
INSTITUTE OF PHYSICS PUBLISHING CLASSICAL AND QUANTUM GRAVITY

Class. Quantum Grav. 22 (2005) 5089–5107 doi:10.1088/0264-9381/22/23/011

Gravitational wave extraction based on Cauchy–
characteristic extraction and characteristic evolution
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Abstract
We implement a code to find the gravitational news at future null infinity
by using data from a Cauchy code as boundary data for a characteristic
code. This technique of Cauchy–characteristic extraction (CCE) allows for
the unambiguous extraction of gravitational waves from numerical simulations.
We first test the technique on non-radiative spacetimes: Minkowski spacetime,
perturbations of Minkowski spacetime and static black hole spacetimes in
various gauges. We show the convergence and limitations of the algorithm and
illustrate its success in cases where other wave extraction methods fail. We
further apply our techniques to a standard radiative test case for wave extraction,
a linearized Teukolsky wave, presenting our results in comparison to the Zerilli
technique, and we argue for the advantages of our method of extraction.

PACS numbers: 04.25.Dm, 95.30.Sf, 97.60.Lf

1. Introduction

The importance of gravitational waveform templates for gravitational wave detectors implies
a need for accurate 3D numerical simulations of isolated sources such as binary black hole
mergers. These simulations are often done with Cauchy codes based on a ‘3 + 1’ slicing of
spacetime. With the slicing conditions most commonly used in numerical simulations, two
problems arise: artificial boundary conditions must be placed on the computational domain,
and information such as the gravitational news cannot be extracted at future null infinity I+.

To avoid these problems, two possible approaches have been suggested. One way is to
evolve the entire spacetime. For example, a hyperboloidal slicing of the spacetime [1–3]
allows information to propagate to I+ in finite time. Conformal compactifications, such as
those suggested by the conformal field equations [4, 5] or employed in [6], allow I+ to be
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located at a finite computational coordinate in a regular way. Another example is characteristic
evolution based on a Bondi–Sachs line element, which gives a natural description of the
radiation region of spacetime extending to I+. Characteristic numerical codes have been used
to study tail decay [7], critical phenomena [8–12], singularity structure [13–16] and fluid
collapse [17–19], to list just a few examples.

Unfortunately, characteristic methods suffer from the appearance of caustics in the inner
strong field region. The problem of caustics can be avoided by evolving the strong field
region with a standard Cauchy slicing whilst using the characteristic approach for the exterior.
This technique of Cauchy–characteristic matching (CCM) has proved successful in numerical
evolution of the spherically symmetric Klein–Gordon–Einstein field equations [20], for 3D
non-linear wave equations [21] and for the linearized harmonic Einstein system [22].

The second way of avoiding problems with standard Cauchy codes is a perturbative
approach. The standard way of extracting gravitational waves from a numerical simulation
is based on perturbation theory, using either the quadrupole formula or first-order gauge
invariant formalisms based on the work of Zerilli and Moncrief [23, 24]. The vast majority of
waveform templates are currently based upon these approaches. Numerical codes able to solve
a generalization of the Zerilli equation to a three-dimensional Cartesian coordinate system
and to extract the gravitational signal are reported in [25–28]. Extraction of gravitational
waves based on the Zerilli–Moncrief formalism in fully three-dimensional simulations are
also presented in [29, 30].

Perturbative methods have also been used to provide boundary conditions at the outer
boundary of the Cauchy grid. This approach of Cauchy–perturbative matching has been
implemented numerically in [31–33]. All those works are impressive, but discrepancies
between the results of a perturbative approach and the full non-linear theory cannot be
determined without solving the fully non-linear problem, although error estimates have been
made [34].

Of these approaches, CCM has many appealing properties. The characteristic description
of the exterior, particularly at I+, allows for a natural extraction of gravitational information
such as the news. Matching to a standard Cauchy code in the interior implies that the methods
employed in current 3D numerical simulations may immediately be used. As both Cauchy
and characteristic approaches have been well tested and commonly used, CCM is a natural
way of avoiding the potential problems of caustics in the characteristic region and artificial
boundaries in the Cauchy region.

In this work, we take a step towards the full CCM method by using a Cauchy code
to provide boundary data for a characteristic code which propagates the solution to I+ to
extract the waveform. This procedure of Cauchy–characteristic extraction (CCE) allows
the computation of gravitational waves in an unambiguous fashion. CCE was successfully
implemented in the quasispherical approximation in [35]; here we demonstrate it in the fully
non-linear case.

In this work, the outer region extending to I+ is numerically evolved by the Pitt null
code [20, 35–42]. The link between the Cauchy and the characteristic modules is done by a
non-linear 3D CCE algorithm [35, 41–44]. At the outer edge of the characteristic grid, the
Bondi news is computed [37, 39, 45, 46]. We have imported the CCE code into the Cactus
computational infrastructure [47–50]. Within this infrastructure, we have been able to use
two separate Cauchy codes implementing the BSSN and harmonic 3 + 1 formulations of the
Einstein equations. This allows us to test the robustness of the CCE approach.

We compare CCE with the Zerilli extraction technique [23, 24, 51] for both non-radiative
and radiative spacetimes. The Zerilli formalism is based on the paper of Nagar and Rezzolla
[52] which reviews and collects the relevant expressions related to the Regge–Wheeler and
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Zerilli equations for the odd- and even-parity perturbations of a Schwarzschild spacetime. The
conventions presented in their review are implemented in the Wave Extract code, included in
the Cactus computational toolkit open source infrastructure [49].

