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Abstract

We consider a nonsupersymmetric example of the AdS/CFT duality which generalizes the supersymmet-
ric exactly marginal deformation constructed in hep-th/0502086. The string theory background we use was
found in hep-th/0503201 from thedSs x s5 by a combination of T-dualities and shifts of angular coordi-
nates. It depends on three real parametershich determine the shape of the deformed 5-sphere. The dual
gauge theory has the same field contenfVas- 4 SYM theory, but with scalar and Yukawa interactions
“deformed” byy;-dependent phases. The special case of egualy corresponds to th&” = 1 supersym-
metric deformation. We compare the energies of semiclassical strings with three large angular momenta
to the 1-loop anomalous dimensions of the corresponding gauge-theory scalar operators and find that they
match as it was the case in t8&J(3) sector of the standard AAS/CFT duality. In the supersymmetric case of
equaly; this extends the result of our previous work (hep-th/0503192) from the 2-spin to the 3-spin sector.
This extension turns out to be quite nontrivial. To match the corresponding low-energy effective “Landau—
Lifshitz” actions on the string theory and the gauge theory sides one is to make a special choice of the
spin chain Hamiltonian representing the 1-loop gauge theory dilatation operator. This choice is adapted to
low-energy approximation, i.e., it allows one to capture the right vacuum states and the “macroscopic spin
wave” sector of states of the spin chain in the continuum coherent state effective action.
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1. Introduction

Study of AdS/CFT duality in situations with reduced (or no) supersymmetry is of obvious
interest and importance. Recently, a new example of such duality between an exactly marginal
(in 4d sense) deformation 0¥ = 4 super-Yang—Mills theory and an exactly marginal (in 2d
sense) deformation #fdS; x S° superstring theory was suggestedilihand further explored in
[2,3].

Here we shall be interested in generalizing the resulig]afbout the correspondence between
semiclassical string states and “long” gauge-theory operators to the case of Gsspis J3)
string states dual to operators built out of the three holomorphic combinations of 6 real scalars
(analog ofSU(3) in undeformed theory). The comparison between string and gauge theory in
this sector turns out to be quite nontrivial.

We shall consider the case of real deformation parangetery —io = y. It turns out to be
straightforward to generalize the discussion to the case of the more general nonsupersymmetric 3-
parametery;) deformation of theAdS; x S° geometry constructed 8] using the same TsT (T-
duality, shift, T-duality) transformation as j]. This deformation is quite natural as it treats all 3
isometric angles of° on an equal footing. The corresponding type 11B supergravity background
preserves A4 of supersymmetries (8 supercharges) only in the “symmetric{1]Mase

Yi=Y2=Vy3=Y. (1.1)

However, as we will see, this symmetric point is not special as far as the correspondence between
string and gauge theory is concerned: the matching of leading-order semiclassical string energies
and one-loop gauge theory anomalous dimensions we are going to establish below holds in the
generaly; case.

This appears to be one of the first nontrivial examples when implications of the AdS/CFT
duality are observed at a quantitative level in@nsupersymmetricase? It provides a strong
motivation for further study of thig;-dependent string theory and the conjectured dual non-
supersymmetric larg® gauge theory3] is of obvious interest and importance. One patrticularly
interesting aspect is the existence (for certain range of parameters) of closed-string tachyons and
their reflection on the gauge theory side. This nonsupersymmetric theory is certainly stable in
the nearly-flat and smajk; limit and thus appears to be more under theoretical control than the
type 0 example considered [if].

We shall start in Sectio@ with presenting the 3-parameter deformation of AuS x $°
background found by the direct generalization of the LM constructidB]inwWe shall then dis-
cuss the BPS states and more general geodesigs-daformeds® representing semiclassical
point-like string states. The geodesics happen to be described by a 1d integrable Neumann model
which is the same as the system describing rotdgfiignd pulsating8] circular strings ins®
part of AdS x $° [9]. The solutions are labeled in general by 3 conserved angular momenta
(J1, J2, J3) and one additional integral of motion (“oscillation number”) and depend on defor-
mation parameterg through the combinations

Vi =€k VjJk. (1.2)

3 The present case is obviously different from the examples of (hon)supersymmetric orpHoddshe AdS; x §5°—
N =4 SYM duality where largev duality relations are “inherited” in untwisted sector. Same applies to the type 0 analog
of the AdS/CFT duality5] obtained by(—1)¥ -type orbifolding; a discussion of matching of some of string energies and
gauge theory anomalous dimensions in the BMN limit of type 0 theory appeaféH in
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These combinations are the twists that appear in the relations between the angle varisibles of
and they;-deformed five-spherg8]. By using these relations one can show that in the special
cases whem; are integer the circular pulsating and rotating strings of undeformed theory are,
indeed, the images of the point-like strings in the deformed geometrywiting the counter-

parts of the circular string winding numbers.* While in the standarédS x $° (undeformed)

case all geodesics were representing BPS states with eAezgyal to the total angular momen-

tum J= J1 + Jo+ J3 here we shall find that only a few of them have this “vacuum state” property.
These special “BPS” geodesics have energies that do not depend on the deformation parameters
i.e., are the same as in the undeformed case. They can be labeled by the angular momenta as: (i
(J,0,0), (0,J,0), (0,0, J) and (i) (J1, J2, J3)vacWith v; =0, i.e.,

Vi
Jivac= 71\]’ y=y1+yv2+ys. (1.3)

The v; = 0 condition is satisfied for théJ, J, J) BPS statd1] in the symmetric LM case of

y; = y. In general, sinceg; should take integer values in quantum theory, such states will exist
only for special choices of;. In addition to these special BPS states which are images of the
corresponding point-likeu{ = m; = 0) or BPS states of the undeformed theory, there is another
simple subclass of geodesics for which radial directions are constant in time: these are (for integer
v;) the TsT images of rigid rotating circular stringgs9] in undeformeds®. Their classical energy

has nontrivial dependence dhandy; and receives also string corrections.

As in the undeformed case, it is straightforward to explore the fluctuation spegt@imear
particular geodesics, i.e., quantum energies of semiclassical “small” (nearly point-like) string
states in the limit of large total angular momentum J. The spectrum neéf tBgd) geodesic is
similar to the standard BMN or&,11]. In the case of the expansion near the- y; geodesic
(1.3)the spectrum of smadt-dependent fluctuations turns out to be independent of the deforma-
tion parameters, i.e., to be the same as the BMN spectrum in the undeformed theory. The same
conclusion was reached earlier in the symmetric 4M= y case in12,13] This, in fact, is im-
plied (to leading order in AJ) by the TsT transformation ¢§8]. We shall discuss the spectrum of
fluctuations on the gauge-theory sideftippendix A The zero-mode part of the spectrum (corre-
sponding to fluctuations depending only on time, i.e., within the space of geodesics of deformed
theory) is, however, nontrividgll2]; we shall match it with the one-loop gauge theory prediction
in Appendix B

In Section3, we shall turn to other semiclassical states represented by extended strings moving
fast in deformeds®. As in [2], they can be systematically described by reducing the classical
string action to a kind of “Landau-Lifshitz” (LL) sigma modéH,15]for the “transverse” string
degrees of freedom. In the present 3-spin case we shall obtain a deformed versioCBf the
LL model corresponding to theu3) sector of theAdS; x S° string theory[15-17] As in the
deformed 2-spin case ], we shall find that the deformed 3-spin LL model contains a potential
term which is responsible for lifting the energies of all of the string states apart from few BPS
ones (the point-like states discussed above and some circular BPS strings existifigj] dsrin
specialy;).

The challenge will then be to find the counterpart of this action on the gauge-theory side and to
show that it coincides with the string expression; this would imply, in particular, the agreement

4 f v; are not integer the formal images of geodesics of deformed geometidGnx s5 theory do not satisfy closed-
string periodicity conditions. These images are open strings subject to twisted boundary conditions.
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between the leading correction to string energies and one-loop anomalous dimensions of the
corresponding gauge-theory operators.

In Section4 we shall present the direct generalizatiid®] (see alsq19]) of the 1-loop
dilatation operator for the exactly margingideformation[20,21] of ' =4 SYM to the non-
supersymmetric case of the thrgedeformation parameters. As in the symmeiric= y case,
it can be identified with an integrable spin chain Hamiltonian (with 3 spin projections at each
site corresponding to 3 chiral scalaps) which is a deformation of theu(3) invariant XXX;
Hamiltonian[22]. We shall then describe the corresponding generalization of the Bethe ansatz
equations and apply them to show that the ground states of the 1-loop spin chain Hamiltonian
are indeed the same as found on the string side. We shall also discuss the distinction between the
U(N) andSU(N) gauge group cases which survives here the lardiit since theU (1) parts
of matter fields do not decouple.

In Section5 we shall finally turn to the derivation of the effective coherent-state action for
low-energy semiclassical states of the spin chain that should be dual to the semiclassical string
states in the 3-spin sector. In general, there are many equivalent spin-chain Hamiltonians, corre-
sponding to different choices of basis in the space of gauge-theory operators, that lead to the same
anomalous dimensions. To establish the correspondence with string theory it turns out that one
needs a special choice adapted to low-energy approximation. This is a subtlety not confronted
in previous discussions of the coherent state approach in the undeffitbjeat deformed 2-
spin[2] cases. We shall describe the choice of coherent states and the basis needed to capture
the expected BPS staték.3) in low-energy (slowly-changing coherent field) approximation in
Sectionss.1 and 5.2Then in Sectiorb.3we shall find that this choice leads exactly to the same
Landau-Lifshitz effective action as found in Sect®on the string side. This provides a highly
nontrivial check of the AdS/CFT duality not only in the supersymmetric LM deformation case
[1] but also in the general nonsupersymmegficleformed theory.

Section6 will contain some concluding remarks.

In Appendix A we shall discuss fluctuations near the vacuum states of the one-loop spin
chain and match their spectra with the string-theory resultapimendix Bwe shall consider the
spin-chain 0-mode fluctuations near thk, J>, J3) vacuum and again demonstrate remarkable
agreement with the string-theory predictions.

2. Three-parameter deformation of AdSs x S° string theory
2.1. Background
We shall mostly follow the notation d2]. The type IIB solution related by T-dualities and

shifts transformation to th&dS; x S° background and which generaliZ&$ the background of
[1] to the case of unequg] parameters can be represented as

3 3 2
ds%y= K2 [dsf\d% 3 (do?+ Gr2dg?) + GoZo3e3 [d(z mﬂ } .
i=1 i=1
Bo — RZG — 5.2 2d ~ 2 2 ~ 2 2 292
2= w2, w2=Yy301p5dP1dd2 + y105053dP2dP3+ 20307 dpzdea, (2.2)
e® = e?G1/?, x =0, (2.3)
3

G r=1+750i05 + 7Er3p5 + 750505, Y pF=1. (2.4)
i=1
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3
Cr= —4R2e¢°w1d(217i¢i>, dw1 = cosa Sin° o Sind cost da do, (2.5)
i=1
Fs= 4R4€_¢0(a)AdSS +Gwgs), wg=dwidprdrdpa. (2.6)
Here B, is the NSNS 2-form potentialp is the dilaton andly, dC» and F5 are the RR field
strengths. The anglés « appearing infw, parametrizes? coordinates; as follows

p1 = Sina C0sY, p2 = Sina sing, 03 = COSc. (2.7)
Note also that

1
T4

p3
p? + p2

1 1 2
w1 =Zpid(p3) — 5d(pirs) = 5ol +p3)"d (2.8)
The standard\dS; x S° background is recovered after setting the deformation paramgters
R?y; to zero. For equaf; = 7 this becomes the background [df (7 were denoted ag; in

[1,3]). We also assume that

2

gsze“’(’:gZ—M, R*=4mg,N = Ng2), = A, o =1, (2.9)
b4

Vi = R%y; = Vay. (2.10)

Herey; are the deformation parameters which appear on the gauge theory or spin chain side. In
the symmetric casg; = y this parameter is the real part of the deformation parangeterthe
superpotentiaW = i Tr(e!™? @1 PPz — e P 1 P3P,). We shall consider only the case of real
B where the duality appears to be much more under quantitative contrgR{3ee

As discussed ifi2], the parameterg; which enter the supergravity background are assumed
to be fixed in the semiclassical string limit. Sin§2e= VA plays the role of the string tension, in
this limit one also fixes other semiclassical parametersdilemd 7; which determine the string
energy and spins

w

E =&, =g, = =fixed J=) U (2.11)

i=1

®| >

while /% and thus J are assumed to be large to suppress atrogrections. That means that

vi=vid= % (2.12)
A

is also fixed in this limit, i.e.y; ~ % For definiteness, we shall assume that hhthndy; are
nonnegative.

