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When foliating the extended Schwarzschild spacetime with maximal slices while using zero shift,
slice stretching effects such as slice sucking and slice wrapping arise. These effects are due to the
differential infall of Eulerian observers and can be quantified for arbitrary spatial coordinates in
the context of even boundary conditions. As examples logarithmic and isotropic grid coordinates
are discussed. For boundary conditions where the lapse arises as a linear combination of odd and
even lapse, two integrals are introduced which characterize the overall slice stretching. Favorable
boundary conditions are then derived which make slice stretching occur late in numerical simulations.
Allowing the lapse to become negative, this requirement leads to lapse functions which approach at
late times the odd lapse corresponding to the static Schwarzschild metric. Demanding in addition
that a numerically favorable lapse remains non-negative, as result the average of odd and even lapse
is obtained. At late times the lapse with zero gradient at the puncture arising for the puncture
evolution is precisely of this form. Finally a one-parameter family of boundary conditions is studied
numerically and agreement with analytical results is found.

PACS numbers: 04.20.Cv, 04.25.Dm, 04.70.Bw, 95.30.Sf Preprint number: AEI-2004-035

I. INTRODUCTION

When a singularity avoiding lapse together with a van-
ishing shift is used to evolve a spacetime containing a
physical singularity, the foliation is of pathological na-
ture [1, 2, 3]. A first effect referred to as “slice sucking”
consists of the “outward”-drifting of coordinate locations
as the corresponding Eulerian observers are falling to-
ward the singularity. This differential infall leads to large
proper distances in between neighboring observers, cre-
ating large gradients in the radial metric function, the
so-called “slice wrapping”.

The overall effect is referred to as ”slice stretching”
and, being a geometric property of the slicing, is present
independently of the existence of a numerical grid [4]. Its
appearance has unpleasant consequences when numeri-
cally evolving say the Schwarzschild black hole spacetime:
Due to slice sucking the coordinate location of e.g. the
event horizon is found to move outward and the outer
region continuously decreases in coordinate size. This
not only is wasting numerical resources but might cause
problems as outer boundary conditions assuming nearly
flat space and implemented at a fixed coordinate location
become inappropriate and fail. Furthermore, not being
able to resolve with a finite number of grid points the de-
veloping steep gradients in components of the 3-metric,
numerical inaccuracies caused by slice wrapping force a
finite differencing code to crash.

Following up on earlier work done together with
B. Brügmann, [5, 6, 7], in the present paper one particu-
lar singularity avoiding slicing is looked at, namely maxi-
mal slicing corresponding to the condition that the mean
extrinsic curvature of the slices vanishes at all times [8].
This geometrically motivated choice of the lapse func-
tion has been used frequently in numerical relativity, for

simulations of a single Schwarzschild black hole see e.g.
[2, 3, 9, 10, 11, 12].

For Schwarzschild, and by including electric charge also
for Reissner-Nordström, the maximal slices can be con-
structed analytically [9, 13, 14, 15]. For those spacetimes
it is hence possible to examine slice stretching effects on
an analytic level. The discussion throughout this paper is
restricted to Schwarzschild, but since the same notation
as in [5, 6, 7] is used, the results carry over in a straight-
forward way to Reissner-Nordström. Furthermore, only
evolutions with vanishing shift are treated. Its general-
ization to non-trivial shifts - in order to study to what
extent slice stretching effects can be avoided - will be the
subject of a further paper [16].

In the following the maximal slices of the Schwarzschild
spacetime are re-derived in the radial gauge and the
transformation to an Eulerian line element characterized
by a vanishing shift is given. Performing a late time
analysis as in [6] based on [13], it is shown here that
slice stretching arises at the throat of the Einstein-Rosen
bridge [17].

Assuming symmetry with respect to the throat in order
to fix its location in Eulerian coordinates by an isome-
try condition, it is then possible to quantify slice sucking
and wrapping at the event horizon acting as a “marker”.
Examples of spatial coordinates to be discussed in the
context of even boundary conditions are logarithmic grid
coordinates (explaining numerical observations of e.g.
[10, 12]) and isotropic grid coordinates (extending the
study of [6]).

For boundary conditions other than the even ones,
however, this analysis is more involved as one impor-
tant example, the so-called puncture evolution, shows [6].
There black hole puncture data is evolved using a lapse
with zero gradient at the “puncture”, i.e. the compacti-
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fied left-hand infinity. The corresponding lapse function
is referred to as ”zgp” or puncture lapse.

Focusing on boundary conditions where the lapse arises
as superposition of odd and even lapse, two integrals
characterizing the overall slice stretching are introduced.
It is then shown that for “favorable” boundary condi-
tions the slice stretching effects can occur arbitrarily late
in numerical simulations. Here the lapse at late times
has to approach the odd lapse, the latter corresponding
to the static Schwarzschild metric and, being antisym-
metric with respect to the throat, having negative values
in the left-hand part of the spacetime. The numerical
implementation of a lapse function which is partially neg-
ative, however, has been found to be unstable in at least
two examples [18, 19]. Demanding hence in addition that
a “numerically favorable” lapse should be non-negative,
for latest possible occurrence of slice stretching a lapse
being the average of odd and even lapse is obtained. One
should note here that the puncture lapse is at late times
characterized precisely by this condition.

Finally a one-parameter family of boundary conditions
“ranging from odd to even” is studied numerically and
the analytically predicted overall slice stretching is ob-
served.

