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FINDCHIRP: an algorithm for detection of gravitational waves from inspiraling compact binaries.
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Searches for gravitational waves from binary neutron stassib-solar mass black holes by the LIGO Scien-
tific Collaboration use theiINDCHIRP algorithm: an implementation of standard matched filtehtégues with
innovations to improve performance on detector data thatroa-stationary and non-Gaussian artifacts. We
provide details on the methods used in H)eDCHIRP algorithm and describe some future improvements.

PACS numbers: 06.20.Dk, 04.80.Nn

I. INTRODUCTION didate events by vetoes based on auxiliary instrumentai-cha
nels, and multidetector coincidence and coherent follgvafu

. . . . triggers. The entire seargipeling which is a transformation
For the detection of a known modulated sinusoidal S'gna't)f raw interferometer data into candidate events, contalins

such as the anticipated gravitational waveform from binarythese aspects. A description of the pipeline used in thelsear

inspiral, in the presence of stationary and Gaussian niise, for binary neutron stars in the first LIGO science run (S1) is

is well knqwn that the use of match_ed filteris _the_opti- described inl[6] and the pipeline used in the second LIGO sci-
mal detection strategyl[1]. Some practical complicatiamsea ence run (S2) is described I [7, 9]

for the gravitational wave detection problem because:hg) t This paper is not intended to provide documentation for our
signal is notpreciselyknown—it is parameterized by the bi- implementation of thesINDCHIRP algorithm. (This can be

nary companion’s masses, an initial phase, the time ofadrriv found in Refs.[[10[ 11].) Indeed, some of' the notation pre-
and various parameters describing the distance and 0Jrient§1ented in this' |5ap'er di.ﬁers from, the implementation in the

tion of the system relative to the detector that can be coM[ 1co Algorithm Library. Rather, this paper is intended to
bined into a single parameter we call the “effective diseghc describe thalgorithmitself '

and (ii) the detector noise is not perfectly described asa st
tionary Gaussian process. Standard techniques for exigndi
the simple matched-filter to search over the unknown param- Il. NOTATION
eters involve using a quadrature sum of matched filter ostput
for orthogonal-phase waveforms (thereby eliminating the u

known phase), use of Fourier transform to efficiently apply
the matched filters for different times of arrival, and use of
bank of templates to cover the parameter space of binary co

Our conventions for the Fourier transform are as follows.
For continuous quantities, the forward and inverse Fourier
rrgr_ansforms are given by

panion massesl[2, 3]. Methods for making the matched filter R oo omift

more robust against non-Gaussian noise artifacts, e.@xby Z(f) = / z(t)e di (2.1a)
amining the relative contributions of frequency-bandied >

matched-filter outputs (vetoing those transients thatyeced and

large matched filter outputs but have a time-frequency de- oo

composition that is inconsistent with the expected wavajor x(t) = / E(f)e* I tar (2.1b)
have also been explored [4]. TheNDCHIRP algorithm is —0o0

an implementatiorj of these well-known .meth_ods. S_everal aespectively, s@(f) is the Fourier transform af(t). If these
pects of the algorithm have been described in passing beforg,  «inuous quantities are discretized so thigl = =(jAt)

[5,16,7 18], but here we provide a detailed and comprehensivg;,herel/m is the sampling rate anfl = 0,...,N — 1 are
descr|pt|0r_1 of our algorlth_m as used in the L_IGO Scientific p; sample points, then the discretized approximation to the
Collaboration search for binary neutron star signals. forward and inverse Eourier transforms are

The FINDCHIRP algorithm is the part of the search that (i) No1
computes the matched filter response to the interferometer #k] = At . —2mijk 2243
data for each template in a bank of templates, (ii) computes a olk] Z zlle (2.22)

chi-squared discriminant (if needed) to reject instrurakat- =0
tifacts that produce large spurious excitations of the hedc  and
filter but otherwise do not resemble an expected signal, and N_1

(iii) selects candidate events iggersbased on the matched a ~17.],—2mijk

filter and chi-squared outputs. This is a fundamental part of =il = Af Z zlkle (2.2b)
the search for binary neutron star signals, but the seasth al
consists of several other important steps such as datdiealec whereA f = 1/(NAt) andz[k] is an approximation to the the
and conditioning, template bank generation, rejectionamf-c value of the continuous Fourier transform at frequekhdy:

k=0
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Z[k] =~ Z(kAf) for0 < k < |N/2| andZ[k] ~ Z((k —  whereD is the distance from the sourcejs the angle be-
N)Af) for [N/2] < k < N (negative frequencies). Here tween the direction to the observer and the angular momen-
|a] means the greatest integer less than or equal tdhe  tum axis of the binary system\t = ;3/5M?/5 = 33/5 M1
DC component isc = 0 and, whenN is even,k = N/2 (whereM = m + ms is the total mass of the two compan-
corresponds to the Nyquist frequency. ions, the reduced mass js = mims/M, andn = u/M)
Notice that our convention is to have the Fourier compo-s thechirp massand¢(t — teoa; M, p1) is the orbital phase
nentsz[k] normalized so as to have the same units as thef the binary (whose evolution also depends on the masses of
continuous Fourier transform(f), i.e., the discretized ver- the binary companions) [12,113]. Hetg,. andec.a are the
sions of the continuous forward and inverse Fourier transtime and phase of the binary coalescence when the waveform
forms carry the normalization constamis and A f respec- IS terminated, known as tliwalescence timandcoalescence
tively. Numerical packages instead compute the discret@hase Details about the waveform near this time are uncer-

Fourier transform (DFT): tain but are expected to be at a frequency higher than LIGO’s
sensitive band for the systems considered in this paper. We

N-1 definet.., to be the time at which the gravitational wave

ylk] = Y afjleT2miak/N (2.3)  frequency becomes infinite within the restricted seconst-po

=0 Newtonian formalism. The restricted second-post-Nevetoni

waveform is considered sufficient for use as a detection tem-
where the minus sign in the exponential refers to the forplate for searches for binary neutron star systems.
ward DFT and the positive sign refers to tleversé DFT. The gravitational wave strain induced in a particular detec
The DFT is efficiently implemented via the fast Fourier trans tor depends on the detector’s antenna response to the two po-
form (FFT) algorithm. Thus, it is important to write the most larizations of the gravitational waveform. The inducecistr
computationally-sensitive equation in the form of HQ. &8  on the detector is given by
that this computation can be done most efficiently.

