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Abstract

GEO 600 is an interferometric gravitational wave detector with a 600 m arm-
length and which uses a dual-recycled optical configuration to give enhanced
sensitivity over certain frequencies in the detection band. Due to the dual-
recycling, GEO 600 has two main output signals, both of which potentially
contain gravitational wave signals. These two outputs are calibrated to strain
using a time-domain method. In order to simplify the analysis of the GEO
600 data set, it is desirable to combine these two calibrated outputs to form a
single strain signal that has optimal signal-to-noise ratio across the detection
band. This paper describes a time-domain method for doing this combination.
The method presented is similar to one developed for optimally combining the
outputs of two colocated gravitational wave detectors. In the scheme presented
in this paper, some simplifications are made to allow its implementation using
time-domain methods.

PACS numbers: 95.55.Br, 95.75.Kk, 04.80.Nn, 95.55.Ym

1. Introduction

GEO 600 [1] is part of an international network of gravitational wave observatories which
is searching for gravitational wave signatures from various source types. GEO 600 is the
only long-baseline dual-recycled Michelson interferometer in the world. With its 600 m arm-
length, it should, when fully commissioned, be sensitive to strain amplitudes of the order of
1 x 1072 Hz 7'/,

GEO 600 uses a dual-recycling configuration which means that two additional mirrors
are added to the standard Michelson interferometer optical layout. One mirror, the power-
recycling (PR) mirror, is added at the input port of the Michelson. Since the Michelson

0264-9381/05/204253+09$30.00  © 2005 IOP Publishing Ltd  Printed in the UK 4253


http://dx.doi.org/10.1088/0264-9381/22/20/007
mailto:martin.hewitson@aei.mpg.de
http://stacks.iop.org/CQG/22/4253

4254 M Hewitson et al

interferometer in GEO 600 is operated at a dark fringe, the light reflected from the input port
is made resonant by the cavity formed between the PR mirror and the Michelson. Another
mirror, the signal-recycling (SR) mirror, is placed at the output of the Michelson to create a
resonant cavity for any signal sidebands that leave the interferometer (see [2, 3] for details).

The use of signal recycling gives an enhancement in strain sensitivity over a certain band
of frequencies. This band is defined by the reflectivity of the SR mirror and the length of the
SR cavity. One consequence of using such an optical scheme is that the gravitational wave
(GW) signal gained from demodulating the detector output at the frequency of the control
sidebands is spread between the two demodulation quadratures. This means that, for a given
demodulation phase, the GW signal content in one quadrature can only be optimized for one
frequencys; at all other frequencies, the demodulation phase is not optimal. In the absence of
noise, the complete signal could be recovered by calibrating only one of the output quadratures.
However, since there is noise in the system, the data from both output quadratures need to be
calibrated such that at any given frequency, the data stream with the best signal-to-noise ratio
is available for analysis. Having calibrated both output data streams, we have two estimates
for the detected strain of the interferometer. This is somewhat undesirable since a choice must
be made, based on the analysis to be performed, as to which strain signal to analyse.

To remove the need for this choice, we seek to combine the two calibrated output signals
of GEO 600 into a single strain signal that has an optimal signal-to-noise ratio at all frequencies
in the detection band (40 Hz—6 kHz). In addition, as we will see, the combination of the two
calibrated streams, if done correctly, leads to a signal that is more sensitive than either of the
two separate signals. In order to fit in with the current calibration scheme of GEO 600, we
want to do this combination in the time domain.

2. Time-domain calibration of GEO 600

The calibration of GEO 600 is done using a time-domain method. Calibration lines
are continuously injected into the differential length-control actuators of the Michelson
interferometer at a few frequencies across the detection band. The response of the detector to
this differential displacement, and hence to strain, is computed once per second by forming
the transfer function from the injection point to the two detector outputs; a model of this
transfer function is then fit to the measurements. This model is then inverted and used to
create time-domain filters. By filtering the two detector outputs, P (¢) and Q(¢), through these
time-domain filters, we recover two estimates, hp(f) and (), of the apparent detected strain
of the interferometer. The details, development and application of the calibration scheme are
given in [4-8]. The method runs in real time with a latency of a few seconds.

