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Abstract: We study the perturbative integrability of the planar sector of a massive SU(N)

matrix quantum mechanical theory with global SO(6) invariance and Yang-Mills-like inter-

action. This model arises as a consistent truncation of maximally supersymmetric Yang-

Mills theory on a three-sphere to the lowest modes of the scalar fields. In fact, our studies

mimic the current investigations concerning the integrability properties of this gauge the-

ory. Like in the field theory we can prove the planar integrability of the SO(6) model at

first perturbative order. At higher orders we restrict ourselves to the widely studied SU(2)

subsector spanned by two complexified scalar fields of the theory. We show that our toy

model satisfies all commonly studied integrability requirements such as degeneracies in the

spectrum, existence of conserved charges and factorized scattering up to third perturbative

order. These are the same qualitative features as the ones found in super Yang-Mills theory,

which were enough to conjecture the all-loop integrability of that theory. For the SO(6)

model, however, we show that these properties are not sufficient to predict higher loop in-

tegrability. In fact, we explicitly demonstrate the breakdown of perturbative integrability

at fourth order.
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1. Introduction

The existence of integrable structures in large-N gauge theories and superstring theory, that

were found and investigated intensively in recent years, have led to an enormous progress

in the understanding and the verification of the AdS/CFT correspondence [1].1 Above

all there are the Bethe ansatz techniques which represent novel methods for computing

the spectra on either side of the correspondence, i.e. the energy spectrum of string states

on the AdS-side and the spectrum of conformal dimensions on the CFT-side. Hence,

integrability allows for new tests of the AdS/CFT correspondence by making new data

available. Moreover, one can even directly compare the integrable structures and the

algebraic equations which encode the spectrum, i.e. an explicit computation of the spectrum

can actually be evaded. The performed comparisons have predominantly confirmed the

AdS/CFT conjecture, although some discrepancies still need to be resolved.

In this article we concentrate on the integrable properties discovered on the gauge

theory side. Let us therefore briefly recall the findings concerning N = 4 superconfor-

mal SU(N) Yang-Mills theory (SYM), which are comprehensively reviewed in [2]. The

statement is that the spectrum of anomalous dimensions of SYM in the ’t Hooft large-N

limit equals the energy spectrum of an integrable spin-chain system [4, 5]. According to

this correspondence, single-trace operators of SYM are considered as spin-chain states, cf.

figure 1, and the planar part of the SYM dilatation operator D becomes the spin-chain

hamiltonian

Q2 =
1

λ
(D − D0) . (1.1)

1For details about integrability in the AdS/CFT correspondence we would like to refer to the reviews [2, 3]

and the references therein.
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Figure 1: Spin-chain and magnon picture. Single-trace SYM operators are in one-to-one cor-

respondence with translationally invariant spin-chain states. Different SYM fields correspond to

different spin-alignments or different pseudo-particles called magnons. The highest weight field (Z)

corresponds to spin up or an empty site.
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Figure 2: Action of dilatation operator.This graphics shows the application of a sample dilatation

operator of range two to some particular
∣

∣in
〉

-state. The result is a sum of
∣

∣out
〉

-states which are

obtained by connecting the dilatation operator to all pairs of adjacent fields. In this example the

dilatation operator is a mere permutation, and every local application yields just one contribution

to the out-state. Generically, the dilatation operator will produce a sum of terms from each local

application.

Herein λ = g2
YM

N is the ’t Hooft coupling constant of SYM and D0 is the planar dilatation

operator of the free theory which measures the bare conformal dimensions. The charac-

teristic feature of the integrability of the spin-chain system is the existence of an infinite

tower of higher charges Qr≥3 which commute with each other and with the hamiltonian:2

[Qr, Qs] = 0 ∀r, s = 2, 3, . . . . (1.2)

The dilatation operator is not known exactly but must be determined in perturba-

tion theory in the coupling constant λ [6]. It can be extracted from the logarithmically

divergent part of the two-point functions which themselves are computed perturbatively.

The application of the dilatation operator to a single-trace SYM operator, alias spin-chain

state, corresponds to the attachment of some effective vertex. In the planar limit, this

effective vertex is to be connected in all possible ways to a certain number of adjacent

fields, cf. figure 2. The number of involved fields is called the range of the planar dilatation

operator. It grows with the perturbative order. At first order in λ the dilatation operator

has range two, i.e. the associated spin-chain hamiltonian consists only of nearest neighbor

interactions. The higher perturbative contributions to the dilatation operator then cause

long-range deformations of the spin-chain hamiltonian. Notice that due to the extra factor

2We do not consider the first charge Q1 here. It is usually defined as the spin-chain momentum operator

which generates a shift of all spins by one lattice site. However, as the spin-chain states originate from

single-trace SYM operators which are invariant under cyclic permutations of the constituent fields, the

momentum operator Q1 acts as a c-number on all considered spin-chain states.
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of 1/λ in (1.1), the loop counting in SYM and the spin-chain picture is shifted by one unit,

in particular the one-loop dilatation operator corresponds to the zeroth order (i.e. λ = 0)

spin-chain hamiltonian.

Likewise to the dilatation operator, all higher charges also receive perturbative correc-

tion of growing range. The general expansion is

Qr =

∞
∑

k=0

λk/2Qr,k for r = 2, 3, . . . , (1.3)

where the range of Qr,k depends essentially linearly on r and k. Since the charges are only

known up to some perturbative order, we also deal with integrability in a perturbative

sense. e.g. when cut off at a certain order in λ, the charges do not commute exactly with

each other but only up to contributions of higher order. Only the lowest order is special

in this respect since here λ = 0 and the commutation of the free charges is exact.

Let us also recall how a rigorous proof of integrability would proceed. The reasoning is

called algebraic Bethe ansatz and is reviewed in [7]. The main ingredient is the monodromy

matrix, or T -matrix, which is a spin-chain operator depending on a spectral parameter u.

The T -matrix satisfies a so-called Yang-Baxter equation, which implies that the trace tr T

commutes for different values of the spectral parameter with itself:

[tr T (u), tr T (u′)] = 0 . (1.4)

This fact qualifies tr T (u) as a generating function for an infinite set of commuting charges,

which can be obtained by a series expansion of this operator in the spectral parameter.

If one of the commuting charges, or a combination of them, coincides with the spin-

chain hamiltonian, then the integrability of the corresponding system is proven. Beyond

providing the charges, the algebraic Bethe ansatz also yields algebraic equations, the Bethe

equations, which determine the eigenvalues of the charges — in particular the eigenvalues

of Q2, i.e. the energy spectrum.