Throughout this paper we will reserve the indige® be h(t) = Fihy(t) + Fxhyx (1) (3.2)

a time index (which labels a particular time sample}p be
a frequency index (which labels a particular frequency bin)WhereF,, andF are the antenna response functions for the
m to be an index over a bank of templates, antb be an  incident signal; these functions depend on the locatiohef t
index over analysis segments. Thus, for example, the dyanti source with respect to the horizon of the detector and on the
zm.n[j] Will be the jth sample of analysis segmemtof the  Polarization angle.[14]. They are very nearly constantrimeti
matched filter output for theith template, and,,, ,, [k] will be over the duration of the short inspiral signal. Thus theistra
the kth frequency bin of the Fourier transform of the matchedon @ particular detector can be written as

filter output for the same template and analysis segment.
hy— (M to—t \
"\ 2D.g 5GM/c3

l1l. WAVEFORM X cos[2¢o — 2¢(t — to; M, )] (3.3a)

. N . where
We assume that a binary inspiral waveform is adequately

described (for binary neutron star systems and sub-solss ma

binary black hole systems) by the restricted post.—Newmnia Deg = D
waveform. The two polarizations of the gravitational wave

produced by such a system depends on a monotonically-

increasing frequency and amplitude as the orbit radiatey aw is the effective distancef the sourcé, t, is the termination
energy and decays; the waveform, often callathiap wave-  time(the time at the detector at which the coalescence occurs,
form, is given by i.e., the detector time when the gravitational wave fregyen

becomes infinite) andg, is the termination phasevhich is
1+cos?t [GM teoal — t —1/4
hy ()= 5

2D 5GM/c?

X c08[2¢coat = 20(t — teoat; M, 1)), (3.1a) 2 The effective distance of the source is related to the tretance of the

GM teoal — t —1/4 source by several geometrical factors that relate the sarfentation with

hy (t):COS L ( 3 ) ( 3) the detector orientation. Because the location and otientaf the source
c*D 5GM/C are not likely to be known when filtering data from a singleedétr, is
X Sin[2¢coal — 2¢(t — teoal; M, M)] (3.1b) convenient to combine the geometric factors with the trséadice to give a
single observable, the effective distance. For an optiraikented source

(one that is directly overhead and is orbiting in the planghefsky) the

effective distance is equal to the true distance; for subvally-oriented
sources the effective distance is greater than the truantist The location

1 We use the termeverserather tharinversesince the inverse DFT would and distance can be estimated using three or more detdotibrse do not

include an overall normalization factor df V. consider this here.

1+ cos?e 2 e
Ff (T) + F2 cos? L} (3.3b)
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related to the coalescence phase by matched filter via a Fast-Fourier Transform (FFT) correlati
it is beneficial to write the Fourier transform of the templat
Fy 2cost and implement it directly rather than taking the FFT of the
2¢0 = 2¢coa t = . 3.3c . . .
%0 $coal + arctan (FJr 1+ cos? L) ( ) time-domain waveform of Eq[{3Ba). A frequency-domain

version of the waveform can be obtained via the stationary

Equation [3.3a) gives a waveform that is used as a temMphase approximatioh [15]:
plate for a matched filter. Sina@NDCHIRP implements the .

1/2 —7/6
iz(f) — (5_7T) <GM) ( GM > <GM7Tf) Y (fiMop) (%) A nipe(M, u)f*7/6ei‘1l(f;M,u) (3.4a)

24 3 2D c3 Deg

where

5e\Y? (GMy/c?\ (7GMo\ VO [ w Y2 M \YVE
Aivipe(M, p1) = (ﬂ) ( 1 Mpc )( =3 ) (M—G)) (M—Q) : (3.4b)

U(f; M, p) =2 ftg — 2¢0 — w/4

3 [ . (3715 55\ _, , (15203365 27145 3085 ,\ _,
2 b ~16 3.4c
* 128y [” +<756+9n)” v +( 508032 soa Tz )| (340

’ (3.4d) volving the phasé& (f; M, ) which is both frequency depen-
dent and dependent on the system’s total and reduced masses.
and ¥ has been written to second post-Newtonian orderWe will see below that an efficient application of the matched
Second-order post-Newtonian stationary phase waveformfdter will make use of this factorization of the stationatygse
will provide acceptable detection templates for binarytrmu  template.
stars and sub-solar mass black halek [16]. This template-wav
form has been expressed in terms of several factors: (1) An In order to construct a waveform template we need to know
overall distance factor involving the effective distanBegz—  how long the binary system will radiate gravitation waves in
for atemplatewaveform, we are free to choose this effective the sensitivity band of LIGO. A true inspiral chirp waveform
distance to any convenient unit, and in theDCHIRP code  would be essentially infinitely long, but the amount of time
it is chosen to be 1 Mpc. (2) A constant (in frequency) fac-that the binary system spends radiating gravitational wave
tor Ay mpe(M, 1), which has dimensions ¢fime)~'/¢, that  with a frequency above some low frequency cuttff, is fi-
depends only on the total and reduced masdésndu, of  nite: the duration of the chirp ahirp timefrom a given fre-
the particular system. (3) The factgr”/¢ which does not quencyfi. is given to second post-Newtonian order by