For non-radiative spacetimes, the comparison gives results consistent with [34]: the CCE
algorithm is O(�2) accurate (where � is the computational grid step), while the accuracy of
the perturbative (Zerilli) approach isO(r−2) where r is the radius of the wave extraction sphere.
Since the signal is O(r−1), this implies an O(r−1) relative error in the Zerilli approach. As a
result, it is shown in [34] that CCM is more efficient computationally in the sense that, as the
desired error goes to zero, the amount of computation required for CCM becomes negligible
compared to a pure Cauchy computation.

We further apply our algorithms to the study of the propagation of a linearized Teukolsky
gravitational wave [27, 53–55] and we compare the CCE and Zerilli wave signal. For the
case of a large extraction radius, we find that both methods give very good results and we
demonstrate convergence to the analytical waveform of the Teukolsky solution for the CCE
news. We show that the CCE waveform does not depend upon the extraction radius, which is
a major advantage of the CCE method. A small extraction radius has no effect on the CCE
waveform but it introduces errors in the Zerilli waveform.

In section 2, we outline some general background and notation. In section 3, we detail
the transformation from the Cauchy slice to the characteristic slice. In section 4.1, we give
a brief summary of the characteristic evolution code. In section 4.2, we describe how the
news is computed at I+. Finally, in section 5, we give two sets of tests in full 3D numerical
relativity to validate the accuracy, convergence and robustness of the CCE algorithm. The
first set contains four non-radiative tests, with no gravitational wave content. The second one
is a radiative three-dimensional test. The results show that CCE is valid and accurate in both
non-radiative and truly radiative situations.

2. Notation, geometry and metrics

The implementation of CCE described here follows previous descriptions of Cauchy–
characteristic extraction and matching in the literature. Much of the work has been presented
earlier [35, 41–44]. Here we briefly outline the notation, geometry and metrics used.

The geometry is described by two separate foliations, neither of which cover the entire
spacetime. The Cauchy foliation is described using a standard 3 + 1 ADM-type metric [56],

ds2 = −(α2 − βiβ
i)dt2 + 2βi dt dxi + γij dxi dxj . (2.1)

Many different formulations can be used, given initial and boundary data, to evolve the 3-metric
γij . In the following, we shall consider either the BSSN formulation [57, 58] as implemented
in [59] or the generalized harmonic formulation [60] as implemented in the Abigel code
[61]. In both cases, all interaction between the Cauchy and characteristic foliations will be
performed in terms of the ADM metric, equation (2.1).

The Cauchy slice does not extend to asymptotic infinity. Instead, an artificial boundary is
placed at |xi | = Li . Within this artificial boundary, a world-tube � is constructed such that its
intersection with any t = const Cauchy slice is defined as a Cartesian sphere x2 +y2 +z2 = R2,
with angular coordinates labelled by ỹÃ, Ã = (2, 3). The world-tube � is then used as the
inner boundary of a characteristic foliation which uses the standard Bondi–Sachs metric
[62, 63]

ds2 = −
(

e2β V

r
− r2hABUAUB

)
du2 − 2 e2β du dr − 2r2hABUB du dyA + r2hAB dyA dyB.

(2.2)
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Here u labels the outgoing null hypersurfaces, yA = ỹÃ the angular coordinates (the null rays
emanating from the world-tube) and r is a radial surface area distance. The angular metric
hAB obeys the condition

det(hAB) = det(qAB), (2.3)

where qAB is the unit-sphere metric. This coordinate system consistently covers the world-tube
� and the exterior spacetime as long as it is free of caustics.

The free variables in the Bondi–Sachs metric are then V, β,UA and hAB . The physical
interpretation of these variables is that hAB contains the two radiative degrees of freedom,
e2β measures the expansion of the null cone and V/r is the counterpart of the Newtonian
gravitational potential. The 2 + 1 decomposition of the intrinsic metric on the r = const
world-tube

γij dyidyj = −e2β V

r
du2 + r2hAB(dyA − UA du)(dyB − UB du) (2.4)

identifies r2hAB as the intrinsic 2-metric of the u foliation, −UA as the shift vector and e2βV/r

as the square of the lapse.

3. The CCE algorithm

The crucial task of the CCE algorithm is to take Cauchy data given in the ADM form (2.1) in
a neighbourhood of the world-tube � and to transform it into boundary data for the Bondi–
Sachs metric (2.2). Then, the Bondi code can use the hypersurface equations to evolve the
appropriate quantities out to I+ so that the gravitational news may be extracted there. Much
of the present version of the CCE algorithm has been presented in earlier work [35, 41–44],
so in this section we will give a brief description, highlighting a few new features.

In section 2, the world-tube was defined as a Cartesian sphere x2 + y2 + z2 = R2, with
angular coordinates labelled by ỹÃ, Ã = (2, 3). In addition to the angular coordinates, we
set u = t on the world-tube and choose the fourth coordinate, λ, to be the affine parameter
along the radial direction, with λ|� = 0. The characteristic cones are constructed such that λ

is the future oriented, outgoing null direction normal to the foliation of �. (In order to avoid
a singular Jacobian for the Cauchy–characteristic coordinate transformation, we require that
the world-tube � be timelike.) The affine parameter λ is used because the world-tube is not
constructed to be a surface of constant Bondi r.