In practice, however, performing this kind of proof might be rather involved. The

difficulty lies in finding the appropriate T -matrix and the way to extract the spin-chain

hamiltonian from it. There is no canonical prescription for doing that and even the Yang-

Baxter equation is not unique. Therefore, one sometimes tries to find higher commuting

charges by hand. In fact, there are arguments that the existence of the first higher charge

Q3 already implies integrability [8]. And yet before searching for commuting charges, one

should have a look at the spectrum. A good indication for the existence of these charges is

the presence of degeneracies in the spectrum which are not due to some obvious symmetries

of the system [6].

Alternatively, one can also utilize a coordinate Bethe ansatz, which is nicely reviewed

in [9]. It is an ansatz for the wave function describing an eigenstate of the spin-chain

hamiltonian. The physical picture behind this ansatz is the propagation of the magnons

(see figure 1) along the spin-chain and their scattering. The scattering is encoded in an “S-

matrix”, which is a scalar function of the momenta of the magnons involved in a scattering

process. The system is integrable if the multi-particle S-matrix factorizes into a product

of two-particle S-matrices. This point of view was stressed and discussed in [10].
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The current status of evidence for integrability in SYM is the following. At first

order in perturbation theory it has been proven by means of an algebraic Bethe ansatz

that the planar SYM dilatation operator [11] is an su(4|2, 2) integrable super spin-chain

with nearest neighbor interactions [5]. At higher loop orders a similar proof is not known

yet. However, the degeneracies in the spectrum, a number of commuting charges and

the Bethe equations have been found in different subsectors of the theory: In the su(3|2)
subsector, the dilatation operator has been constructed up to third order on the basis of

the symmetry algebra, some basic facts about Feynman diagrams and the BMN scaling

behavior of the eigenvalues [12]. BMN scaling is a property predicted by the dual string

theory and verified for SYM up to three loops in [13]. In the su(2) subsector it was

furthermore possible to map the planar three-loop dilatation operator to a known long-

range integrable spin-chain [14], the Inozemtsev spin-chain [15]. But if this equivalence

between the SYM dilatation operator and the Inozemtsev spin-chain was supposed to

hold also at higher loops, then BMN scaling must be broken in the gauge theory [14].

Therefore one has studied the mutual influence and the compatibility of integrability and

BMN scaling, and Beisert, Dippel and Staudacher (BDS) succeeded in writing down an

extension of the su(2) spin-chain hamiltonian up to five-loop order which obeys BMN

scaling and commutes with higher charges [16]. Moreover, BDS proposed asymptotic Bethe

equations and eigenvalue formulas for all higher charges to all-loop order.3 Up to five

loops these equations reproduce the spectrum of the explicit hamiltonian, and beyond five

loops they define a novel spin-chain system. As the system is specified in terms of Bethe

equations, the BDS spin-chain is in a sense integrable by definition. However, a proof

that the charges and the Bethe equations can be derived from a T -matrix is still missing,

let alone the proof that the BDS spin-chain indeed describes planar SYM in the su(2)

subsector.

In a parallel development, the planar integrability of plane-wave matrix theory

(PWMT) — a matrix model description of M-theory on a plane-wave [17] — was found [18].

PWMT is very closely related to SYM [19] and concerning integrability it serves as a toy

model for the field theory. The energy operator of PWMT, which will be defined as a

similarity transformation of the PWMT hamiltonian below, corresponds to the dilatation

operator of SYM. As a matter of fact, the planar energy operator coincides with the planar

dilatation operator up to three-loop level in the su(3|2) subsector after appropriate iden-

tification of the parameters [12, 18]. Hence all results concerning integrability that were

obtained in SYM up to third order immediately carry over to PWMT. But as PWMT is

a quantum mechanical theory, explicit calculations could be pushed to fourth perturbative

order in the su(2) subsector of that theory [20]. These computations showed that all integra-

bility criteria such as a degenerate spectrum, existence of conserved charges and factorized

scattering persist within PWMT to four-loop order, whereas BMN scaling gets violated.

It also turned out that the spin-chain associated to planar PWMT is neither equivalent to

3 “Asymptotic” refers to the fact that these equations and formulas are valid only for states longer than a

certain threshold which increases with the considered order in the coupling constant. The finite dimensional

subsector of shorter states is currently still inaccessible because of the so-called wrapping problem [6, 16],

which got its name from the fact that it is due to interactions that wrap entirely around the states.
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the BDS-spin-chain nor to the Inozemtsev spin-chain. Hence, if PWMT should be exactly

integrable in the planar sector, it would define a further long-range integrable spin-chain

system.

In summary, there are two large-N matrix theories, planar SYM and planar PWMT,

which display integrable features to relatively high perturbative order. Moreover, there

is the beautiful all-loop conjecture of BDS. But despite the tempting simplicity of their

formulas, it is strictly speaking absolutely unclear why the integrability should extend

to all orders or even exist non-perturbatively. In fact, there is a number of important

open questions: What are the essential properties a matrix theory must possess for being

integrable at large-N? What is the mechanism for the symmetry enhancement in the planar

limit? What is the simplest matrix model leading to a long-range integrable spin-chain?

In order to address these questions we study the planar integrability of an SO(6)

matrix model. We introduce this model in the next section and connect it to PWMT and

SYM. Then we investigate the model with the same tools as used in the study of those

theories. We compute the planar energy operator in the su(2) subsector up to fourth order.

Very interestingly, we find that this simple toy model indeed passes all commonly required

integrability checks (degenerate spectrum, commuting charges, factorized scattering) up

to and including third order — but not beyond. Without premonition the degeneracies

in the spectrum are lifted by the fourth order piece of the energy operator and therefore

perturbative integrability abruptly vanishes as well. These findings certainly sound a note

of caution also for PWMT and SYM. This example shows that exact integrability cannot

be taken for granted even if perturbative integrability reaches to high loop orders.

In the following we present our results in detail. We also review the essentials of the

applied methods. A full account for the technical details can be found e.g. in [20, 21].

2. The SO(6) matrix model

The degrees of freedom of the model under consideration are comprised in a time-dependent

SO(6) vector (a = 1, . . . , 6) that takes values in the adjoint representation (m = 1, . . . , N2−
1) of su(N):

Xm
a (t) . (2.1)

It is convenient to introduce the basis elements (Tm)rs of su(N) which are traceless, her-

mitian matrices carrying a fundamental index s and an anti-fundamental index r with

s, r = 1, . . . , N . They satisfy the relations

[Tm, T n] = ifmnpT p , tr TmT n = δmn and (Tm)rs(T
m)tu = δr

uδt
s −

1

N
δr
sδ

t
u .