The paper is organized as follows: In Sec. II the max-
imal slices of the Schwarzschild spacetime are re-derived
and the origin of slice stretching effects is pointed out.
In Sec. III slice stretching effects are studied, concen-
trating in Subsec. III A on even boundary conditions and
discussing logarithmic and isotropic grid coordinates ex-
plicitly. The overall slice stretching is quantified in Sub-
sec. III B and boundary conditions are derived which
make those effects occur late in numerical simulations.
As examples the puncture lapse and a one-parameter
family of boundary conditions are discussed. The results
are summarized in Sec. IV.

II. MAXIMAL SLICES OF THE

SCHWARZSCHILD SPACETIME

A. Radial gauge

Following [13] and starting from the Schwarzschild
metric in Schwarzschild coordinates {t, r, θ, φ},

ds2 = −f(r)dt2+
1

f(r)
dr2+r2dΩ2 with f(r) = 1−2M

r
,

(1)
the maximal slices of this spacetime are most easily de-
rived as level sets of the form

σ = t− t(τ, r) = const. (2)

Here the hypersurfaces are labeled by time at infinity τ
and one has to examine the behavior of the normal

n = N∇ (t− t(τ, r)) = N

(

dt− ∂t

∂r
dr

)

. (3)

Making use of the line element (1), the normalization N
is fixed by demanding

nµnµ = N2

(

− 1

f(r)
+ f(r)

(

∂t

∂r

)2
)

= −1. (4)

As pointed out in [13], N can also be considered the
boost function of the static Killing vector ∂

∂t relative to
σ = const,

N = −nµ

(

∂

∂t

)µ

. (5)

Calculating the trace of the extrinsic curvature, K
turns out to be given by

K = −∇µnµ =
1

r2

d

[

−r2f(r) ∂t
∂r

√

1
f(r)−f(r)( ∂t

∂r )
2

]

dr
. (6)

Demanding for maximal slicing K ≡ 0, the term in the
brackets of (6) obviously has to be a function of time only
to be denoted by C(τ). Hence

∂t

∂r
(τ, r) = − C(τ)

f(r)
√

r4f(r) + C2(τ)
(7)

is found, which has to be integrated by imposing bound-
ary conditions in order to obtain the level sets (2).

Furthermore, using the future normal of the foliation,
nµ = −α∇µτ , and writing the static Killing vector as
(

∂
∂t

)µ
= Nnµ + ξµ with ξµnµ = 0, the lapse can be ob-

tained as

α(τ, r) = N(τ, r)
∂t

∂τ
. (8)

Here N by the normalization (4) is given by

N(τ, r) = ±
√

f(r) +
C2(τ)

r4
= ±

√

pC(r)

r2
(9)

when introducing for convenience the polynomial

pC(r) = r4f(r) + C2 = r4 − 2Mr3 + C2, (10)

the subscript C denoting its dependence on C and hence
on τ . Together with the radial metric component

γ(τ, r) =
r4

pC(r)
(11)

and the shift

β(τ, r) =
α(τ, r)γ(τ, r)

r2
C(τ) (12)

the maximal slices in the radial gauge

ds2 =

(

−α2 +
β2

γ

)

dτ2 +2β dτdr+γ dr2 + r2 dΩ2 (13)
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have been derived.
Furthermore, as pointed out in [20], the radial and

angular components of the extrinsic curvature turn out
to be given by

Kr
r = −2

C

r3
and Kθ

θ = Kφ
φ =

C

r3
, (14)

respectively.

B. Eulerian observers

Next the spatial Schwarzschild coordinate r on the
maximal slices shall be substituted by a spatial coor-
dinate z corresponding to Eulerian observers. Apply-
ing a transformation of the form r = r(τ, z), the lapse
α = α(τ, r(τ, z)) is still given by (8) and the line element
is characterized by a vanishing shift,

ds2 = −α2 dτ2 + G dz2 + r2 dΩ2. (15)

In the context of maximal slicing, K ≡ 0, by contracting
the evolution equation for the extrinsic curvature, one
immediately obtains the statement that for zero shift the
determinant of the 3-metric has to be time-independent.
Hence the singularity avoiding property of maximal slic-
ing comes to light as the variation of the local volume
remains fixed [21]. For this reason one can make for the
radial metric component the ansatz

G(τ, z) =
H(z)

r4(τ, z)
(16)

where the function H(z) depending on z only is deter-
mined by the initial data.

The coordinate transformation relating r and z is
found by comparison of the radial part of (13) and (15).
For fixed slice label C one can infer the ordinary differ-
ential equation

dr

dz

∣

∣

∣

∣

C=const

= ±
√

pC(r)

r4

√

H(z) (17)

which can be integrated using the throat as lower inte-
gration limit by

r
∫

rC

y4 dy
√

pC(y)
= ±

z
∫

zC

√

H(y) dy. (18)

Here the “+” or “-” sign applies for the right- or left-
hand side of the throat, respectively. Furthermore, rC

and zC denote the location of the throat in terms of
Schwarzschild and Eulerian spatial coordinates.

Note that rC is found as root of the polynomial
pC(r), which implies C(τ = 0) = 0 when starting with
the throat of the Einstein-Rosen bridge coinciding ini-
tially with the event horizon at rEH = 2M . The throat

rC , describing the “innermost” two-sphere on a slice la-
beled by C, never reaches the singularity at r = 0 as
rClim

= 3M/2 is found in the limit of late times with
C approaching

Clim =
3

4

√
3M2 (19)

as pointed out in [9]. Hence for the Schwarzschild space-
time the singularity avoidance of maximal slices becomes
apparent, c.f. corollary 3.3 of [22].

The coordinate location of the throat in Eulerian coor-
dinates depends in general also on C and is hence a func-
tion of time determined by boundary conditions. Here
the behavior of zC can be found by demanding the trans-
formation (18) to be consistent with the requirement of
a vanishing shift as discussed in more detail in [6].