The choice of the angular coordinates is determined following [64] by the use of
two stereographic patches. The use of two patches avoids numerical difficulties in taking
derivatives near the poles when standard spherical coordinates are used. The use of only
two patches may not give the most accurate numerical results; various ways of discretizing
the 2-sphere on multiple patches are discussed in [65]. The two patches are centred around
the North and South poles with the stereographic coordinates related to the usual spherical
coordinates (θ, φ) by

ξNorth =
√

1 − cos θ

1 + cos θ
eiφ, ξSouth =

√
1 + cos θ

1 − cos θ
e−iφ (3.1)

and ξ = ỹ2 + iỹ3 = q + ip, where i = √−1. We also introduce the complex vector
on the sphere qA = (P/2)

(
δA

2 + iδA
3

)
and its co-vector qA = (2/P )

(
δ2
A + iδ3

A

)
, with

P = 1 + ξ ξ̄ = 1 + q2 + p2. The orthogonality condition q̄AqA = 2 is satisfied by construction.
The unit-sphere metric corresponding to these coordinates is

qAB = 1

2
(qAq̄B + q̄AqB) = 4

P 2

[
1 0
0 1

]
. (3.2)
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The angular subspace in the Bondi code is treated by use of the eth formalism and
spin-weighted quantities. (See [39, 64] for details.)

The CCE algorithm starts by interpolating the Cauchy metric γij , lapse α and shift βi and
their spatial derivatives onto the world-tube. Time derivatives are computed via backwards
finite differencing done along �, e.g., at t = tN we write

(∂tF )[N] = 1

2�t
(3F[N] − 4F[N−1] + F[N−2]) + O((�t)2). (3.3)

Knowledge of the Cauchy metric and its 4-derivative is enough to compute the affine metric
η̃α̃β̃ as a Taylor series expansion around the world-tube

η̃α̃β̃ = η̃α̃β̃
∣∣
�

+ λη̃
α̃β̃

,λ

∣∣
�

+ O(λ2). (3.4)

Next, a second null coordinate system (the Bondi–Sachs system) is introduced

yα = (y1, yA, y4), where yA = ỹÃ, y1 = ỹ1 = u. (3.5)

The fourth coordinate y4 = r is a surface area coordinate, defined by

r =
(

det(η̃ÃB̃ )

det(qAB)

) 1
4

= P

2
det(η̃ÃB̃ )

1
4 . (3.6)

The Bondi–Sachs metric on the extraction world-tube can be computed as

η
µν

|� =
(

∂yµ

∂ỹα̃

∂yν

∂ỹβ̃
η̃α̃β̃

)
|�

. (3.7)

Note that the metric on the sphere is unchanged by this coordinate transformation, i.e.,
ηAB = η̃ÃB̃ . Therefore, one only needs to work with the Jacobian components that correspond
to derivatives of r.

In terms of qA, q̄A, the two-dimensional metric ηAB can be encoded into the metric
functions

J ≡ 1
2qAqBhAB, K ≡ 1

2qAq̄BhAB. (3.8)

The determinant condition (2.3) translates into

K2 = 1 + J J̄ . (3.9)

With hAB symmetric and of fixed determinant, there are only two degrees of freedom in the
angular metric that are encoded into the complex function J .

From equation (2.2), we have

β = − 1
2 log(−ηrr ) = 1

2 log(r,λ). (3.10)

This quantity is a measure of the expansion of the light rays as they propagate outwards. The
CCE and the Bondi codes have been implemented with the assumption that r,λ > 0 (or that β

is real).
The radial–angular components ηrA can be represented by

U ≡ UAqA = ηrA

ηru
, (3.11)

while the radial–radial component ηrr is contained in

W ≡ V − r

r2
. (3.12)

In addition to these quantities, in [40] the auxiliary variables

ν ≡ �̄J = 1
2hAB,CqAqBq̄C, (3.13)
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k ≡ �K = 1
2hAB,CqAq̄BqC + 2ξK, (3.14)

B ≡ �β = β,AqA (3.15)

have been introduced to eliminate the need to explicitly use second angular derivatives in
the Bondi evolution code. The required boundary data are J, β,U, ∂rU,W, ν, k and B. (See
section 4.1.) Note that once the Bondi–Sachs metric is known on the world-tube, one can only
obtain J, β,U,W . In order to provide the rest of the necessary boundary data, we need the
radial derivative of the Bondi–Sachs metric

(∂λη
µν)|� =

(
∂2yµ

∂λ∂ỹα̃

∂yν

∂ỹβ̃
η̃α̃β̃ +

∂yµ

∂ỹα̃

∂2yν

∂λ∂ỹβ̃
η̃α̃β̃ +

∂yµ

∂ỹα̃

∂yν

∂ỹβ̃
η̃

α̃β̃

,λ

)
|�

. (3.16)

With η̃
α̃β̃

,λ already known, the only non-trivial parts in equation (3.16) are the Jacobian terms

r,λα̃ = ∂2y1

∂λ∂ỹα̃
. (3.17)

These depend on the second derivatives of the Cauchy metric. In order to avoid possible
numerical problems caused by interpolating second derivatives onto the world-tube, we
calculate r,λÃ by taking centred derivatives of r,λ on the world-tube and we calculate r,λu

by backwards differencing in time along the world-tube. The remaining term r,λλ is calculated
using the identity

β,λ = − r,λλ

2r,λ

(3.18)

and the characteristic equation

β,r = r

8
(J,r J̄,r − (K,r)

2). (3.19)

(The right-hand side of equation (3.19) can be computed in terms of J,r = J,λ/r,λ, which, in
turn, can be computed in terms of already known quantities.)