(GM f) 1/3 depend on the system parameters. And (4) a phasing factor in-
v= | —T

5 GM 743 11 32w 3058673 5429 617
Tc oy = — ——— —8 e - -6 _ 2<% =5 o2 —4 3.5
hire = 956 ¢3 [UIOW (252 3 ”) Plow ™ 737 Vlow < 508032 | 504 1T 72T ) Vlow (3-53)
|
where result in a significant computational burden.
GM 1/3 There is also a high frequency cutoff of the inspiral wave-
Vlow = (?ﬂ'flow) (3.5b)  form. Physically, at some high frequency a binary system

will terminate its secular inspiral and the orbit will decaty a
High mass systems coalesce much more quickly (from a givedynamical time-scale, though identifying such a frequaacy
fiow) than low mass systems. A search for low mass systemsery difficult except in extreme mass ratio limit— 0. In this
such as primordial black holes, can require very long wavelimit, that of a test mass orbiting a Schwarzschild blackehol
form templates (of the order of tens of minutes) which canthe frequency is known as the innermost stable circulatt orbi
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or ISCO. The ISCO gravitational wave frequency is system masses will produce a waveform that is close enough
. to the nearest template. There are well known strategies for
Fioco = ¢ _ (3.6) constructing such a banki[2, 3]. For our purposes, we shall

S 6VerGM simply introduce an index: = 0,..., Nt — 1 labeling the

o ) ) particular waveform template,, (¢) in the bank of Ny wave-
However, long before obtaining this frequency, the binarysym templates.

components will be orbiting with sufficiently hight orbitag- By convention, the waveform templates are constructed for
locities that the higher order corrections to the second-pos gysiems with an effective distance Bfg = 1 Mpc. To con-

Newtonian waveform will become significant. Indeed, awaygryct a signal-to-noise ratio, a normalization constanttie
from the test mass limit, the meaning of the ISCO_ b?come%mplate is computed:
rather suspect. We regard EG._{3.6) as an upper limit on the
frequency that can be regarded as representing an “irf'spi_ral 2 _ 00 |B1Mpc,m(f)|2d i3
waveform—not as the frequency to which we can trust our in- Om = TS If. (4.3)

; g : 0 s(f)
spiral waveform templates. With this understanding, we-nev
ertheless use this as a high frequency cutoff for the inkpiralhe quantityo,, is a measure of the sensitivity of the instru-
template waveforms (should this frequency be less than theent. Fors(t) that is purely stationary and Gaussian noise,
Nyquist frequency of the data). For low mass binary systemgz. (t)) = (ym(t)) = 0 and (22 (t)) = (¥4 (1) = o2,
(binary neutron stars or sub-solar mass black holes) tmsec while for a detector output that corresponds to a signalsat di
post Newtonian template waveforms are expected to be rellanceDeg, s(t) = (Defr/1 MPC) ™ hinpe,m (t), (Tm(t)) =
able within the sensitive band of LIGO so the precise choicer2, / Des. Thus the quantity
of the high frequency cutoff is not important. o ()]
Zm

Om

Pm (t) = (4.4)

IV. MATCHED FILTER is the amplitude signal-to-noise ratio of the (quadrature)
matched filter. It is highly unlikely to obtaip,, > 1 for
The matched filter is the Optlmal filter for deteCting a Signalpure|y Stationary and Gaussian noise so a detection Syrateg
in stationary Gaussian noise. Suppose #taltis a stationary  ysually involves setting a threshold @p, to identify event
Gaussian noise process with one-sided power spe€ifd)  candidates. For such candidates, an estimate of the gffecti
density given by(3(f)5*(f")) = 5595(|f[)6(f — f'). Thenthe distance to the candidate systengiss = (o, /pu ) MpC.

matched filter output of a data streasft) (which now may The goal of theeINDCHIRP algorithm is largely to construct
contain a signal in addition to the noise) with a filter tent@la  the quantityp,, ().
h(t) is
o(t) = 4Re/ s(g_)f(lf()f)esztdf_ @.1) V. DETECTOR OUTPUT AND CALIBRATION
0 s

LIGO records several interferometer channels. §ravi-
tational wave channdlthe primary channel for searching for
ravitational waves) is formed from the output of a photo-

Notice that the use of a FFT will allow one to search for all
possible arrival times efficiently. However, the wavefoidhes
scribed above have additional unknown parameters. The ode at the antisymmetric (or “dark”) port of the interfate

are (i) the amplitude (or effective distance to the sourgg), eter [17]. This outputis used as an error signal for a feeklbac

the coales_cence_phase, and (iif) the binary companion masseoop that is needed to keep various optical cavities in tterin
The amplitude simply sets a scale for the matched filter out;

ut, and i unimportant for matched filter templates (these ¢ ferometer in resonance or “in-lock.” Hence it is often cdlle
put, ; P b the error signak(t). The error signal is not an exact measure
be normalized). The unknown phase can be searched ov

efficiently by forming the sum in auadrature of the matchede the differential arm displacements of the interferomete
i y by 9 q it does not correspond to the gravitational wave strainh&at
filter output for one phase (s&p, = 0) and an orthogonal