On the gauge theory (spin chain) side, the limit which one takes is formally diffE2&8].
Since one uses perturbative gauge theory, one first expandand then takes J large. Here J
plays the role of the length of the chain (or length of the operator), and we will be interested in
extracting the dependence of the spin chain energies on the paramatats;J while looking
at 1-loop (orden) correction and taking large J limit. In all previously discussed examples of
similar comparisons the leading order terms in the two expressions matched, and our aim will be
to extend this matching to the present (nonsupersymmetric for ungquagse.
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2.2. BPS states

By following the TsT transformation that reIatesNthei% x §° string theory to they;-

deformed string theory one can relate the angle variahles S° (in the notation of3]) and the
angle variable®; of the TsT-deformed geomet(®.1). The basic starting point is the equality
between the/ (1) conserved current densities of stringsAS x S° and on they;-deformed
background3]:

Jip=Jip, (2.13)

wherei =1,2,3 andp = 0,1 are the world-sheet indices. Taking into account that the time
components of the currents are the momentum densities conjugate to the angle variables, and
expressing the time derivatives through the momenta, one ca(2ch3}in the following simple

form

pi =pi =Jio. (2.14)
P20, = pA(¢, — €ijkyipe). i=1,23, (2.15)

where in(2.15)we assume summation if) k but no summation ir. If none of the “radii” p;
vanish on a string solution, one can cancelmﬁéactors in(2.15)to get

¢ = ¢! — €ijxy; Pk (2.16)

Integrating overs and taking into account thas; are angle variables and the strings in the
deformed background are assumed to be closed, i.e.,

¢i(27) — ¢i(0) = 2mn;, (2.17)

wheren; are integer winding numbers, we get the twisted boundary conditions for the angle
variablesp; of the originalS® space

$i(21) — §i(0) = 21 (n; — ), (2.18)
2de

Vi = €ijkVjJks Ji 2/%%'- (2.19)
0

We see that if the twists; (already mentioned iflL.2)) are not integer then the twisted strings in
AdS; x S° which are formal images of closed strings in the deformed geometry under the inverse
of TsT transformation are open.

The relations(2.15) imply that if ¢; solve the equations of motion for a string in the

deformed background theﬁ- solve those iMAdS x S° with the twisted boundary conditions
(2.18)imposed on the angle variables. It is easy to sf@vthat the Virasoro constraints for both
models also map to each other under the TsT-transformation; therefore, the energy of a twisted
string inAdS; x S° is equal to the energy of the corresponding closed string inytieformed
background. This observation allows one to readily determine all classically BPS states in the
deformed model, i.e., the states that have minimal energy for the given charges,

E=J=J1+ Jo+ Ja. (2.20)
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To this end we notice that a BPS state in the deformed background must be an image of a BPS
state inAdS; x $°, that is an image of a point-like string or null geodesidi; x S°. For such

astringp;’ =0, p;=0; then;?l- = p; = J; donotdepend oa, i.e., all the charges are distributed
uniformly along the string. Thus, for the BPS states the relgfob6)takes the form

b = €ijkyj Pk = Vi, pi=Ji, (2.21)

where we also assume that all the chargieare not equal to 0. Since the string in the deformed
background is closed, all the twistswhich play the role of the winding numbers then must be
integer:

vi =¢€ijkViJe  €Z. (2.22)

One is now to distinguish the case of nonzeravhen a solution is a circular string, and the case
of v; = 0 when the solution is a point-like string.

Forv; # 0 these equations can have a consistent (circular) string solution gnigrié rational
(J; take integer values in quantum theory) and the corresponding BPS state is a circular string
similar to the ones studied {7] (this generalizes the observation[itj to the case of unequal
Yi)-

Forv; = 0 the BPS state of deformed geometry is a point-like string. The general solution to
vi=0Is

v; =0: Ji=cyi, (223)

wherec is a proportionality coefficient which can be any real number. Sihaaust be integer
in the quantum theory, such a solution exists only for special valugs. bThese(J1, Jo, J3)
point-like BPS states generalize thg J, J) state[1] in the supersymmetric LM case = y,
Ji=J.

Note that any(J1, J2, J3) solution in the deformed background for whith23)is satisfied
can be obtained from a closed string solutioid; x S°, and the energies of these string states
in the y;-deformed model and their images in thdS; x S° are equal to each othér.

If one of the 3 momenta is equal to zero, e = 0, then the string states belong to the 2-
spin sector which is the analog of tea(2) sector of undeformed theory. It contains the obvious
additional BPS staté/, 0, 0) which is the direct TsT relative of the corresponding point-like
state inAdS; x S° . Similarly, we have alsg0, J, 0) and(0, 0, J) BPS states.

2.3. Point-like strings (geodesics) and near-by fluctuations

Let us now analyze some string solutions in the deformed geometry starting directly with
(2.1), (2.2)

To find the classical point-like string states in the deformed geometry it is enough to concen-
trate on the string-frame metric (to study quantum corrections one will need of course the full
Green—-Schwarz fermionic action which will contain couplings to other background fields). We

5 Itis interesting that since for the classical strings there is no quantization condition, any solution safisfying
has the BPS energf = J1 + Jo + J3. It would be interesting to analyze the semiclassical expansion around such a
solution, and to see how the guantization condition gets restored.

6 such (in general, non-BPS) states should be dual to the gauge-theory operators protected from the deformation at
least to the leading order ip.
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should consider geodesics that wrap the “interr@”part and that should be dual to special

Tr(@]*®,°®3° + - --) operators on the gauge theory side.

The metric(2.1) has 3 isometries corresponding to shifts of the anglesnd thus the states
should be characterized by 3 conserved angular monyen&arting with the string equations in
conformal gauge witthdS; timer = £ itis straightforward to show that, while the metric looks
rather complicated, the effective action that determines the time evolution 6f tbeordinates
pi can be written simply ast’:l pl.z =1)

3 2
1 _ J
S(p) = Eﬁ/dw, Lo = 2[5~ vite]. Vit =5 +0Bf (2.24)
i=1 i
JdL(p, -
Ji = LG9 _ VAT vi=apdiJi =€y . (2.25)

06;

HereL(p, ¢) stands for the string Lagrangian before one solves for the derivatives of the angles.
For v; = 0 this is the action of a particle moving &Y. For generab; this is recognized as a
Neumann—Rosochatius integrable system describing an oscillator on 2-sphere (or, equivalently,
a special Neumann system describing an oscillator on 5-sphef8])cfThe conformal gauge
constraint implies that the corresponding Hamiltonian is equé&Fta.e., Z?:l[pl? +Vi(pp)] =

£2. In particular, in the LM case of; = 7 we get explicitly for the particle Hamiltonian

o o o JE T TE
H=E=p{+M3+/5+5+5+5
1 P2 P3

+72[(J2 — T)202 + (Ja — T1)%03 + (1 — T2)2p3]. (2.26)

This result is easy to find using the TsT relati@ of the deformed theory to thadS; x S°
theory. The two string Hamiltonians are related by the TsT, so to get the particle Hamiltonian in
the deformed theory all one has to do is to shiftdhderivatives of theddS; x S° angles by the
momenta as iif2.16)and then to set all terms with-derivatives to zero.

The appearance of the Neumann system is not accidental: the same system was f@und in
to describe circular pulsating and rotating strings in undefor§fedrhese strings are, in fact,
mapped (for integer;) to point-like strings inSf} under the TsT transformation {8]: v; plays
the role of the winding number; of the circular strings, and the conformal gauge constraint
m;J; =0 here is satisfied automatically.

Generic solution is labeled bgJ1, J2, J3) and one extra (in addition to the 1d energy or
H = £?) integral of motion which may be interpreted as an “oscillation numbérfor a
(quasiperiodic) particle motion o82. The lower-energy solutions correspondKo= 0 when
pi = const. The form of the dependence of the energyKoand J; will be the same as in the
case of the pulsating strings|ih5,24]

The special solutions that are the same as in the undeformed case and thus represent the
lowest-energy (“BPS”) states are found if @) = 1, p2 = p3 = 0 (and two other cases with
interchange of 1, 2, 3), representitg, 0, 0) state withE = J;, and also if (ii)J; are such that
v; =0, i.e., ifJ; ~y whenE =J= J; + Jo 4+ J3. These are the same as already discussed in
the previous subsection and they should be dual to vacuum (zero anomalous dimension) states
on the spin chain side.
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In the general nonsupersymmetric case of unegutiere is an open question if such states
are true vacua (i.e., states with=J which is the absolute minimum of the energy), i.e., do not
receive quantum corrections both on the string theory and on the gauge theofy side.

In addition, there are higher energy (non-BPS) states still haging const, i.e.,K =0,
which (for integery;) are images of rigid (non-pulsating) circular rotating stringsSt As
discussed irf7,9], the classical energy of the latter is a nontrivial function/gfthe winding
numbersn; and the string tension; expandediirit looks like E = J+ %cl(mi, j—i) +---. The
same expression is found for the point-like strings here with> v;. The leading order correc-
tions toE = J relation will scale a%(y,- Jn)z(j—i)2 and may thus be compared to the gauge-theory
side. We will do this automatically by matching the corresponding effective actions that describe
such semiclassical states.

Next, let us follow[10,25] and study small semiclassical strings representing small fluctua-
tions near the above geodesics.

2.3.1. (J,0,0) case

In the y; = y case the corresponding analog of the BMN spectrum of quadratic fluctuations
near the(J, 0, 0) geodesic was found if1,11]. Here we shall generalize it to the nonsupersym-
metric y;-case. We shall first concentrate on the bosonic part of the fluctuation Lagrangian that
follows from expanding the bosonic part of the string action which depends only on the string
metric(2.1) and the 2-form fieldB2 in (2.2)

2
1 d
Ip = —éﬁfdr/ E"[«/_—ggpqa,,xMaquGMN — e, xM9, X NByn], (2.27)
0

wheree® = 1 and in the conformal gauge which we shall use here= diag(—1, 1). Expand-
ing the action near the solution= ¢1 = Jt, p1 =1, ¢23 = p2.3=0 we get for the part of the
fluctuation Lagrangian which is different from the standard BIMN= 0 case

1, , 1 3 1 N
L= E(yj — Y2422+ §J2(1+ 73)y2 + §J2(1+ 72)z2

+ T V3€abYayy + T V2€abZaZy- (2.28)

Here we assume summation ove = 1,2 andy, andz, are 2+ 2 fluctuations of Cartesian
coordinates in they, ¢> and p3, ¢3 planes. This is essentially the same Lagrangian as in the
y; =y cas€l1,11]but with the parameterg andys in the each of the 2-planes transverse to the
geodesic. The expansion ngét J, 0) and (0, 0, J) geodesics leads to similar expressions with
the corresponding interchange of the parameters

The corresponding characteristic frequencies that represent the analog of the BMN spectrum
E—-J= %Nn are @ =0, %1, ... labels stringz""® modes and is different for the two types for
the excitations)

wl = [T+ 0+ 7T =T\ 1 i+ I =23 (2.29)

7 It is not a priori clear that string’ corrections are absent: while TsT transformation does not affect these special
geodesics, it may (and, in fact, does) change the spectrum of fluctuations near them, and thus may alter the cancellation
of the quantum correction to the vacuum energy.
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As follows from the structure of the supergravity background, the quadratic fermionic action
contains couplings only to the NSNS 3-form (with two parts proportiongs @ndys as reflected

in (2.28) and the standard RR 5-form flux. It thus has the structure as if4ER)in [11] with

y2 andys multiplying the corresponding fermionic project@é "+ (72I'y,y, + 731%;2,)04 and

a mass term coming from 5-form flux (see &28] for a general structure of such actions). Then

(as follows, e.g., from Eq. (4.21) if11]) the corresponding fermionic spectrum is the same as
the above bosonic one, implying that the quadratic fluctuation Lagrangian has 2d world-sheet
supersymmetry. The latter is a consequence of space—time supersymmetry of the corresponding
plane-wave background (for whi¢B.28)is the I.c. gauge fixed Lagrangian) present even though
the original supergravity background is not supersymmetric for unegLighis has an important
consequence that the contribution of the quadratic fluctuation energies {4, @) ground

state energy vanishes, i.e., (at least to the leading ordetJinthis state is a true analog of the
corresponding BPS state in the undeformed or in the supersymmetric defpreaedtheory.

We shall see that these conclusions are corroborated by the analysis of the one-loop dilatation
operator on the gauge theory side. In particular, the same fluctuation spectrum (for the relevant
part of fluctuations) will appear from the coherent state action for the 3-spin or the holomorphic
3-scalar sector of the spin chain which is the analogug) sector in the undeformed theory.

2.3.2. (J1, J2, J3)yac CasE

While the (J,0,0) case is very similar to the standard BMN case, the expansion near the
(J1, J2, J3) ~ (y1, ¥2, v3) geodesic is more involved. The bosonic part of the fluctuation La-
grangian follows from(2.27) expanded near the corresponding classical solution (again, we
assume thay; > 0)

3 3
Ji v
1=pi=Jr. =T =" T=Y Jv=Yn (2.30)
i=1 i=1

The fluctuations in time andr = Zi3=1 7;¢; directions decouple, i.e., are massless 2d fields,
the fluctuations in the other AdS; directions are the same as in the undeformed case (i.e., are
described by massive 2d fields with mags= %) while the remaining 4 nontrivial fluctuations

in Sf,’ directions are found by setting & 1, 2)

V1 Y2
Gu =TT+ Vg, V3= —"v1— —Vp,
V3 Y3

Pa = %(lJrua), p3=1/1—p?—p3, (2.31)

wherevs, vo, u1, uz are 4 independent 2d fluctuation fields. Computing the moments foe.,
the angular moment#, from the Lagrangiaif2.27)we get, to the leading order in fluctuations
near the vacuur(®.31}

Ji=ﬁ1+j,', ji =~imi, ﬂiz%(ﬁi'kzjui), (2.32)
4 Yy +r1y2y3
whereus is such thatZ?zl y;u; = 0 and we ignored terms linear at+derivatives of the fluc-
tuationsv; that integrate to zero. Thus with the assumption @111 7;¢; does not fluctuate
we see that the value of the total momenturs Zi3=1 J; is not, as required, changed by the

fluctuations and thus the fluctuations of momenta safisfy, j; = 0.
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To put the quadratic fluctuation Lagrangian into the canonical form it is useful to do further
field redefinition to 4 fields,,, y.:

n=aoies ([ Ba- [ Ba).  w= SRR, 239
2n+7)\\ " y ) 2y2y ’

U= _r ( &yl— @yz) up = 771+)73y2 (2.34)
20h+73)\\ 7 yo) 27, 7

where

A=y +nywys, V=n+tr+vs (2.35)
Then the resulting fluctuation actionis= v/ [ dt [ g—; L> where (we assume summation over
a,b=1,2)

1 . 1 .
Lo= 5008 =i + 20 = 2) = 5B°V0 + Avata + Beapyvy, (2.36)

A=2T7 %, B=27 %, A2+32=4j2- (2.37)
Y +v1y2ys Y +viyeys

This quadratic action can be interpreted also as an action for a string in a plane-wave background
inthe l.c. gauge™ = Jt with y,, z, representing transverse coordinates. It has constant coeffi-
cients and can be readily quantized as discussed, e[g@7]in

For y; = y (2.36)reduces to the fluctuation Lagrangian found nght/, J) geodesic in the
LM case in[12,13]. In the case of; =0 (whenA = 27) it reduces to the BMN Lagrangian in
a rotated coordinate system corresponding to the expansion nedr, the/) geodesic.

