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We present the optical transfer functions for third-order nonlinear cavities that involve an optical carrier
frequency and its modulation sideband fields. Our approach is based on linearized transformations and
provides a convenient tool to calculate squeezed light sources as well as complex interferometer
topologies, containing subsystems that involve intensity dependent phase shifts, i.e., optical Kerr media.
As the result we present the noise spectral density of a Michelson interferometer with Kerr nonlinear arm
cavities and resonant sideband extraction and find that quantum noise can be squeezed by arbitrary
amounts even outside the cavity linewidth. Such a system might apply for future gravitational wave
detectors or simply for a continuous wave source of squeezed states.
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The input and output of damped quantum optical sys-
tems have been successfully described by quantum
Langevin equations. This approach led to the first correct
description of traveling wave squeezed light [1]. However,
this approach is not easy to deal with due to its nonlinear
operator nature. Especially the description of complex
optical systems, like advanced laser interferometers that
comprise a detuned resonant sideband extraction (RSE)
cavity [2] in combination with radiation pressure and non-
linear media, is a nontrivial task. Fortunately, for most
practical purposes the quantum noise can be assumed to
be small compared to the field’s expectation value and
the problem can be linearized. Following this line, in
Refs. [3,4] the Michelson interferometer with Kerr media
placed into the arm cavities has been analyzed. It was
shown that Kerr media inside the arms can cancel radiation
pressure noise at some sideband frequencies.

The interest in nonclassical techniques has been in-
creasing considerably during recent years. This is partly
due to the fact that quantum noise will be one of the
major noise sources in second-generation interferometric
gravitational wave (GW) detectors (e.g., Advanced LIGO
[5]). It is therefore very likely that third-generation detec-
tors will exploit quantum correlations, i.e., quantum-non-
demolition techniques [6,7] and nonlinear optics might
become one of the standard tools.

In this Letter we reinvestigate the Kerr medium inside
the arm cavities of a Michelson interferometer and present
signal and noise transfer functions. For the first time, to our
best knowledge, we report the noise spectral density of a
Kerr-effect enhanced Michelson interferometer with RSE.
We apply a theoretical approach which can easily be ex-
tended to even more complex optical systems. Our formal-
ism is based on linearized transformations of the quad-
rature fields within two-photon quantum optics [8] which
has previously been used to describe ponderomotive
squeezing [6] and the optical spring effect [5]. In this
formalism the transfer functions map quadrature ampli-
tudes which act at positive modulation frequencies ()
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around an optical carrier frequency w,. It is well-known
that cavities containing a y'* nonlinear crystal (Fig. 1) can
provide an improved response to phase signals and quan-
tum noise can become (Kerr) squeezed [9]. The nonlinear
relation between the input intensity and the intracavity

intensity reads
2
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where ¢4, denotes the cavity detuning and 6 accounts for
the x'¥ nonlinearity; for § = 0 we obtain the intracavity
intensity of a linear cavity. In Fig. 2, the phase shifts of
light reflected from a Kerr cavity and the intracavity in-
tensities are shown as a function of the cavity detuning.
There is a critical choice of parameters where the phase
response to a small change of the cavity detuning is infinite
for one specific value of the detuning and where the cavity
does not assume a multistable state. This critical state is
considered to be very promising in view of enhancing the
sensitivity for detecting signals induced by a cavity length
change.

