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CMC-Slicings of KSSdS Cosmologies

1 Introduction

Consider a globally hyperbolic spacetime which is spatially compact. One can ask the question
whether there exists a slicing by Cauchy surfaces of constant mean curvature (in short: CMC-
slicing) and what are its properties. Since CMC-slicings have a wide variety of uses in general
relativity, this question has received a lot of attention, we refer to [9] and [1] for recent
overviews.

In the present paper we study this problem for a class of spatially compact spacetimes,
which are quotient spaces of the Kottler-Schwarzschild-de Sitter family of spacetimes [7]
under certain discrete subgroups of their isometry group. These spacetimes can be viewed
as models of cosmological spacetimes containing a black hole. Studies of CMC-slicings which
we are aware of treat cases where the spacetime has — in the future and/or past — either
an all-encompassing crushing singularity or is geodesically complete, whereas in Kottler-
Schwarzschild-de Sitter both types of asymptotic behavior coexist. Furthermore, the Kottler-
Schwarzschild-de Sitter spacetimes, due to the presence of a positive cosmological constant,
violate the so-called timelike convergence condition (strong energy condition) which most
papers assume.

Before we state the main results of the present work, let us define and describe the family of
Kottler-Schwarzschild-de Sitter cosmologies we consider:

The Kottler-Schwarzschild-de Sitter metric reads

ds2 = −V dt2 + V −1dr2 + r2dΩ2 where V = V (r) = 1− 2M

r
− Λr2

3
. (1)

The cosmological constant Λ > 0 and the constant M > 0 are required to satisfy

9M2Λ < 1 ; (2)

then the function V (r) is positive in the interval (rb, rc), and V (r) = 0 at the “black hole
horizon” r = rb and at the “cosmological horizon” r = rc. The region rb < r < rc is a static
region of the spacetime with Killing vector ξ = ∂t. (When 9M2Λ > 1, there are no horizons,
the spacetime is not static but homogeneous.) It is straightforward to see that

2M < rb < 3M <
1√
Λ
< rc <

3√
Λ
. (3)

In the limit where Λ goes to zero, the spacetime metric tends to Schwarzschild and rb tends
to 2M . In the limit where M goes to zero, the metric becomes de Sitter and rc tends to
3/
√

Λ.

The static region of the spacetime has an analytic extension reminiscent of the Kruskal
extension of the Schwarzschild spacetime and the de Sitter spacetime. A common way of
depicting the arising spacetime uses two charts which cover the regions 0 < r < rc and
rb < r < ∞. The conformal compactification of the region 0 < r < rc is depicted in
Fig. 1(a); it contains the curvature singularity r = 0; the conformal compactification of
rb < r < ∞ is shown in Fig. 1(b). The overlap of the charts is rb < r < rc. As is well-
known, the constructed spacetime corresponding to the union of Figs. 1(a) and 1(b) can be
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smoothly (in fact analytically) extended in a “periodic–in–r”-fashion. Thereby one obtains an
inextendible, globally hyperbolic spacetime of topology R×R×S2 satisfying Gµν +Λgµν = 0,
see Fig. 2. We call this spacetime the Kottler-Schwarzschild-de Sitter spacetime KSSdS.

PSfrag

r
=
r
c , t =∞

r
=
r c

, t
=
−∞

r
=
r
c , t =∞

r
=
r c

, t
=
−∞

r
=
r
b , t = −∞

r
=
r b

, t
=
∞

r
=
r b

, t
=
∞

r
=
r
b , t = −∞

t > 0

t = 0 t = 0

t < 0

t < 0

t > 0

t
<

0

t
=

0

t
>

0

r = 0

r = 0

(a) 0 < r < rc

r =∞

r =∞

r
=
r
b , t = −∞

r
=
r b

, t
=
∞

r
=
r b

, t
=
∞

r
=
r
b , t = −∞

r
=
r
c , t =∞

r
=
r c

, t
=
−∞

r
=
r c

, t
=
−∞

r
=
r
c , t =∞

t < 0

t = 0

t > 0

t > 0

t = 0

t < 0

t
>

0

t
=

0

t
<

0

(b) rb < r < ∞

Figure 1: The figures show the compactified regions 0 < r < rc and rb < r <∞. Solid lines represent

hypersurfaces t = const, dashed lines are hypersurfaces r = const.

On KSSdS there exists an isometric action of R × SO(3). The dashed lines in Figs. 1(a)
and 1(b) are orbits under the R-factor in this action, i.e. under the static Killing vector
ξ = ∂t. Henceforth this action will be called “Killing flow” for brevity. Note that the Killing
vector ξ is globally defined; it is null on the Killing horizons r = rb and r = rc which
emanate from the bifurcation 2-spheres at which ξ vanishes. Furthermore there exist discrete
isometries (“reflections”) leaving fixed the hypersurfaces t = T = const, which are given via
T + t 7→ T− t.
While r is globally defined on KSSdS, t blows up on the Killing horizons. In the static region
or in the black hole, white hole, or cosmological regions, (r, t) forms a coordinate system.
The solid lines in Figs. 1(a) and 1(b) represent hypersurfaces t = const, which are totally
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geodesic as fixed point sets of the discrete isometries. There exist two kinds: spacelike and
timelike t = const hypersurfaces; the latter we call t = const cylinders.

By virtue of the periodicity in r, the t = 0 cylinders in two adjoining copies of the region
0 < r < rc can be identified, which results in a smooth spacetime of topology R × S1 × S2,
which we call the cosmological Kottler-Schwarzschild-de Sitter spacetime KSSdS[0]. The
spacetime KSSdS is the universal covering of KSSdS[0]. More generally, let T ∈ R and
identify points of equal radius r on a t = 0 cylinder and a tilted t = 2T cylinder in an
adjacent copy of the region 0 < r < rc on the r.h. side, see Fig. 2. Thereby we obtain a whole
family of inextendible, globally hyperbolic, cosmological spacetimes, which we call KSSdS[T].

Note that KSSdS[T] is a smooth, in fact analytic, spacetime: consider a neighborhood of the
t = 0 cylinder in KSSdS. Via the Killing flow this neighborhood is isometric to a neighbor-
hood of the t = 2T cylinder, hence the hypersurfaces t = 0 and t = 2T agree not only in
their induced first and second fundamental forms, but also in all higher derivatives of the
fundamental forms. The identification of the two hypersurfaces thus results in a smooth
manifold. Note that, while the spacetime KSSdS[0] is time-symmetric, KSSdS[T] with T 6= 0
is not; however, KSSdS[T] and KSSdS[−T] differ by time orientation only.

The spacetimes KSSdS[T] are not the only cosmological spacetimes which arise as quotient
spaces from KSSdS. Firstly, we note that it is not necessary to identify t = 0 with a t = const
cylinder in an adjoining copy of the region 0 < r < rc; indeed, an arbitrary number of
intervening copies between the identified copies is possible. However, the arising spacetimes
do not exhibit different structures as far as the properties of CMC-slicings are concerned.
Secondly, we may identify, in the black/white hole or in the future/past cosmological region,
points mapped to each other by a discrete subgroup of the action under ξ. Thereby we obtain
cosmological spacetimes that are completely different from the class KSSdS[T] considered
here. These spacetimes will be treated in forthcoming work by one of us (J.M.H.) [5].
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Figure 2: The compactified Kottler-Schwarzschild-de Sitter spacetime KSSdS[T].

In this paper, a slicing denotes a smooth family of smooth (spacelike) hypersurfaces. A
parametrization of a slicing is a smooth map Ψ : I×Σ→ spacetime, where Σ is a 3-manifold
and I ⊆ R, such that for all τ ∈ I, Ψ(τ, ·) is an embedding. We require that Ψ(τ,Σ) is
a hypersurface of the slicing for all τ ∈ I, i.e. by the parametrization of the slicing the
hypersurfaces are represented as level sets τ = const. Note that a slicing is a foliation iff the
map Ψ is a diffeomorphism onto its image.
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The content of the paper is as follows. In Sec. 2 we study spherically symmetric compact
CMC-slices in terms of the associated initial data sets. We find that these compact CMC-
initial data sets are parametrized by two constants (K,C), which lie in a bounded connected
open subset KC0 of R

2. The constant K is the mean curvature of the slice, i.e. the trace of
the second fundamental form. The interpretation of the constant C is less immediate (see
the note following (6)). Suffice it to say that initial data generated by (K,C) is umbilical, i.e.
the extrinsic curvature is proportional to the three-metric, iff C = 0. The parameter space
KC0 is investigated in some detail in Appendix A. In Sec. 3 we discuss the embedding of
the compact initial data sets into the cosmological spacetimes KSSdS[T]: we prove that each
compact CMC-initial data set is embeddable as a Cauchy CMC-hypersurface into KSSdS[T]
for a particular value of T and that the embedding is unique modulo the Killing flow. Secs. 4
and 5 are concerned with the formulation and the proof of the main results of the present
paper.

One main theorem can be stated in an informal manner as follows: Each spacetime KSSdS[T]
contains a unique non-trivial slicing of Cauchy CMC-hypersurfaces. (Here, a CMC-slicing
is called trivial, if both K and C are constant along the slicing, and uniqueness is again
understood modulo the Killing flow.) The first step in proving this theorem is undertaken in
Sec. 4, where we show, using the implicit function theorem, that if the spacetime KSSdS[T]
contains a compact CMC-hypersurface, then it evolves into a unique CMC-slicing. Crucial for
this is the analysis of a (linear) ordinary differential equation, whose solution is interpreted as
the lapse function of the slicing. Due to the violation of the timelike convergence condition,
this analysis is quite involved and thus deferred to Appendix B. We find that the CMC-
slicing in KSSdS[T] can be represented by a curve in the parameter space KC0, which in
turn is given as the T-level set of a function T (K,C) on KC0. Thus there exists an interplay
between a global but finite dimensional picture, where CMC-slicings are viewed in terms of
their representation in KC0 on the one hand, and a local but essentially infinite dimensional
view of slicings in spacetime on the other hand. Based on these ideas, in the second step
in the proof of the theorem, in Sec. 5, we show that each spacetime KSSdS[T], T arbitrary,
contains a compact CMC-slicing and that this slicing is unique.

In another theorem in Sec. 5 we describe the asymptotic behavior of the CMC-slicings: Along
each slicing K tends to ±

√
3Λ in the future resp. in the past, C tends to explicitly known

values that depend on Λ and M . In spacetime the hypersurfaces of the slicing approach

r = (1/
√

Λ)
[

1−
√

1− 3
√

ΛM
]

in the black hole (resp. white hole), and r =∞ in the future

(resp. past) cosmological region (see Fig. 8). An essential ingredient in the proof of the
theorem is an asymptotic analysis of the function T .

Finally, in Sec. 5 and in Appendix C, we discuss whether the compact CMC-slicings in the
spacetimes KSSdS[T] are foliations. We prove that each slicing is a foliation at least during
some time of its evolution. Moreover, if |T| is sufficiently large, then the slicing cannot be a
foliation for all times. In addition, we provide solid numerical evidence that there are values
for (Λ,M) such that, if |T| is small, the CMC-slicing is a foliation everywhere.

In this work we can, and of course do, make use of the spherical symmetry of the spacetimes.
The quantities we are seeking are all ”essentially explicit” in this sense: they are either given
by quadratures of algebraic functions, or solutions to algebraic equations, or level sets of
functions which are in turn given by quadratures, and combinations of the above. Still only a
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small part of our task can be performed by a direct investigation of these expressions. Rather
we require a somewhat delicate interplay between the analysis of the explicit quantities and
the geometric analysis.

2 CMC-data

In this section we investigate spherically symmetric CMC-initial data sets. We find that
there exists a two-parameter family of compact CMC-data; we analyze the parameter space,
and we discuss the main geometric properties of the CMC-data sets in dependence on the
parameters.

Consider a three-dimensional Riemannian manifold Σ ∼= J × S2 endowed with a spherically
symmetric 3-metric

3gij dx
idxj = dl2 + r2(l)(dϑ2 + sin2 ϑ dϕ2) ; (4)

the coordinates ϑ, ϕ are usual angular coordinates, l is a “radial” coordinate which takes
values in J , which is (an open interval of) R, or J ∼= S1. Let there be given a symmetric
tensor Kij , the second fundamental form, such that the mean curvature

K = 3gijK
ij = const . (5)

By (locally) solving, along the lines of [3], the vacuum constraints with positive cosmological
constant Λ we obtain that (Σ, 3gij,Kij) is a spherically symmetric CMC-initial data set, iff
there exists a constant C such that

Kij dx
idxj =

(

K

3
+

2C

r(l)3

)

dl2 +

(

K

3
− C

r(l)3

)

r(l)2(dϑ2 + sin2 ϑ dϕ2) . (6)

Note that Kij is of the formKij = (K/3)3gij +C L
TT
ij , i.e. it is the sum of a constant trace plus

C times a tensor that coincides with the unique spherically symmetric transverse traceless
tensor w.r.t. 3g. The initial data set is umbilical, i.e. Kij ∼ gij , iff C = 0. The function r(l)
is required to satisfy

r′ 2 = 1− 2M

r
− Λr2

3
+

(

Kr

3
− C

r2

)2

=: D(r) , (7)

where the prime denotes the derivative w.r.t. l. The constant M in (7) coincides with the
mass M appearing in (1), which is a consequence of the subsequent considerations.