= 4 L it is part of a linear feedback loop that controls the positid
?ohr?ns‘?h(esggﬁloplexzizehgg ﬁf{g%ﬁttgﬁtmd to do this is to the interferometer mirrors. A gravitational wave straimigg

alent output, called(t) above, can be obtained from the error
© SNV F) orir signale(t) via a linear filter. This is calledalibration. In the
z(t) = x(t) +iy(t) = 4/ o e re?miftgr (4.2)  frequency domain, the process of calibration can be thought
0 Ss(f) of as multiplying the error signal by a complesponse func-
(notice the lower bound of the integral is zero): then thefion: B(f):
quantity|z(¢)|? is the quadrature sum of the two orthogonal . .
matched filters. Herey(t) is the matched filter output for the SU) = RS- ®-1)
templatehiag, o, —r/2(f) = h(f)ei™? = ih. Details on the calibration of the LIGO interferometers can b
To search over all the possible binary companion masses fbund in [18)109].
is necessary to construct a bank of matched filter templates The detector output is not a continuous signal but rather
laid out on am;—m4 plane sufficiently finely that any true a time series of samples eft) taken with a sample rate of



5

1/At = 16384 Hz whereAt is the sampling interval. Thus, = The detector strain for segmentan be computed by cali-
rather thare(¢), the input toFINDCHIRP is a discretely sam- brating the error signal:

pled set of values[j] = e(tstare + jAL) for some large num- _ _

ber of points. The start of the data sample is at tiqg:. Snlk] = R[k]én[K] (5.4)
Data_ from the detector is d!V|ded lnmlence_SegmeMmh .. whereR[k] is the complex response function. As before, since
are time epochs when the instrument was in-lock and exh|b|t§n [k] must be the Fourier transform of some real time series,

ing normal behavior. However, these science segments are N8nly the frequency componertts= 0, . .. | N/2] need to be

normally processed as a whole but are divided into smalleg,m 1ed. 11GO is sensitive to strains that are smaller than
amounts. In this paper we shall call the amount of data pro- 1029, while the error signal is designed to have typical

cessed data blockof durationT}, .. The data block must be values much closer to unity. Often tRevDCHIRP algorithm

long enough to form a reliable noise power spectral estimaigy| require quantities that are essentially squares ofiea-

(see below), bgt not so Io_ng asto exhau_st a computer's MeNYjred strain (e.g., the power spectrum described in the next
ory or to experience significant non-stationary changebken t section). To avoid floating-point over- or under-flow prob-

detector noise. o . . .._lems, the strain can simply be rescaled by a dynamical range
The number of points in a data block is further subdivided, 1o -

into Ng data segmentsr just segmentgnot to be confused

with the science segments described above) of durdfion R[k] — kR[k] so §,lk] — kSplk]. (5.5)
The duration of the segment is always an integer multiple of ) 00 N o

the sample raté\t, so the number of points in a segmevit Choosing a value o«t ~ 1(_) will keep all quantities within

is an integer. These segments are used to construct an averd§Presentable floating point numbers. It is important topkee
noise power spectrum and to perform the matched filteringt.raCk of the factok to make sure it cancels outin all of the re-
The segments are overlapped so that the first segment eonsi§t!ts- Essentially this is achieved by multiplying all gties

of the pointse[j] for j = 0,...., N — 1, the second consists of with “units” of strain by the factorc within the implemen-
the pointsj = A,...,A + N — 1 whereA is known as the tation of theFINDCHIRP algorithm. Thus, in addition to the
stride, and so on until the last segment which consists of thé@Sponse function, the signal template must also be scgled b

pointsj = (Ns — 1)A, ..., (Ns — 1)A + N — 1. Note that K. ] ] ]
Note that if theFINDCHIRP algorithm is used to analyze

Thiock = [(Ns — 1)A + N]At. (5.2) data that has already been preprocessed into strain data the
all the equations in the remainder of this paper still holthwi

We usually choose to overlap the segments by 50% so that tfBe understanding that the response function is idenyicall
stride isA = N/2 (and N is always even) and hence there unity and the error signal is the strain data. The following
areNs = 2(Tyloa/T) — 1 segments. The values @1, replacements thus need to be maglB{k] — 1 ande — ks.
T, At, and Ng must be commensurate so that these relations
hold.

TheFINDCHIRP algorithm implements the matched filter by
a FFT correlation. Thus a discrete Fourier transform ofliee t

VI. AVERAGE POWER SPECTRUM

individual data segments, Part of the matched filter involves weighting the data by
the inverse of the detector’s power spectral density. The de
N-1 y tector's power spectrum must be obtained from the detector
Enlk] = At Y e[j — nAJe 2R/ (5.3)  output. The most common method of power spectral estima-

j=0 tion is Welch’s method. Welch’s method [21] for obtaining

. i the average power spectrusp of the error signal is:
forn =0,..., Ng — 1 are constructed via an FFT. Hekas

a frequency index that runs froonto N — 1. Thek = 0 com- 1 Nst
ponent represents the DC componeght{ 0) which is purely Selk] = &~ > Penlk]. (6.1)
real, the components< k < | (N—1)/2] are all positive fre- S n=0

quency components corresponding to frequericieg where  ere

Af = 1/(NAt), and the componentsV/2| < k < N

are all negative frequency components corresponding to fre A f N-1 -
quencies’k — N)Af. If N is even (as it always is for the Penlk] = === |AL Y ey [jlw[jle > %N (6.2)
FINDCHIRP algorithm) then there is also a purely real Nyquist w §=0

frequency componert = N/2 corresponding to the fre- ) ) ) _
quency=NAf/2 = +1/(2At). Recall|a] is the greatest S @ normalized periodogram for.a single se_gmem/hmh
integer less than or equal to Note that because the error |s.the modulus-squared of_ the d[scrgte Fourier transform of
signal data is real, the discrete Fourier transform of itssat Windoweddata. The data window is given by[j] andW is a
fiesé* [k] = &,[N — k. Thus, theFINDCHIRP algorithm only ~ normalization constant

stores the frequency componehts: 0, ..., | N/2], and these 1 Nl

can be efficiently computed usingeal-to-half-complex for- W= — Z w?[j]. (6.3)
ward FFT [24]. N =