By writing down the corresponding equations of motion and setting, ~ > _,, CpelWnTting
one finds that for # 0 the corresponding characteristic frequencies are the same as in the BMN
case, i.e., do not depend gn(for the LM case of equal; this was found irf12,13)):

wy =J £Vn2+ J2=7J(1+/ 1+ in?). (2.38)

Since we assumed that 7 7, the corresponding fluctuation energies &fe— J= lwal 8

As was shown irf12] in the case ofy; = y the fermionic part of the quadratic fluctuation
Lagrangian (in this case fermions are coupled to both the NSNS and the RR 3-forms as well
as the RR 5-form) leads to the same spectrum as the bosonic Lagrangian, implying again that
there is a residual world-sheet supersymmetry (associated with supernuf@éiagrget space
supersymmetry). In particular, the correction to the ground state energy cancels out. This should
be true also in the present uneqyalcase’ The same bosonic spectrum will be found also on

and

8 One may argue that the conclusion that the spectrum of fluctuations near this vdcuoupp state does not depend
on y; follows from the TsT construction of this string theory[Bj: the difference in fluctuation spectra should involve
v; and is thus subleading iryd. However, this does not apply to the 0-modes, see below.

9 String theory TsT relation suggests this for integein (2.25), but cancellation between the bosonic and fermionic
contributions should not depend on whethgis integer or not. This cancellation need not persist at subleading orders
when non-linear interactions of fluctuation modes are to be included.
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the gauge theory side from the analysis of the corresponding Bethe ansatz equations, and from
the coherent state action.

The spectrum of the bosonic 0-modes (i®-independent fluctuations) is, however, non-
trivial, as was already pointed out in the = y case in[12]. The 0-modes correspond to
point-like strings, i.e., represent fluctuations within the set of geodesics. In the undeformed case
all geodesics were BPS and thus had the same energy the spectrum of 0-modes was degen-
erate; here this is no longer the case (2f24). The Lagrangian for-dependent 0-modes is

= %(y'a2 + 23) — %B2y3 + Ay.z, and this system can be quantized by writing down the corre-
sponding Schrodinger equation and separating the oscillator dynamics (correspondia@to
case of the above,,) from a free particle dynamics as discussed, e.d27 Same conclusion
is reached also from the form of the corresponding Hamiltonian (the momenta are/Ar;):

H =372 —|— $(m., — Aya)? + 3 B2y?2 (we omit the overall factor of string tensiarr). Shifting

vq by — A2+32 7., to isolate the oscillator dynamics i -directions we end up with

1 5 1 B>
H= 2[7T +(A*+ BY)5 ]+2A2+BZ %
1 > 2.0y 1 nvevs o
=5 (my, +47°5) + 25 i (2.39)
To expressr,, in terms of fluctuations of the angular momertitan (2.32)one should note that
sincern,, is given by a linear combination @f, andy, (cf. (2.36), redefining the latter by,
changes also the relation between andz, (and thus commutation relations, etc.). Equivalently,
the same result foH is found in a more transparent way by performing the fluctuation analysis
directly in the Hamiltonian for the -independent modes, i.e., by expanding both the coordinates
and the momenta. In terms of the fluctuationsof the momenta of the angular coordinates in
(2.32) the required phase-space redefinition that separates the oscillator dynamics from the free
particle dynamics is

u + —JT
1o 25 V 7/1()/2 + J/3) V + V3 72 l
V1+ V3 %
+ —m2 . 2.40
uz= 5 [,/ y2 > 2] (2.40)

This leads to the Hamiltonian

H=72(n2 +47%2) + P71+ P3)TE + 21 7omams + Pa(P2 + P3)7E]. (2.41)

572 271
Thus the 0-mode contribution to the fluctuation energy spectrum expressed in terms of the angu-
lar momenta of the fluctuation modes(i32)

Ji=Ji— _J Z]z =0 (2.42)
takes the form€ = v/A'H)

Eo-mode= ==[v2(y1 + v3) j2 + 2y1v2jije + vi(v2 + v3) j2]. (2.43)

ZJ[
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In the case whem; = y EQ.(2.43)becomes simply

Ay2 1\? 1\? 1 1
Eo-mode= %[(11 - §J> n (12 _ §J> n (11 — éJ) (12 - §J>], (2.44)

reproducing the expression [ih2]

202
Eo-mode= %[(h — 2%+ (J1— J3)* — (J1 — L) (J1 — J3)]. (2.45)

Let us stress that the correct quantization of the zero mode sector should not be based on the
expansion to quadratic order in fluctuations but should start directly with the (supersymmetric
version of) the Neumann mod@.24) i.e., from the corresponding 0-mode truncation of the su-
perstring action. In the undeformédS; x S° case this amounts to quantizing the corresponding
superparticle action leading to the spectrum of the BPS (supergravity) modes. The first attempt
in this direction would be to keep only the bosonic fields (and thus ignore the “mixing” with the
AdS directions via fermions) and try to use the known information about quantum Neumann
model (see, e.g[30]). Such 0-mode sector quantization of thisdeformed string theory would
be equivalent (for integer;) to a “minisuperspace” quantization of the origidalS; x S° string
theory in the sector of rotating and pulsating circular strings.

Assuming the large J limit to suppress quantum corrections, the expré@si®) can be
found directly from the particle Hamiltonigi2.24), (2.26y considering the semiclassical con-
figurations with constang; (to minimize energy for gived;). In the limit of large.7; ~ J with
fixedv; = €k y; Ji it is sufficient to evaluate the energy on the semiclassical configuration that
extremises the dominasP part of potential in(2.24)

p2=2i (2.46)

For zeroy;, i.e., for the semiclassical particle states represented by geodesiesiwse are BPS
states of undeformed theory. Far=£ 0 if J; happen to be equal @J these are the vacuum states

of deformed theory having agaifi = J. The energy of the configurati¢®.46)is E = VAV,
whereV = Zi3=1 V; is the potential i2.24)evaluated om; in (2.46) i.e.,

_ | L1 ],

(2.47)
Here in generaj; or J, are of the same order as=JJ; + J2 + J3. Expanding(2.47)in large J

for fixed yj andx = Jz we get, as for semiclassical string states, to leading orderin, le

-2 .2 .2 1 2. . .
E= J—I— >3 (V2V3J1 +viy3Jj; + 7/1)/2]3) - 3()’1 +y2+y3) j1j2]3

+0 <A2V4j 4). (2.48)

B

The j2 term here is the same as({43) We shall reproduce this expression from the fast string
limit in Section3 or from the Landau—Lifshitz model in Secti®hWe shall also obtain the same
spectrum of 0-mode fluctuatiori®.48) on the gauge theory side directly from the Bethe ansatz
in Appendix B
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Let us note that in the limit which we consider-{J co with = % and J; fixed) the j2
contribution in(2.43)is finite providedj; ~ 3*/2 (or, fory; =y, if J; — J; ~ 32 [12]). However,
as already stressed above, the true condition of validif .@f3)follows from the exact treatment
of the 0-mode fluctuations and is only that~ J*, u < 1. The same condition will appear on
the spin chain side iAppendix B As for the quantum corrections, they are expected to modify
(2.48) by terms with similar dependence gp but suppressed by extra powers ¢fJ1Same
structures should appear on the spin chain side as corrections to leading thermodynamic limit
approximation.

3. Fast motion limit: Landau—L ifshitz action from the string action

Let us start with recalling the derivation of the reduced effective action that governs the dy-
namics of “slow” string degrees of freedom in the 3-s@En(8) invariant) sector of undeformed
theory following[15]. We shall parametriz&°® by 3 complex coordinatek; such that

3
X; = pie'? = U;e'V, Z,Oiz= 1 (3.1)
i=1

where p; and¢; are real. We have isolated the common phésthat will be a collective co-
ordinate representing fast string motion in the three planes. There is an ol¥({dugyjauge
invariancelU; — ¢/ U;, ¥ — ¢ — ¢. The $° metric has then the form of the Hopf fibration of
st overCP?:
3
ds?=dX;dX} =) (dp? + p? d¢?) = (dyr + C)* + dU} dU; — C?, (3.2)
i=1

whereC = —iU;* dU;. TheCP? metric isdU;* dU; + (U}dU;)? = | DU; |> whereDU; = dU; —
iCU;. We can then start with the general form of the bosonic part of the string action and apply
the 2d duality (T-duality) in the) direction. The result is (including time direction AHlS and
assuming summation ovey

-1
L=e"Cpa, ¥ — E«/—ggpq(—aptaqt + 0,ad,6 + DpU; Dy U;), (3.3)

where the first term represents the 2-form coupling induced by off-diagonal form of the metric.
The next step is solve for the 2d metric, replacing the second teinby its Nambu counter-
part,/—deth, hpy = —0,td,t + dpad,a + DU D, U;. The final step is to fix a static gauge:
t =1, @ = Jo, where the letter condition corresponds to fixing the angular momentum associ-
ated with the fast variablé¢, i.e., the total momentum=3 J; + J, + J3, to be homogeneously
distributed alongr (as this is the property of the spin chain description of the corresponding
states). Finally, expanding in largé and assuming that time derivatives of the slow “transverse”
variablesU; are small we end with the followin@P? analog of the Landau—Lifshitz action
(=%)

2

1= J/dt/ 621—;[5 +0(?)), L£=-iU}8,U; - %X|D0Ui|2. (3.4)
0

Since this action has (1) gauge invariance (in addition to the glotsl(3) invariance), we may
parametrizel/; in the same way as i(2.24) i.e., U; = p;e'¥ (Z?zlqs,- can be assumed to be
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gauge fixed to zero but will in any case decouple) getting explicitly

3 3 3
. 1.
£=) pf¢i—§x[§ PP+ ) (¢{—¢})Zp,~20,2~]' (3.5)
i=1 i=1

i<j=1

Note that sinceZ?:1 ,oi2 = 1 the WZ term depends (modulo a total derivative) onlyfpn- ¢;,

ie., Zf’zl #: indeed decouples. Other forms of this action were givefénl7] ThisCP? action
is integrable, i.e., the corresponding equations of motion admit a Lax pair represerifation.

3.1. Deformed case

Let us now find a generalization of thi&P? action to the case of nonzero deformation para-
metersy;. We may choose =} _; ¢; (€.9., Setpr =V — @2, d2 =¥ + @1+ @2, $p3 =V — ¢1)
and start with the metric an8l, background in(2.1), (2.2) After doing T-duality and the same
gauge fixing as above we finish with the following generalizatio(8d5)

3 3 3
1L _ _
£=) ofdi— 5l [ Do+ D @ — ¢ —eijii®ofo? - Vzpfpgpg] (3.6)
i=1 i=1 i<j=1
where
3
vi=vJd =y y EZ)Z'. (3.7)
i=1

Note the time-derivative (WZ) term does not get deformed.

Since the 3-parameter deformation of the full string model is integf&hl¢his action should
represent an integrable deformation of @& LL model!!

The 2-spin case action is recovered by settigg- O; thenpf+ ,0% =1 and the action depends
only ony; and reduces to the anisotropic version of @#? LL model found in[2].

We observe that the case (#.6) with y = 0 is special: then the dependencejprcan be
formally absorbed into a formal redefinition ¢f (as was the case in the 2-spin sectof2}),
e.g.,01 — ¢1 + y30, ¢2 — @2, ¢p3 — ¢3 — y10; in terms of the shifted angles the action then
becomes the same €&5).

Another special case is the symmetric gne- y when we get explicitly

3
. 1-
L= ot~ Sin @)
i=1

10 To find the corresponding Lax representation it is useful to use the matrix form of the LL fdd@eéh which the

LL equation takes the form (we rescale time to absorbd, N = —%[N, agN]. Here N;; = 3UU; — §;; satisfies
TrN =0, Nt = N2=N +2. This equation can be written 8sV = 0, K, wherekK = —é[N, 9o N1. We observe that

N is “covariantly constantd, N = %[N, K] and define the Lax connecti@A,, A;) asAy =isN, Ay =isK + %SZN

(s is a spectral parameter). It then satisfies (as a consequence of the above two equaticarsddn) o, Ay — 95 A; —

[Af, As]1=0.

11 |ndeed, this action describes (a lat@@ approximation to solutions of the original string action. It would be interest-
ing to find explicitly the corresponding Lax pair.