(2.2)

We use these SU(N) generators to define the matrix model fields as

Xa = Xm
a Tm . (2.3)

Now, we wish to study the model given by the action

S =

∫

dt tr

[

1

2
DtXaDtXa −

1

2

(

M

2

)2

tr XaXa +
1

4
tr[Xa,Xb][Xa,Xb]

]

, (2.4)
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SYM VF of su(4|2, 2)

PWMT
17 of su(4|2)

5 of
su(3|2)

6 of
so(6)

2 of
su(2)

Figure 3: Embeddings. The starting point is the full SYM theory with infinitely many elementary

fields in the singleton representation VF of su(4|2, 2). Seventeen fields can be identified as the

degrees of freedom of PWMT. The largest common subsector of SYM and PWMT which is quantum

mechanically closed in both theories is spanned by five fields transforming under the fundamental

representation of su(3|2). The six fields of the SO(6) matrix model represent another common

subsector of SYM and PWMT, but one which is not closed in the quantum theories. The su(2)

subsector spanned by two complex scalar fields, however, is closed in any of the three models.

where Dt = ∂t − i[ω, ] is the covariant derivative containing the scalar gauge field ω =

ωmTm, and M is a real parameter which sets both the mass scale of the excitations and

the inverse interaction strength as we will discuss below. As a matter of fact, this model is

a consistent truncation of PWMT to its SO(6) sector [21]. By definition, this means that

the equations of motion of PWMT are satisfied by the solutions of the equations of motion

of the SO(6) model when setting all other PWMT fields therein to zero. As furthermore

the PWMT itself is a consistent truncation of SYM [19], we have that the SO(6) model is

also connected to the field theory by such a procedure.

We want to stress that the consistency of a truncation only implies the equivalence

of the dynamics of the selected fields at the classical level. At the quantum level, how-

ever, the fields which are omitted in the reduced theory will generically contribute to the

dynamics of the mother theory. Hence, the SO(6) model should not be confused with

the SO(6) subsector of neither PWMT nor SYM. Even within common subsectors, these

are really three different quantum theories, which have a connection only at the classical

level.4 The relations between the models and their degrees of freedom are depicted in

figure 3.

4It is true that, up to third perturbative order, the planar spectra of PWMT and SYM coincide in the

largest common and closed subsector, su(3|2), after appropriately identifying the coupling constants, but

this is a highly non-trivial fact, which still needs to be derived from first principles. At any rate, such an

equivalence does not exist between the SO(6) model and PWMT or SYM.
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We now fix the gauge ω = 0, change to the hamiltonian formulation, and quantize the

model canonically. The hamiltonian reads

H = H0 + V (2.5)

with

H0 =
1

2
tr PaPa +

1

2

(

M

2

)2

tr XaXa =
M

2
tr a†aaa , (2.6)

V = −1

4
tr[Xa,Xb][Xa,Xb] . (2.7)

Here we have already inserted the following mode expansion

Pa =

√

M

4

(

aa + a†a

)

, Xa =
i√
M

(

aa − a†a

)

(2.8)

into the free part of the hamiltonian H0. The modes obey the usual oscillator algebra

[am
a , a†nb ] = δabδ

mn , [am
a , an

b ] = [a†ma , a†nb ] = 0 . (2.9)

As a matter of course, the ground state
∣

∣0
〉

is defined as the unique state in the kernel of

all annihilation operators am
a . The excited states, which are SU(N) invariant and relevant

in the large-N limit, are obtained from this ground state by applying a single-trace of an

arbitrary number L of the matrix creation operators a†a = a†ma Tm:

∣

∣ψ
〉

= tr(a†a1
a†a2

. . . a†aL
)
∣

∣0
〉

. (2.10)

The number L is called the length of the state. There are no states of length one due to

the tracelessness of a†a. The free energy of (2.10) is E0 = M
2 L. The states (2.10) have a

spin-chain interpretation as explained in the introduction, cf. figure 1.

Below, we will be particularly interested in an su(2) ⊂ so(6) subsector of the model.

In this sector the elementary oscillators form the following su(2)-doublets

φ†
i =

(

φ†
1

φ†
2

)

=
1√
2

(

a†1 + ia†2

a†3 + ia†4

)

=:

(

Z†

W †

)

, φi =

(

φ1

φ2

)

=
1√
2

(

a1 − ia2

a3 − ia4

)

=:

(

Z

W

)

(2.11)

with commutation relations

[φim, φ†n
j ] = δi

jδ
mn , [φim, φjn] = [φ†m

i , φ†n
j ] = 0 . (2.12)

In the magnon picture, the upper component φ†
1 ≡ Z† represents an empty side and the

lower component φ†
2 ≡ W † represents a magnon. In the su(2) subsector there is only one

kind of magnon.
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3. Derivation of the associated spin-chain

As described in the introduction, the planar limit of a matrix theory has a natural interpre-

tation as a spin-chain system. Technically, the spin-chain hamiltonian is given in essence

by the ’t Hooft large-N limit of the so-called energy operator. In [20] the energy operator

T = U−1HU (3.1)

has been defined as an operator obtained from the hamiltonian H by a similarity transfor-

mation with the property that it does not mix states of different free energy, i.e.

[T,H0] = 0 . (3.2)

The primal significance of the energy operator concerns the computation of the quantum

mechanical corrections to the free energy spectrum. Due to (3.1) it possesses the same

eigenvalues as the full hamiltonian. However, as it has no overlap between states of differ-

ent free energy — a consequence of (3.2) — the energy operator disentangles the mixing

problem: only the mixing of states within a degenerate subspace needs to be considered,

the influence from states outside is already taken into account in (3.1).

At this point, however, we want to study the energy operator of the SO(6) model with

respect to planar integrability. We will use the methods developed for the corresponding

investigations in PWMT and SYM. The plan of action now is the following. At first we

compute the energy operator T in perturbation theory. Then we define a shifted and

rescaled energy operator

D :=
2

M

(

T −
〈

0|T |0
〉)

(3.3)

in order to have a well-behaved ’t Hooft limit. The planar part D of this operator then

defines the spin-chain hamiltonian Q2 similar to (1.1).

For the computation of the energy operator we use the formulas derived in [18, 21].

When adopted to the model (2.5), they read

T0 = H0 , T =

∞
∑

k=0

T2k (3.4)

T2 =
∑

E

ΠEV ΠE ,

T4 =
∑

E

ΠEV ∆EV ΠE ,

T6 =
∑

E

ΠE

[

V ∆EV ∆EV − V ∆2
EV ΠEV

]

ΠE ,

T8 =
∑

E

ΠE

[

V ∆EV ∆EV ∆EV − V ∆EV ∆2
EV ΠEV − V ∆2

EV ∆EV ΠEV −

− V ∆2
EV ΠEV ∆EV + V ∆3

EV ΠEV ΠEV
]

ΠE , (3.5)

where ΠE is a projector onto the subspace of states with free energy E, and ∆E is the

“propagator” defined by

∆E =
∑

F 6=E

ΠF

E − F
. (3.6)
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The sums are taken over all free energies which are realized in this model, i.e. E ∈ M
2 (N \

{1}). The piece T2k is called the k-th loop contribution. All half-loop contributions are zero

in this model, but we maintain the way of indexing the parts of T as in PWMT and SYM

for a better comparison. Note that (3.2) does not uniquely specify the energy operator.