Knowledge of the radial derivative of the Bondi metric is important not only for obtaining
(∂rU)|� but also because the grid structure of the Bondi code is based on the radial coordinate r,
and the extraction world-tube will not, in general, coincide with any of these radial grid points.
We need to use, therefore, Taylor series expansions to fill the Bondi grid points surrounding
� with the necessary boundary data. We write, e.g.,

β = β|� + λβ,λ + O(λ2). (3.20)

Another problem is the need to provide the auxiliary angular variables, B, k and ν on
the world-tube. These have been defined as the � derivatives of Bondi fields in the yα frame,
while taking angular derivatives on the world-tube amounts to computing � derivatives in the
ỹα̃ frame. The correction term between the two frames is

�F = �̃F − F,λ

r,λ

�̃r. (3.21)

The quantities J, �̃J and J,λ are known from the interpolated Cauchy data, while J,λλ is not
computed in CCE. Thus, one can compute �J but not �J,λ. As a consequence, we cannot use a
simple Taylor series expansion to place ν on the Bondi grid to O(λ2) accuracy. The solution to
this problem is to first place J on Bondi grid points surrounding the world-tube, then compute�J on those points (i.e., compute angular derivatives in the Bondi–Sachs frame), and then
calculate ∂λ�J on the world-tube by use of the neighbouring Bondi grid values of �J . With
ν = �J and its radial derivative known on the world-tube, we can then use the standard O(λ2)

expansion to provide ν at Bondi grid points surrounding the world-tube. This way we make
maximal use of the Cauchy data as interpolated onto the world-tube and minimal use of the
finite-difference � algorithm that has its own discontinuous O(�2) error at the edges of the
stereographic patches. A similar approach is used for k = �K and B = �β.
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4. The Bondi code and the news algorithm

4.1. The Bondi code

The inner workings of the Bondi code had been described in detail elsewhere (see [20, 35–42])
so here we give only a brief overview of the algorithm. As already stated in section 3, the
variables of the code are J, β,U,W as well as ν, k, B. Out of these, the equation for J is the
only one to contain a time derivative. For this reason, J is updated via an evolution stencil that
involves two time levels. The rest of the variables are integrated radially from the world-tube
out to I+. The integration constants are set by CCE. All of these radial integration equations
are first differential order in r except for the U equation which contains U,rr . For this reason,
integrating U requires two constants, which explains the need to provide, at the world-tube, U
as well as U,r .

4.2. The news algorithm

The calculation of the Bondi news function on I+ is based on the algorithm developed in
[39] with the modifications introduced in [45, 46] (an alternative calculation for the news was
recently introduced in [66]). Here we present an overview of the algorithm.

The Bondi–Sachs metric (2.2) in a neighbourhood of I+ in (u, xA, l = 1/r) coordinates
(after multiplying by a conformal factor l2) has the form

l2 ds2 = O(l2) du2 + 2 e2βdu dl − 2hABUBdu dxA + hAB dxA dxB, (4.1)

where the metric variables β, UA and hAB have the asymptotic expansions β = H +
O(l2), UA = LA + O(l) and hAB = HAB + lcAB + O(l2). We can always find coordinates
(uB, qB, pB, lB) (hereafter referred to as ‘inertial’ coordinates), and an associated conformal
metric dsB

2 = ω2 ds2 (ω > 0), such that (i)
(

∂
∂uB

)
is null and affine and points along the

null generators of I+, (ii) lB = ωl + O(l2), and (iii) the conformal metric in the subspace
(uB = const, lB = const) is the unit-sphere metric on I+. We fix a null tetrad on I+ by
choosing na to be affine and to point along the null generators of I+ and by choosing m(am̄b)

to be the unit-sphere covariant metric in the two-dimensional angular subspace. In inertial
coordinates (uB, qB, pB, lB) on I+, the tetrad has the form

ña = (1, 0, 0, 0), (4.2)

l̃a = (0, 0, 0, 1), (4.3)

m̃a = (0, P̃ /2, iP̃ /2, 0), (4.4)

where the tilde denotes a quantity defined with respect to inertial observers. Here, P̃ as
P introduced in equation (3.2), but for an inertial observer. Note that m̃(A ¯̃mB) = qAB as
required. We define a complex vector Fa , analogous to m̃a (i.e. F (AF̄ B) = HAB), adapted to
the coordinates used in the characteristic evolution code via

Fa = (0, FA, 0), (4.5)

where

FA = qA

√
K0 + 1

2
− J0q̄

A

√
1

2(K0 + 1)
, (4.6)

where qA is the dyad defined in section 3, J0 = qAqBHAB/2 and K0 = qAq̄BHAB/2. Fa and
m̃a are related by

m̃a = e−iδω−1Fa + γ ña. (4.7)

The γ ña term will not enter the news calculation.
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To calculate the Bondi news, one needs to evolve two scalar quantities, δ, the phase factor
in equation (4.7), and the conformal factor ω, as well as the relations ξ(ξB) between the
angular coordinates used in the characteristic evolution and inertial angular coordinates, and
uB(u, ξB) between the inertial time slicing and the time slicing of the characteristic evolution
code. Then, δ, ξ(ξB) and uB(u, ξB) are evolved using the following ODEs along the null
generators of I+:

dδ

du
= 1

2
�

(
J̄0,uJ0

K0 + 1
+

J0
(
U0�̄J̄0 + Ū0�J̄0

)
2(K0 + 1)