An initial data set (Σ, 3gij ,Kij) is said to admit the Killing initial data (or KID) (α,Xi),
if (α,Xi) lies in the kernel of the (overdetermined) operator given by the adjoint of the
linearized constraint operator (see [4], also [2]). The KID-condition, in the presence of Λ, is
equivalent to

2αKij + 2D(iXj) = 0 ; (8)

together with

DiDjα+ LXKij − α(3Rij +KKij − 2K l
i Kjl − Λ3gij) = 0, (9)

6
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which, provided that α 6= 0, is in turn equivalent to the statement that the ”Killing develop-
ment”, i.e. the stationary metric

gµνdx
µdxν = (−α2 +X2)dτ2 + 2Xidτdx

i + 3gijdx
idxj (10)

satisfies Gµν +Λgµν = 0. The present CMC-initial data set does in fact admit a KID, namely
(αξ,X

i
ξ) given by

αξ = r′(l) , Xi
ξ∂i = xξ(l)

∂

∂l
= −

(

Kr(l)

3
− C

r(l)2

)

∂

∂l
. (11)

The development of the initial data set thus results in a spacetime with Killing vector ξµ,

ξµ = αξn
µ +Xµ

ξ ∂µ , ξµξµ = −α2
ξ +X2

ξ = −
(

1− 2M

r
− Λr2

3

)

. (12)

Here, nµ denotes the unit normal of Σ in the spacetime, X2
ξ = Xi

ξX
ξ
i . The KID is “static”:

from

D[i





Xξ
j]

−α2
ξ +X2

ξ



 = 0 (13)

it follows that ξµ is hypersurface orthogonal. In the Killing development of the initial data,
Σ is given by τ = 0, and the metric reads

gµνdx
µdxν = (−α2

ξ +X2
ξ )dτ2 + 2Xξ

i dτdx
i + 3gijdx

idxj . (14)

By using r and introducing the coordinate t through

dτ = dt − Xξ
i

−α2
ξ +X2

ξ

dxi = dt− V −1

(

Kr(l)

3
− C

r(l)2

)

dl (15)

we recover the original Schwarzschild-de Sitter metric (1),

gµνdx
µdxν = −

(

1− 2M

r
− Λr2

3

)

dt2 +

(

1− 2M

r
− Λr2

3

)−1

dr2 + r2dΩ2 . (16)

We record for later use the identity

∇µt = −V −1ξµ, (17)

which follows from the previous discussion. As another particular consequence we conclude
that the constant M introduced in (7) is to be interpreted as the mass M appearing in the
Schwarzschild-de Sitter metric.

In the following we consider the cosmological constant Λ and the mass M as given constants.
A CMC-initial data set (Σ, 3gij ,Kij) arises from the choice of a pair (K,C), by which D(r)
and thus r(l) is defined (modulo an irrelevant translational freedom in l), cf. (7).

Definition. We define the parameter space of compact CMC-initial data by

KC :=
(

{(K,C) | (K,C) generates compact CMC-data (Σ, 3gij,Kij) with Σ ∼= S1 × S2}
)◦

.
(18)
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D(r)

r

r−

rmin

r+

rmaxrone

(a)

r

rmin rmax

r′

(b)

Figure 3: For (K,C) ∈ KC, D(r) is positive between two positive zeros, rmin/rmax, and dD/dr does

not vanish at rmin/rmax. Then D(r) gives rise to a (smooth) closed curve in the (r, r′)-plane, and r(l)

becomes a periodic function.

Proposition 2.1. The parameter space KC is the disjoint union of three open connected
domains,

KC = KC0 ∪KC1 ∪KC−1 . (19)

KC0 is the connection component of (K,C) = (0, 0), it is invariant under the inversion.

For proofs we refer to App. A. In this paper, we focus on compact CMC-initial data generated
by (K,C) ∈ KC0. The space KC0 is depicted in Fig. 4; it is enclosed by the curves Ct and
Cb, and the vertical straight lines K = ±

√
3Λ. (In the following we refrain from making

a distinction between the curves Cb,t and the functions Ct(K), Cb(K) = −Ct(−K), that
parametrize the curves.) Some properties of the functions Cb,t(K) are discussed in App. A.

← Ct(K) →

← Cb(K) →

K
=
√

3Λ

K
=
−
√

3Λ

√
Λ

√
Λ K

C

Figure 4: KC0 for Λ = 1, M = 1/4; it is enclosed by Cb,t(K) and K = ±
√

3Λ.

If and only if (K,C) ∈ KC, the function D(r) exhibits the form depicted in Fig. 3(a): in
particular, D(r) possesses two positive (simple) zeros, rmin and rmax, such that D(r) > 0
in the interval (rmin, rmax). Accordingly, when viewed over r ∈ [rmin, rmax], r

′ = ±
√

D(r)
describes a closed curve, cf. Fig. 3(b), so that r(l) becomes a periodic function that oscillates

8
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between rmin and rmax; we denote the period by 2L,

L =

rmax
∫

rmin

D−1/2(r) dr . (20)

Without loss of generality we assume that

r(0) = rmin so that r(±L) = rmax ; (21)

it follows that r(l) is an even periodic function, which is implicitly given through

l(r) = ±
∫ r

rmin

D−1/2(r̂) dr̂ . (22)

By the natural identification of l = −L and l = L, the domain of the function r(l) becomes
S1, so that the CMC-initial data (Σ, 3gij ,Kij) is compact with Σ ∼= S1 × S2.

Remark. From Fig. 3(a) we see that a pair (K,C) that generates compact CMC-data, in
general also gives rise to non-compact CMC-data, where r(l) ranges in (0, rone]. A CMC-
data set of this type is embeddable in KSSdS as a hypersurface that runs into the singularity.
A detailed classification of all possible types of CMC-data sets and their embeddings in
KSSdS[T] and other cosmological KSSdS-spacetimes will be presented in [5]

When (K,C) ∈ ∂(KC), the profile of the function D(r) is a borderline case of the profile 3(a).
On the boundaries Cb,t, the function has the form 5(a), i.e. the zero rmin is a double zero.
The solution of r′ = ±

√

D(r) that is relevant for our purposes is r(l) ≡ const = rmin:
by identifying l = l0 with l = l1 for any l0, l1, we obtain a compact CMC-initial data set
(Σ, 3gij ,Kij), Σ ∼= S1×S2. On the boundaries K = ±

√
3Λ, D(r) possesses a simple zero rmin,

but “rmax = ∞”, i.e. D → 1 (r →∞), see Fig. 5(b). In this case, no compact CMC-data is
generated. The features of D(r) described above occur simultaneously on the intersections
of the boundaries.

D(r)

r

(a) (K, C) ∈ Cb,t

D(r)

r

(b) K = ±
√

3Λ

Figure 5: The profiles of D(r) on ∂(KC0).

For every compact CMC-initial data set (S1 × S2, 3gij,Kij) associated with (K,C) ∈ KC0,
the radius r of the spheres of symmetry varies between values rmin and rmax. We conclude
the section by discussing rmin(K,C) and rmax(K,C) in dependence on (K,C) ∈ KC0.

Most importantly, we note that rmin ≤ rb and that rmin = rb iff (K,C) is such that
C = (r3b/3)K. This “line of maximal rmin” divides KC0 in two regions, an upper (left) half,

9
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characterized by [Krmin/3−C/r2min] < 0, and a lower (right) half with [Krmin/3−C/r2min] > 0,
see Fig. 10(a). The function rmin assumes its global minimum on KC0 at the point (K,C) =
(
√

3Λ, Cb(
√

3Λ)) and at the reflected point; the minimal value is given by (23). rmin de-
creases/increases along the boundaries of KC0 as depicted in Fig. 10(a). rmax ≥ rc and
rmax = rc iff (K,C) is such that C = (r3c/3)K. This “line of minimal rmax” divides KC0 in
two regions, an (upper) left half, where [Krmax/3 − C/r2max] < 0 and a (lower) right half,
where [Krmax/3 − C/r2max] > 0, see Fig. 10(b). rmax is unbounded on KC0, it diverges like√

3/
√

Λ̄ as K → ±
√

3Λ; Λ̄ = Λ−K2/3. Both rmin and rmax are constant along straight lines
in KC0, see Fig. 11.

rmin can be given explicitly,

rmin =
1√
Λ

(

±1∓
√

1∓ 3
√

ΛM

)

, for K =
√

3Λ, C = Cb,t(
√

3Λ). (23)

Here, the upper sign applies to Ct, the lower to Cb.

3 Embeddings

In this section we investigate embeddings of compact CMC-initial data (Σ, 3gij ,Kij) as CMC-
hypersurfaces in Schwarzschild-de Sitter spacetime.

Let (K,C) ∈ KC0; the pair generates compact CMC-data (Σ ∼= S1×S2, 3gij ,Kij). We consider
the universal covering (Σ̃ ∼= R×S2, 3gij ,Kij) of the data by regarding r(l) as a periodic even
function on R. The initial data set (Σ̃, 3gij ,Kij) is embedded as a CMC-hypersurface S̃ in
KSSdS via

r = r(l) t = t(l) :=

l
∫

0

V −1(r(l̂))

(

Kr(l̂)

3
− C

r(l̂)2

)

dl̂ , (24)

which follows from (15). The integral is understood in the principal value sense, so that t(l) is
well-defined for all l with V (r(l)) 6= 0; this suffices to uniquely define the embedded hypersur-
face in KSSdS. (Alternatively, the embedding can be given in Kruskal type coordinates.) If
(K,C) is such that rmin = rb, then V −1 is singular at l = 0, but also (Kr/3−C/r2) = 0 when
l→ 0, cf. Fig. 10(a). Using de l’Hospital’s rule we see liml→0 V

−1(r(l))[Kr(l)/3−C/r2(l)] =
−V ′ −1(rb)(K/3), i.e. the integrand is bounded as l → 0. Similarly, the integrand is always
bounded as l → L.

The CMC-hypersurface S̃ defined by (24) is not the unique embedding of Σ̃: integrating (15)
leaves the freedom of choosing an integration constant so that t is replaced by t − const
in (24). The one-parameter freedom is associated with the Killing flow, hence, modulo the
Killing isometries the embedding is indeed unique.

Let (K,C) ∈ KC0. Then r(l) oscillates between rmin ≤ rb and rmax ≥ rc, therefore S̃ is a
Cauchy hypersurface in KSSdS, see Fig. 6.

The (future pointing) unit normal of S̃ is given by

nµ∂µ = r′V −1 ∂

∂t
+

(

Kr

3
− C

r2

)

∂

∂r
; (25)

10
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r = 0r = 0 r =∞

r =
rm

in

r =
rm

in

t
=

0

t
=

2T

identification

Figure 6: The embedding of the compact CMC-initial data with K = 1 and C = 0.1 in KSSdS[T]

(with Λ = 1, M = 1/4). The hypersurface is not null at the horizon rc: for the figure we have used the

coordinate system of the region 0 < r < rc and extended it to 0 < r <∞ to obtain global coordinates;

however, these coordinates break down at r = rc.

it is straightforward to check ∇µn
µ = K. The CMC-hypersurface S̃ passes through the white

hole region [black hole region] if (Krmin/3 − C/r2min) > 0 [(Krmin/3 − C/r2min) < 0]; when
(Krmin/3 − C/r2min) = 0, rmin = rb and the hypersurface passes through the bifurcation
sphere; compare with Fig. 10(a). Similarly, the hypersurface passes through the future [past]
cosmological region if (Krmax/3−C/r2max) > 0 [Krmax/3−C/r2max < 0], cf. Fig. 10(b). These
relations guarantee that S̃ cannot oscillate between the black hole and the white hole (or the
future and the past cosmological regions): either S̃ passes through the black hole regions or
through the white hole regions for all l = 2nL, n ∈ N, where r(l) = rmin. However, it will
occur that S̃ runs through the black hole region and through the past cosmological horizon
(or vice versa). This can be seen from the combination of Figs. 10(a) and 10(b).

The embedding of a compact CMC-initial data set (Σ, 3gij ,Kij), Σ ∼= S1 × S2, as a CMC-
hypersurface S in KSSdS[T] is more delicate.

Consider (24) and make the following

Definition.

T := t(L) =

L
∫

0

V −1(r(l))

(

Kr(l)

3
− C

r(l)2

)

dl =

rmax
∫

rmin

V −1D−1/2(r)

(

Kr

3
− C

r2

)

dr . (26)

Like rmin and rmax, the function T depends on the pair (K,C) ∈ KC0 characterizing the
CMC-data. For (K,C) ∈ Cb,t, T is not canonically defined; each choice of l0, l1, which leads
to compact data, cf. Sec. 2, is associated with a different value of T .