2



FINDCHIRP allows a variety of possible windows, but a Hann  Unfortunately this result is not exactly correct either.- Be
window (see, e.g.L[22]) is the default choice usedrbybp- cause the segments used to form the individual sample values
CHIRP. The power spectrum of the detector strain-equivalent’. ,, [k] of the power at a given frequency are somewhat over-
noise is related to this by, [k] = |k R[k]|?S.[k]. We call this  lapping (unlessA > N), they are not independent random
average power spectrum theean average power spectrum  variables (as was assumed in Apperidx B). (This is some-
The problem with using Welch’s method for power spectralwhat mitigated by the windowing of the segments of data.)
estimation is that for detector noise containing signifieaa  Although the effect is not large, and simply amounts to a
cursions from “normal” behavior (due to instrumental diés  slight scaling of what is meant by signal-to-noise ratio, we
or, perhaps, very strong gravitational wave signals), tkam are led to propose a variant of the median method in which
used in Eq.[[E]1) can be significantly biased by the excursiorthen = 0,..., N5 — 1 overlapping segments are divided into
An alternative that is pursued in tlreNDCHIRP algorithm is  even segment8or which n is even) and thedd segments
to replace the mean in Eq.{6.1) by a median, which is a moréor which n is odd). If the stride isA > N/2 then no two

robust estimator of the average power spectrum: even segments will depend on the same data so the even seg-
ments will be independent; similarly the odd segments will
Se[k] = o~ x median{P. o[k], Pe1[k], . . ., Pe.ns—1[k]}, be independent. The average power spectrum can be esti-

(6.4)  mated by taking the mean of the median power spectrum of
wherea is a required correction factor. When= 1, the ex-  the Ng/2 even segments and the median power spectrum of
pectation value of the median is not equal to the expectatiothe Ng/2 odd segments, each of which are corrected by a fac-
value of the mean in the case of Gaussian noise; hence ther o appropriate for the sample median witf /2 samples.
factora is introduced to ensure that the same power spectrunive call this thenedian-mean average spectrubnike the me-
results for Gaussian noise. In Ref.[[23] and in Appel@dix Biti dian spectrum it is not overly sensitive to a single glitch (o

shown that if the setP. o[k], Pe1[k], . .., P ns—1[k]} @arein-  strong gravitational wave signal).
dependent exponentially-distributed random variablesfa ,
pected for Gaussian noise) then The FINDCHIRP a_Igonthm can compute the mean average
spectrum, the median average spectrum, or the median-mean
Ng (—1)n+L average spectrum. Traditionally the median average spactr
a= Z -~ (odd Ng) (6.5) has beenused though we expect that the median-mean average
o n spectrum will be adopted in the future.

_ _ _ _ _ VII. DISCRETE MATCHED FILTER
is the correction factor. We call this median estimate of the

average power spectrum, corrected by the fagtdhemedian
average spectrum The discretized version of EQ.{%.2) is simply:

((N=D)/2] = 7 L(N-1)/2] > 7
K3n kKDY ppem K] 5 ik KkR[k]é,[k]xh k] ._..
- c,m mijk/N _ 1 Mpc,m 2mwijk/N
Znmli] = 4Af k§:1 AT e AN ;;:1 PIEAT e . (7.1)

Elementj of z,, ,,[j] corresponds to the matched filter output for titne tgiart + (RA +5) At Wheretg,t, is the start time of the
block of data analyzed. Note that the sum is over the poditaguencies only, and DC and Nyquist frequencies are erdir
FINDCHIRP. (The interferometer is AC coupled so it has no sensitivitthe DC component; similarly, the instrument has very
little sensitivity at the Nyquist frequency so rejectingstfrequency bin has very little effect.) This inverse Feutransform
can be performed by thmomplexreverse FFT (as opposed to a half-complex-to-real reved¥$¢ 6f the quantity

0 k < Kiow

) B KR[KEn [k]5D] sy ]
ZnmlK]Af = 4Af |HR[k]|2sﬁk]

1<k<|[(N-1)/2] (7.2)
[(N-1)/2] <k <N.

l.e., the DC, Nyquist, and negative frequency componemts ar Our task is to obtain an efficient decomposition of the fac-
all set to zero, as are all frequencies below some low fretors making upz, ., [k]. Note that there needs to be one re-
qguency cutofffiow = kiowAf (which should be chosen to verse FFT performed per segment per template. It desirable
some frequency lower than the detector’s sensitive bartt). T that this (unavoidable) computational cost dominate ttad-ev
low frequency cutoff limits the duration of the inspiral tem uation of the matched filter, so we wish to make the computa-
plate as described below. tion cost of the calculation of,, ,,, [k] for all k£ to be less than



the computation cost of a FFT. We will consider this in thetruncation Our goal is to limit the amount of the matched fil-

next section. ter that is corrupted due to the convolution of the data with t
One subtlety in the construction of the matched filter is thelNverse power spectrum. To do this we will obtain the time-

issue of filter wrap-around. The matched filter of EEGZY(7.1) ca domain version of the frequency-domain quantity ' k],

be thought of as digital correlation of a filte{ e, [5] with truncate it so that it has finite duration, and then find thenqua

some suitably over-whitened data stream (the data divigied bfity Qc[k] corresponding to this truncated time-domain filter.