In [18] this ambiguity was fixed by demanding to have the least number of terms. This was

an essential requirement to conduct the highly involved computations on current computers

but came at the price of the non-hermiticity of the energy operator T . However, by a further

similarity transformation on top of (3.1) we will change to a hermitian energy operator

later. The largest computational effort consists in normal ordering the expressions (3.4).

Up to one-loop the result is given by

T0 =
M

2
tr a†aaa , (3.7)

T2 =
1

M2

[

15(N3 − N) + 10N tr a†aaa +
1

2
: tr[a†a, aa][a

†
b, ab] : −

− tr[a†a, a
†
b][aa, ab] −

1

2
: tr[a†a, ab][a

†
a, ab] :

]

. (3.8)

We refrain from printing the full, non-planar higher loop contributions as they are rather

lengthy. In the su(2) subsector, however, we will give the planar part of the energy operator

up to fourth perturbative order, below.

The next step is to take the planar limit. We will briefly review how this is done at the

operatorial level and explain the necessity for the redefinition (3.3). As a basic principle,

the ’t Hooft limit [22] consists of sending the rank of the gauge group to infinity and the

coupling constant to zero with the product of these two quantities kept fixed in such a way

that physical quantities are neither divergent nor trivial.

The coupling constant of the SO(6) model is given by

G2 :=
2

M3
, (3.9)

where the factor of two has been inserted for convenience (and in analogy to PWMT).

This can easily be seen from expressing H0 and V in terms of oscillators, see (2.6)–(2.8).

It follows that

H0 ∼ M , V ∼ 1

M2
, ΠE ∼ 1 , ∆E ∼ 1

M
. (3.10)

Now, either from

V

H0
∼ 1

M3
or T2k ∼ 1

M3k−1
∼ M

2

(

1

M3

)k

(3.11)

we infer that the effective coupling is ∼ 1
M3 . This observation justifies the perturbative

treatment of the model for large M , and the ’t Hooft limit will also involve M → ∞. In

fact, we will have

N,M → ∞ with Λ := G2N =
2N

M3
= fixed . (3.12)

– 9 –
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free contractions connected vacuum bubble

for reference planar non-planar planar non-planar

1 tr a†a†a a N tr a†a : tr a†a a†a : N3 · 1 N · 1
∼ 1 ∼ N ∼ N ∼ 1

N ∼ N3 ∼ N

Table 1: One-loop effective vertices. If we want to count the powers of N corresponding to a given

operator, we insert it into the two-point function and count the additional closed su(N) loops as

compared to two-point function without operator insertion.

Note that the parameter M does not only determine the coupling constant but at the same

time also represents the energy scale as the global factor of M
2 in (3.11) shows. In order to

have a finite limit (3.12), we need to rescale the energy operator. This explains the overall

factor in (3.3). Hence, D measures the energies in units of an elementary excitation.

Beyond that, we also need to analyze the dependence on N . All factors of N originate

from closed fundamental su(N) index loops, tr1 = δr
r = N . Apart from the explicit factors

in (3.8), there will arise further powers of N when the operator is applied to a state. Hence,

for the purpose of counting its order in N , we insert the operator between two states of

sufficient length (to avoid wrapping, cf. footnote 3 on page 4) and normalize with respect to

the case where no operator is inserted. The counting is most conveniently done in double

line notation. Table 1 shows all effective one-loop vertices in the SO(6) model sandwiched

between two states. The most important thing to note is the fact that the non-planar graphs

are suppressed by factors of 1
N2 compared to the planar ones and hence can be eliminated

by taking N large. This outcome is nothing than a specific example of the general result

of ’t Hooft [22]. But one can also observe that the graphs with vacuum bubbles possess an

additional factor of N2 with respect to the connected graphs. These contributions can be

isolated by computing
〈

0|T |0
〉

, and they must be subtracted as in (3.3) in order to have a

finite limit (3.12). Physically this corresponds to measuring the energy shifts less the shift

of the ground state energy. In fact, this is a reasonable quantity to compute as one can

only measure excitations above the ground state. In PWMT, the ground state is protected

by supersymmetry and we have exactly
〈

0|T |0
〉

= 0.

Now, we can extract the planar part D of the redefined energy operator D and, still

working at one-loop, we find

D0 = tr a†aaa , D =

∞
∑

k=0

Λk
D2k (3.13)

D2 = 10 tr a†aaa +
1

N
tr a†aa

†
babaa −

2

N
tr a†aa

†
baaab +

1

N
tr a†aa

†
aabab . (3.14)
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This operator is to be applied to a single-trace state (2.10) in a planar fashion, i.e. the

two annihilation operators in the traces of length four have to act onto adjacent creation

operators of the state. This application will produce a factor of N which cancels the one

in (3.14). The planar action of D can actually be described much simpler by means of the

identity operator I, the permutation operator P and the trace operator K. They are defined

to act as

I a†aa
†
b = a†aa

†
b , P a†aa

†
b = a†ba

†
a , K a†aa

†
b = a†ca

†
cδab . (3.15)

We find

D0 =

L
∑

i=1

Ii,i+1 = L , D2 =

L
∑

i=1

[

11 Ii,i+1 − 2Pi,i+1 + Ki,i+1

]

. (3.16)

The summation runs over the length of the state where D is applied to. In indices ()i,j
mean that the corresponding operator acts onto the i-th and j-th oscillator. The position

L + 1 is identified with the first position.

In this form, the experienced reader will immediately recognize D2 as an integrable

spin-chain hamiltonian [23]. The integrability hinges on the ratio of the coefficients of P

and K. If the spins transform in the vector representation of SO(n), integrability requires

this ratio to be −(n
2 −1). For the case at hand, where n = 6, this condition is satisfied. The

integrability of this model is hence completely established in terms of an algebraic Bethe

ansatz. The details can be found e.g. in the review [7] and also in the original paper [4]

wherein integrability in SYM was discovered.

Let us now proceed to higher loop orders. Their contributions are considered as long-

range deformations of the one-loop piece. The full spin-chain hamiltonian is “preliminarily”

defined as

Qprel

2 =
1

Λ
(D − D0) . (3.17)

We have called this operator preliminary as we are going to make some minor but convenient

redefinitions.