3. Optimal combination of two calibrated output signals of GEO 600

The combination of the two calibrated output signals of GEO 600 can be done by considering
the variance of the noise in the two signals in a particular frequency bin. Here we wish to
combine the two signals together so as to achieve the best estimate of the detected gravitational
wave strain. In addition, we want to take into account any correlations that may exist between
the two calibrated output signals.

3.1. Maximum likelihood method of combining two signals

We start from the assumption that the two calibrated output signals, #p and hq, contain the same
gravitational wave signals. This is true to a level consistent with the accuracy of the calibration
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of each output signal. In addition, each calibrated output contains noise components which
will, in general, be different, but may be correlated to a varying degree at some frequencies.
Then we can write

hp(t) = h(1) + Ne(2), (D
hq(t) = h(t) + Nq(t), 2

where h(t) is the underlying signal we seek, and Np(¢) and Nq(¢) represent the noise in the
two calibrated output quadratures.
The method centres around the covariance matrix of the two signals:

opp  Op
C= ).
oQp  9QQ
where ogp = (NPNS) = oli‘Q, and~denotes the Fourier transform. Here, the cross terms opq
and ogp are the variances of those signal components that are common to both zp and hq.
These terms are, in general, complex functions of frequency.

For a single frequency, f, it can be shown that the optimal combination of the two
calibrated strain signals is given by

he(f)ogQ(f) +ho(floee(f) — apo(fhe(f) — ogrho(f)
opp(f) +0qq(f) — [orq(f) + oqr(f)]

where A(f) is a maximum likelihood estimate for the underlying gravitational wave strain

signature, 2(f). An outline of the derivation of equation (3) is given in the appendix. (This

expression for i(f) can also be derived using a minimum variance method, see the appendix
of [9] for details.)

h(f) =

, 3)

3.2. Computing the weighting functions

In order to apply the formula given in equation (3) in the time domain, we must compute
the optimal combination for each frequency in the detection band, and convert this array of
‘weights’ into time-domain filters.

The variance terms, opp and oqq, in equation (3) can be estimated by looking at the noise
components of the two calibrated signals at each frequency; in other words, by considering the
noise floor of the power spectral density (PSD) of each signal. (The variance of a particular
signal at a given frequency is proportional to the mean value of the PSD at that frequency.)
How good an estimate this is depends on the observation time and stationarity of the signal
when making the PSD. If the noise is stationary, then the estimate of the PSD, and hence of the
variance, can be improved by taking more and more averages. If the noise is non-stationary,
then the PSD needs to be constructed over the appropriate time scale. The noise in the GEO
600 output is sufficiently stationary on time scales of many hours, and so the assumption is
fine for all practical purposes.

The terms opg and ogp can be estimated for each frequency by considering the noise
floor of the cross-power spectral density of 4p and hq; the same considerations of stationarity
and observation time apply as for the diagonal terms. In addition, we assume that the means
of the two data streams at a given frequency are zero; this is a good approximation over
the frequency range we are dealing with since we have removed any coherent signals when
making the noise-floor estimation.

Figure 1 shows typical power spectral density estimates of ip and hq, together with an
estimate of the cross-power spectral density (CSD); a noise-floor estimate for each is also
shown. The phase components of the CSD are shown in figure 2. The noise-floor estimates
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Figure 1. Power- and cross-spectral densities of the two calibrated outputs of GEO 600 (light
coloured curves). Noise-floor estimates constructed from a running median estimator are also
shown (dark coloured curves). The frequency axis is cut off at 100 Hz to limit the dynamic range
of the displayed data; the calibration and the combining procedure are valid down to 50 Hz.
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Figure 2. The phase components of the cross-spectral density of hp(#) and hq(t). A ‘noise-floor
estimate’ is also shown.

are constructed by using a running median estimator. For a particular frequency bin, f, the
values in the surrounding N bins are sorted in ascending order and the top /., % are discarded
in order to discard outliers (from lines, for example). The median of the remaining values is
taken as an estimate of the noise floor at the frequency f. For the noise-floor estimates shown
in figure 1, N = 32 bins and Ay, = 0.9.
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Figure 3. The optimal weighting functions for combining signals 4p(f) and hq(f) which have

the power- and cross-spectral densities shown in figure 1. Also shown are the overall magnitude
and phase responses of the filter pairs designed using the method described in the text.