For a rigorous treatment we start from the system’s Kerr
Hamiltonian in the interaction picture

~ h
H = EX(@*)zflz, 2

where 4 is the field annihilation operator acting at a par-
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FIG. 1. Kerr nonlinear cavity with laser and vacuum inputs

described by quadrature amplitude vectors. Mirror amplitude
reflectance and transmittance are denoted by p and 7, respec-
tively. L is the macroscopic length of the cavity.
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FIG. 2. (a) Intracavity powers and (b) phase shifts of reflected
light for three cavities of different values for the nonlinear
susceptibility of the Kerr medium. The critical state is charac-
terized by possessing infinite slope at some single value for the
detuning.

ticular frequency, and so the Hamilton operator just in-
volves one frequency. The quantity y is proportional to the
nonlinear susceptibility of the Kerr medium used.
Denoting the interaction time by 7, the equation of motion
becomes

4 _ _iyata-a=—iya-a 3)

dr
which is solved easily by making use of the fact that the
photon number is conserved during the interaction with the
Kerr medium:

a(r) = e Xm0 . 4(0). 4)

At first, we procure the usual linearized transformation rule
that applies for intense optical fields weakly interacting
with a Kerr medium. Therefore, the annihilation operator is
decomposed into its (real) expectation value and a noise
amplitude operator d(7) = A + 9(7). Keeping just first
order terms of U we obtain from Eq. (4)

d(7) = e W N [p — iyrA2 - (9 + 91)]. 5)

The linearized solution has to be evaluated for two side-
band frequencies w, = () in order to obtain a field repre-
sentation in terms of the quadrature amplitudes 9/ ,(7) of
the two-photon formalism [8]. The noise power spectral
density of a phase sensitive photo detection [7,10] can be
derived from the components of the Fourier-transformed
covariance matrix for the amplitude and phase quadra-
tures of the light field. To ease notation, we define the
quadrature amplitude vector for small modulation frequen-
cies ) <K wg

a,(Q) Niat(wy— Q) —ia(wy + Q) )
We now define the Kerr coupling constant K, = 2 x7A?

such that the respective linearized transformation of the
quadrature noise fields assumes the form

(223) = D[—Kop/z]w <Z; ) (7)

=K

where D denotes the 2 X 2 rotation matrix. One sees that
the linearized Kerr transformation consists of a rotation in
addition to a conversion of amplitude quadrature fluctua-
tions into phase quadrature fluctuations.

In the above quadrature notation the effect of a Kerr
medium is described by the Kerr coupling constant K. In
case of a Kerr nonlinear crystal (electro-optical Kerr ef-
fect) the coupling constant is frequency independent over a
broad spectrum and reads

nowyLyy!
Kop=2xtA>=(1+ p3) ——mop

=01, (8
where n, * y is the nonlinear refractive index with units
m?/W, L, is the length of the Kerr medium and / denotes
the light intensity inside the Kerr medium. The factor (1 +
p3) already anticipates the fact that the Kerr medium is
placed inside a cavity and consequently the intensity is a
sum of the intensities of two counter-propagating beams.
The nonlinearities required for our purposes are experi-
mentally feasible (cf. [11]).

Note that radiation pressure as well as thermal expansion
due to light absorption and a temperature dependent re-
fractive index of substrates also result in intensity depen-
dent phase shifts. In analogy to Eq. (8) these effects may be
described by appropriate coupling parameters XK, and
K, respectively. The radiation pressure effect was indeed
studied in great detail in Refs. [6,5] where the coupling
parameter K., was introduced. Both radiation pressure
and photo-thermally induced nonlinear phase shifts gen-
erally decrease with increasing frequency on scales which
are smaller than the detection bandwidth.

We will now derive the signal and quantum noise trans-
fer functions of the Kerr nonlinear cavity. According to
Fig. 1 a (detuned) cavity is pumped by a coherent input
field of frequency w, through mirror M, denoted by i.
Propagation of the field from the first to the second mirror
M, is performed by the transfer matrix

P, = *D[-¢] )]

To take the sidebands into account, the (complex) phase
with @ = QL/c is required. The rotation angle ¢ corre-
sponds to the phase shift of the carrier light. Here, two
different contributions have to be considered:

Kop

b= dger t - (10)
where ¢4 denotes the detuning of the cavity and K, /2 1is
the classical phase shift of the light due to the Kerr me-
dium. The phase of the incoming beam is chosen such that
the carrier field is rotated into the amplitude quadrature of
our reference system when impinging on M, (then A is
real). Here, at M, we place the Kerr medium, which is
then described by Eq. (7), and the round trip matrix for the
whole cavity reads

