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The AdS/CFT correspondence [1 – 3] provides a prescription to compute vacuum ex-

pectation values of CFT operators in terms of dual classical fields on AdS. This prescription

has been checked successfully in many examples. In particular, the CFT energy momentum

tensor T ij is dual to the spacetime metric governed by Einstein’s equations with a neg-

ative cosmological constant. One can use the correspondence to compute the CFT Weyl

anomaly. This calculation was indicated in [3], and carried on in detail in [4] with the

expected result

〈T µ
µ 〉 = A =

N2

32π2

(

RijRij −
1

3
R2

)

, (1)

for N = 4 SU(N) SYM theory in four dimensions which is dual to type-IIB string theory

on AdS5 × S5.

For a CFT (in d = 4) with ns real scalars, nf Dirac spinors and nv vectors the anomaly

is [5]

A = cC2 − aE4 (2)

with

a =
1

360(4π)2
(ns + 11nf + 62nv) (3)

c =
1

120(4π)2
(ns + 6nf + 12nv) , (4)

and the curvature invariants E4 and C2 are

E4 = RijklRijkl − 4RijRij + R2 , C2 = CijklCijkl . (5)

Of course, (2) reduces to (1) for the N = 4 multiplet with ns = 6, nf = 2 and nv = 1 [4].

In higher (even) dimensions, the anomaly is always characterized by the coefficient

multiplying the Euler density and an increasing number of coefficients ci
1 multiplying

curvature invariants which transform homogeneously under Weyl rescaling of the metric.

This classification of anomalies has been identified in [8] where they were called type A

and type B.

One general feature of any four-dimensional CFT whose dual gravity theory is the

Einstein-Hilbert action with cosmological constant is that the two anomaly coefficients a

and c are equal [4]. For a generic CFT this is, however, not the case. Specific examples are

the theories constructed in [9]. This is reflected in the dual gravity theory by the presence

of higher derivative terms. For the theories of [9] they arise from similar terms on the

world-volume of D7 branes which are needed for their construction.

Consider, for example, the following action in five dimensions

I =
1

2κ2
5

∫

d5x
√
−G

(

R̂ − 2Λ + αR̂2 + βR̂µνR̂µν + γRµνλρRµνλρ

)

. (6)

1i = 1 for d = 4, i = 1, 2, 3 for d = 6 [6], i = 1, . . . , 12 for d = 8 [7], while the number of Weyl-invariants

in general dimension is still unknown.
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Hatted objects refer to spacetime tensors. The Weyl anomaly, associated to the CFT dual

to (6) was calculated in [10 – 12] with the result,

A =
R2

AdS5

16κ2
5

{

(1 − 40α − 8β + 4γ)C2 − (1 − 40α − 8β − 4γ)E4

}

. (7)

Using the AdS/CFT relations between the string theory and the gauge theory parameters

one finds for the theories constructed in [9] that the coefficients in front of the higher

derivative terms are O(1/N) and consequently a − c ∼ N (with a, c ∼ N2). However, for

realistic CFT’s such as (S)QCD inside its conformal window one has a − c ∼ N2. So far

no critical string theory dual for such theories has been found (for attempts within the

context of non-critical strings, see [13, 14]).

We consider in this note a particular case of the action (6) in which the coefficients

take the values2

Λ = −3, β = −4α = −4γ = −1 . (8)

For this choice, the gauge symmetries of the action are enhanced and I reduces to the five

dimensional Chern-Simons form [15]

I =

∫

Tr

(

AdAdA +
3

2
dAA3 +

3

5
A5

)

(9)

for the group SO(4, 2). Arbitrary odd dimensions will be considered below.

Note that the action (9) can be written as polynomial in the curvatures, and is invariant

under diffeomorphisms. This action, for the group SO(4, 2), should not be confused with

the gravitational Chern-Simons term associated to the Lorentz group which cannot be

written as a polynomial in the curvatures. Lorentz Chern-Simons terms contribute to

holographic gravitational anomalies, as recently pointed out in [19, 20].

The gravitational theories (9) cannot be considered as duals to realistic conformal

field theories as they are necessarily non-unitary [16]. But they exhibit peculiar features as

far as the anomalies are concerned [16]. In fact, the coefficient c of the anomaly vanishes

identically, as it can be readily checked by inserting (8) in (7). The anomaly is then given by

the the Euler term alone. In that spirit, one may wonder whether the anomaly associated

to Chern-Simons gravity in 2n+1 dimensions is the pure Euler term in 2n dimension. This

turns out to be true, as indicated in [16] by an argument based on the equations of motion.