Proposition 3.1. Let (K,C) ∈ KC0. Then the associated compact CMC-initial data set
(Σ ∼= S1 × S2, 3gij ,Kij) is embeddable as a CMC-hypersurface S in KSSdS[T] if and only if
T = T . The hypersurface is a Cauchy hypersurface, and the embedding is unique modulo the
Killing flow.

Proof. Consider the universal covering Σ̃ of the data and the embedded hypersurface S̃ as
given by (24). The hypersurface is invariant under the two discrete isometries t 7→ −t and

11
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2T + t 7→ 2T − t of the spacetime; this is because r(l) is even about l = 0 and even about
l = 2L according to its periodicity. Since the unit normal vectors of S̃ at l = 0 and l = 2L
must be invariant under the respective isometries as well, they must be tangential to the
fixed point sets t = 0 and t = 2T of the isometries: we conclude that nµ∂µ ∝ ∂t at l = 0 and
l = 2L. The identification of t = 0 with t = 2T in KSSdS thus results in a CMC-hypersurface
S in KSSdS[T ] which is isometric to Σ by construction. The proof of the remaining claims
is trivial.

The argument used in the proof will re-appear in the proof of Theorem 4.1; alternatively, we
could have used (25).

Remark. Consider (the universal covering of) the CMC-initial data generated by (K,C) ∈
Cb,t ⊂ ∂(KC). Since the data is characterized by a function r(l) ≡ const, the embedding
is a r = const hypersurface, which is contained in the black/white hole region of KSSdS[T]
(for arbitrary T). The compact interpretation of the data set, which is obtained by an
identification of l = l0 with l = l1 for any l0, l1, is not naturally embeddable in KSSdS[T].

4 Slicings

Proposition 3.1 states that there exist spacetimes KSSdS[T] containing a compact CMC-
hypersurface. The aim of this section is to investigate whether these spacetimes contain
CMC-slicings, i.e. smooth families of CMC-hypersurfaces.

Any CMC-hypersurface can be evolved into a CMC-slicing by the Killing flow; however, this
CMC-slicing is trivial in the sense that K and C are constant along the slicing. The existence
of non-trivial slicings is shown in the following theorem: any compact CMC-hypersurface
of KSSdS[T] evolves into a compact CMC-slicing, along which the mean curvature K is
monotonic; furthermore, this slicing is necessarily unique modulo the Killing flow.

Theorem 4.1. Consider a spacetime KSSdS[T] that contains a compact CMC-hypersurface
S. Then there exists a unique local slicing of KSSdS[T] by hypersurfaces Sτ , τ ∈ (−τ̄ , τ̄ ),
such that

i. S0 = S,

ii. Sτ is a compact CMC-hypersurface for all τ ∈ (−τ̄ , τ̄ ),

iii. Sτ is reflection symmetric for all τ .

Along the slicing Sτ the mean curvature is a strictly monotonic function, i.e.

iv. K(τ) is strictly monotonic.

Furthermore, every slicing S ′τ that satisfies (i) and (ii) arises from Sτ by combining the flow
of Sτ with an appropriate admixture of the Killing flow.

Remark. The requirement (iii) is a convenient way of fixing a representative within the equiva-
lence class of slicings that satisfy (i) and (ii). The compact CMC-hypersurface S contains a to-
tally geodesic 2-sphere at r = rmin, which evolves into a cylinder represented by τ 7→ rmin(τ).

12
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The slicing Sτ is reflection symmetric if the cylinder is totally geodesic, i.e. coincides with
t = const; without loss of generality we always assume reflection symmetry w.r.t. t = 0.

Proof. The CMC-hypersurface S is characterized by (KS , CS) ∈ KC0; the induced metric is
dl2 + r 2

S(l) dΩ2. S can be represented by (24), it is invariant under the reflection t 7→ −t. We
introduce Gaussian coordinates in a neighborhood of S: the metric reads

gµνdx
µdxν = −dσ2 + s2(σ, λ)dλ2 + r2(σ, λ)dΩ2 ; (27)

σ ∈ (−σ̄, σ̄). The hypersurface S is represented by σ = 0; λ = l on S. We obtain by using
the identity ∂σgij = 2Kij and (6),

s(0, λ) = 1, r(0, λ) = rS(λ), (∂σs)(0, λ) =
KS

3
+

2CS

r3S(λ)
, (∂σr)(0, λ) =

KSrS(λ)

3
− CS

r 2
S (λ)

.

(28)
We choose σ̄ so that inf |σ|<σ̄ s(σ, λ) ≥ const and inf |σ|<σ̄ r(σ, λ) ≥ const ∀λ. The normal
vector of S at λ = 0 is tangential to the cylinder t = 0, since S is invariant under the discrete
isometry t 7→ −t. The cylinder t = 0, being the fixed point set of a discrete isometry, is
totally geodesic, therefore the normal geodesics passing through λ = 0 lie on t = 0, hence the
hypersurfaces λ = 0 and t = 0 coincide; analogously, λ = LS corresponds to t = TS (= T).
From this fact that the Gaussian coordinates are adapted to the discrete symmetry, it thus
follows that s(σ, λ) and r(σ, λ) are even functions in λ for all σ; analogously, the functions
are even about λ = LS .

In a neighborhood of S in KSSdS[T], a compact hypersurface can be described by the equa-
tions

σ = ϕ(l) , λ = l , where ϕ : S1 → (−σ̄, σ̄) . (29)

We define the mean curvature operator K,

K[ϕ] :=
1

√

s2 − ϕ′ 2

(

∂σs+
2s∂σr

r

)

− ϕ′

(s2 − ϕ′ 2)3/2
+

2r′

rs

ϕ′

√

s2 − ϕ′ 2
+

1

s

(

ϕ′

√

s2 − ϕ′ 2

)′

;

(30)
for ϕ, the prime denotes a derivative w.r.t. l, for s and r, a derivative w.r.t. the second
argument; the suppressed arguments of the functions s, r, and its derivatives, are (ϕ(l), l).
For a given ϕ, K[ϕ] is a function S1 → R describing the mean curvature of the hypersurface
σ − ϕ(λ) = 0. The hypersurface S is represented by ϕ = 0; from (28) we obtain K[0] = KS .
In order to show the claims of the theorem we solve the prescribed mean curvature equation
K[ϕ] = K (≡ const) in a neighborhood of S.

Consider the Sobolev space H2(S1) = W 2,2(S1). The Sobolev inequalities ensure that ψ ∈
H2(S1) implies ψ ∈ C1,1/2(S1), where C1,1/2 denotes the relevant Hölder space; we have the
estimate ‖ψ‖C1,1/2 ≤ const ‖ψ‖H2 for all ψ. Since ‖ψ‖L∞ + ‖ψ′‖L∞ ≤ ‖ψ‖C1,1/2 , the set
δH2(S1) := {ψ ∈ H2(S1) | ‖ψ‖L∞ + ‖ψ′‖L∞ < δ = const} is a neighborhood of the origin in
H2(S1). Let Hk

even(S1) denote the space of even functions ψ ∈ Hk(S1); as a closed subspace
of Hk(S1) it is a Banach space. Finally define δH2

even(S1) := H2
even(S1)∩ δH2(S1). We choose

δ sufficiently small, so that ‖ψ‖L∞ < σ̄ and ‖s2 − ψ′ 2‖L∞ ≥ const > 0. The quasilinear
operator K, viewed as a map

K : δH2
even(S1)→ H0

even(S1) . (31)

13



CMC-Slicings of KSSdS Cosmologies

is C1-differentiable. The argument is standard and can be inferred, e.g. from Thm. 4.1 in [11].
The (Fréchet) derivative of K at a point ϕ is a linear operator,

K′[ϕ] : H2
even(S1)→ H0

even(S1) , (32)

which, for ϕ regular enough, is given by

K′[ϕ](ϕ̇) =
(

∆(3gϕ) + Λ−Kϕ ij K
ij
ϕ

)

(

s
√

s2 − ϕ′ 2
ϕ̇

)

(33)

with ϕ̇ ∈ H2
even(S1). The expressions 3gϕ and Kϕ are the metric and extrinsic curvature of

the surface σ − ϕ(λ) = 0; the Laplacian is the one associated with 3gϕ. It is convenient to
obtain Eq. (33) through geometric arguments, cf. the remark following Corollary 4.3.

Since ϕ ≡ 0 represents the CMC-hypersurface S we obtain

K′[0] = ∆ + a where a(l) = Λ− K2
S

3
− 6C2

S

r6(l)
. (34)

(Note that there do not exist pairs (KS , CS) ∈ KC0 such that a(l) ≤ 0 ∀l.) The operator K′[0]
is elliptic, the Fredholm alternative holds. In Lemma 4.2 we show that kerK′[0] is trivial, i.e.
the homogeneous equation ∆α + aα = 0 admits only the trivial solution α = 0. It follows
that K′[0] is an isomorphism, and we are able to apply the inverse function theorem, see,
e.g. [8]: there exists an open neighborhood V of K[0] in H0

even(S1) and a unique continuously
differentiable mapping K−1 : V → δH2

even(S1) with the property that K[K−1(κ)] = κ for all
κ ∈ V .

LetK be a smooth real function of τ ∈ R which is strictly monotonic and satisfies K(0) = KS ;
let (−τ̄ , τ̄) be an interval such that K(τ) ∈ V for all τ ∈ (−τ̄ , τ̄); note that K(τ) is interpreted
as a constant function for each τ . Then

ϕτ := K−1(K(τ)) (35)

uniquely defines a family of δH2
even(S1)-functions {ϕτ | τ ∈ (−τ̄ , τ̄ )}, where ϕτ1 6= ϕτ2 for

τ1 6= τ2. For each τ , ϕτ is smooth, by elliptic regularity. Moreover, the mapping τ → ϕτ is
continuously differentiable by construction. Therefore {ϕτ} defines a unique local slicing of
KSSdS[T] by compact CMC-hypersurfaces

Sτ := {(σ, λ,Ω) ∈ KSSdS[T] | σ = ϕτ (l), λ = l} , (36)

τ ∈ (−τ̄ , τ̄); Sτ1 6= Sτ2 for τ1 6= τ2; since ϕ0 ≡ 0, S0 = S. By construction, since ϕτ is even
for each τ , and since λ = 0 coincides with t = 0, Sτ is invariant under the discrete isometry
t 7→ −t for all τ . Hence, the properties (i)–(iii) are proved; also (iv) is a direct consequence of
the construction. The remaining claim follows immediately from the considerations of Sec. 2
and Prop. 3.1.

Remark. In the proof, K(τ) is strictly monotonic, which does not imply that K̇ 6= 0 a priori.
However, by an appropriate redefinition of the parameter τ , K̇ 6= 0 can always be achieved.
Henceforth we will always adopt the convention that K̇ > 0.

14
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Lemma 4.2. Consider the equation

∆α+ aα = 0 , (37)

where a(l) = Λ−K2/3− 6C2/r6(l), and let α ∈ H2
even(S1) be a solution. Then α ≡ 0.

For the proof we refer to Appendix B.

Corollary 4.3. The equation

∆α+ aα = K̇ (K̇ = const > 0) (38)

possesses a unique even solution α : S1 → R for all (K,C) ∈ KC0.

Proof. The equation is elliptic, the homogeneous equation possesses only the trivial solution.
The Fredholm alternative holds, hence existence and uniqueness of an even periodic solution
α follows.

Equation (38) is obtained by differentiating the mean curvature 3gijKij and using the evolu-
tion equations along the slicing. The solution of (38) is the lapse function of the slicing Sτ

described in Theorem 4.1: in fact, when we set

Φ : (τ, l,Ω) 7→ (σ, λ,Ω) = Φ(τ, l,Ω) =
(

ϕ(τ, l), l,Ω
)

, (39)

where ϕ(τ, ·) = ϕτ (·), and note that the future unit (co)normal of the slicing Sτ is given by

nµdx
µ =

s
√

s2 − ϕ′ 2

(

−dσ + ϕ′ dλ
)

, (40)

we obtain
α =

s
√

s2 − ϕ′ 2
ϕ̇ (41)

from the decomposition Φ̇µ = αnµ+Φµ
,iX

i (where the dot denotes ∂/∂τ). Hence (33) and (38)
coincide.