the noise power spectrum). Althou@ihiy.e. [k] is generated  Note thatS; %] is real and non-negative, and we want{x]

in the Frequency-domain via the stationary phase appreximd0 share these properties. First, construct the quantity:

tion, we can imagine that it came from a time—domaeiégignal N1

hiMpe,m[j] Of durationTniyp , that is given by Eq. a) . o

for tﬁe |O[V\} frequency cutofﬁow. By convention of template qlj] = Af Z V1/Selk]e™? TN (7.3)

generation, the coalescence is taken to occur withorre- k=0

sponding toj = 0. Thus, then entire chirp waveform is yhich can be done via a half-complex-to-real reverse FFT.
non-zero only fromt = o — Tenirp,m 10t = fo. BeCAUSE  ginceg, (1] is real and symmetrics,[k] = S.[N — k), q[j]

the discrete Fourier transform presumes that the data is pgyi|| pe real and symmetric (so thafj] = g[N — j]). This
riodic, this is represented by having the chirp begin at Poingyantity will be non-zero for allV points, though strongly-

j = N = Tenirp,m/At @and end at poinf = N — 1. Thus  peaked neaj — 0 andj = N — 1. Now create a truncated

hiMpe,ml[i] = 0for j =0,...,N—1- Tenirp,m/At. The quantitygiyuncate[j] With a total duration offspec (Tipec/2 at
correlation ofhi nmpe,m[j] With the interferometer data will the beginning andy,../2 at the end):

involve multiplying theThirp, m /At points of databeforea

gi\_/e_n time with theT nivp,m /At points_ of the chirp. When ali] 0 <j < Typeo/20t
th|s is performed by the FFT correlatlon3 this means that theqnunca‘ce[j] o Tipeo/20t < j < N — T /20t .
first Tenirp,m /At points of the matched filter output involve alil N = Tapee/2At < j < N

data at times before the start of the segment, which are in- (7.4)
terpreted as the data values at the end of the segment (singg, o Gieancate is real and symmetric, the discrete Fourier

the FFT assumes that the data is periodic). Hence the firglansform ofy,,uncare Will also be real and symmetric, though
Tenirp,m /At points are of the correlation are invalid and must ot necessarily positive. Therefore we construct:

be discarded. That is, of th¥ points ofz,, ,,[j] in Eq. [Z1),
only the pointsj = Tchirp,m/At, ..., N — 1 are valid. Re- Q.lk] = q~t2 - (7.5)
call that the analysis segments of data are overlapped by an runeate

amountN — A: this is to ensure that the matched filter OUtpUtThiS quantity is reaL positive’ and SymmetriC' as desikédl-

is continuous (except at the very beginning of a data block)iplying the data byQ.[k] in the frequency domain is equiv-

Thatis, only pointg = Tepirp,m/At, ..., N —10f 20,m are alent to convolving the data With,uncate[j] in the time do-

valid and only pointsj = Techivp,m/At,..., N —10f z1.,,  maintwice which will have the effect of corrupting a duration

are valid, but pointgy = A,...,N — 1 of 2, [j] corre-  of T, . of the matched filter,, ,,,[5] at the beginning and at

spond to pointg = 0,...,N — A — 1 of 21 ,,[j], and these  the end of the data segment. This is in addition to the duratio

can be used instead. Therefet&DCHIRP must ensure that Tenirp.m that is corrupted at the beginning of the data segment

the amount that the data segments overfédp; A points, iS  due to the correlation with the filtér; yipe. ... [j]. Thus the total

greater-than or equal-to the duratiGipirp,m /At points, of  duration that is corrupted &T.pec + Tenirp,m, and this must

the filter: Tenip,m /At < N — A, be less than the time that adjacent segments overlap. The net
The quantity that needs to be computed in Hg.](7.1) ieffect of the inverse spectrum truncation is to smear-oash

more than just a correlation of the datg[j] with the filter  spectral features and to decrease the resolution of thesiave

himpe,m[J]: it also involves a convolution of the data with the power spectrum weighting.

response function and the inverse of the power spectrum. The For simplicity, we normally choose a 50% overlap (so that

interferometer has a relatively shortimpulse responsthiso A = N/2). Of each data segment the middle half with

convolution will only corrupt a short amount of data (thoughj = N/4,...,3N/4 — 1 is assumed to be valid matched fil-

now at the end as well as at the beginning of a analysis seder output. Therefore, the inverse truncation durafigp..

ment). However, the inverse of the power spectrum has mangnd the maximum filter duratiofpiyp,» Must satisfyTspec +

very narrow line features that act as sharp notch-filtersawhe Ty, < T'/4 Since a timely,ec + Tonirp,m IS COrrupted at

appliedto the data. These filters have an impulse respoate ththe beginning of the data segment.

is as long as the reciprocal of the resolution of the frequenc

series, which is set by the amount of data used to compute the

periodograms that are used to obtain the average spectrum. VIll. WAVEFORM DECOMPOSITION

Since this is the same duration as the analysis segment dura-

tion, the convolution of the data with the inverse power spec gy goal is now to construct the quantity

trum corrupts thentire matched filter output.

To resolve this problem we apply a procedure to coarse-

grain the inverse power spectrum callatverse spectrum KR[K]en K] npe,m K] (8.1)
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as efficiently as possible. This quantity must be computeds atemplate phasehich must be computed at all valueskof

for every segment, every templaten, and every frequency for every template (but does not depend on the data segment),

bin in the rangek = Kiow, - . ., khigh,m — 1 Wherekio, = andF,, [k] is thefindchirp data segmerihat must be computed

[ fiow/Af] and knign m is the high-frequency cutoff of the for all values ofk for each data segment (but does not depend

waveform template, which is given by the minimum of the on the template).FINDCHIRP first computes and stores the