16 S.A. Frolov et al. / Nuclear Physics B 731 (2005) 1-44

H= Z pi? + (@1 — b3 — V)05 05 + (@3 — 5 — 7)p505 + (d3 — 1 — 7)°p50%

—972p2p5p5. (3.9)

Another generalization f3.9) (“orthogonal” to the one ir{3.6)) can be found by starting with
more a general supergravity backgroundlihdual toN = 4 SYM deformation with complex
parametep = y — io. That background depends on bgth= v/Ay andé = +/A¢ and was ob-
tained in[1] using S-duality transformatiori$.In this case the application of the above procedure
leads to(3.9) with H replaced by®

H = (p1py — 201 + 6 p1p2)* + (03p] — 105+ G p3p1)> + (0205 — P30y + & P2p3)?
+ (¢ — B — 7)202p3 + (¢h — By — 7)?03p5 + (95 — ) — 7)?p3p?
— (72 +62) 2503, (3.10)

whereg = 6.7 = ¢ J. This deformation of th€P? action(3.5)is unlikely to be integrable. The
action(3.6) admits a similar generalization to the case of the 3 diffedgergarameters.

3.2. Special solutions

Let us now study some solutions of the acti@6). The solutions are characterized by 3
conserved angular momenta

Ji —J/ ,0, , Jd=J1+ o+ Ja. (3.11)

The main difference betwegB.6) and its undeformed cag8.5) is the presence of the (non-
negative) potential term:

V = 750205 + 720503 + 730502 — (71 + T2 + 7320 0305, (3.12)
where p; are subject toZ?=1 pl.2 = 1. While in the case of; = 0 the action(3.5) had o -
independent solutiong; = const p; = const (withp; being arbitrary apart fro@?zl pl? =1)
which represented BPS geodesics with= J now the potential selects only few of them that
will minimize V and thust = J(1 + %AV), i.e., will haveV = 0. These absolute minima &f
correspond precisely to the BPS geodesics discussed above in Sxctanely,

() p1=1 p2=p3=0;
p1=p3=0;
p2=p1=0, (3.13)

17
1’
i pi= 2, ie, s=24 (3.14)
v y

12 For comments on the corresponding string theory and AdS/CFT duality in this case si.also
13 |n this caseB, has a term proportional to; and one is to us2.8).
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Other geodesics described (in this lagg@pproximation) by solutions with constant valuegpf
(note that foro -independent solutiong; — ¢; play in (3.6) the role of the Lagrange multipliers
imposing the condition of constancy pf) will have nonzero value of the energy. Explicitly, we
find from (3.12)that for generic point-like solutions

1.1, _ _ _
E=J+ Ek[j(ygzjlquLy12J213+y22J3]1) J2()/1-1-7/24- 73) 1112J3} (3.15)

For fixedy; such dependence of energy on spipss characteristic of macroscopic string solu-
tions[7]. An alternative representation making it clear that the energy vanishds+oy; states
is (cf. (2.48)

E=J+ —k[—[yz(yl + 73) 2 + 2772 1j2 + P12 + T3) j2]

2
-3 (J/l +y2+¥3) JlJ2J3i| (3.16)
where as i2.42)j; = J; — mJ In the LM case of; = y this can be written also as
- 1 9 1
-2 .2 .. .2 e .
E=J+x1y [3(11 + j1j2+ j5) — ﬁ]l]2J3:|, Ji=Ji=3d (3.17)

where thej2 term is recognized to be equivalent to the 0-mode contributid@.i44)or (2.45)
Thus the zero-mode contributions are easily captured by the LL model.

If X, 7 and j?/J are fixed as one may assume in the discussion of the quadratic zero-mode
fluctuation contribution to the energy spectrum near(the/, J) geodesic, then3/? term is
subleading. As already mentioned in Sectiod.2 the assumption thgt/J is fixed is not needed
in general, and imppendix Bwe shall reproduce the whole express{8rl6)including the j3
term from the Bethe ansatz on the gauge theory side.

It is also straightforward to study the non-zero part of the fluctuation spectrum(J©ad)
or J; ~ y; geodesic and to show that it is agreement with the leading ardem in the corre-
sponding part of spectrum found in Secti¢h8.1 and 2.3.24

Let us now comment on extended string solutions of the LL action. One observes that in
general the circular string ansatz

¢; = m;o, p;i = const (3.18)

gives a solution of LL actiori3.9) with y; = y. Similar circular solutions exist in the full string
equations and are analogs of the rigid circular strings in undefoAd&ix S° geometny[7,9].1°
Interestingly, as it is obvious from the comparison(8f9) and (3.12)this case is formally
equivalent to the case pbint-like solutions in they;-deformed theory with

m3—ma mi—m3 mz—ml

n=y+—y— r=y+t—7— y=rt—5— Zyz—?n/
(3.19)

14 One can also study fluctuations near more general geodesics, and here the spectrum will be similar to the one found

in [9,29] near circular rotating strings in undeformed theory.
15 some string solutions in LM geometry were discussef@#.
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In this case we know that there are vacuum J», J3) states provided; = ” +”; +y3J. Here that
leads to the conclusion that we can have ground-state solutions prqvla&efls special rational
values. These are, in fact, the string BPS states found in the supersymmetric deformed theory in
[1]. They are TsT images of particular point-like BPS states in the undefofuiggx $° theory
(there perturbative largé BPS states are represented only by point-like strings).

Similar remark applies if we start with the geneyiccase of LL action(3.6). specifying to
the sector of circular strings with constant “radii}’ is equivalent to studying point-like states
in the theory with shifted; parametersy; — p1 = y1 + #3372, etc. One then finds additional
ground states for special valuesffandy; such thak;;; J;y, are zero.

4. Dilatation operator of deformed gauge theory
4.1. The spin chain Hamiltonian for the holomorphic 3-scalar sector

The one-loop planar dilatation operator of the= 4 SYM theory in the holomorphic 3-scalar
sector (i.e., the anomalous dimension matrix for the operatcmfmzjzdbf’ + --+) built out of
chiral scalarsp;, i =1, 2, 3) can be written as agw(3) invariant nearest-neighbor ferromagnetic
spin chain Hamiltoniaif22]:

L

A

H=) Hiii1. Higp1= 2 k1. (4.1)
k=1

Hl(c(,)l)c-i-l =Tk k+1 — Prk+1- (4.2)

Here H acts on products of 3-vectors at each site of the spin lehgtthich is equal to the total
momentum (in discussion of spin chains and Bethe ansatz we shall use the nbotaigiead
of J)

L=J=J1+ Jo+ J3. (4.3)

I'is an identity andP is the permutation operator. In terms of the genera(uﬁs{ = 6{"8,{ of the
algebragl(3) we have

3
T =T ®@Tiri= Y entk)es(k+1),
m,n=1
3
Priri= Y erte) k+1). (4.4)

m,n=1
The generalization af4.1)to the case of thg-deformed\ =4 SYM theory was found ifl8,
19]. It has a formal generalization to the case of 3 complex deformation paramgters™fi
(heree ® e = e(k)e(k + 1)):

22, 3 23 2 4l3_ 2 41 2_ 3
Hikr1=lq1l"“e5 ® e3 + |q1]7e3 @ e5 — q_—€2®€3 - q—€3®€2
1 1

_ q2 q2
+ g2l %e3 ® €1 + g2l @ €5 — 59%@96? - gef@’e%

_ q3 g3
+1g3l%e ® €5 + |g3l°e5 ® ef — %ef@)e%— %e%@)ef (4.5)
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This expression appeared [ib8] as a step in the construction of the Hamiltonian for the su-
persymmetric deformation in the 3-spin sector which corresponds to equal parageters=
¢'™8 16 |t was noticed in[18] that the complexg deformation is not contained in the class of
integrable deformations &u(3)-invariant Heisenberg chain described by a twisted R-matrix. It
was later arguefll 9] that the spin chain describing the compjgxase is not integrable.

In the case of reg$; = y; which we will be interested in heir@.5) becomes

3
M1 =Texsr — Prkrt, Prkya= Y e 27mel (k)ep (k+1), (4.6)

m,n=1

UYn = —€mniVi- (47)

This gives the 1-loop dilatation operator of the nonsupersymmetric deformatigh=e4 SYM
theory[3] which should be dual to string theory defined (@y1)—(2.8) This gauge theory has
the following scalar potentidB]

3 3
V=T Y e, @, — e d, @y, 2 Tr S (D, Bl (4.8)

n>m=1 m=1

and similarly deformed Yukawa couplings to ensure the marginality of the deformation as well
as the cancellation of the self-energy corrections to the anomalous dimension matrix.

The terms displayed if4.6) are determined by the interactions in the first suni i), for
(4.6) to be indeed the dilatation operator it is necessary that, for gepgréthe contribution
of self-energy graphs, vector exchange graphs and the graphs confaiping,, ]2 interaction
vertices continue to cancel out, just like in the supersymmetric theory case. This cancellation is
relatively easy to understand based on the similarity betweeg treformation and noncommu-
tative theorieg1,33]: here we have a noncommutative structure related t@&/tfti¢ symmetries
inherited from the R-symmetry of the undeformed theory. In noncommutative theories, planar
graphs in the deformed theory are eqjgd] to those in the undeformed theory except that the
external fields are multiplied with a *-produtt. The cancellation mentioned above occurs as
follows. The vector exchange graphs are independent of the deformation because the vector-
scalar-scalar coupling is independentypf Similarly, the vertices analogous to those coming
from the “D-term” [®,,, ®,,]° are undeformed because the charge vectors,pfand &,, are
proportional. The deformation of the Yukawa couplings is done again with the *-product which
now contains the fermiody (1)-charges (equal to their R-charges in the undeformed theory). The
contribution of fermions to self-energy thus may have a nontrivial phase, but, based on the non-
commutative structure, the planar self-energies would be the same as\inthetheory except
for a *-product between the external fields. Due toth@)-charge conservation, this phaseis 1,
i.e., there is no nontrivial contribution. As a result, there is the same cancellation as\inthe

16 |nthe general compleg case one needs also a rescaling of the coeffigiemtfront of ; ;1 as discussed if2].

17 The noncommutativity due to the -deformation is certainly different from the one discusse{B8], so one may

be inclined to question the applicability of the result§28] to our case. Abstractly, the results[86] are based on the

fact that the fields carry certain additive charges and that the corresponding symmetry generators obey the chain rule.
These are the properties of thg1) symmetries inherited from the R-symmetry of the= 4 SYM theory in the present

case as well as the momentum generators in the cd8€JofThe difference between the two cases is that, while all the
fields carry momentum, in our case of thedeformed theory some fields have trivial charges so are not affected by the
*-product. We will return to this point at the end of this section.
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theory between the vector exchange, self-energy and the contribution[df the,,]? vertices,
as it should be fof4.6) to correspond to the one-loop dilatation operator of the gauge theory
deformation suggested [B].

Let us note that for the non-holomorphic sectors of gheeformed theory it is complicated
to construct the dilatation operator by a direct computation, even in the case of real deformation.
Using different techniques, it was shown[82] that, for any sector, the Hamiltonian of the spin
chain in the deformed theot is related to the Hamiltonian in the undeformed the& by

0 -1 i Y3 L i ()N, (k41
Hk,k+l=Uk,k+lHk(,k)+1uk,k+1v Uy g1 = € Lmn=1 G (O (k+1) (4.9)

where R (k) are the Cartan generators of the symmetry group acting at.ditethe case of our
present interest, i.e., the holomorphic 3-scalar sector

Hisrr =Ueks1 e pr1 — Pk DUy g (4.10)
3
: 3 m n i
uk,k+l — o7 Zm,n=1a’”"em (kyey (k+1) _ Z ol mn e;’;: (k)e:ll (k + 1)’ (411)
m,n=1

where we use@.4)and thate? (k)el (k) = 87 el (k).

m

4.2. The Bethe ansatz

As usual, the diagonalization of a spin chain Hamiltonian with more than two states per site is
done through the nested Bethe ansatz algorithm. From the details descrilb@Hiins straight-
forward though tedious to derive the Bethe equations for the 3-spin sector; one can also specialize
the results 0f32] to this case. The resulting Bethe equations are

L Ul — Uy —i L

iqL J2tJ3 . /3 i
eZi”LO‘21|:u_1’k + 2i| — l_[ Uk — Ul +1 1—[ o~ 2im (azptoztays) Uk —Hu2j—3
Uik — 3 Ul —u2,j+3

l=11. j=1
i# (4.12)
J3 . [ Jo+J3 L i
QinLentars) _ T Uzl —u2j +1 [ I p2im(asztagytary Ui ~ U210 2}, (4.13)
U] —uz ;i —1i C_ _ i
j=1 M2t 2] i=1 Uti—uzi =3

J#l
HereL = J1 + Jo + J3 and we should add also the condition that the eigenvectors are related to
single-trace operators (the cyclicity condition):

. B e+ h
e*Zl?T(]gOtZ:H‘JSOlSl) 1_[ ’7? =1. (414)
k=1 YLk — 3

The contribution of a given Bethe root solution to the energy is

1
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4.3. Ground states of the spin chain Hamiltonian

The vacua of the spin chain Hamiltonian should correspond to the “BPS” states of gauge
theory that have zero anomalous dimensions. For the supersymmetric deformatign with
y2 = y3 = y there are at least two ways of finding them: (i) finding the generators of the chiral
ring and (ii) directly finding the solutions of the Bethe equations which have zero energy. Since
for general nonsupersymmetric deformations the first option is not available, we shall therefore
concentrate on the second approach (in the supersymmetric limit we shall be able to compare the
results with those of the chiral ring analysis).