By making use of (16), however, it is possible to de-
scribe in the late time limit the profile of the radial met-
ric component near the throat since the latter approaches
the value rClim

= 3M/2 there.
Furthermore, according to (14) for fixed time at in-

finity the peak in the profiles of the extrinsic curva-
ture components arises at the throat. For Kθ

θ = −Kr
r/2

in the limit C → Clim its value there is obtained as
Clim/r3

Clim
= 2
√

3/9M ≈ 0.3849/M.

C. Origin and indicators of slice stretching

As stated in [13], when demanding antisymmetry with
respect to the throat maximal slices are found where C
being purely gauge can be chosen independently of time
at infinity. Here the 3-metric is given time-independently
by the initial data and the odd lapse can be written as

αodd = ±
√

pC(r)

r2
. (20)

In particular, the odd lapse vanishes at the throat and
is positive/negative in the original/extended part of the
Schwarzschild spacetime to yield the values plus/minus
one at right-/left-hand spatial infinity.

Excluding odd boundary conditions where no slice
stretching occurs, for a discussion of the late time be-
havior of maximal slicing instead of the slice label C it
turns out to be convenient to introduce δ as in [13] by

δ = rC − rClim
. (21)

The late time limit τ →∞ then can be said to correspond
to the limit δ → 0 as the maximal slices approach the
limiting slice r = rClim

= 3M/2 asymptotically.
By analyzing in this limit the transformation (18) and

the behavior of the 3-metric (15), slice stretching effects
can be studied. As in [6] this discussion will for simplicity
be restricted to the throat and the event horizon acting
as markers for slice sucking and wrapping.
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In this reference it has been shown that integrating up
to the event horizon, in the limit δ → 0 the integral on
the left-hand side of (18) diverges like

rEH
∫

rC

y4 dy
√

pC(y)
= −ClimΩ ln

[

δ

M

]

+O(1) (22)

where Ω is a further fundamental constant given by

Ω =
3

4

√
6M. (23)

The proof of this statement is rather lengthy, see [6] for
details. The divergence proportional to ln [δ] can be un-
derstood, however, by observing that for C → Clim the
lower limit of integration rC becomes a double counting
root of the polynomial pC(r), the root of which appears
in the denominator of the integrand of (22). Since the
upper limit of integration essentially plays no role in this
expansion, one should note that any isosurface described
by a constant value of r = const ≥ rEH could be used in
the following as a marker for slice stretching effects.

The diverging term picked up at the throat in (22) is
the origin of slice stretching. Those effects are hence a
feature of the region near the throat. Denoting the loca-
tion of the right- and left-hand event horizon by z±CEH ,
the subscript C referring again to its time dependence,
from the coordinate transformation (18) in the context
of (22) one can infer

±
z±

CEH
∫

zC

√

H(y) dy = −ClimΩ ln

[

δ

M

]

+O(1). (24)

Hence slice sucking is present as in the limit δ → 0 the
event horizon is driven away from the throat by a term
diverging logarithmically with δ.

With throat and event horizon moving away from each
other, in general also slice wrapping effects in between zC

and z±CEH show up in the form of an unbounded growth
and/or a rapidly steepening gradient in the radial met-
ric component. To study those, note that in numeri-
cal implementations often a time-independent conformal
factor Ψ4(z) is factored out from the 3-metric to focus
on the dynamical features of the metric rather than the
static singularity. In order to discuss the behavior of the
rescaled 3-metric, it is convenient to introduce

g(τ, z) =
G(τ, z)

Ψ4(z)
and h(z) =

H(z)

Ψ4(z)
(25)

which according to (16) are related by

g(τ, z) =
h(z)

r4(τ, z)
. (26)

Differentiating now (26) with respect to z by making
use of the product rule and (17), one can extend the

study of [6] by analyzing in addition to the value also the
gradient of g. In particular, at the throat one obtains

dg

dz

∣

∣

∣

∣

zC

=
1

r4
C

dh

dz

∣

∣

∣

∣

zC

(27)

since dr/dz vanishes there. Furthermore, at the right-
and left-hand event horizon the gradient

dg

dz

∣

∣

∣

∣

z±

CEH

=
1

r4
EH

dh

dz

∣

∣

∣

∣

z±

CEH

∓
4Ch(z±CEH)

√

H(z±CEH)

r9
EH

(28)
is found.

Although not obvious from the expressions (26), (27)
and (28), one in general can expect both g and dg/dz
to diverge in the limit of late times at the throat and/or
the event horizon. This happens as the functions H , h
and dh/dz evaluated there usually grow without bounds
while the Schwarzschild radius at the throat is approach-
ing rClim

= 3M/2 and at the event horizon is given by
rEH = 2M . In Sec. III slice wrapping will be worked out
explicitly for two coordinate choices used frequently in
numerical relativity.

In order to describe as a function of time at infinity the
slice stretching arising from (22) and showing up e.g. in
(24), it is in addition necessary to specify the relationship
δ(τ) by imposing boundary conditions. Slice stretching
for even boundary conditions will be discussed in Sub-
sec. III A and favorable boundary conditions, where the
effects described in terms of δ show up late in terms of
τ , will be derived in Subsec. III B.