ISCO frequency of EqL{3 6) and the Nyquist frequency: quantitiesF;, [k] for all data segments. Then, for each template

m in the bank, the phasing,,, [k] is computed once and then

Ehigh,m = min{ | fisco/ Af], [(N +1)/2]} (8.2)  applied to all of the data segments (thereby marginalizieg t

cost of the template generation).
(recall that the ISCO frequency depends on the binary sys-

tem's total mass so it is template-dependent). We can faetor . 1° famhtatg the factorization, we rewrite Eq.{3.4a) ireth
Zn.m|k] as follows: discrete form:
Funlk] = AL Avsen Pk expVnlk) - B3 hype k] = (A1) Arvpenk ™/ exp(i¥nK]) (8.42)

where A; mpe,m IS atemplate normalizatiorfit needs to be
computed once per template but does not deperig,ob,,[k]  with

1/2 2 -1/6 1/2 1/3
Mg = () (SMeL) (EMopng) T () () (8.4b)
' 24 1 Mpc c? Mg Mg
3 3715 55 15293365 27145 3085
U, k] = —7/4+ —— vk T+ = ) v, 3 [k] — 1670, 2 [k 2) vtk
= ~a+ po [+ (552 4 2o ) o0 = t0m 2 + (o 4 2P 4 B0 ) o).
| (8.4¢)
and where
khlgh m 7 3
GM, V3 \ Y3 2 4 QMK
mlk] = A — ) kY3 (8.4d " [Fnigh,m] = 7= (8.8)
om k] = < = ”f) (M@> (8.4d) sl = Rf k_Z RRIEE
The dependence on the data segment is wholly contained ffeds to be computed only once per data block (i.e., only once
the template-independent quantity[k] which is per power spectrum)—it does not depend on the particular
segment within a block or on the particular template in the
Qe[k]kT/6 bank, except in the high-frequency cutoff of the templdt (i
F,[k] = WKR[k]én[k]. (8.5) s less than the Nyquist frequency). To account for this min-

imal dependence on the template, the quamﬁ(ﬂhigh,m] is
pre-computed for all values é,;gp.
The division of the matched filter into the data-segment-
only quantity F,,[k] and the template-only quantit,, [k]
eans thaFINDCHIRP can efficiently compute the matched
ilter, or, rather, a quantity that is proportional to it:

As mentioned earlieFINDCHIRP computes and stords, [k]

for all segments only once, and then reuses these pre
computed spectra in forming, ,,,[k] according to Eq.[{8]3).
The dependence on the template is wholly contained in th
data-segment-independent quanéty, [k] which is

_ eXp(_i\IJm[k]) klow S k < khigh,m Cm n Z F 2mjk/N- (89)
Gumlk] = {0 otherwise - (8.6)

. _ i . Notice that¢,, ,[j], which is a complex quantity, can be com-
This quantity is known as thiendchirp template puted using a simple un-normalized inverse FFT of the quan-
The value ofo,, is also needed in order to normalize tity ,,[k]Gyn[k]. FINDCHIRP computes and storef, [k] for

Zn,mlj]- 1tis each of theVg segments in the data block and then, for each
i templatem in the bankG,, [k] is computed and used to filter
MR QoK KR Mpe,m K] each of theNs segments. This means that for each data seg-
o =AAf Z \kR[K]|2 ment and template the computational cost is essentially lim
k=kiow

ited to~ N complex multiplications plus one complexinverse
:A% Mpc,m'§2 [khigh,m] (87) FFT.
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The quantitie,, ,[j] andz,, ,[j] are simply related by a to the total matched filter from each frequency band. This

normalization factor: means that the values &f must be chosen so that
Zm,n[]] = Al M C,mCm,n[j]- (810) 4 ke e k k77/3 1
p a7 > L = ol 02
Furthermore, the signal-to-noise ratio is related,fo,[j] via k=ke_1 b

With this choice of bands and in pure Gaussian noise, the real
an,n = |Crn )12/ <2 [Rtigh.nm)- (8.11) and imagingry parts_cn;fg,mm[j] will be indep_endentGaussian
random variables with zero mean and varlacl?c{éhighym]/p.
Rather than applying this normalization to construct theFurthermore, the real and imaginary parts¢ef, »[j] and
signal-to-noise ratioFINDCHIRP instead scales the desired C¢,m.n[j] With £ # ¢" will be independent since,,»[j] and
signal-to-noise ratio threshold, to obtain a normalized (e ,m.»[j] are constructed from disjoint bands. Also note that
threshold

p
C2 = 6 [Figh ]2 (8.12) Gmanld] = ; Stamnli] ®3)
which can be directly compared to the valygs, [j]|* to de- The chi-squared statistic is now constructed frQm, .. [j]

termine if there is a candidate event (WHER ..[j]I* > ().  as follows:
When an event candidate is located, the value of the sigral-t

noise ratio can then be recovered for that event along with an N L ¢ mnli] = Cmmld) /o)
estimate of the termination tim&, = tsiart + (RA+ jpeak ) At Xom,nld] = Z [kl /P ) (9.4)
wherejpeak is the point at whicH(,, ,[7]| is peaked; the ef- =1 gh,
fective distance of the candidate, For pure Gaussian noisg? is chi-squared distributed with
¢ [Fnigh.m] A1 a v = 2p — 2 degrees of freedom. That= 2p — 2 rather than
Do = =—22——PS% Mpc; (8.13) v = 2presults from the fact that the sample méan,[j]/p is
(G Lpea]| subtracted from each of values@f,,, ,,[j] in the sum. How-

ever, this subtraction guarantees that, in the presencsigf a
nal that exactly matches the templatgypc,» (Up to an ar-
— ; bitrary amplitude factor and a coalescence phase), the valu
200 = A1 Gm.nfpeaid (814) of x2 is unchanged. Thus;? is chi-squared distributed with
v = 2p — 2 degrees of freedom in Gaussian noise with or
IX. THE CHI-SQUARED VETO without the presence of an exactly-matched signal.