+ J0�̄Ū0 + K0�̄U0 + 2U0ξ̄

)
, (4.8)

dξ

du
= 1

2
(1 + ξ ξ̄ )U0, (4.9)

duB

du
= ω e2H , (4.10)

where U0 = qALA. Also ω is evolved using the PDE

∂u log ω = −Re(Ū� log ω + 1
2�Ū ). (4.11)

The Bondi news function up to a phase factor of e−2iδ is given by

N = 1
2ω−2 e−2H FAFB

(
(∂u + LL) cAB − 1

2cABDCLC + 2ωDA[ω−2DB(ω e2H )]
)
, (4.12)

where DA is the covariant derivative with respect to HAB . The Bondi news is calculated in
three steps. First, equation (4.12) is evaluated, ignoring the e−2iδ phase factor, as a function of
the evolution coordinates (u, ξ). Then, using the relation ξ(ξB), the news is interpolated onto
a fixed inertial angular grid (i.e. N(u, ξB)) and multiplied by the phase factor e−2iδ (which
is only known on the inertial grid). Finally, in post-processing, the news is interpolated in
time onto fixed inertial time slices (i.e. N(uB, ξB)). Once the news is obtained in inertial
coordinates, it can be decomposed into spin-weighted spherical harmonics.

5. Tests

We apply the algorithm described above for two sets of tests: non-radiative spacetimes and
radiative spacetimes. In the first, non-radiative set of tests (section 5.1), we analyse Minkowski
and Schwarzschild spacetimes. The Minkowski (section 5.1.1) or small perturbation of
Minkowski (section 5.1.2) tests are used to show the stability of the code and the errors due to
transforming between the different coordinate systems and sets of variables.

The Schwarzschild tests describe a static spherically symmetric black hole in a centred
frame (section 5.1.3) and in an oscillating frame (section 5.1.4). These tests indicate the
accuracy of the code in non-trivial spacetimes.

The last test (section 5.2) is a standard radiative test, namely a linearized Teukolsky wave,
and indicates that CCE is a valid and accurate method in truly radiative situations.

In the non-radiative cases, the extracted gravitational wave signal should vanish identically.
As this is true uniformly for all points at I+, we simplify the computation for the norms of
the gravitational wave signal. When the results of the CCE are shown, the norm used is the
simple L2 norm over all grid points at I+, without any weighting by the area element. In the
radiative case, we plot the real part of the extracted news waveform (∂th+) versus time.

The Zerilli Moncrief formalism (see [23, 24, 51] for the implementation used here)
approximates the spacetime as a linearized perturbation of a spherically symmetric spacetime.
Such perturbations are decomposed in terms of spherical harmonics which are then expressed
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in terms of some basis set. An example using the Regge–Wheeler set is where the even-parity
metric perturbations are decomposed as

(
hlm

µν

)(e) =

e2aH0Y

lm H1Y
lm

H1Y
lm e2bH2Y

lm H
(e)
A ∇cY

lm

h
(e)
A ∇cY

lm r2
(
KY lmγcd + G∇d∇cY

lm
)

 . (5.1)

Once the basis functions such as G,K, h
(e)
1 ,H2 and b are found from the decomposition, the

even-parity master function Q+ can be computed from

Q+ =
√

2(l + 2)!

(l − 2)!

r
[
r�

(
K + 1

e2b

(
r∂rG − 2

r
h

(e)
1

))
+ 2r

e4b

(
e2bH2 − eb∂r

(
r ebK

))]
�

[
r(� − 2) + 6M

] , (5.2)

where M is an approximation to the mass of the Schwarzschild background and � =
(l − 1)(l − 2) + 6M/r . Equivalent definitions in terms of other basis functions, alternative
conventions and expressions for the odd-parity sector can be found in [52].

Using this notation where Q× gives the odd-parity master function, the asymptotic value
for the waveforms is

h+ − ih× = 1√
2r

∑
l,m

(
Q+

lm − i
∫ t

−∞
Q×

lm(t ′) dt ′
)

−2Y
lm(θ, φ) + O

(
1

r2

)
. (5.3)

For the non-radiative cases, when we compute the wave signal from the Zerilli approximation,
we use the norm

(‖h‖2)
2 =

∫
(h+ − ih×)(h+ − ih×)† d� (5.4)

= 1

2r2

(
Q+

�m − iq×
�m

)(
Q+

�′m′ − iq×
�′m′

)† ∫
−2Y

�m−2Y
�′m′ †

d�

= 1

2r2
δ��′

δmm′(
Q+

�m − iq×
�m

)(
Q+

�′m′ − iq×
�′m′

)†
, (5.5)

where d� is the element of solid angle. The last equality (5.5) follows from the orthogonality
of the spin-weighted tensor spherical harmonics. We expect h+ −ih× to vanish for all angles so
this norm should be identically zero. In the following, we shall look at the spherical harmonics
up to � = m = 7, although in practice there is little contribution from the higher modes.

For the Teukolsky wave used here we expect all terms except for the Q+
2,0 term in

equation (5.3) to be negligible asymptotically, which leads to a simple but tedious computation
of the wave signal.