First, let us note that since the dilatation operator is positive semidefinite, the contribution of
any Bethe root distribution to the energy must be non-negative. Indeed, from the Bethe equations
(4.12)—(4.13)one can see that, as in the undeformed case, the Bethe roots occur in complex
conjugate pairs which give positive contributions to the enddgy5) Thus, the vacua of the
spin chain fall into the two categories:

(1) J2 + J3 =0 case in which the enerd¥.15)is obviously zero;
(2) configurations of Bethe roots for whieq=0forallk =1, ..., Jo + J3.

The first class corresponds to the classical vacuum of the spin chadif’('b’perator) which
was chosen to derive the Bethe equations, as well as to its olb¥ipinsages.

For the second class the express{dri5) clearly implies that all rapiditiess ; are to be
infinite. This is similar to the case of other BPS state@fﬁdﬁzquﬁf)symm in the undeformed
N =4 SYM theory. As in the undeformed case, we will take the difference between any two
unequal rapidities to also go to infinity. This is necessary in order to focus on solutions which
exist regardless of whethdp + J3 is even or odd. Unlike the undeformed case, however, due to
the presence of the deformation parameiersr «,,,, not any such rapidity configuration will
be a solution of the Bethe equations and the cyclicity condition.

The cyclicity condition(4.14) implies that the angular momen#a and J3 must be chosen
such that

Joys — J3y2=0. (4.16)

Then, the main Bethe equati¢h.12)further implies that

Jiys — J3y1 =0. (4.17)

Finally, taking the product of the auxiliary Bethe equati¢hd4.3)in the limit in whichu y — oo
implies that the third combination of the deformation parameters and the angular momenta must
vanish as well:

J1y2 — J2y1=0. (4.18)

This discussion however is insufficient because it implies a rather large degeneracy due to the
fact that the auxiliary Bethe equatiga.13)is nontrivial. It is, however, easy to see that, if we
focus on solutions which exist regardless of the parity propertigs,afe must havéus , —u2 |
for all k # 1 (and therefores, . for anyk) approach the infinity.

We conclude that for the general three real deformation parametére spin chain Hamil-
tonian has three vacua corresponding to the operatodfaf,’jrr =1, 2,3, as well as the fourth
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vacuum corresponding to an operator containingopies of®; with i = 1, 2, 3 provided
€ijrdjve = 0, ie, Ji~v. (4.19)

SinceJ; are integer, this forth vacuum can exist only for special values .of his matches the
result of the string theory analysis in Sect@.2

In the case of supersymmetric deformatigr= y the above conditio4.19)becomes/; =
Jo» = J3. The existence of suctv, J, J) BPS state can be derived from the construction of the
chiral ring. The argument is the same as originally given for rational deformation parameter in
[33], see als¢l]. Indeed, theF-term constraints

einﬂ¢l¢2 — eii”ﬂ¢2¢1 =0, einﬁ¢2¢3 — eii”ﬁ¢3¢2 =0,

ein‘B(P3Cb1 — eiin‘3¢1¢’3 =0 (4.20)
imply that, in the chiral ring, any single-trace operator can be brought to the form

Tr(o] 0 205°). (4.21)

Then, the samé -term constraints allow one to move any of tibe fields around the trace.

In general, this multiplies the initial operator by a phase whose argument is proportional to the
difference between the number of fields of different types than the one which is transported
around the trace. For the operator to be an element of the chiral ring it is necessary that this
phase is unity which in turn implies that

J1=Jr=J3. (4.22)

For rationaly there are also additional BPS stafé$ corresponding to rotating circular
strings; they are, in fact, images of certain BPS states in undeformed theory under the TsT trans-
formation. We have described them explicitly in Sect®f They are visible also in the Bethe
ansatz. Indeed, for rationg] it is possible that

€ijkdjvk € L. (4.23)

This is enough to eliminate completely the deformation from the Bethe equations. Thus, the
energy of the states with sucliy, J2, J3) quantum numbers are identical to those in the unde-
formed theory, i.e., they should be exact BPS states (despite the theory not being supersymmetric
for unequaly;).

We shall discuss fluctuations near these vacua as implied by the Bethe ansatz equations in
Appendices A and B.

4.4. Comment oV (N) vs. SUN) gauge theory

It is worth emphasizing that the planar dilatation oper&os) and the corresponding Bethe
equationg4.12)—(4.13hold for the;-deformation of the\V' = 4 SYM with U (N) gauge group.
The distinction between tHé (N) and theSU(N) case is nontrivial here even in the lagydimit.
More precisely, it is immaterial for “long” single-trace operators we discuss in the main part of
this paper but matters for some “short” operators. Indeed, in the presence of the deformation,
the U (1) factor no longer automatically decouples, and that has interesting consequences; in
particular, theU (N) theory is not automatically conform8], having running couplings of
U (1) matter fields.
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It was recently observed if88,39] that, while in the supersymmetrig (N) g-deformed
SYM theory the operators T@®; ;) (i # j) have nonvanishing one-loop anomalous dimension,
their anomalous dimension is zero in the supersymmgtdeformed theory witlSU(N) gauge
group. The nonzero (in the large limit) contribution in theU (N) case comes entirely from the
nondecoupled’/ (1) factor.

It is easy to see that the expressidnb) for the spin chain Hamiltonian representing planar
1-loop U (N) dilatation operator implies that the anomalous dimension ebi® ;) is

A
Aoy = 55 SIP Taj, (4.24)

whereq;; is given by(4.7). In the supersymmetric limit of equal deformation parameters this
reproduces the result §38] for the U (N) theory. The same resuy#.24)may be obtained from

the Bethe equation@l.12)—(4.13)andZ3 symmetry). In the case of a single excitation above
the (2, 0, 0) vacuum the Bethe equations simplify considerably; since the result is determined by
a single rapidity, it may, in fact, be obtained from the cyclicity condition which trivially leads to

A
A(TT((P]_(DJ‘)) = 72 sir? Tol;j. (4.25)

The other T(®;®;) anomalous dimensions may be obtained usiagransformations or by
changing the vacuum of the spin chain. The expresgld?b)is, in fact, theL — 2 limit of the
anomalous dimension of (I?DlL‘ldbj).

In the case of the deformation of tB&J(N) SYM theory these anomalous dimensions vanish
due to an “accidental cancellation”. As was pointed oyBB] in the case of the supersymmetric
deformation of theSU(N) theory, the superpotential contribution to the potential can be written
as

N2-1
V=Y [[Tr(1®1. @216 T) [* + [Tr(1d2. @3ls T)[* + [Tr(1®3. @116T) 7], (4.26)
a=1

where[®1, @olp = P1 % Py — Do * D1 = P D1, — e P Pod1 and T are theSU(N) gen-
erators. As a result, the anomalous dimension of holomorphic 2-field operators is proportional to
Tr T* which vanishes. Clearly, such a cancellation does not occur in the defdfiiiégtheory.
In the undeformed/ (N) N = 4 SYM theory, the dilatation operat¢t.1), (4.2)combined with
the cyclicity of the trace still leads to the vanishing anomalous dimension {dr; dﬁr,).lg

It is not hard to see that, in the case of the nonsupersymm@&tiiev) gauge theory with
unequalg; = y; the cancellation due to the tracelessness of gauge group generators also takes
place. As was mentioned above, the nonsupersymmgetdeformed theory is obtained by re-
placing in the component Lagrangian of tNe= 4 SYM the ordinary product of fields with the

18 The reason why there is a difference betweenShiéN) andU (N) cases even in the largé limit has to do with
non-decoupling o/ (1) part of scalar multiplets (in the pure gauge field seé&tet) part of U (N) always decouples at
largeN); itis also special to the case of length-2 operators. A quick way to see why the double-trace quartic scalar vertex
present in th&SU(N) case((T“);(T“);‘ = 8;8’; - %858{‘) does contribute to the anomalous dimension of tH@T® )

operator in the same way as the single-trace vertex is to consider the generating furttorial the correlators of the

Tr(®2) operators (suppressing all indices). The corresponding action will IoolGIike% Sl + Tr(®2)2 + %(14—

k(x)) Tr(¢>2)], where we do not make distinction between the structug®term in the vertex and in the operators for
which k(x) is a source. Then it is clear that derivatives ower) will scale asN®, which is the same cylinder-diagram
scaling as for the 2-point function of (EIJZ) with insertions of T®4 vertex. We thank K. Zarembo for a discussion of

this point.
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noncommutative product
@; % @;(x) > lim ¢~ T @OMM @, ()@ (y), (4.27)
y—=>Xx

where againy,,, = —eqnx vk, h, are the three globali (1) symmetry generators (i.e., &; =
8, ®;), and summation overn, n is assumed. Thus the potential relevant for the calculation of
anomalous dimensions of scalar operators may be written as

N2-1
V=3 [ITr(1®1. @21, T%) [* + [Tr(12, P31, T) | + |Tr((®3. @11, T)[F].  (4.28)
a=1

Using this form ofV for the calculation of anomalous dimensions of the sanie;® ;) opera-
tors it is easy to see that their anomalous dimensions are proportional to

(eZmyicisk — = 2T VEi) Ty T4, (4.29)

and thus vanish again in ttf®J(N) gauge group case regardless the values of the deformation
parameters;.

Such cancellations appear not to exist for longer operators, even in the supersymmetyic
case. Indeed, in that case the chiral ring argument appears to imply that the only chiral operators
are in the representationi3 0, 0), (0, J, 0), (0,0, J) and(J, J, J).

Given that it is possible to break supersymmetry by an arbitrarily small amount (the defor-
mation parameterg; are continuous) and that the spectrum of 1-loop anomalous dimensions
has a gap, it is reasonable to search for protected operators in the nonsupersymmetric theory
among the protected operators in its supersymmetric limiting case. Since we have argued that
we already know all such operators with vanishing anomalous dimensions, we do not expect
additional operators with vanishing anomalous dimensions for sufficiently smad, ys.

An interesting question is what is the dual string theory prediction for the anomalous dimen-
sions of operators T, @;) or, alternatively, which theory does the dual string theory describe:
theU (N) or theSU(N) gauge theory? The answer is nontrivial here and appears tGbéN ):
even though the diagonal (1) gauge fields still decouple in the presence of the deformation,
the U (1) scalars and fermions do not. Due to the absence of coupling with the gauge fields, it
is expected that the RG beta-functions of the couplings of thiade fields is positive and they
flow to zero at low energie®. For the supersymmetric deformation this is indeed the case so

19 There are several notable differences betweenythdeformed theory and “standard” noncommutative field theories
where one finds nondecoupling of tlig1) gauge fields. As was mentioned above, the *-product describing;the
deformation can be thought of as a Moyal product based on the Cartan generators of the remnakit-ef4tgYM R-

symmetry group. It acts nontrivially only on the fields carrying nonzero charges under these generators, i.e., the fermions
and the scalar fields, babtthe gauge fields. Therefore, one is allowed to truncate away thpgauge field, but not the

U (1) scalars and fermions. An analog of this non-decoupling in matter sector may be observed on the string theory side
as well. Realizing the gauge theory on a collection of coincident D3-branes, the decoupling of the diagdgmtEgrees

of freedom is associated to the translational invariance of the collection of branes. The form of the string background
(2.1)—(2.7)dual to the deformed gauge theory suggests that in a similar set-up there should exist nontrivial fluxes in the
space transverse to the branes. These fluxes will break translational invariance and lead to the nondecoupling of the fields
carrying charges under the flat space “transverse”, i.e., internal, symmetry group. Translational invariance if, however,
maintained along the branes and thus the gauge fields continue to decouple. This is also reflected in the fact that here we
have the standarddS; factor in the geometry while in the noncommutative case the soluti¢@7dfdoes not have an

AdS; asymptotics.

20 \We thank O. Aharony, J. Maldacena and E. Sokachev for discussions on this point.
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only the SU(N) theory is conforma[35,38] For the nonsupersymmetric deformation new ef-
fects may appear. For example, the three teidig @1, |2 are related by &3 symmetry which
also acts on the deformation parameters. Thus, it is possible that their coefficients undergo dif-
ferent renormalization and, while equal at one-loop level, at higher loops they may have different
values at the fixed point. Similarly to the case of the supersymmetric deformation, further new
phenomena may appear for rational valueg;aklated to the appearance of additional operators
with vanishing anomalous dimensions.

The observation that the coupling of thg1) matter fields runs suggests that the string the-
ory in the deformed backgrour(@.1)—(2.7)describes the deformation of the conforrBal(N)
gauge theory. The anomalous dimensions of holomorphic operat@psdly) with i # j were
computed to two loops in the supersymmetric cag8® and found to be subleading in thgXl
expansion. It may be possible that these operators remain marginal to all orders in the planar
limit. It would be interesting to check this explicitly, by analyzing in supergravity the corrections
to the masses of the fields in tB8 of SO (6) once the deformation is turned on.

5. Coherent state effective action

In the case of undeformedl = 4 SYM —AdS; x S° string duality the matching of predictions
for energies of states with large quantum numbers can be done in a universal way by comparing
the effective action for the long wave length spin chain excitations with the effective action for
the “slow” world sheet modes obtained as a limit of the classical string action after separating
the “fast” collective string moded.4].

The relevant spin chain degrees of freedom can be described by the spin cohereft )states
with the action

Scoh=1{(n|0;n)) — (n|H|n)), (5.1

which appears in the exponent in the coherent state path integral. The limit one is interested in,
i.e., J—> oo, A= ? is the semiclassical limit for the spin chain path integral in which one can
take the continuum limit keeping only the leading 2-derivative tern&p.