From now on, we will concentrate on the su(2) subsector which is generated by the

fields φ†
i defined in (2.11). This entails a huge simplification, as the trace operator K

annihilates all states in this sector. That is basically because there is no invariant tensor

δij in su(2). In the evaluation of the expressions (3.4) we may now discard all terms which

contain annihilation operators outside the su(2) subsector. By virtue of being a closed

subsector, there are consequently also no terms with creation operator outside this sector.

The computation is most straightforward but very cumbersome due to the plethora of terms

generated in the process of normal ordering. We have used a Form [24] program which does

the job for us in roughly 416 hours on a ordinary 2 GHz computer. The program code is

printed in appendix A.

In order to write the result in a compact form, we adopt the frequently used notation

for multi-permutation operators

{n1, n2, . . . , nl} :=
L

∑

i=1

Pi+n1,i+n1+1Pi+n2,i+n2+1 · · ·Pi+nl,i+nl+1 , {} := L , (3.18)
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which was firstly introduced in [6]. There are some obvious relations for these operators

{. . . , n, n, . . .} = {. . . , . . .} ,

{. . . , n,m, . . .} = {. . . ,m, n, . . .} , for |n − m| ≥ 2

{n1, n2, . . .} = {n1 + m,n2 + m, . . .} , (3.19)

and another one which is a specialty of the su(2) sector

{. . . , . . .} + {. . . , n ± 1, n, . . .} + {. . . , n, n ± 1, . . .}−
−{. . . , n, . . .} − {. . . , n ± 1, . . .} − {. . . , n, n ± 1, n, . . .} = 0 . (3.20)

Now, we can write down the planar su(2) energy operator of the SO(6) model up to

fourth perturbative order as

Q2,0 = 2{} − 2{0} , Q2 =
∞

∑

k=0

ΛkQ2,2k

Q2,2 = −45{} + 49{0} − 2({0, 1} + {1, 0}) ,

Q2,4 =
6313

4
{} − 7225

4
{0} + 116({0, 1} + {1, 0}) +

+4{0, 2} − 4({0, 1, 2} + {2, 1, 0}) ,

Q2,6 = −1580065

24
{} +

233347

3
{0} − 147563

24
({0, 1} + {1, 0}) − 6089

16
{0, 2} +

+
5993

16
({0, 1, 2} + {2, 1, 0}) − 87

16
({0, 2, 1} + 220{1, 0, 2}) − 49

16
{1, 0, 2, 1} −

−4{0, 3} + 4({0, 1, 3} + {0, 3, 2}) + 4({1, 0, 3} + {0, 2, 3}) −
−10({0, 1, 2, 3} + {3, 2, 1, 0}) +

41

16
({0, 1, 3, 2} + {2, 1, 0, 3}) −

− 9

32
({0, 2, 1, 3} + {1, 0, 3, 2} + {1, 0, 2, 3} + {0, 3, 2, 1}) . (3.21)

It follows from Qprel

2 through

Q2 = W−1Qprel

2 W − QL

2 . (3.22)

The similarity transformation by means of the operator

W (Λ) = eΛA1eΛ2A2eΛ3A3 , (3.23)

where A1 = 7
8{0}, A2 = 3

8 ({0, 1} + {0, 1}), and A3 = 209
16 ({0, 1} + {0, 1}), corresponds

to a change of basis that makes the spin-chain hamiltonian hermitian. In this notation

hermiticity corresponds to the invariance under {n1, . . . , nl} 7→ {nl, . . . , n1}. Furthermore

we have subtracted a term proportional to the length operator:

QL

2 =

(

9 − 615

4
Λ +

39123

8
Λ2 − 37226069

192
Λ3

)

· {} . (3.24)

This operator is determined such that the sum of all coefficients in Q2 vanishes separately

at any order. As a consequence Q2 annihilates the states tr(Z†)L
∣

∣0
〉

. The reason for this
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subtraction is to take away the trivial contribution to the energy proportional to the spin-

chain length from the contribution that originates purely from the magnons W †. Of course,

the redefinitions (3.22) do not harm integrability; whenever Q2 is an integrable spin-chain

hamiltonian then Qprel

2 is one as well and vice versa. Hence we will concentrate on Q2 in

the following.

4. Perturbative integrability and its breakdown

In the previous section we have seen that the planar one-loop energy operator of the

SO(6) model taken by itself defines an exactly integrable spin-chain system with nearest

neighbor interactions. Higher loop integrability is, however, hard to prove because it is

not known how to generalize the monodromy matrix and perhaps also the Yang-Baxter

equation appropriately, not to mention how to show that the hamiltonian is among the

commuting charges. This is precisely the same situation as currently in PWMT and SYM.

In those cases one therefore concentrates on the symptoms of integrability. These are the

degeneracies in the spectra due to the existence of higher charges and the factorization of

the S-matrix describing the multi-magnon scattering. These properties are widely accepted

as strong evidence for higher loop integrability.

In this section we demonstrate on the one hand that the SO(6) model is perturbatively

integrable in this sense up to and including third order. On the other hand we also show

that at four-loop level the situation is completely changed. A charge that commutes per-

turbatively with the hamiltonian does not exist any more and the degeneracies are indeed

lifted. A two-magnon S-matrix does, of course, still exist but it does not reproduce the

energies of multi-magnon states by means of Bethe equations.

The computation of the spectrum of the spin-chain hamiltonian (3.21) proceed as

follows. First of all we need to find which states are realized and how they are organized in

multiplets. An su(2) multiplet can be labeled by the length L and the magnon number M

of the highest weight state. All states of one multiplet have the same length but descendent

states possess an increased number of magnons. The multiplicities m of a certain multiplet

(L,M) in the spectrum is given by the number of linearly independent M -magnon states

of length L that are highest weight states, i.e. that are annihilated by the raising operator

J+. J+ acts on states according to the Leibniz rule and then on each single oscillators as

J+W † = Z† , J+Z† = 0 . (4.1)

The multiplets can furthermore be disentangled such that their states possess definite

parity p. The parity conjugation operator P acts on the SU(N) generators as transposition

and multiplication by −1, i.e. on single-traces as

P tr Tm1 · · · TmL P−1 = (−1)L tr TmL · · ·Tm1 , (4.2)

and the vacuum has positive parity P
∣

∣0
〉

=
∣

∣0
〉

. Hence, parity conjugation essentially

reverses the oscillators in a state

P tr φ†
i1
· · ·φ†

iL

∣

∣0
〉

= (−1)L tr φ†
iL
· · ·φ†

i1

∣

∣0
〉

. (4.3)

– 13 –



J
H
E
P
1
0
(
2
0
0
5
)
0
8
3

L 4 5 6 7 8 9

M 2 2 2 3 2 3 2 3 4 2 3 4

mp 1+ 1− 2+ 1− 2− 1± 3+ 1±,1− 3+ 3− 3± 1±,2−

Table 2: States in su(2) sector. Multiplets are labeled by the length L, the magnon number M

of the highest weight states and the parity p. This table lists the multiplicities m of all irreducible

multiplets with L ≤ 9. Here m± denotes m pairs of multiplets whose partners have opposite parity.