Equation (3) can be re-written such that we have two complex frequency-dependent
weighting factors, A(f) and B(f), for hp and hq:

h(f) = A(H)hp(f) + B(fHhq(f). 4)
where
AG) = 000 (f) = aro(f) , )
opp(f) +0qq(f) — [opo(f) +oqpr(f)]
B(f) = opp(f) — UQP(f) (6)

opp(f) +0qq(f) — [opo(f) + ogp()]

Figure 3 shows an example of the magnitude and phase of the weighting functions for the
data used in figures 1 and 2.

3.3. Designing the filters

The weighting functions that were computed in the previous section are, in general, complex.
In order to make time-domain filter representations of these two weighting functions, we need
a way to compute time-domain filters that have arbitrary magnitude and phase responses. One
such method is to consider the magnitude and phase responses separately. We can write A( f)
and B(f) in terms of their magnitude and phase parts such that

A(f) = a(f) e, (7)
B(f) = b(f)e®”P). (8)

Now we construct fqur filters, Mp, Pp, Mg and Pq which have the frequency responses,
a(f),e? " b(f) and V) respectively.
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Construction of the time-domain filters, Mp and My, is done by assuming that the
response we seek (a(f) and b(f)) are the Fourier transforms of the impulse responses of the
two linear-phase time-domain filters [10—12]. For this to be the case, we need to generate
the appropriate phase delay for the two filters. This is just a frequency-dependent linear-
phase shift defined by the filter order we require. If we want filters of order Ny, then we
construct a grid of Ng equally spaced frequency points that run from O to the Nyquist rate
and estimate the magnitude and phase at each point. The magnitude estimates come directly
from a(f) and b(f) (interpolated or averaged as necessary), and the phase components are
just linear with frequency starting from O phase shift, such that

~ _ . _(Ntaps - 1)177]

NMp(f) = au)exp[—z(NG 5 ] ©)
~ _ . _(Ntaps - 1)17T]

Mq(f) = b(;)exp[—z(NG = } (10)

where Mp(f) denotes the response of the filter Mp (the single-sided Fourier transform of the
impulse response), i = ~/—1, and j€[0: Ng).

We can then form the two-sided Fourier transform of the impulse response of the filter by
concatenating the vector Mp(f) with the reverse sequence of the conjugate of Mp(f); the
same is done for Mq(f). Thus we have a frequency series that runs from — f;/2 to +f5/2.
This is what we would get from the Fourier transform of a real data series. If we take the
inverse transform, and apply a window function, we get the filter coefficients we seek for Mp
and Mgq. The time shifts introduced when applying these filters can simply be removed by
appropriate buffering of the filtered signals.

The filters representing the phase components of the weighting functions are constructed
as all-pass filters. Here the magnitude response of the filter is designed to be unity for a
significant part of the pass-band. The phase response is an approximation to that phase
response we seek. These filters can be designed by minimizing the difference between the
desired response, ¢%() and the response of the filter, 75p( f) using, for example, a nonlinear
least-squares routine. The error-function that was minimized in this application was

€ = i Pp(fr) — %2, (11

An example of the combined magnitude and phase response of Mp with Pp, and Mg with
Pq is shown in figure 3. Also shown are the original weighting functions. (The linear-phase
response of Mp and Mg is omitted for clarity). The examples shown are 300 tap filters for
the magnitude parts, and 512 tap filters for the phase parts.

3.4. Results

Having constructed the time-domain filters, we can easily compute the optimal /(¢) signal in
the time-domain by

h(t) = Mp{hp(1)} + Pplhp(t)} + Molho(t)} + Polho(t)}. (12)

The result of applying this to real GEO 600 data is shown in figure 4. Here we see three
amplitude spectral densities constructed from Ap(t), ho(f) and h(2).