The goal of this note is to prove this statement by computing, directly from the ac-

tion, the Chern-Simons-AdS holographic energy momentum tensor and its corresponding

anomaly in any odd dimension 2n + 1.

We start by explaining the hamiltonian method to compute the holographic energy mo-

mentum tensor (see [21 – 23] for other hamiltonian approaches). In the ADM parametriza-

tion using r as “time” in D = d + 1 dimensions,

ds2 = N2 dr2 + hij(r, x)(dxi + N idr)(dxj + N jdr) . (10)

2The AdS radius l has been set to unity.
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the gravitational action can be cast in the hamiltonian form,3

I0 =

∫

dr

∫

ddx
(

πijh′
ij + NH + N iHi

)

. (11)

This form of the action is universal and follows by geometrical considerations. The explicit

formulae for the constraints vary depending on the particular theory. But for any invariant

theory of gravity, the action can always be cast into the form (11). The action I0 needs

boundary terms and counterterms to be well defined. For the problem at hand, these can

be computed as follows.

The on-shell variation of I0 (assuming that the bulk fields satisfy the equations of

motion) is

δI0 =

∫

r=ε

ddxπijδhij . (12)

Now, we make a definite choice for the lapse N and shift N i functions at infinity, and

assume the FG form for the asymptotic metric

ds2 =
dr2

4r2
+

1

r
gij(x

i, r)dxidxj (13)

which corresponds to N = 1
2r

, N i = 0 and hij = 1
r
gij . We shall not need to solve the

asymptotic equations, nor assume a particular expansion4 for gij(r, x
i). We only assume

that the limit r → 0,

gij(x
i, r) −→ g(0)ij(x

i) (14)

exists. Under these conditions we will show that the variation (12) can be rewritten in the

form,

δI0 =

∫

r=ε

ddx

(

1

2

√

g(0) T ij δg(0)ij + δB

)

(15)

where T ij is finite, and B is a (divergent) local functional of gij .

From (15) we conclude that the correct gravitational action is obtained by passing the

term B to the left hand side. We define the renormalized action

I ≡ I0 −
∫

ddx B . (16)

From (15) we see that its variation with respect to g(0)ij is well defined and finite. Our

goal is now to compute the counterterm B, and the coefficient T ij which becomes the

holographic energy momentum tensor.

3We choose to start with the hamiltonian action for convenience, but one may well start with the

lagrangian action. In this context, it would be interesting to explore how the conformal anomaly appears

in the regularization scheme for CS-AdS gravity action proposed in [24].
4For standard gravity [25], gij ' g(0)ij +r g(1)ij +r2 g(2)ij · · · . The coefficient g(1) is universal and locally

related to g(0). The energy momentum tensor depends [26, 27] on g(n) which is non-locally related to g(0).

– 3 –
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This procedure was carried out in [16] for Einstein gravity, and five-dimensional Chern-

Simons gravity. We shall now extend these results for Chern-Simons gravity in any odd

dimension D = 2n + 1. In particular, we shall compute the explicit formula for B, which

turns out to be a Lovelock action in 2n dimensions.5

It is worth mentioning here that the standard procedure to find the 1-point function

(see [29] for a review), by solving the asymptotic equations, inverting the series, and varying

with respect to the regularized metric becomes unfeasible in Chern-Simons gravity due

to the higher powers in the curvature tensor and the resulting complicated equations of

motion. The method, described above, for finding the variation of the action becomes

extremely powerful if one deals with complicated actions of gravity.

Let us apply this procedure to Chern-Simons gravity in arbitrary dimensions. Chern-

Simons gravities are particular cases of Lovelock gravities. The Lovelock action is [30],

I =
∑

2p<D

αpI(p) (17)

where the terms I(p)

I(p) =
1

2p!

∫

dr ddx
√
−Gδ

[µ1...µ2p]
[µ1...µ2p]R̂

µ1µ2
µ1µ2

. . . R̂
µ2p−1µ2p
µ2p−1µ2p (18)

represent the dimensional continuation of the Euler densities of the lower dimensions.