III. SLICE STRETCHING EFFECTS

A. EVEN BOUNDARY CONDITIONS

Height function

Treating the extended and the original part of the
Schwarzschild spacetime on equal footing by demand-
ing symmetry with respect to the throat, even boundary
conditions are found naturally. Here in a Carter-Penrose
diagram the throat has to remain on the symmetry axis
characterized by t = 0, see Fig. 4 in [5]. As in [9, 13] by
integrating (7) for the even “height function” one obtains
the integral

teven(C, r) = −
r
∫

rC

C dy

f(y)
√

pC(y)
(29)

defined for r ≥ rC . Note that the integration across the
pole at rEH is taken in the sense of the principal value
and the corresponding slices extend smoothly through
both the event horizon rEH and the throat rC . Since
proper time is measured at spatial infinity, from (29) in
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the limit r →∞ one can infer the relationship

τeven(C) = −
∞
∫

rC

C dy

f(y)
√

pC(y)
(30)

between τeven and C.

Late time analysis

As shown in [13] by expanding τeven in terms of δ in the
late time limit C → Clim, i.e. for δ → 0, time at infinity
is diverging like

τeven(δ) = −Ω ln

[

δ

M

]

+ Λ +O(δ) (31)

where Ω has been defined already in (23) and Λ is a
constant with the analytic value given by

Λ

M
=

3

4

√
6 ln

[

18(3
√

2− 4)
]

− 2 ln

[

3
√

3− 5

9
√

6− 22

]

. (32)

Here the divergence of τeven proportional to ln [δ] arises
at the throat for the same reason as pointed out for the
expansion (22).

As later on expansions in δ will be studied, one should
observe that solving in (31) for δ, in leading order with

δ

M
= exp

[

Λ

Ω

]

exp
[

−τeven

Ω

]

+O(exp
[

−2
τeven

Ω

]

) (33)

an exponential decay of δ with τeven on the fundamental
timescale Ω is found.

Lapse function

The even lapse arises from (8) and is given by

αeven = ±
√

pC(r)

r2

∂teven

∂C

dC

dτeven
. (34)

Studying its late time behavior as in [13] and [6], it
turns out that αeven collapses at the throat in order
O(δ) and hence in leading order decays exponentially in
time on the fundamental timescale Ω there to avoid the
singularity. By symmetry, at both left- and right-hand
event horizon in the limit of late times the finite value
Clim/r2

EH = 3
√

3/16 ≈ 0.3248 is found, and by construc-
tion the even lapse approaches unity at both infinities.
For a particular choice of spatial coordinates, namely
isotropic grid coordinates, the time evolution of the even
lapse is shown in Fig. 1.

Slice stretching in the limit of late times

The discussion of slice stretching is particularly sim-
ple for even boundary conditions as due to an isometry
condition the location of the throat in Eulerian coor-
dinates is given time-independently by its initial value
z∀C = zEH = const. From the expansion (24) in the con-
text of (33) one can then infer

±
z±

CEH
∫

zEH

√

H(y) dy = Climτeven +O(1). (35)

Hence in the limit of late times slice sucking is present
since the event horizon is driven away from zEH by a
term diverging proportional to τeven.

From (26) one can then see that very little evo-
lution is present at the throat since g only grows
to (4/3)4 ≈ 3.1605 times its initial value there as
the Schwarzschild radius declines from rEH = 2M to
rClim

= 3M/2. Furthermore, by a symmetry argument
the gradient of g at the throat vanishes.

In order to study slice wrapping at the event horizon,
it is then best to look at specific spatial coordinates such
as logarithmic or isotropic grid coordinates which both
are used frequently in numerical simulations.

First example: Logarithmic grid coordinates

Logarithmic grid coordinates η [23] arise when imple-
menting initially the Schwarzschild geometry in terms of
logarithmic coordinates corresponding to the 3-metric

(3)ds2 = Ψ4(η)(dη2 + dΩ2). (36)

Here at τeven = 0 with the conformal factor given by

Ψ(η) =
√

2 cosh
[η

2

]√
M (37)

the relationship

r(τeven = 0, η) = Ψ2(η) (38)

between η and the Schwarzschild radius r is found.
Independently of time, the throat is located at
η∀C = ηEH = 0 and the isometry

η ←→ −η (39)

is mapping the right-hand part of the spacetime to the
left-hand part and vice versa.

With G = Ψ12/r4 one may readily verify

H(η) = Ψ12(η) and h(η) = Ψ8(η) (40)

and observe that the rescaled radial component of
the metric grows from unity to the finite value
(4/3)4 ≈ 3.1605 at the origin being the location of the



6

throat, where in the limit of late times g behaves like
Ψ8/r4

Clim
. Furthermore, since g = Ψ8/r4 is even, obvi-

ously its derivative vanishes there.
Discussing slice sucking at the event horizon, from (35)

and (40) it turns out that in leading order the event hori-
zon moves outward like

η±

CEH ≃ ±
1

3
ln

[

24Climτeven

M3

]

= O
(

ln
[

τ1/3
even

])

. (41)

Inserting this result in (26) while using (40), slice wrap-
ping is taking place there as g in leading order grows
according to

g|η±

CEH
=

Ψ8(η±

CEH)

r4
EH

= O
(

τ4/3
even

)

. (42)

Furthermore, making use of (28) and again (40), it
turns out that a rapidly steepening gradient at the event
horizon is present as

dg

dη

∣

∣

∣

∣

η±

CEH

≃ ∓4ClimΨ14(η)

r9
EH

= O
(

τ7/3
even

)

(43)

is found.
These analytical statements should be compared with

numerical results as e.g. in [10, 12]. Note that in these
simulations it is rather slice wrapping than slice sucking
which causes the runs to crash quite early. This can now
be understood by the argument that the event horizon
is moving outward only moderately whereas a rapidly
steepening gradient in g is found there together with a
peak growing slightly further inside.