The shift vector of the slicing Sτ depends on the “spatial gauge” we are imposing. Let us
briefly elaborate on this issue. Consider the parametrization of the slicing

Φ : (τ, l,Ω) 7→ (σ, λ,Ω) = Φ(τ, l,Ω) =
(

ϕ(τ, βτ (l)), βτ (l),Ω
)

, (42)

where βτ (·) : [−LS , LS ]∼ ∼= S1 → S1 is one-to-one for each τ ; when the parametrization
is adapted to the reflection symmetry of the slicing, βτ (0) = 0 must hold; by virtue of
the S1-periodicity, βτ (±LS) = ±LS for all τ . On each hypersurface Sτ , l is a coordinate,
however, the 3-metric on Sτ is not of the form dl2 + r2dΩ2 for general βτ . Now consider
Φ̇µ∂µ = (ϕ̇+ β̇ϕ′)∂σ + β̇∂λ and Φµ

,l ∂µ = ϕ′β′∂σ +β′∂λ, where β(τ, ·) = βτ (·). While the lapse

α is given by (41), the shift vector field Xi∂i = x∂l, x = x(τ, l), depends on the gauge βτ . It
is given explicitly by

x = − 1

β′
ϕ′ϕ̇

s2 − ϕ′ 2
+
β̇

β′
= −ϕ

′

β′
α

s
√

s2 − ϕ′ 2
+
β̇

β′
, (43)
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where we again suppress the arguments
(

τ, β(τ, l)
)

on the r.h. side. Note that x(τ, 0) = 0 and
x(τ,±LS) = 0, since ϕ′(τ,±LS) = 0 and β(τ,±LS) = 0. We mention three gauges: when
βτ (l) = l we recover the gauge used in Theorem 4.1, cf. (29), and x = −αs−1(s2−ϕ′ 2)−1/2ϕ′.
Another interesting parametrization is the one given by β̇ = [s2 − ϕ′ 2]−1ϕ′ϕ̇; this gives
vanishing shift, i.e. an “Eulerian” gauge. As a third possibility, the gauge given by β′ =
[s2 − ϕ′ 2]−1/2 suggests itself. Here the spatial metric reads dl2 + r2dΩ for all τ , as is easily
seen by considering the pull-back of (27); we call this the “isotropic gauge”. The shift, which
reads x = −αϕ′+

√

s2 − ϕ′ 2β̇, satisfies x′ = −α(K/3−2C/r3), as can be shown by using (28)
or by invoking the identity ∂τ (Φ

µ,i Φ
ν ,j gµν) = 2αKij + 2D(iXj). But beware: the isotropic

gauge is not consistent with the S1-periodicity requirement, and thus x(τ,±LS) 6= 0.

The following relations are recorded for later use. Consider r = r(Φ(τ, l)) and t = t(Φ(τ, l))
in any gauge. Restricted to S (i.e. for τ = 0 or σ = 0), we have

∂r

∂τ
=

(

KSr

3
− CS

r2

)

α+ x r′ ,
∂t

∂τ
= V −1

[

r′α+

(

KSr

3
− CS

r2

)

x

]

. (44)

To prove the first relation we compute

ṙ
∣

∣

τ=0
= (∂σr)

∣

∣

σ=0
(ϕ̇+ ϕ′β̇)

∣

∣

τ=0
+ (∂λr)

∣

∣

σ=0
β̇
∣

∣

τ=0
=

[(

KSr

3
− CS

r2

)

α+ r′x

]

τ=0

, (45)

where we have used (28) and the fact that ϕ(0, l) ≡ 0 and β(0, l) ≡ l. To show the second
relation we note that the Killing vector is given by ξ = r′∂σ − [KSr/3−CS/r

2]∂λ for σ = 0,
cf. (12). Hence for ξνdx

ν we obtain ξσ = −r′ and ξλ = −[KSr/3−CS/r
2], both evaluated at

σ = 0, cf. (27). Now, ∂νt = −V −1ξν , cf. (17), therefore

ṫ
∣

∣

τ=0
= (∂σt)

∣

∣

σ=0
α
∣

∣

τ=0
+ (∂λt)

∣

∣

σ=0
x
∣

∣

τ=0
= V −1

[

r′α+

(

KSr

3
− CS

r2

)

x

]

τ=0

. (46)

Proposition 4.4. Consider a spacetime KSSdS[T] that contains a CMC-slicing Sτ , τ ∈
(−τ̄ , τ̄), satisfying the properties (i)–(iii) of Theorem 4.1. This slicing uniquely corresponds
to a smooth curve in KC0,

(−τ̄ , τ̄ ) ∋ τ 7→ (K,C)(τ) ∈ KC0 , (47)

such that (K,C)(0) = (KS , CS). The tangent vector (K̇, Ċ)(τ) of the curve is given through

−K̇(τ)rmin(τ)

3
+

Ċ(τ)

r2min(τ)
= r′′min(τ)αmin(τ) , (48)

where rmin(τ) = r(τ ; 0), r′′min(τ) = r′′(τ ; 0) = (1/2)(dD(τ ; r)/dr)|r=rmin(τ), αmin(τ) = α(τ ; 0);
α(τ ; l) is the lapse function of the slicing.

Proof. Sτ is a compact CMC-hypersurface in KSSdS[T] for all τ , hence the CMC-data is char-
acterized by (K(τ)), C(τ)) ∈ KC0 for all τ . Accordingly, Sτ generates a mapping (−τ̄ , τ̄) ∋
τ 7→ (K,C)(τ) = (K(τ), C(τ)) ∈ KC0; clearly, (K,C)(0) = (K(0), C(0)) = (KS , CS). By
virtue of the uniqueness property of Sτ established in Theorem 4.1, the connection between
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the slicing Sτ and the map (K,C)(τ) is one-to-one. To prove that (K,C)(τ) is a smooth
curve in KC0, consider

Kij(τ ; r)K
ij(τ ; r) =

K2(τ)

3
+

6C2(τ)

r6
, (49)

cf. (6). Along the (smooth) slicing Sτ , KijK
ij and K are smooth functions, therefore C(τ)

and thus (K,C)(τ) is smooth.

Let α(τ ; l) be the lapse function of the slicing Sτ and Xi∂i = x(τ ; l)∂l the shift vector in an
arbitrary gauge. Consider ∂τ [Kij(τ ; l)K

ij(τ ; l)]. We have on one hand that

(KijK
ij )̇ =

2

3
KK̇ +

12C

r6
Ċ − 36C2

r7
ṙ , (50)

where ṙ is given by (44). On the other hand, from the evolution equations and by employ-
ing (38),

(KijK
ij )̇ = −12C α

r6
(−rD(r) + r − 3M)− 12Cr′α′

r4
+ 2

(

K

3
+

2C

r3

)

K̇ − 36C2

r7
r′x . (51)

Equating (50) and (51), the terms involving the shift cancel, and we obtain

r′(τ ; l)α′(τ ; l) − r′′(τ ; l)α(τ ; l) =
K̇(τ)r(τ ; l)

3
− Ċ(τ)

r2(τ ; l)
, (52)

from which Eq. (48) ensues by evaluation at l = 0.

Definition. Equation (48), i.e.

−K̇rmin

3
+

Ċ

r2min

= r′′min αmin , (53)

together with K̇ > 0, defines a unique oriented direction field on KC0. This is because rmin,
r′′min, and αmin can be regarded as functions of (K,C) ∈ KC0. (Note in particular that the
lapse function is determined by equation (38), which only relies on the initial data sets.)

Proposition 4.4 states that a slicing Sτ is uniquely represented by a (local) integral curve of
the direction field. The following proposition turns this into a global statement:

Proposition 4.5. Consider a spacetime KSSdS[T] that contains a CMC-slicing Sτ , τ ∈
(−τ̄ , τ̄), satisfying the properties (i)–(iii) of Theorem 4.1. This slicing can be maximally
extended to a slicing Sτ , τ ∈ (τ−, τ+) ⊇ (−τ̄ , τ̄), satisfying (i)–(iii), such that

(K,C)(τ) → ∂(KC0) (τ → τ±) . (54)

Thus, the maximal extension of a slicing uniquely corresponds to a maximal integral curve of
the oriented direction field in KC0.
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Proof. Let (τ−, τ+) be the maximal interval of existence of the slicing Sτ provided by The-
orem 4.1, and consider the associated curve (K,C)(τ) in KC0, which is an open piece of
a maximal integral curve (K,C)mic(τ) of the direction field defined on KC0. Assume that
(K,C)(τ)→ (K+, C+) ∈ KC0 as τ → τ+. Since Sτ is a hypersurface in KSSdS[T], T (τ) = T
for all τ ∈ (τ−, τ+). As a function of K and C on KC0, T is continuous, cf. (26); it follows that
T (K+, C+) = limτ→τ+ T (K(τ), C(τ)) = T. Thus, by Theorem 4.1, there exists a unique local

slicing Ŝπ, π ∈ (−π̄, π̄), in KSSdS[T], such that Ŝ0 is the CMC-hypersurface characterized
by (K+, C+). The slicing Ŝπ is represented by an open piece of the maximal integral curve
(K,C)mic passing through (K+, C+); hence Sτ ∪ Ŝπ is a slicing of KSSdS[T] that extends Sτ .
This is a contradiction to the assumption. The argument for τ− is identical.

5 Properties of the slicings, and foliations

In this section we prove that each spacetime KSSdS[T] contains a unique (maximally ex-
tended) slicing by compact CMC-hypersurfaces, and we show that this slicing is a foliation
for a certain range of the time parameter. However, we begin with a discussion of the asymp-
totic behavior of slicings.

Lemma 5.1. Consider the function

T (K,C) =

rmax(K,C)
∫

rmin(K,C)

V −1(r)D− 1

2 (K,C; r)

(

Kr

3
− C

r2

)

dr , (55)

cf. (26). Let [0, 1) ∋ ν 7→ (K,C)(ν) ∈ KC0 be a curve such that (K,C)(ν) → (K∂ , C∂) ∈
∂(KC0) as ν → 1. Then

T → +∞ if (K∂ , C∂) ∈
(

Ct ∪ (K = −
√

3Λ)
)

(56a)

T → −∞ if (K∂ , C∂) ∈
(

Cb ∪ (K = +
√

3Λ)
)

, (56b)

where, however, the points (
√

3Λ, Ct(
√

3Λ)) and (−
√

3Λ, Cb(−
√

3Λ)) are excluded.

Proof. Let (K∂ , C∂) ∈ Ct with K∂ ∈ (−
√

3Λ,+
√

3Λ). Choose ǫ > 0 small, and write

T (ν) =

rmin(ν)+ǫ
∫

rmin(ν)

V −1

√

D(ν; r)

(

K(ν)r

3
− C(ν)

r2

)

dr +

rmax(ν)
∫

rmin(ν)+ǫ

V −1

√

D(ν; r)

(

K(ν)r

3
− C(ν)

r2

)

dr .

(57)
The second integral converges to a constant as ν → 1, since rmin(ν) and rmax(ν) converge to
the values of rmin and rmax at (K∂ , C∂), respectively, and the integrand converges uniformly.
In r ∈ (rmin(ν), rmin(ν) + ǫ) we make the expansion

D(ν; r) = D′(ν; rmin)(r − rmin) +
D′′(ν; rmin)

2
(r − rmin)

2 +O((r − rmin)
3) , (58)
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where rmin = rmin(ν) and the prime denotes differentiation w.r.t. r in the present context.
Then the first integral becomes

[

V −1(rmin)

(

Krmin

3
− C

r2min

)]

∣

∣

∣

∣

∣

(K∂ ,C∂)

×
[

−
√

2 log[D′(ν; rmin)]
√

D′′(ν; rmin)

]

+ Dǫ +O(D′(ν; rmin)) .

(59)
The first factor is a positive number, since K∂rmin/3 − C∂/r

2
min is negative, cf. Fig. 10(a);

Dǫ is a constant. With ν → 1, D′(ν; rmin(ν)) → 0, cf. Fig. 5(a); the equation D′(rmin) = 0
is in fact the defining equation for Cb,t, see Appendix A. Therefore, T (ν) diverges like
− log[D′(ν; rmin(ν))], i.e. T → ∞ as ν → 1. Analogously, we are able to prove that T = −∞
on Cb when K∂ 6= ±

√
3Λ; the different sign results from the different sign of the quantity

(Krmin/3 −C/r2min); see Fig. 7.

←− Cb −→

←− Ct −→
T =∞

T =∞

T = −∞

T = −∞

T
=
∞

T
=
−
∞ C

K

K̇ > 0

Figure 7: On KC0 the direction field (K̇, Ċ) satisfies K̇ > 0. On the boundaries T = ±∞.

Now let K∂ = ±
√

3Λ, C∂ ∈ (Cb(±
√

3Λ), Ct(±
√

3Λ)). Along the curve (K,C)(ν), rmax(ν)
diverges like

√
3/
√

Λ−K(ν)2/3, cf. Sec. 2. Choose r0 > rc such thatD(ν; r) < 4, r−2M > 0,
and |K(ν)|r3 > 6|C(ν)| on r ∈ [r0, rmax(ν)/2] for all ν sufficiently close to 1. Then,

T −
r0
∫

rmin

V −1

√
D

(

Kr

3
− C

r2

)

dr ≶

rmax/2
∫

r0

V −1

√
D

(

Kr

3
− C

r2

)

dr

≶
1

4

rmax/2
∫

r0

(

−Λr2

3

)−1(
Kr

3

)

dr = −1

4

K

Λ
log r

∣

∣

∣

rmax/2

r0

, (60)

where we have suppressed the dependence on ν. We infer that T (ν) diverges at least like
−(signK) log(Λ −K(ν)2/3) as ν → 1; hence T → −∞ when K∂ =

√
3Λ and T → ∞ when

K∂ = −
√

3Λ. A combination of the arguments used for (59) and (60) also yields that T →
−∞ when (K∂ , C∂) = (

√
3Λ, Cb(

√
3Λ)) and T → ∞ when (K∂ , C∂) → (−

√
3Λ, Ct(−

√
3Λ)).