The hamiltonian structure of this action was studied in [31]. For this theory, the

“velocities” h′
ij cannot be inverted as functions of the momenta. But the relation πij(h′

kl)

does exists [31],

πi
j =

1

4

∑

p≥0

αp

p−1
∑

s=0

Cs(p)

(

πs(p)

)i

j
(19)

where
(

πs(p)

)i

j
=

√
−hδ

[ii1...i2s...i2p−1]
[jj1...j2s...j2p−1]

R̂j1j2
i1i2

. . . R̂
j2s−1j2s

i2s−1i2s
K

j2s+1

i2s+1
. . . K

j2p−1

i2p−1
, (20)

and Kij is the extrinsic curvature of the r = const. submanifolds. The coefficients Cs(p)

are

Cs(p) =
4p−s

s! [2(p − s) − 1]!!
. (21)

For the particular case of Chern-Simons gravity, the coefficients αp entering in (17) are

fixed to

αp =
n! [2(n − p)]!

2p−1(n − p)!
. (22)

For this choice, the lagrangian in (17) becomes a Chern-Simons form satisfying dL = Fn+1,

with F ∈ SO(2n, 2). We shall not, however, make use of the “gauge theory” formulation.

5A note of caution is in order here. As shown in [27, 28], when matter fields are present, the counterterm

action contributes to the finite piece in a non-trivial way. Here, we restrict the discussion to the matter

free action, and leave for the future a more general analysis.
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For the choice (22), the momenta can be rewritten in a more compact form, written

in terms of a continuous parameter t ∈ [0, 1],

πi
j = n

√
−h

∫ 1

0
dtδ

[ii1...i2n−1]
[jj1...j2n−1]K

j1
i1

(

1

2
Rj2j3

i2i3
(h) − t2Kj2

i2
Kj3

i3
+ δj2

i2
δj3
i3

)

× · · ·

×
(

1

2
R

j2n−2j2n−1

i2n−2i2n−1
(h) − t2K

j2n−2

i2n−2
K

j2n−1

i2n−1
+ δ

j2n−2

i2n−2
δ
j2n−1

i2n−1

)

. (23)

where we have used the Gauss-Codazzi relation in the radial foliation

R̂ij
kl = Rij

kl(h) − Ki
kK

j
l + Ki

l K
j
k . (24)

For notational simplicity in what follows we shall omit all indices. For example, the

expression (23) for πi
j will be written simply as,

π = n
√
−h

∫ 1

0
dt K

(

1

2
R(h) − t2KK + 1

)n−1

. (25)

It is straightforward to reinsert the indices. Note also that since all tensors have the same

number of covariant and contravariant indices, no signs will be lost when manipulating

expressions as (25).

We are now ready to compute the on-shell variation appearing in (12), δI0 =
∫

πi
jh

jkδhki

=
∫

πi
j gjkδgki, for Chern-Simons gravity. Note that the extrinsic curvature Ki

j in the

adapted frame (13) takes the simple form

Kj
i = δj

i − rkj
i , with kj

i = gjlg′li (26)

and the Riemann tensor

Rij
kl(h) = r Rij

kl(g) . (27)

Inserting this form for K and R(h) into (12), and using (25), we obtain

δI
(n)
0 =

∫

r=ε

d2nx
n

rn

∫ 1

0
dt

√−g(1 − rk)
(r

2
R(g) − t2(1 − rk)2 + 1

)n−1
g−1δg , (28)

This formula has a remarkable structure. As an example we display here the first few

values of n = 2, 3, 4 corresponding to dimensions D = 5, 7, 9 (keeping only the finite and

divergent terms in the limit ε → 0),

δI
(2)
0 =

∫

r=ε

d4x
√−g

(

k2 +
1

2
Rk − 1

2r
R − 2

3r2

)

g−1δg

δI
(3)
0 =

∫

r=ε

d6x
√−g

(

1

4
kR2 + k2R +

4

3
k3 − 1

4r
R2 − 2

3r2
R − 8

15r3

)

g−1δg

δI
(4)
0 =

∫

r=ε

d8x
√−g

(

3

4
k2R2 +

1

8
kR3 + 2k3R + 2k4 − 1

8r
R3 −

− 1

2r2
R2 − 4

5r3
R − 16

35r4

)

g−1δg

δI
(5)
0 = . . . (29)

– 5 –
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We note that the divergent terms (as ε → 0) only depend on gij and its associated curvature

R(g), but not on k. This means that these terms can be written as total variations. In

fact, reinserting the indices, these terms contain the product of p curvatures which can

easily be written as a total variation,

√−gRp g−1δg =
√−gδ

[ii1...i2p−1]
[jj1...j2p−1]

Rj1j2
i1i2

. . . R
j2p−2j2p−1

i2p−2i2p−1
gjlδgli

= 2δ
(√−gδ

[i1...i2p]
[j1...j2p]R

j1j2
i1i2

. . . R
j2p−1j2p

i2p−1i2p

)

(30)

with p = 0 . . . n − 1. Note that the second line is valid up to a boundary term. The

counterterm B is thus a local functional of gij of the Lovelock type in 2n dimensions. We

give the explicit form below.