Second example: Isotropic grid coordinates

Isotropic grid coordinates x [23] have been constructed
in [5] such that the 4-metric coincides at all times with
output from a numerical evolution of black hole puncture
data. Here initially the 3-metric

(3)ds2 = Ψ4(x)(dx2 + x2 dΩ2) (44)

is implemented making use of isotropic coordinates. So
with the conformal factor

Ψ(x) = 1 +
M

2x
(45)

it turns out that x at τeven = 0 is related to the
Schwarzschild radius by

r(τeven = 0, x) = xΨ2(x). (46)

Since for even boundary conditions also during the evo-
lution isotropic and logarithmic grid coordinates are re-
lated by

x =
M

2
eη, (47)

one can see that the region η ≤ 0 is compactified to
0 ≤ x ≤M/2 and η ≥ 0 is mapped to x ≥M/2. Here
due to the isometry

x←→ M2

4x
(48)

the throat is fixed for all times at x∀C = xEH = M/2 and
the puncture at x = 0 is simply a compactified image of
spatial infinity.

From G = x4Ψ12/r4 then follows

H(x) = x4Ψ12(x) and h(x) = x4Ψ8(x) (49)

and as for logarithmic grid coordinates one can observe
that g = x4Ψ8/r4 at the throat grows from unity to
(4/3)4 ≈ 3.1605 while due to the isometry a vanishing
gradient is present there.

When analyzing slice stretching at the event horizon,
it turns out that for the outward-movement of the right-
hand event horizon in leading order by using (35) and
(49) (or alternatively (41) and (47)) for its location

x+
CEH ≃ (3Climτeven)

1/3
= O

(

τ1/3
even

)

(50)

is obtained. The left-hand event horizon, however, due
to the isometry (48) approaches the puncture like

x−

CEH =
M2

4x+
CEH

= O
(

τ−1/3
even

)

. (51)

For both right- and left-hand event horizon the rescaled
radial metric component g coincides and in leading order
diverges according to

g|x±

CEH
=

x± 4
CEHΨ8(x±

CEH)

r4
EH

= O
(

τ4/3
even

)

. (52)

Analyzing now the gradient of g at the event horizon,
the particular problem of isotropic grid coordinates in
the context of even boundary conditions comes to light.
Whereas according to (28) at the right-hand event hori-
zon the gradient

dg

dx

∣

∣

∣

∣

x+
CEH

≃ −4Climx+ 6
CEH

r9
EH

= O
(

τ2
even

)

(53)

is found, at the left-hand event horizon the derivative

dg

dx

∣

∣

∣

∣

x−

CEH

=
dx+

CEH

dx−

CEH

dg

dx

∣

∣

∣

∣

x+
CEH

= − M2

4x− 2
CEH

dg

dx

∣

∣

∣

∣

x+
CEH

= O
(

τ8/3
even

)

(54)

is diverging even more rapidly.
As can be seen in Fig. 1, a numerically very cumber-

some “double peak” in the profile of g is developing which
due to slice wrapping in the compactified left-hand part
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of the Schwarzschild spacetime prevents long-lasting sim-
ulations. In Subsec. III B an analysis of other bound-
ary conditions will show, however, that initially select-
ing isotropic coordinates can nevertheless be a “good”
coordinate choice, since the numerically unfavorable be-
havior described so far can be blamed mainly on the use
of even boundary conditions. Applying for the puncture
evolution more adapted “zgp” boundary conditions, i.e.
demanding symmetry at the puncture and obtaining a
vanishing gradient of the lapse there, results in signifi-
cantly better slice stretching behavior as can be seen in
Fig. 2.

With the Schwarzschild radius at the throat approach-
ing the value rClim

= 3M/2 in the limit of late times, by
making use of g = x4Ψ8/r4 it is (independently of the
boundary conditions) possible to describe the limiting
profile of g near the throat by x4Ψ8/r4

Clim
. The latter

has been plotted in both Fig. 1 and 2 as dotted line.
In addition, extending the study of [6], the profiles of

the radial and the angular component of the extrinsic cur-
vature shall be discussed here (again for arbitrary bound-
ary conditions). According to (14), for fixed time at infin-
ity with r ∝ 1

x for {r→∞, x→ 0} both Kr
r and Kθ

θ near

the puncture are of order O(x3), whereas with r = x for
{r→∞, x→∞} for large values of x they decay in or-
der O(x−3). Furthermore, the peak in the profiles of the
extrinsic curvature components is found at the throat.
In the late time limit for Kθ

θ = −Kr
r/2 its value there is

obtained as Clim/r3
Clim

= 2
√

3/9M ≈ 0.3849/M, the lat-
ter being in excellent agreement with numerical results
as shown in both Fig. 1 and 2.

B. FAVORABLE BOUNDARY CONDITIONS

Lapse constructed as a superposition of odd and even lapse

With the trace of the extrinsic curvature vanishing,
K ≡ 0, the lapse arises for maximal slicing from the el-
liptic equation

△α = ∇i∇iα = Rα (55)

where R is the 3-dimensional Ricci scalar. For fixed time
at infinity, this condition is a second order linear ordi-
nary differential equation. Hence, demanding the lapse
to be one at spatial infinity in order to measure proper
time there, when supplementing an additional boundary
condition the lapse is completely determined.

With odd and even lapse two linearly independent
lapse functions satisfying (55) have been found as pointed
out in [13]. By the superposition principle it is then pos-
sible to construct a new lapse, normalized again to unity
at right-hand infinity, by a linear combination

α(τ, r) = Φ(τ) ·αeven(τ, r) + (1−Φ(τ)) ·αodd(τ, r) (56)

with a time-dependent “multiplicator function” Φ(τ). An
important example for such a superposition is the punc-
ture lapse constructed in [5].

