limit x → 0 expresses the derivative of the sum of the resolvents evaluated at the or
terms of the values ofG2 andG3 atx = 0:

(B.10)G′
2(0) + G′

3(0) = C2 − G2(0)G3(0) − AG2(0) − BG3(0),

(B.11)G2(0) + G3(0) = −C,

where, to shorten later equations, we introduced the notation

(B.12)A = 2πj3γ , B = −2πj2γ , C = 2π(j2γ3 − j3γ2).

To find G2(0) andG3(0) we need another equation in addition to(B.11); it can be obtained by

first multiplying (B.1) by the factor
∑J3

m=1
1/L2

x
(3) −x

(2) and summing overk, and by multiplying

1,m 1,k
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(B.2) by
∑J2

m=1
1/L2

x
(2)
1,m−x

(3)
1,k

and summing overk:

A

J3∑
m=1

J2∑
k=1

1

x
(3)
1,m − x

(2)
1,k

+
J3∑

m=1

J2∑
k=1

1

x
(2)
1,k(x

(3)
1,m − x

(2)
1,k)

=
J3∑

m=1

J2∑
k �=i=1

1/L

(x
(3)
1,m − x

(2)
1,k)(x

(3)
1,m − x

(2)
1,i )

+
J3∑

m,i=1

J2∑
k=1

1/L

(x
(3)
1,m − x

(2)
1,k)(x

(2)
1,k − x

(3)
1,i )

,

(B.13)

B

J2∑
m=1

J3∑
k=1

1

x
(2)
1,m − x

(3)
1,k

−
J2∑

m=1

J3∑
k=1

1

x
(3)
1,k(x

(3)
1,k − x

(2)
1,m)

= −
J2∑

m=1

J3∑
k �=i=1

1/L

(x
(3)
1,k − x

(2)
1,m)(x

(2)
1,m − x

(3)
1,i )

−
J2∑

m,i=1

J3∑
k=1

1/L

(x
(3)
1,k − x

(2)
1,m)(x

(3)
1,k − x

(2)
1,i )

.

Then, summing these two equations and dividing byL2 leads to

(B.14)(A − B)

J3∑
m=1

J2∑
k=1

1/L2

x
(3)
1,m − x

(2)
1,k

+ G2(0)G3(0) = 0.

The unknown sum can be determined by summing Eqs.(B.1) or Eqs.(B.2):

J3∑
m=1

J2∑
k=1

1/L2

x
(3)
1,m − x

(2)
1,k

= −G3(0) + Bα2 = G2(0) − Aα3

(B.15)= −G3(0) + B

(
γ2

γ
+ j2

L

)
= G2(0) − A

(
γ3

γ
+ j3

L

)
,

where we used the notation

αi ≡ Ji

L
= γi

γ
+ ji

L

for the filling fractions. Thus, theG2(0) andG3(0) are determined by

(A − B)
[
Bα3 − G3(0)

] + G2(0)G3(0) = 0,

(B.16)G2(0) + G3(0) = −C.

From the definition(B.6) it follows that resolventsG2 and G3 identically vanish ifJ2 =
J3 = 0; we will therefore pick the solution forG2(0) and G3(0) which also vanishes in thi
limit:

G2(0) = 1

2

[
A − B − C −

√
4α3B(A − B) + (A − B + C)2

]
,

(B.17)G3(0) = 1

2

[−A + B − C +
√

4α3B(A − B) + (A − B + C)2
]
.

Using(B.10), it is then easy to find whatG′
2(0) + G′

3(0) is

(B.18)G′
2(0) + G′

3(0) = α3B(A − B) + C(A + C).
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Finally, using the definitions(B.12) to express(B.18) in terms of the deformation parametersγi

and the deviations of the angular momenta from the vacuum valuesji , the anomalous dimension
are found to be

E = − λ

8π2L

(
G′

2(0) + G′
3(0)

)
(B.19)= λ

2L

[
γ1γ2j

2
3 + γ2γ3j

2
1 + γ3γ1j

2
2 − 1

L
(γ1 + γ2 + γ3)

2j1j2j3

]
.

As promised, this reproduces the exact string theory result(2.48).
The calculation above shows that there exists a configuration of Bethe roots whose

matches that of the string theory zero modes. Even though we have not found explici
rapidity distribution (since we only needed the values of the resolvents and their first der
at the origin) we may comment on some of its features. In the undeformed theory the(J1, J2, J3)

BPS states are described by infinite rapidities which are also infinitely separated. As we
the deformation, the Bethe rootsu1,2 descend to finite distance, of the order ofL/(jγ ). The fact
that initially their differences were also infinite suggests that in the presence of the deform
they will also be of the order ofL/(jγ ). The distance between them is still large, and t
suggests that the Bethe roots describing the zero modes do not condense.

Besides the solution described above, Eqs.(B.1)–(B.3) have additional ones. For exam
ple, if j2 = j3 andγ2 = γ3 it is possible to construct a solution satisfyingG2(x) − G3(x) =
Cx(G2(x)+G3(x)) whereC is a constant which may be determined from the asymptotic be
ior of the resolvents. It turns out thatG2(x) + G3(x) has no cut, so it also does not describ
root condensate. Rather, it has two poles, at±i(

√
3C)−1. Its energy has the same scaling with

length of the chain as in(B.5), but it is a nonanalytic function of the deformation parametersγi .
This feature might tempt one to discard it, based on the fact that the undeformed theory
be reached smoothly in the limitγi → 0. The physical interpretation of this solution is not cle
at the moment.

It is worth pointing out that, in the calculation and the matching described above, the va
the power 0� µ � 1 in the scalingj ∼ Lµ was unimportant. This is in agreement with the str
theory discussion in Section2.3.2. From the perspective of the Bethe ansatz we expect finite
corrections to the energies(B.19). Since Eqs.(B.1)–(B.3) include all terms up toO(1) in the
1/L expansion of the logarithm of the Bethe equations, these corrections should be sup
by additional powers of 1/L. It would be interesting, though appears to be quite challengin
compare these corrections to theα′ corrections on the string theory side. Techniques develo
in [54] may be useful in this respect.
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