In the case of the 2-spin sector, i.e., operato(gﬁffcsz2 +--+), this strategy was successfully
applied to the supersymmetric deformed thef@ly demonstrating the equivalence of the two
effective actions. The case of the 3-spin sector (and larger nonholomorphic sectors) is, however,
somewhat different. In the context of the coherent state continuum limit the problem arises in
that a naive derivation that follows the same strategy as in the undeformed 3-sp[i@435é
or the deformed 2-spin ca$g] leads to an effective action that does not properly describe all
expected vacuum states as seen in the Bethe ansatz and also on the string theory side.

Indeed, as in the case of the 2-spin sectdRjnthe fact that the “Wess—Zumino” term in the
string action(3.6) is independent of the deformation parameters suggests that we may use the
same coherent state as in $1€3) sector in the undeformed theory. Then the resulting effective
action as found in the continuum limit fro(d.1)with H given by(4.1), (4.6)happens to contain
the potential

3
Vinave= ¥{p305 + va050% + vipips. > pf=1, (5.2)
i=1
where we used the same notatjgras in the string-theory potentigd.12)for the corresponding
coherent state parameter. Compare@td2)this potential misses the lagf term. As a result,
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it captures the vacu@), 0, 0), etc., but misses the nontrivial one with, Jo2, J3) ~ (y1, y2, ¥3)
or (J, J, J) in the equaly; case.

To understand the source of the problem it is useful to recall the story of BPS vacua in the
su(3) sector of the undeformed theory. There the spin chain Hamiltddi&)containing permu-
tation operator has vacua represented by all totally symmetrized products of the three chiral fields
TH(@] @32 D3%)symm- Apart from Tra;, Trej and Tref, ie., (3,0,0), (0,3,0) and(0,0,J)
vacua these anmgot “slow” modes of the spin chain: the field compon@ntin general changes
rapidly from site to site. The coherent state operators that are mapped onto semiclassical string
states (in this case geodesics or point-like strings all of which here are BPS) are particular lin-
ear combinations of these quantum spin chain v&éiufithe generic coherent state operator
is Tr(]_[izl[Z?zl n;(k)®;]) then the vacua correspond to constenti.e., to T(Z?zl n;d;)3,
which are indeed linear combinations of symmetrized products.

In the present deformed case we do not have all possihle/,, J3) BPS quantum vacua
to built a coherent linear superposition, and, moreover, the nontrivial vaguynio, J3) ~
(y1, 2, y3) is not a “slow” state. Yet, the fact that it is naturally found also on the string the-
ory side suggests that there should be a way to capture it in the coherent state action.

The source of the problem thus appears to be in the choice of a description of the relevant spin
chain modes by coherent states. One is either to generalize the definition of coherent states, or,
alternatively, to use the “undeformed” coherent states but choose a different representative in the
class of equivalent spin chain Hamiltonians with the same spectrum.

The latter option is equivalent to changing the basis. The spin chain Hamiltonian represents
the gauge-theory anomalous dimension matrix in the basis of single-trace single-term operators.
As we shall show below, there is a way to choose a more suitable basis so that the resulting
coherent state actiofd.1) adequately describes the “low-energy” approximation with all vacua
included, and, moreover, matches its string-theory counte(®&t

We shall start with reviewing the choice of the coherent states which will be the same as in
the undeformedu(3) case. We shall then describe a change of basis leading to an equivalent (but
more appropriate for the low-energy description with standard set of coherent states) Hamiltonian
H =U"YHU. Finally, we shall use{ to computeSconin (5.1)and find its continuum limit.

5.1. The coherent state

While the standard definition of coherent states based on global symmetry of the Hamil-
toniarf? does not formally apply in the present deformed case, we can still usSUt®-
invariant coherent state which is a tensor product over the spin 1 (3-component) chain sites of a
state obtained by a 8 3 rotation which keeps fixed some specified 3-vector:

R =R(h)R(k),

R(h) = diag(eihl, eihz, €ih3), Z hi = O,

2L Al guantum BPS vacua correspond to Kaluza—Klein modes (spherical harmonics), while their particular coherent
combinations have semiclassical interpretation as point-particles moving along geodeSsﬁcAH)fsuch geodesics are
related byS O (6) rotations.

22 general, it is given by ai¥/ G transformation applied to a ground state, whéres a symmetry ofd andGg is

a symmetry of the ground state.
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R(k) =1—2k)(k|, (klk)=1. (5.3)
This state can be parametrized by an elementBf. With appropriate redefinitionst{ =
%«/1 —nq, ko= _2«/%—111’ k3 = —N%_nl) the coherent state can be written as:

|n) = n1|1) + n2|2) + n3a|3), (5.4)

wheree)! in (4.4)acts onli) as

el'lj)=38ijlm), (5.5)
and

3 3
ni=mie", Y mf=1% h;=0. (5.6)
i=1 i=1
On the string theory side (cf3.6)) m; will correspond tgp;, andh; to ¢; but for generality we

shall use this separate notation.
The total spin-chain state coherent state is then

3
n) =n)1®@In)2®@---Qn)r, In)k= Zni(k)h'). (5.7)
i—1

It thus corresponds to the operator

3 3
Tr|:(2n,-(l)<1§,->-~~<an(L)<Dj):|, (5.8)
i=1 j=1

up to the cyclicity of the trace composed with cyclic permutations of the site lab2Js.1, .23
With this choice of the coherent state the first WZ term in the continuum effective gbtibn
has the same standard form as in the undeformed case:

o .
0 i=1

5.2. The change of basis: choice of an equivalent Hamiltonian

Let us first recall the meaning of the change of basis for the spin chain Hamiltonian. The
precise statement about the relation between string energies and the gauge-theory anomalou:
dimensions is that the string energies are equal to the eigenvalues of the dilatation operator. The
latter are computed by finding the anomalous dimension matrix and then diagonalizing it. The
spin chain Hamiltonian is the anomalous dimension matrix, that is the dilatation operator in the

23 One may also include the factor e"LL that makes the state (and the operator) unit normalized. This factor ends

up playing no role; it cancels because there are alwajdentical terms contributing to the expectation value of any
operator.



28 S.A. Frolov et al. / Nuclear Physics B 731 (2005) 1-44

basis of operators used to compute the anomalous dimension matrix,

AOs=H20p, (5.10)

whereA, B are multi-indices. The spin chain Hamiltonigh1), (4.5), (4.6Wwas computed in the
“standard” basis, that is the basis of single-term single-trace operat@bg, T+ ®;, ). Chang-
ing this basis leads to a change of the expression for the spin chain Hamiltonian(3-ddn
we see that a general change of bagjs= U}f Oz acts on the Hamiltonian by the transforma-
tion

H—H=UHU. (5.11)

Since the originaH in (4.6) contains only nearest-neighbor interactions it is clear that the oper-
ator U which we need should be nontrivial since it should be able to generate in the continuum
limit of Scon higher than 4th powers of the “radii®z; in order to get an effective potential that
will have more than just three obvious vacua= (1, 0, 0), etc.

Consequentlyl/ cannot be a site-wise tensor product. It is natural to try the next simple
possibility, i.e., a product of operators overlapping only on one site

L

U=[]Ukss1. (5.12)
k=1

with the additional assumption tha%_1 , commutes withUy 1. Without this additional as-
sumptionU ~1HU would be a double sum over the spin chain sites and, therefore, would lead
to a nonlocal effective action. Combined with the observation that the original spin chain Hamil-
tonian can be written in the forif#.10) i.e.,

L L
- 0
H= Z Hi k1= Zuk,l:cl+1HI§,lc)+luk,k+1v (5.13)
k=1 k=1

this suggest the following natural ansatz:

3
. 3 m n :
U ri1(8) = (uk,k—q—l)s — o7 Xn=1@mney (K)ey (k+1) _ Z eléna"’"ez:(k)eﬁ (k+1),

m,n=1

(5.14)
U pi1®) =Ukip1(=8).  Ukip1(D) =Up ki1 (5.15)

Here «,,, are the same phases as(f6) and & is a parameter. This ansatz is, in fact, quite
unique. For example, allowing for off-diagonal generators in the exponent would violate the
locality requiremeng?

It is relatively easy to find the transformed Hamiltonian. The main observation is that in each
term in the sum defining? in (5.13)all factors of U cancel out except for those which have

24 For generic comple% the transformation above acts on the basis operators by adding a phase and a rescaling de-
pending on the order of fields in a monomial, so this is a rather simple change of the basis.
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nontrivial overlap withHy, x+1. We find

H=UY®HU®)

L
= Z Uk-1.6(—8) Ug k+1(—§ + 1)Uk+1,k+2(_§)Hk(S<)+1
k=1
X Up-1k(E) Uk k+1(§ — DUk+1,k+2(8)
L
= Z Hi, (5.16)
k=1

where[k] is used to indicate the dependenge on the ditesl, k, k + 1, k + 2. Using trivial
identities following from the properties ef,, Hjx; can be simplified to:

. A -
HlkFWH[k]
A : FE (ctmar —tman) i E (@t —0tpt) i (E—1) (ctrg —0tnp)
— 8 5 Z e mr—%mn) o qt pt)e rq —%np
T m,n,p,r,q,t=1

x em(k—1) [ez (k)eﬁ(k + 1)Hk(33+1ef (k)eg (k+ l)]eg k+2). (5.17)
5.3. Continuum limit and the effective action

The important piece of information in constructing the effective action is the cyclicity property
of the states described by it. In the initial for®.13) of H the states the Hamiltonian acted on
were periodic. An arbitrary change of the basis may affect this and lead to nonperiodic states. The
transformatior(5.14)has the crucial property that it commutes with the shift operator. Therefore,
the states the transformed Hamiltonian acts on continue to be cyclically symmetric. This implies
that we are allowed to use the coherent s{até)to construct the effective action.

Using the expressioi.2), (4.4)for the undeformed Hamiltonian in theu3) sector or
[H,{(f2+1]f§ = §nsh — 85’82 it follows that the expectation value 6{j;; in the above coherent

stateln)) (5.7)is

{(n|Hg In),

)
3
= > | (ma®))?(mpk + D)?
n,p=1
3
— (g (k — D) 2ei ™ Car—aan) =27 E D 1 oy, (kym (K + Dimy (k + 1)
qg=1

3
% ei(hn(k)—hn(k-‘rl)—hp(k)-i-hp(k-‘rl)) Z(mr(k + 2))285ﬂ§(¢¥nr—06pr)j|' (518)
r=1

Expanding this expression i, (i.e., in the deformation parameters= %einmamn) and in the
spin chain spacing up to the second order and suitably combining the resulting terms we find
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(am(k) — m(k+12—m(k))

3 3 2
2
([ Fygln)) = > (@mi0)* + Y [ah,,(k)—ahn<k)+7”a,m] (mp Ry ()
i=1 p<n=1
21\ ? 3 2 2
- 25@—5)(;) ( > apn> [ma(kyma(kymz(k)]”. (5.19)
p<n=1

As usual, the sum over sites is replaced by an integral evef0, 2], and using the relation
between the lattice spacimgand the length of the chail(= J= Zi3=1 Ji)

we get for the continuum limit of the coherent state expectation value of the transformed Hamil-
tonian (heré. = %, ' = 9,)

2n

- 1. (d
(il HIn)) = 5 / 2"[<mlm2 mam})? + (hy — hly + Ja12)?(mam2)?

0
+ (mamg — mamy)? + (hy — hly + Joz)*(mom3)?
+ (mamly, — mim)? + (g — hy + Joz1)®(mam1)?
— 26(1 — &) (Joap + oz + Jozn) *(mamoms)?]. (5.21)

As reqwred in our scaling limit, the action is finite (modulo the overall factor of J) for fixed
A= ? and &,,, = —enniJy;. It thus describes a particular sector of low-energy excitations of
the spin chain (“macroscopic spin waves”) which correspond to semiclassical fast-moving strings
in the 3-spin sector.

We are now in position to determine the free paramgtarthe definition ofU (¢) by requiring
that the effective action reflects the correct vacuum structure. Intuitively, the existence of the
vacua(J, 0,0y, (0,J,0) and (0,0, J) should not impose any constraints rbecausel acts
trivially on these states. This can indeed be verified by the explicit calculation (the corresponding
critical points aren1 = 1, m> = 0, m3 = 0, etc.). The existence of thg, J2, J3) vacua with
J; ~ y; does, however, require the specific valuetofor example, in the case ¢f = y the
corresponding critical point of the potential term(#.21)is m; = :t% and the value of the

potential at this point i/ = 1JA(Jy) 3é(l £)]. By requiring that it vanishes we get

£= %(u D, 2%1-£)=1 (5.22)

One can directly verify that in the genegalcase the effective potential with these value$§ of
nonnegative and vanishes only at the required four critical points.

The full coherent state action which correctly reproduces the spin chain vacuum structure
is thus given by the difference @56.9) and (5.21)with the coefficient of the last term being
25(1 - &) = 1. Remarkably, it then also reproduces the fast string a¢8cf), (3.6)with the
identificationp; = m;, ¢; = h;.

Let us note that the complex valuegufmplies that the transformation {%.12), (5.14)s not
unitary. This manifests itself at higher orders in theexpansion and therefore implies that at
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higher loops a further change of basis is necessary. While the unitarity of the basis change is not
a required condition, we suspect that there may exist also a unitary change of basis that leads to
the same real coherent state effective action.

6. Concluding remarks

In this paper we have studied an example of lavg&dS/CFT duality in a nonsupersymmetric
context.