5.1. Non-radiative spacetime tests

5.1.1. Minkowski flat spacetime. Minkowski space in standard coordinates is evolved in
the harmonic Abigel code, with the metric given analytically on all Cauchy slices. The
domain extends between xi ∈ [−10, 10], the extraction world-tube is placed at r = 7 and
the simulation is run until t = 10. The coarsest simulation used 503 points for the Cauchy
grid and 352 × 31 points for the characteristic grid. Simulations to test convergence scaled all
grids by factors of 2. For this test, extraction using the Zerilli method gives results that are
identically zero, as expected.

This test indicates the level of numerical round-off error in transforming from the Cauchy
variables to the Bondi variables on the world-tube. As shown in figure 1, the extracted news
is small in all cases but the level of truncation error increases linearly with the number of
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Figure 1. The L2 norm of the CCE news for Minkowski space in standard coordinates. This
indicates the level of numerical noise introduced by transforming variables on the world-tube. In
this case, the noise is linearly dependent on the number of points on the extraction world-tube. It
is, however, extremely small.

points on the extraction world-tube. Since the construction of the boundary data for the CCE
code involves derivatives of the Cauchy metric, this sensitivity to noise in the Cauchy data is
expected. However, given the extremely low amplitude of the noise, it is unlikely that this will
cause problems in practical simulations.

5.1.2. Random perturbations around Minkowski flat spacetime. This test is in the spirit
of the robust stability tests of [22, 67, 68]. The stable evolution and extraction of white
noise initial data with no frequency dependent growth of the wave signal is a good indication
that the combined evolution and extraction codes are stable. The domain extends between
xi ∈ [−10, 10], the extraction world-tube is placed at r = 7 and the simulation is run until
t = 100. The coarsest Cauchy grid has 513 points and the coarsest characteristic grid has
352 × 31 points. The initial amplitude of the white noise initial data is 10−10 for the 503 grid
and 0.25 × 10−10 for the 1003 grid.

The results in figure 2 show that the error is independent of the resolution of both Cauchy
and characteristic grids. This is strong evidence that the CCE code is stable against small
perturbations that in a practical run would be induced by numerical error. The wave signal
from the Zerilli extraction is about an order of magnitude smaller. This is to be expected as
the Zerilli extraction approach uses the field values. The error in the CCE news has a jump at
the beginning. This arises because the initial characteristic data are set to zero so that it takes
some time for the noise to build up on the outgoing null cone.

5.1.3. Schwarzschild black hole in a ‘centred’ frame. To test a simple black hole spacetime,
we use a Schwarzschild black hole in ingoing Eddington–Finklestein coordinates (t̂ , x̂i ), with
the line element

ds2 = −
(

1 − 2M

r̂

)
dt̂2 +

(
4M

r̂

)
dt̂ dr̂ +

(
1 +

2M

r̂

)
dr̂2 + r̂2 d�2. (5.6)
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Figure 2. The L2 norm of the CCE news for random perturbations of Minkowski where the Cauchy
slice is evolved using the Abigel code. The news displays very slow growth that is independent
of the frequency of the initial data. This is a good indication that the CCE method is stable. The
right panel shows that the norm of the waveform extracted from the Cauchy grid using the Zerilli
method is about one order of magnitude smaller.

This is manifestly static in these coordinates. The spacetime is evolved using the BSSN
code and excision methods described in [69]. The coarsest Cauchy grid has 293 points with
�xi = 0.4M , whilst the characteristic grid has 352 ×31 points. The world-tube is at r = 7M .
In the Cauchy evolution domain octant symmetry is used.

The evolution is only performed for a short time (to t = 100M). Over this time scale,
we see second-order convergence for the CCE news until t ≈ 7M and second-order
convergence in the waveform from Zerilli extraction until t ≈ 20M , as seen in figure 3.
By varying the location of the world-tube or the Zerilli extraction sphere, we can see that the
errors come from a variety of locations.

The difference between the times at which the two extraction methods lose convergence
is probably due to the greater differencing error seen in the Zerilli extraction. At early times
(where finite-differencing error dominates), the absolute value of the error is larger for Zerilli
extraction by a factor ≈4, as seen in figure 3. At late times (where outer Cauchy boundary
errors dominate), the error for Zerilli extraction is of the same order as for the CCE extraction.

The non-convergent errors are probably caused by the boundary conditions on the Cauchy
grid which do not satisfy the constraints. As in [69], we are simply applying Sommerfeld-type
boundary conditions to all fields. This condition does not a priori satisfy the constraints
and is not known to be well posed. Thus, we might expect errors to be induced by the use
of these boundary conditions. It is likely that constraint satisfying boundary conditions or
Cauchy–characteristic matching would solve or at least greatly reduce this problem. Due to
the complicated pattern of the reflected errors arising from a boundary condition on a cubical
surface, we have been unable to determine exactly how this error depends on the location of
the outer Cauchy boundary.