Height function

As shown in Subsec. II A, the maximal slicing condition
fixes the partial derivative of t with respect to r as in (7)
only, whereas boundary conditions have to be specified
to obtain t(τ, r) by integration. The latter can always
be written as the sum of the even height function and
a “time translation function” tC(τ) depending on time
only,

t(τ, r) = teven(τ, r) + tC(τ), (57)

where time at infinity is measured again in the limit
r →∞. As for τ = 0 one starts with the time-symmetric
t = 0 hypersurface, the function tC vanishes initially and
is determined during the evolution by boundary condi-
tions. Furthermore, since the even height function van-
ishes at the throat during the evolution, tC also repre-
sents the value of t at the throat. Hence the time trans-
lation function describes where the throat is found in a
Carter-Penrose diagram, see for “zgp” boundary condi-
tions Fig. 4 in [5].

Slice stretching integrals

Imposing boundary conditions, the multiplicator func-
tion Φ(τ) in (56), the time translation function tC(τ) in
(57) and the location of the throat in terms of Eulerian
coordinates are determined. Deriving zC as a function
of τ explicitly, however, is rather involved as one has to
examine each boundary condition separately when an-
alyzing the coordinate transformation (18) while mak-
ing sure that the shift vanishes [6]. For a study of slice
stretching at e.g. the event horizon, though, the location
of the throat has to be determined first, since, as shown
in Subsec. II C, the diverging term in the integral (24)
being proportional to ln [δ] and causing slice stretching
is picked up at the throat.

Integrating metric quantities from the left-hand to the
right-hand event horizon yields an alternative approach
for a discussion of slice stretching while avoiding in an
elegant way inconveniences involved in determining zC

as a function of time. Although such integrals can not
provide items of information like the location of throat or
event horizon and value or gradient of the radial metric
component there, they are nevertheless excellent indica-
tors for the overall slice stretching.

Here two such integrals shall be introduced, namely

SH(δ) =

z+
CEH
∫

z−

CEH

√

H(y) dy

= 2

rEH
∫

rC

y4 dy
√

pC(y)

= −2ClimΩ ln

[

δ

M

]

+O(1) (58)
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and

SG(δ) =

z+
CEH
∫

z−

CEH

√

G(τ, y) dy

= 2

rEH
∫

rC

y2 dy
√

pC(y)

= −2
ClimΩ

r2
Clim

ln

[

δ

M

]

+O(1). (59)

Whereas the first integral arises directly from the coordi-
nate transformation (18) and essentially has been stud-
ied in (22) and (24) already, the second integral is in a
more straightforward way related to slice sucking (since
the left- and right-hand event horizon appear as limits
of integration) and slice wrapping (since the integrand
is the root of the radial metric component). So whereas
for some analytical purposes making use of SH might be
preferable, for numerical studies of slice stretching SG

should be of particular interest. In order to locate both
left- and right-hand event horizon on the maximal slices
to calculate either (58) or (59) numerically, one can com-
pute the Schwarzschild radius r from the prefactor of the
angular part of the metric as e.g. in [5, 18] and identify an
event horizon as isosurface with r = rEH = 2M . Alter-
natively, since for the Schwarzschild spacetime event and
apparent horizon coincide, for this task both apparent
and event horizon finders can be used in principle.

Boundary conditions for late observation of slice stretching

The idea now is to obtain relationships between δ and
τ which make the overall slice stretching, in terms of δ
arising from (22) and expressed by integrals such as (58)
or (59), occur late in terms of τ in numerical simulations.
By specifying δ(τ), however, boundary conditions for the
lapse arise since the multiplicator function appearing in
the linear combination (56) can be written as

Φ(δ) =

(

∂t
∂δ − dτ

dδ

)

dτeven

dδ
(

∂teven

∂δ − dτeven

dδ

)

dτ
dδ

=
dτeven

dδ
dτ
dδ

. (60)

This expression one can readily verify making use of (8),
(56) and (57). Assuming that a given numerical code for
a chosen resolution can only handle a certain amount of
overall slice stretching, the hope then is that longer last-
ing evolutions covering a greater portion of the spacetime
can be obtained by imposing more favorable boundary
conditions instead of even ones.

As one can see from (60), demanding that slice stretch-
ing effects show up later than for even boundary con-
ditions with −dτ/dδ > −dτeven/dδ > 0 implies that the
multiplicator function has to be less than one, 0 ≤ Φ < 1.
Note that slice stretching can occur arbitrarily late with
Φ approaching zero and the lapse arising in (56) being

then essentially given by the odd lapse. Furthermore, if
Φ for odd boundary conditions vanishes throughout the
evolution, no slice stretching at all is found.

In particular, when looking at τ = τeven + tC , by mak-
ing use of (31) one can readily verify that if the time
translation function tC is of order O(1), as for the even
lapse an exponential decay of δ with τ is found. The over-
all slice stretching then can be expected to be similar to
the one arising for even boundary conditions.

Adding, however, a term which diverges logarithmi-
cally with δ, i.e. tC ≃ −Ω̃ ln [δ/M ], the exponential decay
of δ takes place on a time scale given by the sum of Ω
and Ω̃. The corresponding multiplicator function for this
choice of tC is given by Φ ≃ Ω/(Ω + Ω̃). In principle with

Ω̃→∞ the new time scale can be made arbitrarily large
to make slice stretching effects occur arbitrarily late. In
this limit, however, one finds that with Φ→ 0 the odd
lapse is approached.