Let us now prove that the structure displayed in (29) is a general property of Chern-

Simons gravities present for all dimensions. We go back to eq. (28). Our aim is to prove

that the divergent terms in this expression do not contain k. To this end, we shall take the

derivative of (28) with respect to k, and prove that it gives a finite quantity. We compute,

∂(δI0)

∂k
= −n

∫

r=ε

d2nx

√−g

rn−1

∫ 1

0
dt

[

(r

2
R − t2(1 − rk)2 + 1

)n−1
− (31)

− 2t2(1 − rk)2
(r

2
R − t2(1 − rk)2 + 1

)n−2
]

g−1dg .

We see that the integrand is a total derivative respect to t

d

dt

[

t
(r

2
R − t2(1 − rk)2 + 1

)n−1
]

. (32)

This means that the integral over t can be perform explicitly and we get

∂(δI0)

∂k
= −n

∫

r=ε

d2nx
√−g

(

1

2
R + 2k + rk2

)n−1

g−1dg (33)

which is explicitly finite in the limit ε → 0.

The piece in δI0 that depends on k is thus finite, and can be evaluated at ε = 0 directly.

Integrating (33) we find a simple formula for the finite piece

δIfin = −n

∫

d2nx
√−g(0)

∫ 1

0
dt k

(

1

2
R(0) + 2tk

)n−1

g−1
(0)δg(0) (34)

where g(0)ij = gij evaluated at r = 0. Putting back all indices and varying with respect to

g(0)ij , we finally reach at the general formula for the holographic energy momentum tensor,

T i
j =

g(0)jl

2
√−g(0)

δIfin

δg(0)li
= n

∫ 1

0
dtδ

[ii1...i2n−1]
[jj1...j2n−1]k

j1
i1

(

1

2
Rj2j3

i2i3
(g) + 2tkj2

i2
δj3
i3

)

× · · ·

×
(

1

2
R

j2n−2j2n−1

i2n−2i2n−1
(g) + 2tk

j2n−2

i2n−2
δ
j2n−1

i2n−1

)

. (35)

It is direct to see that this formula reproduces the finite pieces in the above variations.

This formula is in full agreement with the result of [16]. As shown in that reference, using

– 6 –
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the equations of motion, the trace of T ij can be written purely in terms of g(0)ij , and it is

equal to the 2n-dimensional Euler density

T i
i =

1

2n
δ
[i1...i2n]
[j1...j2n]R

j1j2
i1i2

(g(0)) . . . R
j2n−1j2n

i2n−1i2n
(g(0)) . (36)

We end by displaying the explicit formula for B. Reinserting all indices the formula

reproducing the divergent pieces in δI0 is,

δB =
n

2n−1

√−g

εn

∫ 1

0
dtδ

[ii1...i2n−1]
[jj1...j2n−1]

δj1
i1

(

εRj2j3
i2i3

+ 2
(

1 − t2
)

δj2
i2

δj3
i3

)

× · · ·

×
(

εR
j2n−2j2n−1

i2n−2i2n−1
+ 2

(

1 − t2
)

δ
j2n−2

i2n−2
δ
j2n−1

i2n−1

)

gjlδgli . (37)

Now, (37) is exactly the variation of an action of the Lovelock type. In fact, this can be

integrated to yield,

B = 2n(n − 1)!
√−g

n−1
∑

p=0

2n−2p−1(2(n − p) − 1)!!

εn−p
δ
[i1...i2p]

[j1...j2p]R
j1j2
i1i2

. . . R
j2p−1j2p

i2p−1i2p
(38)

which has exactly the form (17). We finally note that this counterterm action can be

expressed in terms of the metric hij = gij/ε, and all dependence on the cutoff parameter

ε disappears. This is presumably related to the character of the anomaly which is of type

A, with no contributions from the Weyl tensor.

To summarize, we have shown that Chern-Simons gravity in D = 2n + 1-dimensional

spacetimes has special features which allow the computation of the holographic energy

momentum tensor explicitly for all n. We have also isolated the general form of the coun-

terterm that renders the action finite, and show that it has the form of a Lovelock action

in 2n dimensions.
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