These pairs, printed in bold face, have degenerate energies if the associated spin-chain system is

integrable.

The multiplicities of all su(2) multiplets with L ≤ 9 together with their parity are listed in

table 2. Of particular importance for integrability are the parity pairs, denoted by m± in

the table. The states of a pair,
∣

∣+
〉

and
∣

∣−
〉

, are related by a charge Q3 which is parity odd,

PQ3P
−1 = −Q3, and which commutes with the hamiltonian, [Q2, Q3] = 0. This implies

that these states have identical energy. In formulas this is

∣

∣+
〉

= Q3

∣

∣−
〉

, Q2

∣

∣±
〉

=
∣

∣±
〉

q±2 ⇒ q+
2 = q−2 . (4.4)

The systematic occurrence of these degeneracies are a strong indication of the existence

of such a commuting charge Q3 and thus also of the presence of integrability. In table 3 we

give the energies q2 for all parity pairs up to L ≤ 9. The observation is that the partners of

a pair have exactly identical energies up to third perturbative order but slightly different

ones at fourth order.

We show that this behavior is not just an effect for short lengths L by presenting a

local, parity-odd charge Q3 satisfying

[Q2, Q3] = O(Λ3) (i.e. zero up to fourth order terms) . (4.5)

It reads

Q3,0 = c3,0,1({0, 1} − {1, 0}) , Q3 =

2
∑

k=0

ΛkQ3,2k

Q3,2 = c3,2,1({0, 1} − {1, 0}) + 2c3,0,1({0, 1, 2} − {2, 1, 0}) ,

Q3,4 = c3,4,1({0, 1} − {1, 0}) + (−57c3,0,1 + 2c3,2,1 − 2c3,4,2)({0, 1, 2} − {2, 1, 0}) −
−2c3,0,1({0, 1, 3} + {0, 2, 3} − {0, 3, 2} − {1, 0, 3}) +

+c3,4,2({0, 1, 2, 3} − {3, 2, 1, 0}) + (4c3,0,1 − c3,4,2) × (4.6)

×({0, 2, 1, 3} − {1, 0, 3, 2} + {0, 1, 3, 2} − {0, 3, 2, 1} + {1, 0, 2, 3} − {2, 1, 0, 3}) .

In this notation parity conjugation acts as P{n1, . . . , nl}P−1 = {−n1, . . . ,−nl}. The

constants c are not fixed by solely demanding the commutation with Q2. And as to be

expected from the lift of the degeneracies, there is no parity-odd operator Q3,6 of (maximal)

range six which satisfies

[Q3,6, Q2,0] + [Q3,4, Q2,2] + [Q3,2, Q2,4] + [Q3,0, Q2,6] = 0 . (4.7)
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L M Spin-chain energy Bethe momenta

7 2 q2 = 4 − 80Λ + 2595Λ2 − 1231451

12
Λ3 (−) = Bethe

p1 = π
3

p2 = −p1

q2 = 12 − 264Λ + 9111Λ2 − 1502247

4
Λ3 (−) = Bethe

p1 = 2π
3

p2 = −p1

7 3 q2 = 10 − 215Λ + 29325

4
Λ2 +

{

− 7205509

24
Λ3 (+)

− 7205365

24
Λ3 (−) = Bethe

p1 = ±1.16± 0.93i

p2 = ±1.16∓ 0.93i

p3 = −p1 − p2

8 3 q2 = 8 − 168Λ + 5633Λ2 +

{

− 1367125

6
Λ3 (+) = Bethe

− 1367116

6
Λ3 (−)

p1 = ±0.96± 0.59i

p2 = ±0.96∓ 0.59i

p3 = −p1 − p2

9 3 q2 ≈ 6.45322− 132.568Λ + 4378.58Λ2 +

{

−175265.3Λ3 (+)

−175267.0Λ3 (−) = Bethe

p1 = ∓0.83∓ 0.43i

p2 = ∓0.83± 0.43i

p3 = −p1 − p2

q2 ≈ 11.0399− 237.742Λ + 8122.41Λ2 +

{

−333240.5Λ3 (+)

−333230.2Λ3 (−) = Bethe

p1 = ∓1.28∓ 1.26i

p2 = ∓1.28± 1.26i

p3 = −p1 − p2

q2 ≈ 16.5068− 360.690Λ + 12421.3Λ2 +

{

−511941.8Λ3 (+)

−511944.4Λ3 (−) = Bethe

p1 = ±2.98

p2 = ±1.15

p3 = −p1 − p2

9 4 q2 = 10 − 215Λ + 29405

4
Λ2 +















− 79730123

264
Λ3 (+)

− 79732139

264
Λ3 (−)

− 79734083

264
Λ3 Bethe

p1 = ±2.63

p2 = ∓0.53± 0.88i

p3 = ∓1.77

p4 = −p1 − p2 − p3

Table 3: Selected states of su(2) spectrum. We list the eigenvalues as computed by direct appli-

cation of the hamiltonian to states and explicit diagonalization. “(+/–)” refers to the parity of the

states. We observe the degeneracy of the parity pairs up to three-loop and the lift of the degeneracy

at four-loop order. We also calculate the eigenvalues by means of the Bethe ansatz. (The values pi

give the Λ0-th order of the quasi-momenta.) The result coincides with the elementary calculation

only up to three loops.

Finally, we consider the perturbative asymptotic Bethe ansatz [10] for this model. We

deduce the two-magnon S-matrix from the spin-chain hamiltonian Q2 and compute from

it the energies of all states in table 3 by means of Bethe equations. This will show the

factorization of the S-matrix up to three-loop level, but it will not reveal any suspicious

behavior of the system that might help to anticipate the breakdown of integrability at

fourth order.