It is also possible to obtain in leading order not an
exponential but a power-law decay of δ with τ , allowing
for very moderate slice stretching behavior. Assuming
that tC ≃ δ−k, k > 0, then τ ≃ δ−k and Φ ≃ Ωδk/k are
found. But note that for late times with δ → 0 again the
odd lapse is approached.

Whereas it is possible to find boundary conditions such
that the overall slice stretching occurs arbitrarily late,
the corresponding lapse approaching the odd lapse might
from the numerical point of view be disadvantageous as
negative values of the lapse occur. For this reason a
numerically favorable lapse in addition should be non-
negative. Using (56) and the formulas (20) and (34) for
odd and even lapse, one can show that demanding α ≥ 0
corresponds to Φ ≥ 1/2. Hence the power-law decay of δ

is ruled out, but choosing 0 ≤ Ω̃ ≤ Ω it is possible to find
a lapse such that the time scale for the exponential decay
of δ is up to twice the one obtained for even boundary
conditions. In particular, the non-negative lapse show-
ing latest possible occurrence of slice stretching is at late
times given by the average of odd and even lapse.

First example: The puncture lapse

It is at this point essential to note that the punc-
ture lapse discussed in [5] is precisely of this form and
the puncture evolution of a Schwarzschild black hole is
hence taking place in a numerically favorable manner. As
shown in this reference, the multiplicator function of the
“zgp” lapse is given by

Φ =
1

2

∞
∫

rC

y(y−3M) dy

(y− 3M
2 )2
√

pC(y)

∞
∫

rC

y(y−3M) dy

(y− 3M
2 )2
√

pC(y)
+ 1

M

. (61)

Here the integral appearing in both the numerator and
denominator of (61) is diverging proportional to 1/δ2 as
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the throat in the limit of late times becomes a three-
fold root of the denominator of the integrand. For this
reason the “zgp” multiplicator function is of the form
Φzgp = 1/2 +O(δ2) and the puncture lapse, being pos-
itive everywhere, arises at late times as average of odd
and even lapse. Performing a late time analysis, it turns
out that αzgp collapses to zero in order O(δ2) at the
puncture and the left-hand event horizon and in or-
der O(δ) at the throat. At the right-hand event hori-
zon, as for even boundary conditions, the finite value
Clim/r2

EH = 3
√

3/16 ≈ 0.3248 is found in the limit of late
times, and the lapse approaches unity at spatial infinity,
see [6] for details. The profile of the puncture lapse for
the puncture evolution is shown in Fig. 2.

In [5] the “zgp” height function is derived as

t±zgp(C, r) = teven(C, r) ± (τeven(C)− C

M
) (62)

where time is measured at right-hand spatial infinity by

τzgp(C) = 2τeven(C)− C

M
. (63)

Making use of the expansion (31) and C = Clim +O(δ2),
in leading order the exponential decay of δ with τzgp is
with

δ

M
= exp

[

2ΛM − Clim

2ΩM

]

exp
[

−τzgp

2Ω

]

+O(exp
[

−τzgp

Ω

]

)

(64)
taking place on twice the fundamental timescale Ω.

For the puncture evolution the slice stretching behav-
ior has been discussed in [6] from left to right at the
left-hand event horizon, the throat and the right-hand
event horizon. As shown there, in the limit τzgp →∞
the left-hand event horizon is found at a finite value in
between its initial location xEH = M/2 and the punc-
ture, whereas both throat and right-hand event horizon
are moving outward like

xC ≃
(

3

2
Climτzgp

)1/3

= O
(

τ1/3
zgp

)

(65)

and

x+
CEH ≃ (3Climτzgp)

1/3
= O

(

τ1/3
zgp

)

, (66)

respectively.
As x−

CEH freezes at late times, also the rescaled radial
metric component approaches a finite value there. At
xC and x+

CEH , however, with g = x4Ψ8/r4 the metric
diverges as in leading order

g|xC
≃
(

xC

rClim

)4

= O
(

τ4/3
zgp

)

(67)

and

g|x+
CEH

≃
(

x+
CEH

rEH

)4

= O
(

τ4/3
zgp

)

(68)

are found.
Extending the study of [6], it turns out that also

the gradient of g at the left-hand event horizon freezes,
whereas making use of (27) and (28) the derivatives

dg

dx

∣

∣

∣

∣

xC

≃ 4x3
C

r4
Clim

= O (τzgp) (69)

and

dg

dx

∣

∣

∣

∣

x+
CEH

≃ −4Climx+ 6
CEH

r9
EH

= O
(

τ2
zgp

)

(70)

at the throat and the right-hand event horizon are ob-
tained.

Comparing these “zgp” late time statements with the
corresponding ones obtained for even boundary condi-
tions in Subsec. III A, i.e. comparing Fig. 2 with Fig. 1,
one can see that in leading order identical slice sucking
and wrapping is present at the right-hand event hori-
zon and to its right. In the puncture evolution, how-
ever, almost no slice stretching occurs to the left of the
throat since the “zgp” lapse collapses exponentially in
time there. For this reason numerical evolutions of black
hole puncture data imposing the “zgp” boundary condi-
tion are able to last significantly longer than runs forcing
even boundary conditions.