Proposition 5.2. Consider a spacetime KSSdS[T] that contains a CMC-slicing satisfying
the properties (i)–(iii) of Theorem 4.1. Let Sτ , τ ∈ (τ−, τ+), be the maximal extension. Then
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(K,C)(τ)→ (
√

3Λ, Ct(
√

3Λ)) (τ → τ+) , (61a)

(K,C)(τ)→ (−
√

3Λ, Cb(−
√

3Λ)) (τ → τ−) . (61b)

Hereby, the hypersurfaces Sτ converge to the asymptotic hypersurfaces S±, S+ in the future,
S− in the past,

S± =

(

r =
1√
Λ

[

1−
√

1− 3
√

ΛM

])

∪ (r =∞) ⊆ KSSdS[T] (62)

as τ → τ±, see Fig. 8.
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=
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r
=
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=
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=
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r
=
r
c
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=
r
c

Figure 8: The asymptotic hypersurfaces S± of the slicing Sτ .

Remark. Proposition 5.2 is equivalent to the statement that all maximal integral curves of
the oriented direction field on KC0 originate from the point (−

√
3Λ, Cb(−

√
3Λ)) and end in

the point (
√

3Λ, Ct(
√

3Λ)). This is straightforward to prove:

Proof. Each maximal integral curve (K,C)(τ) of the direction field on KC0 is characterized
by T (τ) ≡ T = const, since the slicing is embedded in KSSdS[T]. Therefore, the limit set of
the curve (K,C)(τ) cannot contain a point on ∂(KC0) where T = ±∞, which leaves only the
points (−

√
3Λ, Cb(−

√
3Λ)) and (

√
3Λ, Ct(

√
3Λ)) by Lemma 5.1. Together with K̇ > 0 this

entails (61).

To show the second part of the assertion, we recall that Sτ can be represented by t(τ ; r) in
KSSdS[T], cf. (24). In analogy to the considerations in the proof of Lemma 5.1 we obtain

t(τ ; rmin(τ) + ǫ) =

rmin(τ)+ǫ
∫

rmin(τ)

V −1

√

D(τ ; r)

(

K(τ)r

3
− C(τ)

r2

)

dr → ∞ (τ → τ+) (63)

for all ǫ > 0; moreover, rmin(τ)→ rmin(τ+) for τ → τ+. Therefore, in the black hole region, Sτ

converges to the hypersurface r = rmin(τ+) as τ → τ+, where the convergence is uniform on

each “cone” {t|t ∈ [−E,E], E > 0}. From (23) we see that rmin(τ+) = (1−
√

1− 3
√

ΛM)/
√

Λ.
Similar considerations apply for the cosmological region; in particular, rmax(τ) → ∞ as
τ → τ+. Hence the claim is established.
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← Ct(K) →

← Cb(K) →

K
=
√

3Λ

K
=
−
√

3Λ

Figure 9: The direction field (K̇, Ċ) on KC0 for Λ = 1, M = 1/4.

Theorem 5.3. Each spacetime KSSdS[T] contains a unique (maximally extended) slicing
Sτ , τ ∈ (τ−, τ+), such that

a. Sτ is a compact CMC-hypersurface for all τ ∈ (τ−, τ+),

b. Sτ is reflection symmetric for all τ .

Along the slicing,

c. K(τ) is strictly monotonically increasing.

Every slicing S ′τ that satisfies (a) arises from Sτ by combining the flow of Sτ with an appro-
priate admixture of the Killing flow.

Remark. By definition, T is constant along the maximal integral curves of the oriented
direction field on KC0. Below we prove that, for each T, the equation T = T defines a
unique integral curve, which corresponds to a unique slicing Sτ in KSSdS[T], τ ∈ (τ−, τ+),
satisfying (a)–(c). The function T can thus be viewed as a “Hamilton function” for the
oriented direction field on KC0.

Proof. Each maximal integral curve of the oriented direction field on KC0 has a unique point
of intersection with the line K = const, since K̇ > 0 everywhere. Hence the pairs (0, C) with
C ∈ (Cb(0), Ct(0)) parametrize the family of integral curves in KC0. In the following we prove
that ∂T (K,C)/∂C is positive for all (K,C) ∈ KC0. By virtue of the asymptotic properties
of T (K,C) established in Lemma 5.1, this implies that C 7→ T (0, C) is a bijection between
(Cb(0), Ct(0)) and R. Hence, there exists a unique pair (0, C) ∈ KC0, such that T (0, C) = T,
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and thus a unique maximal integral curve in KC0, such that T = T along the curve. Since
the integral curve uniquely corresponds to a slicing Sτ satisfying (a)–(c), the claim of the
theorem is established. We now show that ∂T (K,C)/∂C > 0 for all (K,C) ∈ KC0.

Consider the initial data generated by (KS , CS) ∈ KC0 and let again LS = L(KS , CS), T =
T (KS , CS). The universal covering of the data is embedded as a Cauchy CMC-hypersurface
S in the covering space KSSdS. In a neighborhood of S we introduce Gaussian coordinates
(σ, λ), cf. the proof of Theorem 4.1. Now consider the (auxiliary) spacetime given by (−σ̄, σ̄)×
(−LS − ε, LS + ε) × S2, which we denote by KSSdS[T]′; it is an open subset of KSSdS and
spatially incomplete. In KSSdS[T]′ the hypersurface S does not generate a unique slicing, but
evolves into a one-parameter family of slicings; we are able to show this in a straightforward
way by using the methods of the proof of Theorem 4.1. We define the mean curvature
operator K as in (30) and an operator C,

C2[ϕ] :=
r6(ϕ(λ), λ)

6

(

Kij [ϕ]Kij [ϕ]− K[ϕ]2

3

)

, (64)

which assigns to every hypersurface σ = ϕ(λ) a function (−LS − ε, LS + ε) ∋ λ 7→ C[ϕ](λ);
for a CMC-hypersurface characterized by (K,C), C[ϕ] ≡ C. By construction, K[0] = KS and
C[0] = CS . K and C are C1 operators on H2

even

(

(−LS − ε, LS + ε)
)

, K′[0] = ∆ + a, cf. (34),
and

C′[0] =
r3

3
∆−∇i

(

r3

3

)

∇i + b , (65)

where b(λ) = M +KC/3− 4C2/r3 and ∇i(r3/3)∇i = r2r′∂l. The set kerK′[0] is not trivial,
and neither is ker C′[0]. However, the joint map (K′, C′)[0] is an isomorphism; see Appendix B.
We may apply the inverse function theorem: there exists a unique continuously differentiable
mapping (K, C)−1 such that (K, C)[(K, C)−1((κ, γ))] = (κ, γ) for all (κ, γ) of a neighborhood of
(KS , CS) in H0

even×H0
even. Hence, given a smooth function (−τ̄ , τ̄) ∋ τ 7→ (K(τ), C(τ)) such

that (K(0), C(0)) = (KS , CS), a unique slicing Sτ in KSSdS[T]′ is defined by using ϕτ :=
(K, C)−1(K(τ), C(τ)). By construction, the slicing Sτ in KSSdS[T]′ uniquely corresponds to
a curve (K,C)(τ) in a neighborhood of (KS , CS) ∈ KC0.

Consider the hypersurface S and the slicing Sτ in KSSdS[T]′ such that S0 = S andK(τ) = KS

for all τ ; the slicing is represented by a curve (K,C)(τ) = (KS , C(τ)), C(0) = CS , in KC0.
Let α(τ, l) be the lapse function of the slicing and x(τ, l) the shift vector in an arbitrary
gauge. Making use of (44) we find that

∂r′

∂τ
(0, LS) =

∂2r

∂l ∂τ
(0, LS) =

(

KSrmax

3
− CS

r2max

)

α′(0, LS) + x(0, LS)r′′max , (66)

where rmax = r(0, LS) and r′′max = r′′(0, LS). Differentiation of the equation r′(τ, L(τ)) = 0
results in

L̇(0) = −
(

KSrmax

3
− CS

r2max

)

α′(0, LS)

r′′max

− x(0, LS) . (67)

We are now prepared to investigate the derivative of T (τ) at τ = 0. The definition T (τ) =
t(τ, L(τ)) leads to

Ṫ (0) =
∂t

∂τ
(0, LS) +

∂t

∂l
(0, LS) L̇(0) =

α′(0, LS)

r′′max

(68)
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where we have employed (24) and (44). By virtue of Eq. (53) (which holds also for slicings
of KSSdS[T]′), we have Ċ(0) = r′′minr

2
minα(0, 0), and thus

∂T (K,C)

∂C

∣

∣

∣

(KS ,CS)
=

1

r2minr
′′ 2
min

r′′min

r′′max

α′(0, LS)

α(0, 0)
=
r′′min

r′′max

α′
0(LS)

r2minr
′′ 2
min

=
1

2

α′
0(2LS)

r2minr
′′ 2
min

, (69)

where we have also used (100) from App. B; α0 denotes the solution of the homogeneous
lapse equation (37), associated with (KS , CS), with initial data α0|l=0 = 1. By virtue of
Lemma 4.2, α0 is not periodic, so that α′

0(2LS) 6= 0; moreover, since α′
0(2LS) 6= 0 holds

irrespective of the choice of (K,C) = (KS , CS), it has a definite sign for all (K,C) ∈ KC0.
Consequently, also ∂T (K,C)/∂C ≷ 0 for all (K,C). Indeed ∂T /∂C > 0 by virtue of the
asymptotic behavior of T (K,C) described in Lemma 5.1. This establishes the claim of the
theorem.

Remark. The slicing Sτ in KSSdS[0], which constitutes the only time-symmetric spacetime in
the family KSSdS[T], is represented by a distinguished integral curve in KC0 that is invariant
under the inversion. The curve passes through the origin (0, 0) which is associated with a
CMC-hypersurface of time-symmetry, the hypersurface t = 0, which connects the bifurcation
2-spheres.

Remark. The approach we have taken to establish the main results displays a pronounced
interplay between the geometric analysis and the analysis of the function T . We have chosen
this approach because the direct investigation of this function is non-trivial; e.g. it is not
straightforward to show directly that it has no critical points, since methods like the ones
applied in [3] fail.

Theorem 5.4. In KSSdS[T] consider the unique maximally extended slicing Sτ , τ ∈ (τ−, τ+),
satisfying the properties (a)–(c) of Theorem 5.3. There exists an interval (τ̄−, τ̄+) ⊆ (τ−, τ+),
such that Sτ , τ ∈ (τ̄−, τ̄+), is a foliation.

Proof. Consider the lapse equation (38) for an umbilical pair (K,C) ∈ KC0, i.e. C = 0. In
this case a = Λ−K2/3 = const, and

α
∣

∣

(K,C=0)
= K̇

(

Λ− K2

3

)−1

= const > 0 (70)

is the unique even solution on the domain S1 provided by Corollary 4.3. Let α(τ, l) be the
lapse function of the slicing Sτ in KSSdS[T] which is represented by (K,C)(τ) in KC0. The
asymptotic properties (61) imply that there exists τ0 such that C(τ0) = 0. At τ = τ0, α is
given by (70), i.e. α(τ0, l) = const > 0. Since α(τ, l) continuously depends on τ , cf. (41),
there exists an interval (τ̄−, τ̄+) ∋ τ0, such that α(τ0, l) > 0 for all τ ∈ (τ̄−, τ̄+). Hence Sτ is
a foliation for τ ∈ (τ̄−, τ̄+).

Remark. Since the lapse function is explicitly known for C = 0, the direction field (K̇, Ċ) at
C = 0 can be computed explicitly as well. From (70) we obtain

Ċ
∣

∣

(K,C=0)
= K̇M

(

Λ− K2

3

)−1

= const > 0 . (71)

We infer that every integral curve intersects the line C = 0 exactly once, hence the value of
τ0 introduced in the proof of Theorem 5.4 is unique.
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In general, (τ̄−, τ̄+) 6= (τ−, τ+) in Theorem 5.4; this is proved in Appendix C. In particular,
Corollary C.3 shows that (τ̄−, τ̄+) 6= (τ−, τ+) for all spacetimes KSSdS[T] with |T| large
enough.

Conjecture 5.5. There exist numbers 0 < Fc < F0 < 1 such that the following statement
holds: if KSSdS[T] is a cosmological Kottler-Schwarzschild-de Sitter spacetime with 9M2Λ ∈
[Fc, F0) and sufficiently small |T |, then the maximally extended slicing Sτ , τ ∈ (τ−, τ+), of
Theorem (5.3) is a foliation.