5.1.4. Schwarzschild black hole in an oscillating frame. We use the line element for the
standard Schwarzschild black hole in ingoing Eddington–Finklestein coordinates, given in
equation (5.6). The moving coordinate frame (t, xi) is given by

t = t̂ , xi = x̂i + Bib(t), (5.7)



5100 M Babiuc et al

Figure 3. The scaled L2 norm of the CCE news for a static spherically symmetric black hole
where the Cauchy slice is evolved using the BSSN formalism. At early times, when the world-tube
is causally disconnected from the outer boundary of the Cauchy slice, the CCE news converges
to zero at second order as it should. Later, when the outer boundary is causally connected to the
world-tube, deviations from second-order convergence appear, indicating the effect of the Cauchy
boundary conditions on the extracted wave signal. The left panel shows the CCE news extracted
at I+, whilst the right panel shows the ‘norm’ of the wave signal extracted by the Zerilli method
at r = 7.

where Bi are parameters specifying the velocity and b(t) is a simple periodic function turned
on after some time t > t0; here we use

b(t) =
{

0, t � t0,

sin(ω(t − t0))
3, t > t0.

(5.8)

For the test shown here, we set Bx = 0.2, By = 0.5, Bz = 0.3 for the velocity and
ω = 2π × 0.05, t0 = 0.5 for the function b.

The metric is given analytically on the Cauchy grid to avoid any boundary effects. The
coarsest Cauchy grid has 513 points and covers the domain xi ∈ [−10M, 10M]. The coarsest
characteristic grid has 352 × 31 points. The extraction world-tube is at r = 7M . The
simulation is evolved until t = 100 M .

The CCE news converges to zero as it should. However, Zerilli extraction does not give
a signal that converges to zero as grid resolution is refined. Instead, an erroneous non-trivial
signal is computed.

5.2. Teukolsky wave test

5.2.1. Theoretical part. The Teukolsky solution [27, 53, 55] to the linearized Einstein
equation is a weak gravitational wave propagating through space and represents one of the most
valuable standard test cases for numerical codes that implement wave extraction techniques.

The general form of the spacetime metric is

ds2 = −dt2 + (1 + Afrr) dr2 + 2Bfrθ r dr dθ + 2Bfrφr sin θ dr dφ

+
(
1 + Cf

(1)
θθ + Af

(2)
θθ

)
r2 dθ2 + 2(A − 2C)fθφr2 sin θ dθ dφ

+
(
1 + Cf

(1)
φφ + Af

(2)
φφ

)
r2 sin2 θ dφ2, (5.9)
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Figure 4. The scaled L2 norm of the CCE news for a static spherically symmetric black hole in
an oscillating frame. The CCE news converges to zero at second order as it should.

Figure 5. The wave signal computed using Zerilli extraction for the static spherically symmetric
black hole in an oscillating frame. The ‘norm’ is computed as described in the text with the radial
dependence removed. The left panel shows that as the resolution of both the Cartesian grid and
the extraction sphere are increased, the signal does not converge to zero. The right panel shows
how this erroneous non-trivial wave signal decays as O(r−2) as the extraction radius is increased.
In the main plot, the standard scaling of the signal is used. In the inset, the curves are scaled by
the extraction radius so as to overlay each other for the expected decay rate.

where the angular functions fij , corresponding to an l = 2,m = 0, spin-weight = 2 spherical
harmonic, are

frr = 2 − 3 sin2 θ, frθ = −3 sin θ cos θ, frφ = 0,

f
(1)
θθ = 3 sin2 θ, f

(2)
θθ = −1, (5.10)

fθφ = 0, f
(1)
φφ = −f

(1)
θθ , f

(2)
φφ = 3 sin2 θ − 1.
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The functions A,B and C are given in terms of a free generating function F(x) =
Ax e−x2/λ2

/λ2, where A is the amplitude and λ determines the width of the wave, by

A = 3

(
d2

xF

r3
+

3 dxF

r4
+

3F

r5

)
,

B = −
(

d3
xF

r2
+

3 d2
xF

r3
+

6 dxF

r4
+

6F

r5

)
, (5.11)

C = 1

4

(
d4

xF

r
+

2d3
xF

r2
+

9 d2
xF

r3
+

21 dxF

r4
+

21F

r5

)
,

where dn
xF denotes

dn
xF = dnF (x)

dxn
. (5.12)

Here, x = t − r corresponds to an outgoing wave. To obtain the ingoing wave solution
corresponding to x = t + r , we change the sign in front of all the terms with odd numbers
of F.

We consider a superposition of ingoing t + r and outgoing t − r waves [44], centred at the
origin of the coordinate system at t = 0, which provides a moment of time symmetry. This
solution, after is linearized in amplitude, is implemented in the harmonic Abigel code.

We further give the analytical form of the Teukolsky wave signal. The real part of the
Bondi news function is proportional to the time derivative of the ‘plus’ polarization mode of
the gravitational wave signal. The time derivative of the CCE news satisfies

Ṅ = lim
r→∞ r�4, (5.13)

where �4 is the Newman–Penrose component of the Weyl tensor

�4 = −Cµρντn
µm̄ρnνm̄τ , (5.14)

with nν an ingoing null vector and mρ a complex unit vector, oriented in the angular directions.
The connection between mρ and the dyad vector qA on the unit sphere is

mA = 1

r
qA. (5.15)

Moreover, nµ∂µ = ∂x . A straightforward computation starting from equation (5.13) gives

Ṅ = −1

r
q̄Aq̄B∂2

xgAB. (5.16)

At infinity, in the linearized regime, only the O(1/r) terms in the Teukolsky functions A,B

and C contribute to the news. The term that determines the gravitational wave signal is d4
xF .