We derive the S-matrix according to the method explicitly explained in [20, 21]. One

considers all spin-chain fragments (i.e. no su(N) trace) of length L with 2 magnons at

positions l1 and l2

∣

∣Ol1,l2

〉

:= (Z†)l1−1W †(Z†)l2−l1−1W †(Z†)L−l2
∣

∣0
〉

for 1 ≤ l1 < l2 ≤ L − 1 . (4.8)

These fragments are superposed to energy eigenstates of the hamiltonian

Q2

∣

∣p1, p2

〉

=
∣

∣p1, p2

〉

q2(p1, p2) (4.9)
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according to the perturbative asymptotic Bethe ansatz as

∣

∣p1, p2

〉

:=
L

∑

l1,l2=1

l1<l2

a(l1, l2, p1, p2)
∣

∣Ol1,l2

〉

(4.10)

with

a(l1, l2, p1, p2) = ei(p1l1+p2l2)f(l2 − l1, p1, p2) +

+ei(p1l2+p2l1)f(L − l2 + l1, p1, p2)S(p2, p1) . (4.11)

The exponentials describe the free propagation of the magnons along the spin-chain with

quasi-momenta p1 and p2. The functions

f(l, p1, p2) = 1 + Λlf0(l, p1, p2) + Λl+1f1(l, p1, p2) + Λl+2f2(l, p1, p2) + · · · (4.12)

and

S(p1, p2) = S0(p1, p2) + ΛS1(p1, p2) + Λ2S2(p1, p2) + Λ3S3(p1, p2) + · · · . (4.13)

describe the magnon scattering due to the long-range (f) and the nearest neighbor inter-

actions (S), respectively. Joining the end of the fragments by taking the trace in order to

obtain cyclic spin-chains leads to the two-magnon Bethe equations

exp(iLp1) = S(p1, p2) , exp(iLp2) = S(p2, p1) (4.14)

and the total momentum condition

p1 + p2 = 2πZ . (4.15)

In an integrable system where the multi-magnon S-matrix is factorized into products of

the two-magnon S-matrix, these equations have straightforward generalizations to the M -

magnon case

exp(iLpk) =
M
∏

j=1

j 6=k

S(pk, pj) for k = 1, . . . ,M ,
M
∑

i=1

pi = 2πZ . (4.16)

Specializing to the SO(6) model, we act with the spin-chain hamiltonian (3.21) onto

(4.10) and demanding (4.9) fixes all functions q2(p1, p2), f(l, p1, p2), and S(p1, p2) up to

O(Λ3) (fourth perturbative order). The energy is given by the sum q2(p1, p2) = q2(p1) +

q2(p2) of a one-magnon energy

q2(p) = 8 sin2

(

p

2

)

− Λ

[

148 sin2

(

p

2

)

+ 32 sin4

(

p

2

)]

+

+Λ2

[

4601 sin2

(

p

2

)

+ 1472 sin4

(

p

2

)

+ 256 sin6

(

p

2

)]

− (4.17)

−Λ3

[

1066301

6
sin2

(

p

2

)

+
197109

3
sin4

(

p

2

)

+ 18816 sin6

(

p

2

)

+ 2560 sin8

(

p

2

)]

.
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In the generalization to M magnons, every magnon contributes a corresponding portion to

the total energy

q2 =
M
∑

i=1

q2(pi) . (4.18)

The first three orders of the S-matrix can be brought into the usual form

S(p1, p2) =
ϕ(p1) − ϕ(p2) + i

ϕ(p1) − ϕ(p2) − i
+ O(Λ3) (4.19)

where here the phase function reads

ϕ(p) =
1

2
cot

(

p

2

)[

1 + 8Λ sin2

(

p

2

)

− 220Λ2 sin2

(

p

2

)

− 32Λ2 sin4

(

p

2

)]

. (4.20)

We refrain from printing the fourth order piece as it is not of this or any other obvious

compact form. Also the introduction of an exponential factor into (4.19) (as in PWMT [20]

or on the string theory side [25]) did not lead to a meaningful expression. Moreover, we do

not print the function f(l, p1, p2) as it is not relevant for the computation of the eigenvalues.

Now, we solve the general Bethe equations (4.16) with (4.19) for the cases of table 3.

The lowest order quasi-momenta are given in the table. Then we compute the energy

eigenvalues using (4.18) and compare them with the results from the direct diagonalization

of the hamiltonian. Up to third order we find exact agreement. At fourth order the Bethe

ansatz approach must fail as, on the one hand, the degeneracies between parity pairs are

lifted but, on the other hand, the Bethe ansatz cannot distinguish between the two partners

of a parity pair — essentially because q2(p) = q2(−p). However, we observe that in the

considered three-magnon cases, the Bethe solutions coincides with one state of a pair. This

is no longer the case for the four-magnon pair where the Bethe solution differs slightly from

the true energies of both states. For the two-magnon states, on the other side, the Bethe

ansatz still works at fourth order. This in not surprising as the Bethe equations (4.14) in

this sector follow from a rigorous derivation; no factorization had to be assumed.

5. Conclusions

At the moment the approved data concerning integrability in SYM reach up to third [12]

and in PWMT up to fourth perturbative order [20]. In this article we have posed the

question whether these data are sufficient to justify the belief in all-loop integrability. In

fact, we have presented a toy model where the answer is negative. The model under

consideration is the SO(6) matrix model, which is related to both PWMT and SYM by a

consistent truncation. This model displays the same integrability properties as its mother

theories: exact integrability at one-loop order, and degeneracies in the spectrum, existence

of conserved charges as well as factorized scattering up to three-loop order. But for all that,

as one proceeds to the next order, all of these properties and thus integrability abruptly

cease to exist.

The moral of this article is the simple warning, that despite the presence of perturbative

integrability at low orders, one cannot take higher or all-loop integrability for granted.
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Clearly, also before this example it was evident that integrability may break down at any

arbitrary order; just take any long-range integrable spin-chain, e.g. the Inozemtsev spin-

chain, and add a deformation that breaks integrability at some order. The point here is

that we did not use an artificially constructed spin-chain but started from a decent looking

matrix theory which pretended to be integrable.

Admittedly, the SO(6) matrix model has very much less structure than SYM and also

PWMT. On the one hand, the additional symmetries of the latter theories might be just

what is needed for exact integrability. From the three-loop investigations concerning the

su(3|2) sector of SYM [12], we know that the symmetry (together with BMN scaling) fixes

the dilatation operator strongly enough to imply planar integrability. However, the higher

the perturbative order the weaker are the restrictions from symmetry. So, on the other

hand, the additional symmetries may just shift the breakdown of integrability to a higher

level. Therefore it is essential to know how much freedom the symmetries ultimately leave

and what the basic cause for integrability really is.