R = p,P, K- P,. (11)
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The noise transfer matrix of the (detuned) nonlinear cavity
is given by the following reflection transfer matrix

1
T-- R [R — p; - 1] (12)

C =
1-p

We now consider a classical signal that induces a motion of
mirror M, giving rise to a phase modulation of the re-
flected fields. The signal transfer matrix from M, to the
output port 0 is given by

71

=1 _.p,. 1
S=1— g™ (13)

Vacuum fields attributed to losses inside the cavity will
give a third contribution to the overall cavity output field.
This is described by the vacuum field v impinging from
outside the cavity on M, (Fig. 1). The loss transfer matrix
is found to be 7,S. Eventually, the input-output relation for
a single cavity can be cast into the following form:

6=C-T+S- [A?<2x?ﬂ)> + m} (14)

where x(Q)) is the amplitude of relative displacements
between the two cavity mirrors (e.g., a gravitational wave
of amplitude 2(€2) leads to x(2) = =1 Lh(Q) [6]).

Now two cavities described by Eq. (14) may be com-
bined to form a Michelson interferometer operating close
to a dark fringe. Then, keeping the value for the laser power
in each arm, its antisymmetric signal mode is described by
the signal transfer matrix given above multiplied by +/2.
The transfer matrix C and the adjusted signal transfer
matrix S directly translate into the spectral noise density
of the interferometer for a measured quadrature 6, =
01 cos{ + 0,sind, where { is the homodyne angle; see,
for example, Eq. 7 in Ref. [7].

In Figs. 3 and 4 we plot transfer functions and spectral
noise densities of linear and different Kerr nonlinear
Michelson interferometers. In all cases the curves represent
the optimum choice of quadrature angle and arm cavity
detuning. In the linear case tuned arm cavities and the
phase quadrature provide the lowest spectral noise density.
In the nonlinear case we initially chose to minimize spec-
tral noise density at zero frequency and found the interfer-
ometer to perform best with detuned arm cavities in the
critical state when observing the amplitude quadrature.
Figure 3 shows that for ) = 0 a complete cancellation
of noise can be observed for the Kerr nonlinear interfer-
ometer (solid line). Note that Fig. 2 implies an amplifica-
tion of the phase quadrature signal transfer function.
Indeed, this can be accomplished by an appropriate choice
of the detection angle. However, it turns out that the noise
transfer function is amplified as well and the net gain of
sensitivity is less compared to the detection of the ampli-
tude quadrature. Up to this point our analysis of the Kerr-
effect enhanced interferometer can be summarized as fol-
lows. The quantum measurement noise (shot-noise) trans-
fer function of a Michelson interferometer with detuned
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FIG. 3 (color online). Transfer functions of Michelson inter-
ferometers with infinite mirror masses; comparison of tuned
linear arm cavities with nonlinear Kerr arm cavities close to
the critical state. The peaked curve results from additional

DRSE. Parameters: wq = 1.77 X 10" Hz, vy, =27 X
100 Hz, L =4km, I=10kW/cm?  Without DRSE
cavity: nyLo, = 6.52107"7 m*/W, K, =0.0757, ¢ =

0.0359. With DRSE cavity: 3, = 0.546, p, = 0.9, L = 4 km,
naLop = 1.55 X 10716 m3/W, K, = 0.18, ¢ = —1.5573.

Kerr arm cavities can be reduced significantly for sideband
frequencies smaller than the half linewidth of the (single
ended) arm cavity

Yam = 71¢/(4L). (15)

At the same time the signal transfer is also reduced, but just
by a small value. The result is an improved noise spectral
density. Unfortunately the improved frequency band is also
restricted by a lower bound set by radiation pressure noise
(backaction noise) since its transfer function equals the
signal transfer function. An overall reduction of the noise
spectral density for an amplitude quadrature measurement
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FIG. 4 (color online). Linear spectral noise densities of GW
interferometers according to Fig. 3. For a nonlinear Michelson
without DRSE the spectral noise density can be made zero at
zero frequency assuming no radiation pressure effect. With
DRSE infinite improvement can be achieved at some sideband
frequency where the linear interferometer may be shot-noise
limited.
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is therefore restricted to shot-noise limited frequencies
within the half linewidth of the cavity.