Second example:

A one-parameter family of boundary conditions

Finally, a one-parameter family of boundary condi-
tions ranging from odd to even and characterized by a
constant multiplicator function in the linear combination
(56), Φ = const ∈ [0, 1], has been studied numerically in
the context of isotropic grid coordinates. Here the lapse
is determined by its time-independent value at the punc-
ture given by

α(τ, x = 0) = 2Φ− 1 ∈ [−1, 1] ∀τ. (71)

The elliptic equation (55) for the lapse has been im-
plemented in the regularized spherically symmetric code
described in [24]. Using a shooting method and starting
at the puncture with the value (71), to be interpolated
there as the origin is staggered in between grid points,
the derivative of the lapse has been determined such that
when integrating outward a Robin boundary condition
[25] is satisfied. All simulations shown in the following
have been carried out using 30, 000 grid points for a res-
olution of △x = 0.001M to place the outer boundary at
x = 30M .

It is worth mentioning that for negative values of the
lapse no difficulties have been encountered numerically.
In particular, evolving for odd boundary conditions up
to τodd = 25M , the deviations of lapse and metric com-
ponents from their initial profiles have been found to be
less than 0.1 per cent.
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For the even lapse, however, note that the isometry
condition (48) has not been enforced actively. In addi-
tion one should then remember that at late times the
left-hand event horizon according to (51) gets arbitrarily
close to the puncture, whereas the even lapse approaches
the value Clim/r2

EH = 3
√

3/16 ≈ 0.3248 at x−

CEH and
is one at x = 0 as mentioned previously. Due to the
rapidly steepening gradient close to the puncture the
shooting method for the even lapse failed shortly after
τeven = 25M .

In Fig. 3 on a logarithmic scale the decay of δ with
time at infinity is shown for runs with constant values
Φ = {0, 1/8, 1/4, 1/2, 1} and for the puncture evolution
where Φzgp → 1/2 holds in the limit of late times. In this
limit analytically an exponential decay on the timescale
Ω/Φ is predicted, the corresponding slopes are shown in
addition in this figure. Furthermore, in Fig. 4 for the
same runs the slice stretching integrals SH and SG, (58)
and (59), are plotted together with the expected late time
divergence being proportional to time at infinity. As one
can see from these plots, the numerical results are in ex-
cellent agreement with analytical predictions. In particu-
lar, note that for “zgp” boundary conditions as compared
to the run with Φ = 1/2 more slice stretching arises ini-
tially. This happens since the puncture lapse starts with
unit lapse everywhere whereas a “pre-collapsed” lapse
profile is found when using the average of odd and even
lapse from the beginning. At late times, however, iden-
tical slice stretching behavior is found as the two curves
become parallel in both Fig. 3 and 4.

IV. CONCLUSION AND OUTLOOK

Slice stretching effects have been described which show
up when maximally slicing the extended Schwarzschild
spacetime while using a vanishing shift. Excluding odd
boundary conditions where the static Schwarzschild met-
ric is obtained and no slice stretching occurs, slice sucking
and wrapping have been shown to arise at the throat of
the maximal slices. In terms of δ in leading order in the
limit δ → 0 the overall slice stretching has been charac-
terized by integrals such as SH and SG.

For even boundary conditions and two particular co-
ordinate choices, namely logarithmic and isotropic grid

coordinates, slice sucking and wrapping at the event hori-
zon have been worked out explicitly.

Searching for favorable boundary conditions, it turned
out that slice stretching effects described in terms of δ
can show up arbitrarily late in terms of τ in numerical
simulations if the corresponding lapse approaches the odd
lapse and hence becomes negative in the left-hand part
of the spacetime.

For numerically favorable boundary conditions de-
manding in addition the lapse to be non-negative, the lat-
est possible occurrence of slice stretching has been found
to take place for a lapse being at late times given by the
average of odd and even lapse. The puncture lapse of
[5] is precisely of this form and the puncture evolution
of a Schwarzschild black hole is hence taking place in a
numerically favorable manner.

Promising strategies for more accurate and longer last-
ing simulations make use of a shift (which reacts by
pulling out grid points from the inner region as the slice
stretching develops) and/or singularity excision (to cut
away the troublesome part of the spacetime, an idea at-
tributed to W. Unruh in [26], see e.g. [27]). For the
shift several geometrically motivated conditions on the
3-metric (like minimal distortion [10], distance, area and
expansion freezing [3] or Gamma-freezing [28]) have been
proposed and studied numerically. To what extent it is
possible to avoid slice stretching by making use of a non-
trivial shift will be studied analytically for the maximally
sliced Schwarzschild spacetime in a further paper [16].

Furthermore, as slice stretching by an intuitive argu-
ment is often attributed to the singularity avoiding be-
havior of the slicing, for the Schwarzschild spacetime the
maximal slices will be compared in [29] to geodesic slices.
The latter arise for evolutions with unit lapse and vanish-
ing shift and correspond to freely falling observers which
hit the Schwarzschild singularity within finite time.
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FIG. 1: The lapse function and components of both metric
and extrinsic curvature are shown as obtained numerically
at times τeven = {0, 5M, 10M, 15M, 20M, 25M} for isotropic
grid coordinates and even boundary conditions. The loca-
tion of the throat and the left- or right-hand event horizon
is denoted by boxes and down- or upward pointing triangles,
respectively. In addition as dotted lines limiting curves are
shown which hold in the limit τeven → ∞ near the throat.
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FIG. 2: For the puncture evolution corresponding to isotropic
grid coordinates and “zgp” boundary conditions the geo-
metric quantities as of Fig. 1 are shown in time steps of
△τzgp = 5M . For τzgp → ∞ in a region near the throat
the puncture lapse collapses to zero, the rescaled radial
metric component can be described by x4Ψ8/r4

Clim
, the

Schwarzschild radius approaches the value rClim
= 3M/2 and

the angular extrinsic curvature component has the limit
Clim/r3

Clim
= 2

√
3/9M ≈ 0.3849/M .
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