This conjecture is based on extensive numerical evidence, which we present in Appendix C.
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A The parameter space KC0 of compact CMC-data

A.1 Properties of KC0

By definition, (K,C) ∈ KC iff there exists a neighborhood of (K,C) ∈ R
2 such that all pairs

of that neighborhood generate compact CMC-initial data. The function r(l) that determines
the initial data is given by the equation

r′ = ±
√

D(r) with D(r) = D(K,C; r) = 1− 2M̄

r
− Λ̄r2

3
+
C2

r4
, (72)

where M̄ = M + CK/3 and Λ̄ = Λ − K2/3; the initial data is compact iff r(l) is periodic
and thus interpretable as a function S1 → R. Therefore, (K,C) ∈ KC iff the function D(r)
possesses two positive (simple) zeros rmin and rmax, such that D(r) > 0 in (rmin, rmax).
(Accordingly, when viewed over r ∈ [rmin, rmax], r

′ = ±
√

D(r) describes a closed curve,
cf. Fig. 3(b), and r(l) becomes a periodic function which oscillates between rmin and rmax.)

Assume C 6= 0; then D(r)→∞ as r → 0, thus two positive extrema are necessary to obtain
the desired profile of D(r), cf. Fig. 3(a). The critical points of D(r) are

(r−)3 =
3

2Λ̄

(

M̄ −
√

M̄2 − 8

3
Λ̄C2

)

(r+)3 =
3

2Λ̄

(

M̄ +

√

M̄2 − 8

3
Λ̄C2

)

, (73)

which are positive, iff

Λ̄ > 0 , M̄ > 0 , C2 <
3

8

M̄2

Λ̄
. (74)

For future reference we note that

Λ̄ > 0 ⇔ K ∈ (−
√

3Λ,+
√

3Λ) . (75)
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When the conditions (74) are satisfied, r−/r+ is automatically a minimum/maximum of D(r);
however, the conditions are not sufficient to ensure the profile 3(a) of D(r).

Note that the case C = 0 is simpler: D(r) possesses the desired profile iff Λ̄ > 0. Proof:
D(r) → −∞ (r → 0, r → ∞); r− does not exist; r+ = 3

√

3M/Λ̄ is a maximum iff Λ̄ > 0.
Moreover, D(r+) > 0, since 9M2Λ̄ ≤ 9M2Λ < 1.

We can effectively reduce the problem by one parameter by writing

D̃(r̃) = 1− 2M̃

r̃
− r̃2

3
+
C̃2

r̃4
with r̃ =

√

Λ̄r , M̃ = M̄
√

Λ̄ , C̃ = CΛ̄ . (76)

Investigating (76) we find that the function D̃(r̃) has the desired profile if and only if (M̃ , C̃)
lies in a certain connected open set whose boundaries are convex/concave functions. Using
these properties, via the variable transformation relating (M̃ , C̃) and (K,C) for given (M,Λ)
we can prove

KC = KC0 ∪KC1 ∪KC−1 , (77)

where the KCi are pairwise disjoint connected open sets; KC−1 arises from KC1 by inversion
at the origin. KC0 is the connection component of (K,C) = (0, 0), it is invariant under the
inversion, cf. Fig. 4. KC0 is enclosed by the functions Ct(K) and Cb(K) = −Ct(−K), and
the vertical straight lines K = ±

√
3Λ.

The functions Cb,t(K) are only know implicitly; the defining equation for Cb,t is D(r−) = 0,
or, equivalently, Λ̄r3− +3M̄ = 2r−, where Λ̄, M̄ , and r− depend on

(

K,Ct,b(K)
)

. In the limit
of small Λ̄ we obtain the approximate solutions

Cb,t(K) =

√
3

K2

(

±1∓
√

1∓
√

3KM

)2






±1± 3

2

Λ̄

K2

(

±1∓
√

1∓
√

3KM
)2

√

1∓
√

3KM






+O(Λ̄2) ,

where the upper sign applies to Ct, the lower to Cb; note that |Cb(
√

3Λ)| < |Ct(
√

3Λ)|.
The functions Cb,t are strictly monotonically increasing. To show this we differentiate the
defining equation D(r−) = 0; we obtain

∂Cb,t

∂K
=

1

3
r3−
∣

∣

Cb,t
. (78)

For the sake of completeness we note that Ct(K) is a convex function.

A.2 rmin and rmax on KC0

We investigate rmin and rmax as functions of (K,C) ∈ KC0. In the special case C = 0, the
function D(r) reduces to D(r) = 1− 2M/r − Λ̄r2/3, thus

rmin =
2√
Λ̄

cos

(

ξ + π

3

)

, rmax =
2√
Λ̄

cos

(

ξ − π
3

)

where cos ξ := 3M
√

Λ̄ . (79)

Two subcases deserve special attention: when K = 0 we have cos ξ = 3M
√

Λ and rmin, rmax

coincide with the horizons of Schwarzschild-de Sitter, rmin = rb, rmax = rc. In the limit
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K → ±
√

3Λ, (79) becomes

rmin = 2M +
8

3
M3Λ̄ +O(Λ̄2) , rmax =

√
3√
Λ̄

+O(
√

Λ̄) . (80)

Eq. (79) shows that rmin ↓ and rmax ↑ when |K| ↑; hence, for C = 0, for all K, rmin ≤ rb and
rmax ≥ rc.
By recalling that D(r) = V (r) + [Kr/3 − C/r2]2, we conclude from V (r) > 0 ∀r ∈ (rb, rc)
that rmin, rmax ∈ (rb, rc) is excluded. Since rmin ≤ rb and rmax ≥ rc for C = 0, and since
rmin and rmax are continuous functions of (K,C) on the connected domain KC0, rmin ≤ rb
and rmax ≥ rc must hold everywhere on KC0.

Suppose that rmin = rb for some (K,C) ∈ KC0; it then follows from D(rb) = 0 that C =
(r3b/3)K. Conversely, consider (K,C) with C = (r3b/3)K; from

D(r) = 1− 2M

r
− Λr2

3
+

(

Kr

3
− Kr3b

3r2

)2

(81)

we obtain D(rb) = 0 and dD/dr|rb
> 0, therefore rmin = rb. Hence

rmin(K,C) = rb ⇐⇒ C =
r3b
3
K . (82)

We conclude that there exists a straight line in KC0, given by C = (r3b/3)K, along which rmin

attains the maximal possible value rb. This straight line intersects the boundary ∂(KC0) in
the K = ±

√
3Λ vertical lines (and has no intersection with Cb,t). To establish this result we

verify that (r3b/3)
√

3Λ < Ct(
√

3Λ) and we note that r− < rb everywhere, so that the slope of
Ct(K), cf. (78), is always less than the slope of the straight line. Hence, this “line of maximal
rmin” divides KC0 into two regions, an upper (left) half and a lower (right) half. In each
of the two halves [Krmin/3 − C/r2min] 6= 0 holds, since [Krmin/3 − C/r2min] = ±

√

−V (rmin);
it follows from the connectedness of the regions and the continuity of the function that
[Krmin/3−C/r2min] < 0 in the upper left half and [Krmin/3−C/r2min] > 0 in the lower right
half, see Fig. 10(a).

Analogously, we find a straight line of minimal rmax in KC0,

rmax(K,C) = rc ⇐⇒ C =
r3c
3
K . (83)

The straight line of minimal rmax, C = (r3c/3)K, intersects Cb,t(K) and so defines an (upper)
left half of KC0, where [Krmax/3 − C/r2max] < 0 and a (lower) right half, where [Krmax/3−
C/r2max] > 0 holds, see Fig. 10(b).

Consider a curve (K,C)(ν) and regard rmin and rmax as functions of ν. By differentiating
the equation D(rmin) = 0 w.r.t. ν we obtain

ṙmin = −2

(

dD

dr

∣

∣

rmin

)−1 [Krmin

3
− C

r2min

]

[

K̇rmin

3
− Ċ

r2min

]

, (84)

and the analogous result for rmax; the overdot denotes differentiation w.r.t. ν.
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K

C

Krmin

3 − C
r2
min

< 0

Krmin

3 − C
r2
min

> 0

K

C

Krmax

3 − C
r2
max

< 0

Krmax

3 − C
r2
max

> 0

Figure 10: rmin is maximal, rmin = rb, along a straight line. It divides KC0 in two halves, which

are characterized by Krmin/3 − C/r2min ≷ 0. On the boundaries, rmin increases as indicated by the

arrows. For the first subfigure Λ = 1, M = 1/5. rmax is minimal, rmin = rc, along another straight

line, which defines the regions Krmax/3−C/r2max ≷ 0. On the boundaries, rmax increases as indicated

by the arrows; rmax →∞ (K → ±
√

3Λ). For the second subfigure Λ = 1, M = 3/10.

Consider the boundaries Cb,t as parametrized curves
(

K(ν), Cb,t(K(ν))
)

and assume K̇ > 0.
By definition, rmin = r− on Cb,t, whereby dD/dr = 0 at rmin, so that (84) is not applicable.
However, by differentiating the equation dD/dr|rmin

= 0 we are able to express ṙmin in terms
of regular expressions: using Ċ = (r3min/3)K̇ , see (78), we obtain

ṙmin = −2

(

d2D

dr2

∣

∣

rmin

)−1

K̇

[

Krmin

3
− C

r2min

]

along Cb,t. (85)

Since [Krmin/3 − C/r2min] < 0 on Ct and d2D/dr2|rmin
> 0 we observe that ṙmin > 0 along

Ct; by virtue of the reflection symmetry, ṙmin < 0 along Cb.

From the monotonicity properties of rmin along Cb,t and the lines K = ±
√

3Λ, we conclude
that rmin assumes its global minimum at the point (K,C) = (

√
3Λ, Cb(

√
3Λ)) and at the

reflected point, see Fig. 10(a).

Using (78) in the rmax-analogue of (84) we get

ṙmax = −2

(

dD

dr

∣

∣

rmax

)−1 [Krmax

3
− C

r2max

]

K̇rmax

3

[

1− r3−
r3max

]

along Cb,t. (86)

We infer the properties of rmax along Cb,t as depicted in Fig. 10(b). In contrast to rmin, rmax

is unbounded as K →
√

3Λ.

For small Λ̄ we can calculate rmin and rmax along Cb,t up to any desired order of Λ̄:

rmin = ±
√

3

K

(

±1∓
√

1∓
√

3KM

)

(

±1 +
3
√

3M

4

Λ̄

K

(±1∓
√

1∓
√

3KM)
√

1∓
√

3KM

)

+O(Λ̄2) (87)

along Cb,t for Λ̄→ 0, where the upper sign applies to Ct, the lower sign to Cb. Setting Λ̄ = 0,
Eq. (87) becomes

rmin =
1√
Λ

(

±1∓
√

1∓ 3
√

ΛM

)

for K =
√

3Λ, C = Cb,t(
√

3Λ). (88)
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Finally, along Cb,t, rmax is given by

rmax =
2√
Λ̄

cos

(

ξ̄ − π
3

)

+O(Λ̄3/2) where cos ξ̄ := 3M̄
√

Λ̄ , (89)

which follows when C2/r4 is neglected against M̄/r in D(r).

C

K

C

K

Figure 11: rmin and rmax are constant along straight lines in KC. We chose Λ = 1 and M = 1/5,

M = 3/10.

For a given r0 ∈ (
√

Λ
−1

(1−
√

1− 3
√

ΛM), rb), the set of all (K,C) such that rmin(K,C) = r0
is (a segment of) a straight line in KC0: D(r0) = 0 holds iff (K,C) is chosen according to

C =
r30
3
K ∓ r20

√

−V (r0) ; (90)

moreover, dD/dr|r0
> 0 holds for (a segment of) the described straight line; hence rmin = r0

there. The lines of constant rmin are depicted in Fig. 11(a). Analogously, rmax is constant
along straight lines (90), where r0 ∈ (rc,∞); see Fig. 11(b).

A.3 Hypersurfaces r = const

An alternative way of investigating the space KC is based on an analysis of the CMC-data
associated with r = const hypersurfaces. In KSSdS the hypersurfaces r = const are spacelike
hypersurfaces with unit normal

√

−V (r) ∂/∂r when r ∈ (0, rb) ∪ (rc,∞). A hypersurface
r = const possesses constant mean curvature, the induced CMC-data is represented by the
constants K, C,

K = ∓ 1

r
√

−V (r)

(

−2 +
3M

r
+ Λr2

)

, C = ± r2√
3

√

1−
(

Λ− K2

3

)

r2 , (91)

The induced metric is dl2 + r2dΩ2 with l = t
√

−V (r) ∈ (−∞,∞); identifying l = l0 with
l = l1 > l0 leads to compact CMC-data, however, no canonical choice of l0, l1 exists.