An interesting question arises if the effect of noise
reduction can be shifted to higher frequencies well above
the cavities’ half linewidth where radiation pressure noise
(as well as technical laser noise) are negligible. The answer
to this question is ‘““yes,” if an appropriate extended RSE
topology is applied. One finds that the formula describing a
Michelson interferometer with detuned arm cavities pre-
sented here, holds also for an interferometer with tuned
arm cavities and RSE having a single mirror at the inter-
ferometer’s dark port, as analyzed by Buonanno and Chen
[5]. Simply adjusting the parameter ® (cf. Table II in
Ref. [7]) ® — arctan(Q)/v,m), yields the well-known
RSE formulas. However, in this topology the upper or
the lower signal sideband is extracted from low linewidth
arm cavities. In our case both sidebands need to be ex-
tracted to preserve the nonclassical noise suppression and
another complex phase factor has to be added to the round
trip matrix in Eq. (11). From previous investigations [5] it
is clear that the appropriate phase factor can experimen-
tally be realized by a newly established doubly resonant
sideband extraction (DRSE) cavity at the dark port instead
of a single mirror, as shown in Fig. 5. The DRSE cavity has
to be tuned on resonance with respect to the carrier field,
since in the (D)RSE topology the Kerr arm cavities are also
resonating. Note that the latter fact gives another advantage
because the arm cavity’s power buildup is higher. By
adjusting the parameters of the DRSE cavity the Kerr noise
reduction can be shifted to arbitrary frequencies. The
peaked curves in Figs. 3 and 4 show the nonclassical
improvement due to the Kerr nonlinear DRSE topology.
Again noise reduction by arbitrary amounts is possible, but
now for sideband frequencies outside the half linewidth of
the arm cavity with a resonance at

Qres = \/Fyarm[’)’arm + lj,,%(ﬁZ + .51)(1 + .51/32)] (16)
T1P2
where the tilde refers to the DRSE cavity.

The Kerr DRSE interferometer proposed here might find
applications in large scale GW detectors as well as in
continuous wave (cw) squeezed light sources. Although
the Kerr effect has appeared to be a technically simple
approach to generate squeezed states, only marginal de-
grees of cw Kerr squeezing has been demonstrated. So far
this is due to the low values of third-order nonlinearities in
crystals. To achieve high intensities, small linewidth cav-
ities have to be used. Without DRSE, squeezing is only
expected within the half linewidth but then typically buried
by huge classical noise. Only in the pulsed regime has Kerr
squeezing of up to 7 dB been demonstrated [12]. Soliton
pulses propagating through fibers provide high intensities
as well as long interaction length without the need for
cavities. Kerr squeezing in atoms was also successful to
some extent due to the orders of magnitude higher non-
linearity [13]. We believe that our proposed DRSE topol-

Kerr medium
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FIG. 5 (color online). Kerr nonlinear Michelson interferometer
operated with a signal port close to a dark fringe. The input-
output relation of each arm is given by Eq. (14). We consider two
different cases, without and with additional optics for DRSE in
the dark port.

ogy will solve the driving noise problem in cw Kerr
squeezing experiments. The squeezed light source is oper-
ated with tuned, small linewidth cavities providing the
required power built up, but squeezing will be generated
at higher frequencies at which technical laser noise is
rejected.

We thank Y. Chen for many helpful discussions con-
cerning the construction of a program which simulates the
Kerr interferometer and for his suggestions which influ-
enced the design of our analysis.
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