The string theory we considered is obtained fromAli&; x S° string theory by a combination
of T-dualities and shifts of angular coordinates and is parametrized in addition to the Raglius
A4 (o’ = 1) of theAdS; space by the three real parametgrs: R2y; which determine the shape
of the deformeoS‘]i_ space. The special case of equak ¢ corresponds to the supersymmetric

deformation ofAdS; x S° string theory introduced ifiL] and further studied if2,3].

The dual gauge theory has the same field content ad/tee4 SYM theory, but with scalar
quartic interactions and Yukawa couplings being “*-deformed” usin@s phase multiplying
theU (1)-charges of the field8]. The thredU (1) symmetries and the corresponding charges are
inherited from theSU(4) R-symmetry ofA// = 4 SYM theory. In the case of; = y the gauge
theory becomes the exactly margindl= 1 supersymmetric deformation of ttlé = 4 SYM
theory with real deformation parameigee y .

We have compared the energies of the semiclassical stringdSnx Si geometry having
three large angular momenta §3, to the 1-loop anomalous dimensions of the corresponding
gauge-theory scalar operators and found that they match just as it was the cas&u(3he
sector of the standaridS; x S° duality [7,16,17,24]

In particular, in the supersymmetric special case;oE y this extends the result ¢2] from
the 2-spin sector to the 3-spin sector. This extension turns out to be quite nontrivial. To match the
corresponding low-energy effective actions on the string theory and the gauge theory side one
is to make a special choice of the spin chain Hamiltonian representing the 1-loop gauge theory
dilatation operator. This choice is “adapted” to the low-energy or semiclassical approximation,
i.e., it allows one to capture the right vacuum states and the “macroscopic spin wave” sector of
states of the spin chain in the continuum coherent state effective action.

Our results suggest that some quantitative aspects of the AdS/CFT correspondence may be
less sensitive to the presence of supersymmetry than it was previously expected. There are, of
course, many ways to break supersymmetry of the original maximally supersymmetric AdS/CFT
set-up. The important observation [d4ff extended i3] to the nonsupersymmetric case is that
the TsT duality preserves the regularity of the geometry and thus leads to tractable examples of
the duality. Also, the present theory has continuous tunable parameters which is an advantage
over the orbifold31] models?®

One of the by-products of our investigation of the spectrum of fluctuations near nontriv-
ial (J1, J2, J3) vacuum of deformed theory on the gauge theory side is the discovery of a
new type of solutions of the Bethe equations for the 3-spin sector of deformed theory (see
Appendices A and B Switching on the deformation parameters lifts the degeneracy of the spec-
trum of conformal dimensions of th& = 4 SYM theory and leads to new nontrivial relations

25 Other A = 1 or A = 0 models based on replacis§ by less-symmetric spaces of different topology (likk® [43]

or §2 x S3) and corresponding to non-perturbative isolated conformal fixed points on the gauge theory side, appear to be
under less theoretical control.
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between the structure of solutions of the Bethe equations and dimensions of gauge-theory opera-
tors with givenU (1) charges. A very interesting related question is the construction of the string
Bethe equations describing states which in the undeformed case belong to the same irreducible
representation oPSU(2, 2|4). The zero-mode states corresponding to fluctuations around the
(J1, J2, J3)vac are only one of the simplest examples; in general, the Bethe solutions describing
extended multi-spin string states in the same multiplet as the highest-weight states will exhibit
similar subtleties. Their proper description appears to require a modification of the standard ther-
modynamic limit arguments which should also be reflected in the construction of the string Bethe
equations.

There remain many interesting questions and directions for future research.

It would be important to study this nonsupersymmeificdeformed SYM theory in detail,
finding out, in particular, if it remains conformal (for properly adjusted coupling and deformation
parameters) even for finit&'. In the largeN limit this follows (to all orders in perturbation
theory) from the noncommutative nature of the deformation, the resfépaind the fact thay;
cannot be renormaliz&d. At finite N it is, in principle, straightforward to check the conformal
invariance (for properly adjusted parameters of the deformed Lagrangian) to the first two loop
orders using existing general relations for ghéunctions of generic nonsupersymmetric gauge
theorieg[42] (note that here, compared to orbifold models, all the fields are in the same adjoint
representation of/ (N)). The existence of exactly marginal nonsupersymmetric deformations of
N =4 SYM theory implied by the AdS/CFT duality seems an interesting subject worth detailed
study?’

On the string theory side, it remains to construct the explicit form of the Green—Schwarz
action describing the;-deformed theory. To do that one may apply the TsT transformation to
the superstring action ohdS; x S° [46] to using the world-sheet rules of T-duality formulated for
the Green—Schwarz superstring4i7].28 The approach used [8] should then lead to a local and
periodic Lax representation for the complete Green—Schwarz sigma model grrdbéormed
background, related to the Lax pair for tAdS; x S° string[48] by the TsT transformatior?s.

Having found the Lax representation one may then analyze the properties of the monodromy
matrix and derive the string Bethe equations forjtheeformed model analogous to those found

for superstring oMdS; x S° in [49,50] The string Bethe equations could then be compared to the
thermodynamic limit of the Bethe equations for thedeformed SYM theory (this was already
done for the simplestu(2), case in2]). One may also hope that the analysis of the string Bethe
equations will shed light on the structure of the dressing factor that appears in the Bethe ansatz

26 To see this we note that the operatdr27)deforming the ordinary product must have definite total dimension. Since

theU (1) generators have vanishing anomalous dimensions, it follows that the same must hpld far same argument

implies that, in noncommutative field theories, th@arameter is not renormalized. Explicit calculations show that this

is indeed correct to two loops and general analysis of the renormalization of such theories suggests that this is generally
true.

27 Supersymmetric exactly marginal deformations\éf= 4 SYM theory which can be obtained by orbifolding were
discussed if40].

28 Incidentally, that would give the first nontrivial example of the GS action in a nonsupersymmetric background. To
find the explicit form of this action it may be useful to start with thaS; x S5 action ina particulak -symmetry gauge

where its fermionic structure is explicit. One candidate for such a gaude #sI'y)0 = 0 whereg is the direction which

is T-dualized.

29 Again, a more direct way to derive the Lax pair for the GS string may be to start fromdfiex S° action and do

the transformations in the sigma model rather than start with the sigma model in the supergravity background constructed
using the T-duality rules.
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for quantum string$51] (in the deformed case the dressing factor may depeng @md that
may lead to an additional consistency condition for it).

It would be of much interest to study the stability of this string theory, i.e., the presence of
tachyons in its spectrum. The tachyons should be absent for small epp(ah well as at the
supersymmetric point of equgj).3°

This deformed model may thus be useful for understanding aspects of closed-string tachyon
physics in the AdS/CFT context (complementing orbifold model examples like type (6pne
with the advantage of having a tunable deformation parameter; an interesting possibility is that
in the nonsupersymmetrig¢-deformed theory double-trace operators are not generated in pertur-
bation theory, cf[44]). Some particular questions are if tachyons are present in the supergravity
approximation for generic values ¢f and how to identify the corresponding operators on the
gauge-theory side.

The present work gives also another illustration of the utility of the approach based on the
low-energy effective actions of Landau-Lifshitz type. Another interesting problem (already men-
tioned in[2]) is to try to use the LL action found on the gauge theory side to reconstruct the dual
geometry. This remains a challenge for the secahg 1 exactly marginal deformation ¢20]
which preserves only oné (1) isometry3!
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Appendix A. Fluctuations near ground states of spin chain

In Section2 we discussed fluctuations around vacua from the string theory perspective. The
fluctuations are found by expanding near the corresponding null geodesics representing point-
like string states with lowest energy. Here we shall attempt to analyze these excitations from the
gauge-theory standpoint, using the one-loop Bethe ansatz.

There is a qualitative difference between the vacua of the ¢y 0) and those of the type
(J1, J2, J3): the latter are quantum states, corresponding to a nontrivial condensate of roots.

30 since the masses should be smooth functions of the deformation parappeteseems that it is the lightest modes

of the undeformed background, i.e., the supergravity modes, that may become tachyonic first. In general, there may be
a mixing between “momentum” and “winding” modes under the TsT transformation (cf. the discussion of geodesics

in Section2). There is some analogy with the case of the Melvin twist of the flat-space tf@brywhere tachyons

appear in the winding sector for large enough twist parameteryit = %w a—R,; tachyons are present for generic twist
parameters, but are absent at special supersymmetric points. These winding tachyons can be seen at the supergravity leve
if one applies T-duality to the flat Melvin backgroufl].

31 For an attempt in this direction in the BMN limit SEEL]; a perturbative supergravity approach was developgthsih
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A.1. Fluctuations near théJ, 0, 0) vacuum

Let us first consider the small fluctuations around the obvious classical vacuu®0)
(L = J) of the spin chain, i.e., consider the states wittand J3 being smalf?
The rapidities of type:s in fact are divided into two groups. The first group of rapidities

which we denota(z) (k=1,..., J2) corresponds to fluctuations changing the chakgand the
second group of rapldltlezs(f,)( (k=1,...,J3) corresponds to fluctuations changing the charge

J3. The auxiliary rapidities: ; = u(3) (k=1,..., J3) are associated to rapldltla§3)

Following the intuition from the undeformed theory, we conclude that if the number of ex-
citations is small, their momenta are also small and therefore their rapidities are large. To make
this explicit we introduce, as usual, the rescaled rapidities

3] (3
@ _ Uy k Uy k

, ©)]
xl’k T, 'xl,k T (Al)

To get a consistent system of equations in the latgiémit we also have to assume that the
auxiliary rapiditiesus . have the following scaling behavior

3 3 3 3 3
u;,)c—u(ll)c—i-wg,)(— i,ﬁ—l—wéz, (A.2)

wherew(s) do not depend oiL. That means that in the largelimit an auxiliary rap|d|tyu(3)

may differ fromu(s) only by a constant.
Then, in terms of the rescaled rapidities the logarithm of the Bethe equétidiy—(4.13)
and of the momentum constraif@t. 14) expanded for largé. become

—21 Lapy + 2 Ja(azp + a1 + a13) — 27”‘(12]1 +

(2)
X1k
J2
Z (2)+Z <2> x(3>’
i= ll i=1 lk 1,i
l;ék
—2m Lagy + 27 J3(aze + a1 + a13) + 27Tn(13,)( +— NE)
X1k
3
i 1L +i 2/L Inw§2+l/2
= _— —_— l _—
3 (3) 3 2 (3)
i=1 X1k — X1 i=1 X1k — X1 —i/2
iZk
2 L(a21 + a13) — 27T(J2 + J3) (32 + 21 + @13) + szf,l
3, .
ByL ws +i/2
=2 <3>+Z <2> @ +iln w® 12
t;ﬂ%xlk X1 i=1%1i xl,k ki
1

32 The fluctuations around the other two similar vacig,L,0) and(0, 0, L), are related to those around tf¥e, 0, 0)
by simple relabeling.



S.A. Frolov et al. / Nuclear Physics B 731 (2005) 1-44 35

J2

1 1
2w L(Joao1 — J3w13) — 2mm = Z (2) + Z X(S) , (A.3)
k=1 lk k=1"1k

where, as in(4.7), a12 = —y3, a2z = —y1, az1 = —y2 andLe;; is assumed to be fixed in the
scaling limit. These equations hold regardless of any assumptions on the size of the quantum
numbersJ;. In the case of théJ, Jo, J3) fluctuations around the vacuu@d, 0, 0) we further
require that/s ~ O(L) while J2, J3 ~ O(1). This assumption implies that most of the terms in
the equations can be safely neglected, and the system takes the following simple form
—27 Lapy — 27'[1’1&2])( + — - =0,
1

1
3 .
—27 Lao1 + 277”1,1( + = = In

3 . n’
X9k wéz —i/2
3 wf,)( +1i/2
27 L(ap + «13) + 27m2 =iln—2——,
3 _ 2
2k — 1/
Jo 1 J3 1
2w L(Joap1 — Jaw13) — 2rm = Z (2) + Z 3 (A.4)

k=1%1k  k=1"1k
where we took into account that; ~ 1/L.

To find the energy spectrum we need to know only the rapiditj@sandxf) which can be
easily determined from these equations

1 2 2

@7 —27 (Laz1 + 1) = =27 (n {5y + ysL).

X1k

1 3 3 3 3

—5 =21 (Larz+n) +n) = =27 (15} +n) + y2L). (A.5)
X1k

Shifting n(3) — n(13) n(zg), we find the energy spectrum

J2
s
E= ZLZ[Z( @ +y3L) +Z ) +y2L) } (A.6)

k=1

which agrees precisely with the leading term in the expansion of the string theory r¢2uidih
Furthermore, the number of such states is also correct, being equal to the number of states in the
undeformed theory.

The discussion above can be thought of as an explicitimplementation of the general arguments
of [52] regarding the structures appearing in the thermodynamic limit of\fre 4 SYM spin
chain. Adapting their analysis to our context it follows that, for an arbitrary number of excitations,
the relevant equations in the thermodynamic limit are the first two equg#oBscorresponding
to the 1-stacks, and the sum of the second and third equatho8% corresponding to the 2-
stacks®® Indeed, we have seen that these combinations led to the sol(#idi)s

33 The scalingA.2) implements the fact that the separation of roots inside a sta®kds.
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A.2. Fluctuations near thé/Jy, Jo, J3) vacuum

Let us now turn to the analysis of the fluctuations around the quantum vatinb, J3)
(4.19) i.e., now we will assume that; ~ O(L) for all i =1, 2, 3. Since such states are built
out of large numbers of excitations above the classical vacdum, 0) of the spin chain, it
is convenient to take the thermodynamic limit, i.e..> oco. From the previous discussion and
Ref.[52] the relevant equations are a subsegtfB)

2m (Jaazz — Jio21) + 2 (Jaoaz — Jaaz1) — Znnl + @

X1k
& 2L BoyL
_Z @ _ (2)+Z @ __0o°
i=1 Y1k YL i=1Y1k T X
ik
2 (Jaoaz — J1021) + 27 (Jao13 — Joazn) + 2n') + RE}
X1k
3 .