The r = const initial data sets play the role of borderline cases: r = const data arises when
the function D(r) possesses a double zero. We infer that the pair (K,C) of (91) lies on the
boundary of KC0:

(K,C) ∈ Cb,t when
1√
Λ

(

1−
√

1− 3
√

ΛM

)

< r <
1√
Λ

(

−1 +

√

1 + 3
√

ΛM

)

. (92)

Eqs. (91) thus constitute a parametric representation of the boundaries Cb,t of KC0.
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B The lapse equation

We consider the equation

∆α+ aα = 0 , i.e. α′′ +
2

r
r′α′ + aα = 0 , (93)

where a(l) = Λ−K2/3−6C2/r6(l); note that there do not exist pairs (K,C) ∈ KC0 such that
a(l) is non-positive, which follows from algebraic computations based on the results of Ap-
pendix A. We seek the general solution on the domain R. Equation (93) is homogeneous with
periodic, even and odd coefficient functions. The general solution of (93) is a superposition
of two principal solutions with symmetry properties:

• Let α0(l) denote the function that solves (93) with initial conditions α0(0) = 1 and
α′

0(0) = 0; it is even.

• The function αξ(l) = r′(l) is odd; it solves (93) with initial conditions αξ(0) = 0,
α′

ξ(0) = r′′min.

The function αξ is positive in (0, L) but negative in (−L, 0); αξ(0) = αξ(L) = 0; αξ is a
periodic function. Geometrically speaking, αξ(l) = r′(l) is the lapse function associated with
the Killing vector ξ, cf. (11).

To investigate the general solution of (93) we use Floquet’s theorem. Let us write (93) as a
system of first order,

(

α
α′

)′

=

(

0 1
−a −2r′/r

) (

α
α′

)

= A(l)

(

α
α′

)

. (94)

The principal solution matrix is given by

Π(l, 0) =

(

α0(l) r′(l)/r′′min

α′
0(l) r′′(l)/r′′min

)

, Π′(l, 0) = A(l)Π(l, 0) , Π(0, 0) =

(

1 0
0 1

)

.

(95)
The Wronskian W (l, 0) = det Π(l, 0) satisfies the equation W ′(l, 0) = (trA(l))W (l, 0), thus

W (l, 0) = det Π(l, 0) = exp

∫ l

0
trA(l̃) dl̃ = r2min/r(l)

2 . (96)

From W (2L, 0) = 1 we see that the so-called monodromy matrix Π(2L, 0) fulfills

Π(2L, 0) =

(

1 0
α′

0(2L) 1

)

. (97)

Floquet’s theorem states that Π(l, 0) = P (l, 0) exp(lQ(0)), where P (l, 0) is a periodic matrix
and Q(0) is such that exp(2LQ(0)) = Π(2L, 0). Thus,

Π(l, 0) = P (l, 0) exp

[

l

(

0 0
α′

0(2L)/(2L) 0

)]

= P (l, 0)

(

1 0
(lα′

0(2L))/(2L) 1

)

. (98)
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It follows that

α0(2nL+ l) = α0(l) + n [α′
0(2L)/r′′min]αξ(l) ∀l , ∀n ∈ Z , (99)

in particular, α0(2nL) = α0(0) = 1. When we employ the symmetry properties of the
coefficients in the differential equation (94) we are able to also establish a direct relation
between the initial data at l = 0 and the solution at the half-period l = L:

Π(L, 0) =





r′′
min

r′′max

r2
min

r2
max

0

α′
0(L) r′′max

r′′
min



 , where α′
0(2L) = 2 α′

0(L)
r′′min

r′′max

. (100)

We infer that α0(l) (and thus the general solution of (93)) is periodic iff α′
0(L) = 0. We prove

α′
0(L) 6= 0, which implies that the even solutions of (93) are not periodic, so that Lemma 4.2

is established.

We analyze an explicit representation of α0, which we obtain via an ansatz α0(l) = β(l)r′(l);
we get

α0(l) = −Ċr′
l
∫

1

r2r′ 2
dl + kr′ , (101)

where Ċ abbreviates Ċ = r2minr
′′
min, and k = const is such that the function is even. The

integral diverges as l → 0 and l → ±L; however, by applying de l’Hospital’s rule it is
confirmed that α0(0) = 1 and α0(±L) = ±(r′′min/r

′′
max) (r2min/r

2
max), cf. (100).

When we view (the first half-period of) the function α0 as a function of r we can write

α0(r) = Ċ
√

D(r)



−
r
∫

1

r̂2
1

D(r̂)3/2
dr̂ + k



 . (102)

We introduce δ(r) by defining δ(r) = r4D(r)(r − rmin)
−1(rmax − r)−1; the function δ(r) is

positive in [rmin, rmax]. Define

φ(r) =
4r − 2(rmax + rmin)

(rmax − rmin)2
√

(r − rmin)(rmax − r)
=

∫

1

(r − rmin)3/2(rmax − r)3/2
dr , (103)

then α0(r) becomes

α0(r) = −Ċ
√

D(r)φ(r)r4δ(r)−3/2 + Ċ
√

D(r)

∫ r

rmin

φ(r)
(

r4δ(r)−3/2
)′
dr , (104)

where the prime denotes differentiation w.r.t. r in the present context. Note that
√

D(r)φ(r)
is a regular bounded function so that the first term in (104) is regular and bounded. Using
that dα0/dl =

√
Ddα0/dr we obtain by differentiating (104)

α′
0(L) =

Ċ

2
D′(rmin)

rmax
∫

rmin

φ(r)
(

r4δ(r)−3/2
)′
dr = − Ċ

2
D′(rmin)

rmax
∫

rmin

Φ(r)
(

r4δ(r)−3/2
)′′

dr ,

(105)
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where Φ(r) = −4
√

(r − rmin)(rmax − r)(rmax−rmin)
−2 is the integral of φ(r). Therefore, since

Φ(r) < 0 in (rmin, rmax), to show that α′
0(L) 6= 0 it is sufficient to show that the function

r4δ(r)−3/2 is convex.

The special case C = 0 is easy to treat. In this case, δ(r) = (Λ̄/3)r3(r−rneg), where rneg < 0,
hence

(

r4δ(r)−3/2
)′′
∝
(

1
√

r (r − rneg)3

)′′

=
3(r − rneg)

4(8r2 − 4rnegr + r2neg)

4[r(r − rneg)3]5/2
> 0 , (106)

i.e. r4δ(r)−3/2 is convex.

In the general case we show that r3δ(r)−1 is convex. Then, r8/3δ−1 = r−1/3r3δ(r)−1 is
convex, since r3δ(r)−1 is decreasing, and consequently r4δ(r)−3/2 = (r8/3δ−1)3/2 is convex.
An in-depth analysis of the properties of the zeros of δ(r) is essential to establish the claim.
Asymptotically, for C → Cb,t, the zeros rmin and rmax of D(r) coincide to form the double
zero r−, which is know explicitly, see (73). Hence δ(r) is known explicitly for C → Cb,t,

δ(r) = −r0
3

(r0 − 3M)2

3r20V (r0)
π
( r

r0

)

, (107a)

where π(x) = 1 + 2x+ 3x2 + 2Fx3 + Fx4 with F = 1 +
3r20V (r0)

(r0 − 3M)2
, (107b)

and convexity of r3δ(r)−1 can be established; here, r0 is such that (K(r0), C(r0)) describes
a point on Cb,t via (91). Since δ(r) is a fourth-order polynomial, also its zeros are known
explicitly for C → Cb,t. Combining this with an analysis of the variation of the zeros of δ as
C varies, the claim can be established; the details are omitted here.

In order to differentiate (101), i.e. to be able to write down α′
0(2L) in terms of quadratures,

the integral must be regularized appropriately. The integral representation (101) of α0 can
be “regularized” in several ways, e.g.

α0 = 1− r′
l
∫

0

1

r′ 2

(

r′′min

r2min

r2
− r′′

)

dl , (108a)

α0 =
r2min

r2
+ r2minr

′

l
∫

0

2

r3
dl − r2minr

′

l
∫

0

1

r2r′ 2
(

r′′min − r′′
)

dl , (108b)

where the integrands are now regular at l = 0. When we differentiate the expression (108b),
and manipulate the arising terms so that divergencies cancel, we obtain

α′
0r

′′
max

r2min

= − 1

r2r′
(r′′max − r′′)(r′′min − r′′) + r′′

l
∫

0

2

r3
(

r′′min + r′′max − r′′
)

dl +

+ r′′
l
∫

0

r′′′

r2r′
dl − r′′

l
∫

0

1

r2r′ 2
(r′′max − r′′)(r′′min − r′′)dl ,

(109)
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which can be evaluated at L to obtain α′
0(L) and thus α′

0(2L); the equation is mainly useful
for numerical purposes.

We consider now the lapse equation

∆α+ aα = K̇ , i.e. α′′ +
2

r
r′α′ + aα = K̇ = const , (110)

where a(l) = Λ − K2/3 − 6C2/r6(l), cf. (38). In first order from the system corresponds
to (94) with an additional inhomogeneity (0, K̇). Using the principal solution matrix (95) of
the homogeneous system, we obtain

(

α
α′

)

= Π(l, 0)

(

α
α′

)

(0) +

l
∫

0

Π(l, s)

(

0

K̇

)

ds (111)

by the method of variation of constants.

Corollary 4.3 states that there exists a unique even periodic solution of (110); we give an
alternative argument here. Eq. (111) describes a periodic function if and only if (α,α′)(2L) =
(α,α′)(0), i.e. iff

(

id−Π(2L, 0)
)

(

α
α′

)

(0) =

2L
∫

0

Π(2L, s)

(

0

K̇

)

ds , (112)

where Π(2L, 0) is given by (97); Π(2L, s) can be computed easily,

Π(2L, s) = Π(2L, 0)Π(s, 0)−1 =
r(s)2

r2min

(

1 0
α′

0(2L) 1

)

(

r′′(s)
r′′
min

− r′(s)
r′′
min

−α′
0(s) α0(s)

)

. (113)

Integration of the first component of Π(2L, s) (0, 1) yields

2L
∫

0

r2

r2min

(

− r′

r′′min

)

ds = − 1

r2minr
′′
min

r3

3

∣

∣

∣

2L

0
= 0 , (114)

i.e. the first component of Eq. (112) is satisfied identically. The second condition is a condition
for α(0); it is fulfilled iff

α(0) = − K̇

α′
0(2L)

1

r2min

2L
∫

0

r(s)2α0(s)ds =: αmin . (115)

Eq. (112) does not impose a condition on α′(0); however, when α is required to be even,
α′(0) = 0 is necessary. Hence we have reproduced the result that there exists a unique even
periodic solution of (110).

The general solution of (110) is the linear combination α̂ = α + k0α0 + kξαξ, where k0 and
kξ are constants;

α̂(2nL+ l) = α(l) + k0α0(l) + [kξ + k0nα
′
0(2L)/r′′min]αξ(l) ∀l,∀n ∈ Z (116)
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follows from (99). When k0 = 0, kξ 6= 0, the solution is periodic but not even; when k0 6= 0,
kξ = 0, the solution is even but not periodic.

To express αmin, cf. (115), in terms of quadratures we may use the regularization (108b). We
obtain

αmin

K̇
= − 2

3α′
0(2L)



L+ 2r3max

L
∫

0

dl

r3
−

L
∫

0

(r3max − r3)(r′′min − r′′)
r2r′ 2

dl



− 1

3

r3min − r3max

r′′min

.

By using (108a) and slightly different conventions we derive

αmin = 0 ⇔
rmax
∫

rmin

r2dr
√

D(r)
− 1

6

rmax
∫

rmin

r3min − r3
D3/2(r)

(

D′
max

r2max

r2
−D′(r)

)

dr = 0 , (117)

where D′(r) = dD(r)/dr and D′
max = D′(rmax).

We conclude this section by proving the claim made in the proof of Theorem 5.3, i.e. that
the system

∆β + aβ = K̇ , ∆β − 3
r′

r
β′ − 3b

r3
β =

3Ċ

r3
, (118)

where a(l) = Λ −K2/3 − 6C2/r6(l), and b(l) = M +KC/3 − 4C2/r3(l), has a unique even
solution β(l) (on the domain R) for given even functions K̇ and Ċ. It is straightforward to
see that the system (118) is equivalent to the equation

r′β′ − r′′β =
K̇r

3
− Ċ

r2
, (119)

which we have encountered already in (52). Since the coefficient r′ is odd, r′′ even, there exists
a unique solution β that is even; the general solution β̂ is a linear combination β̂ = β+constr′.

C The space KC0+ and foliations Sτ

In this section we discuss analytical and numerical results concerning the question of when a
compact CMC-slicing Sτ in the spacetime KSSdS[T] is a foliation. These results strengthen
the statement of Theorem 5.4.

Let α(K,C; l) denote the unique even solution of the lapse equation (38) associated with
(K,C) ∈ KC0 and a given constant K̇ > 0, cf. Corollary 4.3. We make the following

Definition. KC0+ is defined as the set of all (K,C) ∈ KC0 such that the associated lapse
function α(K,C; l) is positive.