It does not lead to any principle improvement if we could push the perturbative results

by one or two orders (unless we find the breakdown of integrability) and we eventually need

to verify the planar integrability non-perturbatively. In the field theory, however, this is

a rather formidable aim since the dilatation operator is not known exactly. Therefore we

propose to intensify the study of quantum mechanical matrix theories where the full hamil-

tonian is given. A particularly interesting theory would be PWMT but other appropriate

toy models can be constructed as well. In possession of the full hamiltonian, one might

be able to go without invoking perturbation theory and one can try to determine charges

that commute exactly. An important prerequisite for such a program, however, would be

to implement the planar limit at the level of the hamiltonian. This is a highly non-trivial

task but it is of central and essential significance for proving integrability in large-N matrix

theories.

Acknowledgments

It is my pleasure to thank Abishek Agarwal, Niklas Beisert, Jan Plefka, and Matthias

Staudacher for interesting and stimulating discussions, and for their valuable comments on

the manuscript.

A. Program code

We print the computer program which was used to normal order the energy operator T as

defined in (3.4). It is written in Form [24] and the required interpreter can be downloaded

from http://www.nikhef.nl/∼form/.
Starting point is the definition of the energy operator in lines 9–17. Here, In marks the

place where the initial state with free energy E0 will be attached, and D(p,e) stands for the

p-th power of the propagator ∆E0+e (3.6) if p ≥ 1 and for the projector ΠE0+e if p = −1.

The vertex V is expressed in terms of the matrix model field X(a,m) ↔ Xm
a in lines 19–

24 and subsequently in terms of modes A(a,m,+1) ↔ a†ma , A(a,m,-1) ↔ am
a . The mass
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parameter M is set to unit during this computation. Now, we can evaluate the propagators

and projectors (lines 30–43) and perform the normal ordering of the expression (lines 45–

51). In line 50 we turn the oscillators into commuting functions A 7→ Ac thereby giving

up the ordering. From now on, all expressions are understood to be in normal ordered

form. It remains to perform the gauge group algebra, cf. lines 53–60. Since we are only

interested in the large-N limit and since the potential V would not imply any interactions

between u(1) fields, we may as well work with the gauge group U(N) instead of SU(N).

This reduces the computation time enormously. After all contractions are carried out, we

discard the U(1)-part again in line 60. Eventually we truncate to the su(2) subsector, i.e.

keep only the oscillators Z†, Z,W †,W .

The output of the program is the planar energy operator in the su(2) subsector spoiled

by terms that are sub-leading in 1
N and a dominant vacuum contribution. The vacuum

bubbles can be identified easily as they do not carry any oscillators, and we erase them by

hand. The sub-leading terms are eliminated when we change to the language of permutation

operators (3.18) as follows. We apply the computed energy operator (without vacuum

contribution) to some long sample states and keep only the leading order in N . Then we

apply an ansatz for the planar energy operator in terms of permutation operators to the

same sample states and fit the coefficients of the ansatz such that the out-states for both

applications match.

Due to a limited hard disk capacity (Form writes large intermediate results to disk)

the actual computation was performed in several parts, i.e. the program was run various

times — each time for a different parts of the input lines 9–17.

1 symbol N,e,u,power ,I;

2 autodeclare index m,n;

3 autodeclare index a=6,b=6;

4 function V,X,A,D,In;

5 cfunction Tr ,Ac;

6 vector Zd ,Z,Wd ,W;

7 dimension N;

8

9 L [T2] = + D(-1,0) *V*In;

10 L [T4] = + D(-1,0) *V*D(+1 ,0)*V*In;

11 L [T6] = + D(-1,0) *V*D(+1 ,0)*V*D(+1 ,0)*V*In

12 - D(-1,0) *V*D(+2 ,0)*V*D(-1,0) *V*In;

13 L [T8] = + D(-1,0) *V*D(+1 ,0)*V*D(+1 ,0)*V*D(+1 ,0)*V*In

14 - D(-1,0) *V*D(+1 ,0)*V*D(+2 ,0)*V*D(-1,0) *V*In

15 - D(-1,0) *V*D(+2 ,0)*V*D(+1 ,0)*V*D(-1,0) *V*In

16 - D(-1,0) *V*D(+2 ,0)*V*D(-1,0) *V*D(+1 ,0)*V*In

17 + D(-1,0) *V*D(+3 ,0)*V*D(-1,0) *V*D(-1,0) *V*In;

18

19 #message Substitute vertex

20 #do x=1,4

21 id ,once V=1/2*(+X(a‘x’,m1 ‘x’)*X(a‘x’,m2 ‘x’)*X(b‘x’,m3 ‘x’)*X(b‘x’,m4 ‘x’)

22 -X(a‘x’,m1 ‘x’)*X(b‘x’,m2 ‘x’)*X(a‘x’,m3 ‘x’)*X(b‘x’,m4 ‘x’)

23 )*Tr(m1 ‘x’,m2 ‘x’,m3 ‘x’,m4 ‘x’);

24 #enddo

25

26 #message Replace fields X by oscillators A

27 id X(a?,m?) = I*A(a,m,-1) -I*A(a,m ,+1) ;

28 Id I^2 = -1;
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29

30 #message Remove propagators and projectors

31 repeat;

32 * Commute propagators and projectors to the right

33 id D(power?,e?)*A(a?,m?,u?) = A(a,m,u)*D(power ,e-u/2);

34 * Evaluate propagators

35 id D(1,0)*In = 0;

36 id D(2,0)*In = 0;

37 id D(3,0)*In = 0;

38 id D(4,0)*In = 0;

39 id D(power ?{>=0}, e?!{ >=0 , <=0})*In = In *(1/ e)^power;

40 * Evaluate projectors

41 id D(-1,0) *In = In;

42 id D(-1,e?!{ >=0 , <=0})*In = 0;

43 endrepeat ;

44

45 #message Normal ordering

46 repeat;

47 id A(a?,m?,-1)*A(b?,n?,1) = A(b,n ,1)*A(a,m,-1) + d_(a,b)*d_(m,n);

48 endrepeat ;

49 * give up the ordering , normal ordering implied

50 id A(?m) = Ac (?m);

51 id In = 1;

52

53 #message U(N) Group algebra

54 repeat;

55 id Tr(?i,m?,?j)*Tr(?k,m?,?l) = Tr(?i,?l,?k,?j);

56 id Tr(?i,m?,?j,m?,?k) = Tr(?j)*Tr(?k,?i);

57 id Tr() = N;

58 endrepeat ;

59 * Discard U(1) part now

60 id Tr(m?) = 0;

61

62 #message Truncate to su (2)

63 id Ac(a?,m?,+1)*Ac(a?,n?,+1) = 0;

64 id Ac(a?,m?,-1)*Ac(a?,n?,-1) = 0;

65 id Ac(a?,m?,+1)*Ac(a?,n?,-1) = Zd(m)*Z(n) + Wd(m)*W(n);

66

67 cycl Tr;

68

69 print +s +f;

70

71 .end
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