B J3 1/L J2 2/L I wéz—f—l/z
2@ st @ o " e
i=1 YLk — M i=1 Mk T A wy; =i/

ik
21 (1013 — Joozp) + 27 (Jaens — Joazn) + 2mn + mE]
X1k
Ja
Z (3>+Z <3> x(2>’
i= lz i=1 1k 1,i
t;ﬁk
Jo J3 1
2w L(Joop1 — Jaa13) — 2nmL = kzl (2) kZ 3 (A.7)
X1k X1k

with n,(f) = n(13,,){ + nf,)( As we have discussed in Sectidnthe vacuum(Ji, J2, J3)vac exists

whenever the angular momentum vectdryac iS a zero eigenvector of the deformation matrix
Amn (I.€., ¥12J2.vac + @13J3.vac = @12J2.vac — @31J3.vac = 0, €etc.). Fluctuations around this vac-
uum havej; = J; — J; vac~ L* with u < 1 and therefore the deformation-dependent terms on
the left-hand side of the equations above are of ordéft 1 (sinceq;; L is fixed). Such a source
term appears in the equations determining the vacuum rapidities as well and is an illustration of
the usual fact that excitations around any quantum vacuum back-react on the vacuum conden-
sate. In this case, the deviation of the angular momentum vector from being a 0-eigenvector of
the deformation matrix acts as a source in the equations for the vacuum rapidities and renders
them finite (albeit larger than the other ones by a factak Jof

From the discussion in Sectighit is clear that not all mode numbers are free parameters.
Because of the fact that the rapidities building the vacuum state are infinite in the absence of ad-
ditional excitations, EqgA.7) imply that the corresponding mode numbers vanish. We therefore
have the following structure:

nl,k == 07 k = 15 LX) JZ.VaC+ J3,VaCa
n2,k = Ov k = 11 ey J3,vac»
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nyy=free k= Jovac+ Javac+1,..., 2+ J3,
nog = free k= J3vac+ 1,..., /3 (A.8)

Further analyzindA.8) requires making a distinction between the case in which all the mode
numbers which are free parameters are nonzero and the case in which at least one of the mode
numbers vanish. We will analyze here the first case and defAppendix Bthe case of all
vanishing mode numbers.

If all the free mode numbers are nonvanishing, it follows that the corresponding rapidities
are of order unity as well as that in the corresponding equations the deformation-dependent terms
are subleading compared to the mode numbers. Then, using the fact that all vacuum rapidities
are large, it follows that in the equations with nonvanishing mode number only very few terms
survive on the right-hand side, insufficient to compensate for the explititsuppression. This
implies thatxf,z andxf,l are given by

1 1
e o ®
o =gy g =2y, (A.9)

X1k X1k

i.e., are the same as in the undeformed theory.

The consistency of all other equations is also guaranteed by the fact that the deformation en-
ters at higher orders in the/1 expansion. If mode numbers of the auxiliary Bethe equations
are nonzero, they lead to quite complicated expressions for the corresponding rapjdifies
tunately, we do not need them since they do not enter the expressions for the energy or the
momentum constraint given by

A Jo+J3 Jo+J3
_ 2 _ —_
E= 272 Z M1k Z nyk=mL=0. (A.10)
k=J2 vactJ3 vactl k=J2 vactJ3vactl

The vanishing of the momentum numberis implied by the fact that we considered only few
excitations above the vacuum.

The conclusion is that the small fluctuations around(the J», J3) vacuum having nonzero
mode numbers are identical to those in the undeformed theory. This is the same result as was
found on the string-theory side in Secti@r8.2

Appendix B. The anomalous dimensions of operators dual to lowest energy pointlike
strings

The special case in which all mode numbergAn7) vanish is quite interesting and non-
trivial. The corresponding operators are BPS in the absence of the deformation and thus their
anomalous dimensions are solely due to the presence of the deformation. In Qegthme
have seen that the zero-mode fluctuations aroundihe/», J3)vac geodesics are part of a larger
class of pointlike string configurations which in the large angular momentum limit become (ap-
proximate) solutions. Their energies in this limit are given(By8) In this appendix we will
go beyond the zero-mode approximatiiL ~ J; vac/ L and find the anomalous dimensions of
the gauge theory operators corresponding to all such pointlike strings captured by the deformed
sw3) sector.

There exists a conceptual issue related to the J2, J3)vac State being ajuantum rather
than classical vacuums mentioned before, the Bethe equati¢hd 2)(4.13)employ the state
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(L, 0,0) as the vacuum (“classical” vacuum, i.e., a state with no excitations); the quantum vac-
uum appears as a nontrivial configuration of Bethe roots. From this perspective, fluctuations
around this quantum state are on the one hand similar to a generic state with large angular mo-
menta and on the other hand special because they are accidentally close to a zero energy state.
While an analog of the Bethe equations havidg, J2, J3)vac as its “classical” vacuum would
be a desirable starting point for studying the fluctuations near that state, deriving such equations
remains an interesting open problem.

In the following we will discuss the excitations with vanishing mode numbgidose to the
(J1, J2, J3)vac State, using the Bethe equatiais12)—(4.13) Remarkably, we will find that the
results agree with the exact string theory predicti¢h48)

Depending on the departure from tha, Jo, J3)vac State, it is easy to see what is the scaling
of the Bethe roots with the length of the chain. The relevant equations follow(f#or)

J2

. 1 2/L
2ty t =25 o @ Z <2> (3>’ B.1)
X1k i=1 xl,k X1 i=1 X1k T AL
i#k
J3 Jo
, 1 2/L 1/L
“iytm =) m st e @ (B8.2)
Xk i=1 %1k X =1 Yk T X
l;ék
. , 1/L 1/L
21 (j2ys — jav2), = Z @ Z RER (B.3)

k=1 %1k k=1 X1k

where we explicitly used the expression of the vacuum quantum nurabgr®, J3)vac and, as
before,

vi
J,=Ji—;lL, Y=vi+v2+va (B.4)

The parameterg; describe the deviation of the staté, J», J3) from the vacuum; therefore,
their scaling with the length of the chain js~ L* with 0 < u < 1. Then, from(B.3) it trivially

follows that the constant source terms scale Jige~ L*~1 which leads to rapiditiesiz,ﬂ, xf,z
L1~#, Still, to leading order, the expression for the energy does not involve any fractional powers
of L. Indeed, the energy is an even function of the constant source in the Bethe equations, which

vanishes in its absence. Thus, schematically and to the leading order, the energy behaves as

T A @ O
F(x X )
Q2 Z 27 22— 1%
871 Pt ”1k+4 = 82221

A
~m(ijl_“)z[(’)(J2+J3)+m] (yL) [0(1)+ ] (®5)

This L-dependence is similar to the one derived on the string theory s{@4iB) The existence
of a rescaling of the rapidities which makes all terms in the Bethe equations of the same order
also implies that we can safely neglect terms of the tyfié. ). This observation will be useful
shortly.

The Egs.(B.1)—(B.3)are similar to those if53]. The differences are the nonintegrality of
the constant term on their left-hand side and potential term on the left hand SB&pfThe
solution is, however, similar to that {53]. To analyze them it is useful to proceed in the standard
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way and introduce the resolvents

Ji

1 1 '
Gi=7) — =23 (B-6)
k=1% T X1k

in terms of which the anomalous dimensions are

M(G’Z(O) + G5(0)). (B.7)

To find G5(0) and G5(0) we begin by multiplying the first equation {i8.1)—(B. 3)by (2)

and the second by—(s) and summing all the equations. This leads to
)C*Xl'k

1
21j3y Ga(x) + ;(Gz(X) — G2(0))

J2o 3

1 1
= Ga(x)? ——Gz(x)+ ZZ (2))( <2) (3>)

klll(_

1
—21j2yGs(x) + ;(Gs(X) - G3(0))

1 B, L 1
=Ga(x)% - —Gg(x)—i- LZI;ZZ( YN
=27 (joys — jay2) = G2(0) + G3(0). (B.8)

Further summing the first two equations and neglecting subleading terms we find

1
(272y)G2(x) + (=21 27)Ga(x) + ~[Ga(x) + Ga(x) = G2(0) — G3(0)]
=[Ga(x) + G3(0)]* — G2(x)G3(x),
=21 (joya — jay2) = G2(0) + G3(0). (B.9)

The limit x — O expresses the derivative of the sum of the resolvents evaluated at the origin in
terms of the values off» andGz atx = 0:

G5(0) + G5(0) = C? — G2(0)G3(0) — AG2(0) — BG3(0), (B.10)
G2(0) + G3(0) =-C, (B.11)

where, to shorten later equations, we introduced the notation

A =2mj3y, B = —-27mjy, C =27 (j2y3 — jay2)- (B.12)

To find G»(0) and G3(0) we need another equation in addition(B111); it can be obtained by
first multiplying (B.1) by the factoer 1 (3}“ = and summing ovek, and by multiplying

1m 1k
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(B.2) by Zm 1 (2%/7% and summing ovet:

J3 )2 J3 )2

AZZ@ +ZZ@®(%

m=1k=1*1m xl,k m=1 k=1 1k
J3 Jo J3 Jo

1/L 1/L
_Z Z ) <2>)( <3> <2> ZZ ) <2>)( <2) <3>)

m=1 k#i= l(xlm m,i=1 k= 1( 1,m
Jo J3 Jo J3

BY ) o (2) -2 56 o NEy (3) @)

m=1k=1%1m xl,k m=1 k=1 X1 (X

Jo U3 Jo  J3

1/L 1/L
N Z Z (3) (2) (2) (3) Z Z (3) (2 (3) (2)
m=1 k#i= 1( )( m,i=1 k= 1( 1m)( )
(B.13)
Then, summing these two equations and dividing Byeads to
Bl 12
A-B)> Y ———— & @ T 62060 =0. (B.14)
m=1 k=1 1m ~ *1k
The unknown sum can be determined by summing E84.) or Egs.(B.2):
Bl 112
> RO —G3(0) + Bz = G2(0) — Az
m=1 k=1 l,k
= —G3(0) + B( " ”) G2(0) — (”3 n ’—3) (B.15)
y L y L
where we used the notation
el
L y L

for the filling fractions. Thus, th&>(0) andG3(0) are determined by
(A— B)[Bots - G3(0)] + G2(00G3(0) =0,
G2(0) + G3(0) =—C. (B.16)

From the definition(B.6) it follows that resolvents5, and G3 identically vanish ifJ, =
J3 = 0; we will therefore pick the solution foG2(0) and G3(0) which also vanishes in this
limit:

G2(0) = [A B—C—A4x3B(A—B)+(A—B+0)?],

1
G3(0):—[—A+B—C+\/4¢ng(A—B)+(A—B+C)2]. (B.17)
Using(B.10), it is then easy to find wha¥,(0) + G5(0) is

G5(0) + G5(0) =a3B(A— B)+ C(A+C). (B.18)
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Finally, using the definitionB.12)to expresgB.18)in terms of the deformation parametess
and the deviations of the angular momenta from the vacuum valugne anomalous dimensions
are found to be

ey (G%(0) + G5(0))

o
2L

As promised, this reproduces the exact string theory ré2148)

The calculation above shows that there exists a configuration of Bethe roots whose energy
matches that of the string theory zero modes. Even though we have not found explicitly the
rapidity distribution (since we only needed the values of the resolvents and their first derivative
at the origin) we may comment on some of its features. In the undeformed thedk thie, J3)

BPS states are described by infinite rapidities which are also infinitely separated. As we turn on
the deformation, the Bethe roats » descend to finite distance, of the orderlgf(jy). The fact

that initially their differences were also infinite suggests that in the presence of the deformation
they will also be of the order of./(jy). The distance between them is still large, and that
suggests that the Bethe roots describing the zero modes do not condense.

Besides the solution described above, His1)—(B.3) have additional ones. For exam-
ple, if jo» = j3 andy, = y3 it is possible to construct a solution satisfyiiiy(x) — G3(x) =
Cx(G2(x) + G3(x)) whereC is a constant which may be determined from the asymptotic behav-
ior of the resolvents. It turns out thé&t>(x) + G3z(x) has no cut, so it also does not describe a
root condensate. Rather, it has two polest&t/3C) L. Its energy has the same scaling with the
length of the chain as i(B.5), but it is a nonanalytic function of the deformation parametgrs
This feature might tempt one to discard it, based on the fact that the undeformed theory should
be reached smoothly in the limit — 0. The physical interpretation of this solution is not clear
at the moment.

It is worth pointing out that, in the calculation and the matching described above, the value of
the power 0< 1 < 1 in the scalingi ~ L* was unimportant. This is in agreement with the string
theory discussion in Sectidh3.2 From the perspective of the Bethe ansatz we expect finite size
corrections to the energi€B.19). Since Eqs(B.1)—(B.3)include all terms up ta) (1) in the
1/L expansion of the logarithm of the Bethe equations, these corrections should be suppressed
by additional powers of AL. It would be interesting, though appears to be quite challenging, to
compare these corrections to tlaecorrections on the string theory side. Techniques developed
in [54] may be useful in this respect.

) ) ) 1 .
[V1V2]§ + voy3jZ + yayijz — Tntrat y3)2111213]. (B.19)
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