An amplitude spectral density of the injected calibration signal calibrated to strain is also
shown. The calibration peaks used for determining the detector response are indicated with
filled markers. In order to confirm that the constructed time-domain filters are performing
properly, we can look at a relative comparison of the calibrated and combined strain signals to
the induced strain signal. By computing the magnitude and phase of the calibration peaks in
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Figure 4. Snap-shot amplitude spectral densities (ASD) of the two calibrated outputs of GEO 600,
hp(t), hq(t) and of the optimally combined signal /(). Injected calibration lines are highlighted
with filled markers. An ASD of the strain induced by the injected calibration signal is also shown
with the peaks marked by the grey circles. The frequency axis is cut off at 100 Hz to limit the
dynamic range of the displayed data; the calibration and the combining procedure are valid down
to 50 Hz.

all signals, we can form the magnitude ratio and phase difference between the induced strain,
and the three computed strain signals. Figure 5 shows the results of this calculation for the
data stretch shown in figure 4. We can see that, at least at these spot-frequencies, the combined
h(t) preserves the signal present in the underlying Ap(7) and hq(f) to a good degree. (The
apparent inaccuracy of the Q(z) output calibration at 110 Hz comes from the measurement
of the calibration line at this frequency due to the presence of other spectral features, and not
from inaccuracies in the calibration process.)

4. Summary and future work

The on-line calibration scheme used at GEO 600 was extended to include an optimal time-
domain combination of the two calibrated output signals. The result is a single A (¢) signal
that is at least as sensitive as either of the two calibrated output signals at all frequencies in the
detection band, and is a significant improvement at some frequencies. One further step is to
allow for time-variation in the optimal combination filters. This means determining the filters
on-line periodically, and then smoothly moving from using one set of filters to the next. This
is in principle straightforward, with the complexity lying only in the implementation since
we wish to maintain the real-time, low-latency nature of the current system. In addition, the
combining filters shown in this paper have a much smoother response than the underlying
weighting functions. This is due to the difficulties in making the phase correction filters with
very high numbers of taps. Using a more sophisticated optimisation routine may be one way
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Figure 5. The magnitude ratio and phase difference of the strain induced by injecting calibration
lines to the detected strain as measured in the two calibrated output signals, as well as the combined
strain signal. The comparison is made at each calibration line frequency.

to produce more detailed combining filters; this remains to be investigated and developed
further.
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Appendix. Maximum likelihood estimator for h(t)

We are given two pieces of data, h, and kg, which are generally complex and are related to a
complex parameter 4 by

hy =h+ N, (A.1)
hq=h+ Nj. (A.2)
We write this in vector form as
d=h+N. (A.3)
The noises are complex and correlated with a (Hermitian) covariance matrix
C= (UP" "Pq> , (A.4)
Ogp Oqgq

where
oij = (N:N7) (A.5)
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and * denotes the complex conjugate. The determinant of this matrix is
2
det C = 0pp0gq — OgpOpq = TppOaq — Tpql (A.6)
and its inverse is

1 o —0,
Cl'=—+( '™ M. A7
detC <—aqp Opp (A7)

The likelihood of % is the probability of the given data A, taken to be a complex bivariate
Gaussian, i.e.,
1
hy, hglh) = ——— exp[—(d —)"'C~'(d — h)], A8
p(hp, hglh) JTzdetCeXp[ ( ) ( )] (A.8)
with x being the conjugate transpose of x. The maximum likelihood estimator for 4 is the
value that maximizes this probability, or alternatively minimizes

0=W-hiC"d-h (A.9)
=d"C'd + W'C'h — 2Re{h"C'a} (A.10)
with respect to the real and imaginary components of 4. Our constraints are therefore
a d
e _, 0 _ (A.11)
d Re{h} d Im{h}
Multiplying out individual terms we get
Hoe1 hh*
h"C'h = R(app +0gqq — Opq — Tgp) (A.12)
and
- h*
hic'd = Forc /10 (@aa = 0pa) + ha(0pp = o)1, (A.13)

so the maximum likelihood estimator of / is

hp(04q — Opg) + hq(Tpp — Ogp)
(0pp + 04q) — (Opq + Tgp)

Note the denominator of this is purely real.

Ay = (A.14)
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