We find

Ṅ = −3 sin2 θ

4
∂6
t F. (5.17)

Alternatingly, computation of the linearized expression for the Bondi news from
equation (4.12) gives

N = −3 sin2 θ

4
∂5
t F. (5.18)
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Figure 6. Left panel: the convergence of CCE news to the analytical solution. In this case, the grid
resolution was (Cartesian/characteristic) 803/602 × 80, 1203/902 × 120 and 1603/1202 × 160,
respectively. Right panel: the absolute value of the error in CCE news for the grid resolutions of
803/602 × 80 and 1603/1202 × 160.

5.3. Numerical part

We give the metric specified by the Teukolsky solution analytically on the Cauchy grid. Then,
data are extracted at the world-tube and evolved by the CCE code. We carry out a series
of simulations, varying both the location of the characteristic world-tube and the radius of
the Zerilli sphere. We use 803, 1203 and 1603 grid points for the Cartesian Cauchy grid and
602 ×80, 902 ×120 and 1202 ×160 grid points for the null grid. The domain extends between
xi ∈ [−15, 15] and the simulations are run until t = 30.

We study the dependence of the signal with the amplitude and conclude that CCE code
resolves correctly amplitudes of A � 10−8. At smaller amplitudes, clean convergence
behaviour is contaminated by round-off error. We show results only for A = 10−5, λ = 1.
We also study the dependence of the wave signal with the world-tube radius and conclude that
the accuracy of the computed CCE news is preserved even for radii as small as r = 5.

Figure 6 shows the convergence of the CCE news to the analytical solution, for a world-
tube radius of r = 10. The convergence rate c̃r of the CCE news to the analytical data is given
by

c̃r = log2

( ‖N80 − Nana‖
‖N160 − Nana‖

)
, (5.19)

The convergence rate of the computed CCE news to the analytic value (5.18) at t − r = 0,
corresponding to the peak of the radiated signal, is

c̃r = 2.159. (5.20)

Hence, the CCE wave signal is second-order convergent and independent of the world-tube
radius, as expected. The convergence to the expected solution is independent of time also,
as the Cauchy data are prescribed analytically, so the boundary errors present in the centred
frame black hole evolution of section 5.1.3 do not arise.

Figure 7 shows that for small extraction radii, the Zerilli waveform has a slight asymmetry,
which is caused by the dependence of the Zerilli formalism upon the extraction radius. We
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Figure 7. Left panel: the Zerilli news shows a dependence on the extraction radius. The asymmetry
decreases as the extraction radius increases. Right panel: the absolute value of the error in Zerilli
news with radius (grid resolution of 1203/902 × 120).

Figure 8. When the extraction radius is sufficiently large, the comparison between the Zerilli and
the CCE news is in very good agreement.

have to increase the extraction radius in order to decrease this error. Because the error does not
fall off sufficiently fast with radius in the near zone, where we can realistically carry out the
simulation, we instead analytically compute the Zerilli news at the extraction radius r = 300.

Figure 8 demonstrates that the agreement between the computed CCE news at small radii
and the analytical Zerilli news at big radii is very good.

6. Conclusions

We have demonstrated the accuracy of Cauchy–characteristic extraction in 3D numerical
relativity. The interface at the extraction world-tube does not introduce significant error with
either the BSSN [59] or harmonic [22, 61] formulations.
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The CCE news is stable against small perturbations on the Cauchy grid, as shown in
section 5.1.2, and the level of truncation error caused by transforming from the Cauchy to
the characteristic variables is small, as shown in section 5.1.1. In a non-trivial black hole
spacetime, CCE performs as expected. Second-order convergence is found in the moving
Schwarzschild black hole test in section 5.1.4 and in the early-time behaviour of the BSSN
test in section 5.1.3. However, as seen in the late-time behaviour in section 5.1.3, the effect
of improper BSSN outer boundary conditions on the Cauchy grid is clearly visible in the
extracted CCE news.

In the linearized Teukolsky wave test in section 5.2, we demonstrate that the computed
CCE news converges to the analytic Teukolsky waveform and does not depend on the world-
tube radius. The accuracy of the CCE news is preserved even for small radii, while the Zerilli
news is affected by near zone error. When the extraction radius is sufficiently large, both
Zerilli and CCE give excellent results. The advantage of CCE over the Zerilli method is that
the extracted CCE news does not depend on the extraction radius.

Cauchy–characteristic extraction can be seen either as a first step towards a full Cauchy–
characteristic matching code or as an improved gravitational wave extraction method in its
own right. The results of this paper show that as a stand-alone wave extraction method, it
produces the correct results in situations where other methods, such as Zerilli extraction, may
fail. Such a situation is seen in section 5.1.4, where the Zerilli method fails to converge as a
result of the pure gauge motion of the Schwarzschild metric.

Finally, these tests also show the need for improvement of the current implementation of
the code. Any angular dependence in the solution whether through genuine physics, gauge
effects or due to the imposition of boundary conditions on the cubical Cauchy boundary,
leads to short wavelength error that is poorly resolved by the CCE code. This is particularly
noticeable for features in the region where the stereographic patches overlap. Improvements
in this area of the implementation will enhance the accuracy of the code in extracting the
gravitational news from astrophysical simulations requiring high resolution. To this end, we
are investigating the use of different multiple patch implementations such as [65].
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[39] Bishop N T, Gómez R, Lehner L, Maharaj M and Winicour J 1997 Phys. Rev. D 56 6298 (Preprint gr-qc/

9708065)
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