Proposition C.1. There exists a neighborhood W of the line C = 0 in KC0 such that

W ⊆ KC0+ . (120)
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Proof. The proof is similar to the proof of Theorem 5.4: αmin(K,C) and thus α(K,C; l)
depends continuously on (K,C) ∈ KC0, when K̇ is a given constant (or a continuous function
on KC0), see Appendix B. Hence, since α(K,C; l) = const > 0 on the line C = 0, cf. (70),
there exists a neighborhood W of C = 0 which is contained in KC0+.

Proposition C.2. There exists a neighborhood V (Cb) in KC0 of the curve
{

(K,Cb(K)) |
|K ∈ (−

√
3Λ,
√

3Λ)
}

and a neighborhood V (Ct) of {(K,Ct(K)) |K ∈ (−
√

3Λ,
√

3Λ)} such
that

V (Cb) ∩KC0+ = ∅ , V (Ct) ∩KC0+ = ∅ . (121)

There exists a neighborhood U(
√

3Λ) of the line {(
√

3Λ, C)|C ∈ (Cb(
√

3Λ), Ct(
√

3Λ))} in KC0

and an analogous neighborhood U(−
√

3Λ) of {(−
√

3Λ, C)|C ∈ (Cb(−
√

3Λ), Ct(−
√

3Λ))} such
that

U(
√

3Λ) ∩KC0 ⊆ KC0+ , U(−
√

3Λ) ∩KC0 ⊆ KC0+ . (122)

Proof. In KSSdS[T] consider the foliation of the black hole region by r = const hypersurfaces.
Recall that r = r0 = const is a CMC-hypersurface with metric dl2 + r20dΩ

2 and K = K0,
C = C0 given by (91). The lapse function αr of the r = const foliation at r = r0 is given by

αr(l) ≡
K̇

a(r0)
, where a(r0) = Λ− K2

0

3
− 6C2

0

r60
= const . (123)

It is a solution of the lapse equation (38), where r′ = 0, i.e. αr solves α′′
r + a(r0)αr = K̇. We

consider a hypersurface r = r0 such that r0 lies in the interval given in (92), so that we have
K0 ∈ (−

√
3Λ,
√

3Λ) and (without loss of generality) C0 = Ct(K0).

Consider a neighborhood of (K0, C0) in KC0. Choose a pair (K,C) ∈ KC0 of that neighbor-
hood and consider the associated CMC-hypersurface which is determined by the embedding
t(r), see (24). For all small ǫ > 0, for all large E > 0,

|t(rmin(K,C) + ǫ)| =

∣

∣

∣

∣

∣

∣

∣

rmin(K,C)+ǫ
∫

rmin(K,C)

V −1

√

D(K,C; r)

(

Kr

3
− C

r2

)

dr

∣

∣

∣

∣

∣

∣

∣

> E (124)

and |rmin(K,C)− r0| < ǫ, provided that (K,C) is sufficiently close to (K0, C0). This follows
from (24) using the same techniques as in the proof of Lemma 5.1 and Proposition 5.2. In
the subset t ∈ [−E,E] of the black hole region, the (monotonic) function r(t) thus satisfies
|r(t)− r0|+ |∂r/∂t| ≤ 3ǫ, if (K,C) is sufficiently close to (K0, C0), i.e., r(t) is approximately
constant for t ∈ [−E,E].

Let, now, S be a compact CMC-hypersurface whose values (KS , CS) are sufficiently close to
(K0, C0), i.e.

∣

∣(KS , CS)−(K0, C0)
∣

∣ < δ; S can be approximated by the hypersurface r = r0 in
a region t ∈ [−E,E] of the black hole. Consider the compact CMC-slicing Sτ that contains
the CMC-hypersurface S associated with (KS , CS). Since the oriented direction field on KC0

is tangential to ∂(KC0) in the limit (K,C) → (K0, C0), the integral curve (K,C)(τ) that
represents Sτ can be approximated (in at least the C1-sense) by the curve

(

K(τ), Ct(K(τ))
)

for all τ of some (small) τ -interval (independent of δ).
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It follows that the above statement carries over to the slicings Sτ : in some region t ∈ [−E,E]
of the black hole, for all τ in some small interval, the slicing Sτ can be approximated by the
slicing of r = const hypersurfaces through r = r0. We conclude that

αmin(K,C) → αr =
K̇

a(r0)
for (K,C)→ (K0, C0) . (125)

Standard algebraic manipulations reveal that a(r0) < 0 for all (K0, C0) ∈ Ct. Therefore,
αmin(K,C) < 0 for all (K,C) sufficiently close to Ct, i.e. there exists a neighborhood V (Ct) of
the line {(K,Ct(K))|K ∈ (−

√
3Λ,
√

3Λ)} in KC0 such that V (Ct)∩KC0+ = ∅. The statement
for Cb follows via the symmetry property of KC0, hence the first claim is established.

The proof of the second claim of the proposition follows the same principle: we consider
a CMC-hypersurface H0 in KSSdS that is associated with mean curvature K0 =

√
3Λ and

C0 ∈ (Cb(
√

3Λ), Ct(
√

3Λ)) and we exploit the fact that the family of CMC-hypersurfaces Hτ

generated by (
√

3Λ, C(τ)), where C(τ) is running in (Cb(
√

3Λ), Ct(
√

3Λ)), forms a foliation
of (a part of) KSSdS; in particular, α(r) > 0 for H0. The slicing Hτ has been investigated
in [6]. However, a proof of the positivity of the associated lapse function is missing. This
gap can be closed via considerations similar to those of Appendix B, for a detailed discussion
see [5].

When S is a compact CMC-hypersurface whose values (KS , CS) are sufficiently close to (K0 =√
3Λ, C0), it can be suitably approximated by the hypersurface H0, because rmin(K,C) →

rmin(
√

3Λ, C0) and

t(K,C; r)→ t(
√

3Λ, C0; r) when (K,C)→ (
√

3Λ, C0) (126)

at least in C1, uniformly on every compact r-interval. Since the oriented direction field on
KC0 is tangential to ∂(KC0) in the limit (K,C)→ (

√
3Λ, C0) we infer

α(K,C; r) → α(
√

3Λ, C0; r) for (K,C)→ (
√

3Λ, C0) , (127)

hence, if (K,C) is in a sufficiently small neighborhood of (
√

3Λ, C0), then α(K,C; r) is positive
since α(

√
3Λ, C0; r) is positive. Accordingly, there exists a neighborhood U(

√
3Λ) of the line

{(
√

3Λ, C) | C ∈ (Cb(
√

3Λ), Ct(
√

3Λ))} in KC0 such that U(
√

3Λ) ∩KC0 ⊆ KC0+.

Corollary C.3. The compact CMC-slicing Sτ , τ ∈ (τ−, τ+), in the spacetime KSSdS[T], |T|
sufficiently large, cannot be a foliation, i.e. (τ̄−, τ̄+) 6= (τ−, τ+) in Theorem 5.4.

Proof. The integral curve (K,C)(τ) associated with the slicing Sτ is characterized by T (τ) ≡
T; when |T| is sufficiently large, it must pass through a given neighborhood of Cb or Ct

(where T = ±∞, cf. Fig. 7) and thus through V (Cb) or V (Ct); in V (Cb) and V (Ct) the lapse
function is not positive.

Remark. Let S ′τ be an arbitrary slicing in KSSdS[T] that is not reflection symmetric and let α̂
denote its lapse function. S ′τ arises from Sτ by combining the flow of Sτ with an appropriate
admixture of the Killing flow, see Theorem 5.3, therefore α̂(l) = α(l)+kξαξ(l) = α(l)+kξr

′(l)
for a constant kξ (depending on τ), see Appendix B. Since r′(l) is odd, α̂ 6> 0 whenever α 6> 0,
i.e. if Sτ is not a foliation then there exists no other slicing S ′τ in KSSdS[T] that is.
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Numerical investigations suggest that KC0+ is a connected set; the boundary ∂(KC0+) con-
sists of two smooth curves: one curve, Pt, that connects the points (−

√
3Λ, Ct(−

√
3Λ)) and

(
√

3Λ, Ct(
√

3Λ)), and a second curve, Pb, that connects the points (−
√

3Λ, Cb(−
√

3Λ)) and
(
√

3Λ, Cb(
√

3Λ)). The curve Pt is given by

Pt = {(K,C) | (αmin(K,C) = 0) ∧ (C > 0)} , (128)

cf. (117), Pb is the reflected curve, see Figs. 12 and 13. As with Cb,t we use the same symbols
when we write the curves in parametric form, i.e. we also write C = Pb(K) and C = Pt(K).

← Ct(K) →

← Cb(K) →

Pt(K)

Pb(K)

K
=
√

3Λ

K
=
−
√

3Λ KC0+

Figure 12: KC0+ and its boundaries Pt, Pb in the case Λ = 1, M = 1/4.

√
3Λ−

√
3Λ

1

0.95

Figure 13: The depicted function represents Pt(K)/Ct(K).

A slicing Sτ , τ ∈ (τ−, τ+), in KSSdS[T] is a foliation as long as the associated integral
curve (K,C)(τ) of the oriented direction field lies in KC0+; if the integral curve intersects
Pt or Pb, Sτ cannot be a foliation for all τ . Since the integral curve is characterized by
T (τ) = T (K(τ), C(τ)) ≡ T, at a possible intersection point (K,Pt(K)), T (K,Pt(K)) = T
must hold, and analogously T (K,Pb(K)) = T for Pb. Therefore, the problem of whether or
under what conditions a slicing is a foliation can be investigated by analyzing the function
T (K,Pt(K)) and the equation T (K,Pt(K)) = T. Let Tf := infK T (K,Pt(K));

i. if Tf 6> 0, then, for each T, the slicing Sτ in KSSdS[T] is not a foliation.

ii. If Tf > 0, then slicings Sτ contained in spacetimes KSSdS[T] with |T| < Tf are folia-
tions; slicings in KSSdS[T] with |T| ≥ Tf are not.
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To see (i) and (ii), we note that the equation T (K,Pt(K)) = T has a solution K iff T ≥ Tf .
By virtue of the reflection symmetry in KC0, T (K,Pb(K)) = −T (−K,Pt(−K)), thus the
equation T (K,Pb(K)) = T is equivalent to the equation T (−K,Pt(−K)) = −T; it has a
solution iff T ≤ −Tf . If Tf ≤ 0, then, for all T, at least one of the equations has a solution.
If Tf > 0, then, for all |T| ≥ Tf , at least one of the equations has a solution; however, for
all |T| < Tf , neither of the equations has a solution. This implies that the integral curve
T (τ) = T (with |T| < Tf) in KC0 does neither intersect Pt nor Pb, but is entirely contained
in KC0+; thus the associated slicing Sτ , τ ∈ (τ−, τ+), is a foliation.

Lemma 5.1 entails that T (K,Pt(K)) →∞ for K → −
√

3Λ; moreover, the numerical results
suggest that the function T (K,Pt(K)) is always strictly monotonically decreasing for K < 0.
However, for K > 0, the properties of T (K,Pt(K)) depend on the chosen family of KSSdS[T]-
spacetimes, i.e. on (Λ,M)! In Fig. 14 we show the function T (K,Pt(K)) for several cases of
M , where Λ = 1.

Numerical results suggest that the asymptotic behavior of T (K,Pt(K)) as K →
√

3Λ can be
approximated by

T (K,Pt(K)) = c1 + c2 log(
√

3Λ−K) , (129)

where the constants c1, c2 depend on (Λ,M). This is consistent with the asymptotics of T
obtained in the proof of Lemma 5.1. The constant c2 is positive (so that T (K,Pt(K))→ −∞
as K →

√
3Λ) for all M satisfying M < Mc; c2 = 0 for M = Mc, and c2 < 0 in the case

Mc < M < (3
√

Λ)−1, cf. Fig. 14.

In the case M ≥Mc, positivity of T (K,Pt(K)) is possible; indeed, there exists M0 such that
Tf > 0 for all Mc ≤ M < M0, see Figs. 14(d) and 14(e). Hence, for Mc ≤ M < M0, the
slicings Sτ in the spacetimes KSSdS[T] whose |T| is small enough, are foliations, cf. (ii). Thus
there is strong numerical evidence that Conjecture 5.5 is true.

From Fig. 14(c) we see that the equation T (K,Pt(K)) = T can have up to three solutions.
Since in that case T (K,Pb(K)) = T has also one solution, an integral curve of the oriented
direction field can switch between KC0+ and KC0\KC0+ up to four times. The different
scenarios can be read off from Fig. 14.

We conclude this section by noting that the asymptotic behavior of Pt(K) is given by

Pt(K) = Ct(K)
(

1− [d1 + d2(
√

3Λ−K)](
√

3Λ−K)2
)

, (130)

where d1 and d2 are constants, d1 > 0, that depend on (M,Λ).
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