If there is a small mismatch between a signal present in
the data and the template, which would be expected since the
templates are spaced on a grid and are expected to provide a

C)%jose match but not a perfect match to a true signal, fffen
ill acquire a small non-central parameter. This is because
e mismatched signal may not shift the mean value of the

and the termination phase of the candidate,

The FINDCHIRP algorithm employs the chi-squared dis-
criminator of Ref.|[4] to distinguish between plausiblersg
candidates and common types of noise artifacts. This meth
is a type of time-frequency decomposition that ensures th
the matched-filter output has the expected accumulation i
various frequency bands. (Noise artifacts tend to excite th r(_aal_ parts of{Gm.n} by the same amount (for eachy and
matched filter at the high frequency or the low frequency, bu?Imllarly the mean values of the imaginary parts{0fm.n }
seldom produce the same spectrum as an inspiral.) may not be sh|ft_ed by the same amounts. The effect on the

For data consisting of pure Gaussian noise, the real angn-squgred distribution is to |ntr0(21uce2a non-centrgapw—
imaginary parts of,. .[j] (for a given value of) are indepen- (" thatis no larger thak,. = 200,/ Dy whereDeg is the

dent Gaussian random variables with zero mean and varian@éfecnvﬁ d|stanc_e of Ithe(';ruhe 5|gnallzmds themlimitcrbek-j
62[knign.m). If there is a signal present at an effective distanceV©€" the true signal and the templatei,. m, which cou

Degt then(Re Cn.nl4]) = (Ams?[Enigh.m]/Det) cos 2¢o and e as large as themaximum mismatcbf the template bank
e m,n - m igh,m e .

(Im G 7)) = (Amc2[Knigh.m]/Derr) sin 260 (at the termi-  thatis used [2]. o _

nation time, where, is the termination phase). Even for small values o (3% is a canonical value), a

9 . L
Now consider the contribution 1, ., [j] coming from var- Ifarge valube ETX can bhe otf;talned forhgrallzjntatlonjll wa\?gs d
ious frequency sub-bands: rom nearby binaries. Therefore, one should not adopt a fixe

threshold ony? lest very loud binary inspirals be rejected

ko—1 by the veto. For a non-central chi-squared distributiorhwit
Comnli] = Z F, [k]Gm[k]ez’”j’“/N (9.1) v degrees of freedom and a non-central parametex; dfie
kg1 mean of the distribution i’ + A while the variance is be-
tween one- and two-times the mean (the variance equals twice
for ¢ = 1,...,p. Thep sub-bands are defined by the fre- the mean wher\ = 0 and the variance equals the mean for

quency boundarieScy = kiow, k1, - - ., kp = knigh,m }, Which X > v). Thus itis useful to adopt a threshold on the quantity
are chosen so that a true signal will contribute an equal amou x? /(v + \), which would be expected to be on the order of
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unity even for very large signals. ThHeNDCHIRP algorithm  samplesjy — Typec/At < 5 < jo + (Tspec + Tehirp,m )/ At.
adopts a threshold on the related quantity Rather than record triggers for all samples in which theadign
to-noise threshold is exceeded while the chi-squared $est i
satisfied, FINDCHIRP has the option ofmaximizing over a
chirp: essentially clustering together triggers that lie within
a time Tenivp,m. Algorithmically, whenevet¢,, »[5]1* > ¢?
Sometimes the quantity’ = x?/p is referred to, rather than and=,, »[j] < Z,, a trigger is created with a value pfand
=, but this quantity does not include the effect of the non-x?. If this trigger is within a timel ;... after an earlier trig-
central parameter. ger with alarger value of the signal-to-noise ratjg discard
the current trigger (it is clustered with the previous trigger).
If this trigger is within a timel ;. », after an earlier trigger
X. TRIGGER SELECTION with asmallersignal-to-noise ratip, discard thesarlier trig-
ger (the previous trigger is clustered with the currentieig.

The signal-to-noise ratio threshold is the primary paramed he resultis a set of remaining triggers that are separatat b
ter in identifying candidate events tiiggers As we have time of at leasteyrp, - Note that this algorithm depends on
said, therINDCHIRP algorithm does not directly compute the the orderinwhich the triggers are selected, i.e., a diffeset
signal-to-noise ratio, but rather the quantjty ,[j] given in of triggers may arise |_f the triggers are exammed_m inverse
Eq. (89), whose square modulus is then compared to a nofrder ofj rather than in order of. FINDCHIRP applies the
malized threshold given by Eq_T8l12). The computationafonditions agi is advanced fromi = N/4toj = 3N/4 — 1
cost of the search is essentially the costfV) complex  (i-€., forward in time)! The effect of the maximizing over a
multiplications pluD (N log ) operations to performthe re- Chirp is to retain any true signal without introducing ang-si
verse FFT of EqT8]9), and an additio| ) operations to nificant bias in para_\meter_s, e.g., tlr_ne of arr!val (which ban
form the square modulus @f, ,.[j] for all j. In practice, the dgmonstrated by simulations), vyhlle r(_educmg the number of
computational cost is dominated by the reverse complex FFtriggers that are produced by noise artifacts.

Triggers that exceed the signal-to-noise ratio threshid a
then subjected to a chi-squared test. However, the corstruc
tion of x7, ,,[j] is much more costly than the construction of ~ XI. EXECUTION OF THE FINDCHIRP ALGORITHM
Cm.nlj] simply because reverse complex FFTs of the form

given by Eq.[2l) must be performédhe cost of perform- In this section, we describe the sequence of operations that

ing a chi-squared test is essentiafiytimes as great as the he comprise theinpcHIRP algorithm and highlight the tun-
cost of performing the matched filterINDCHIRP will only  ap1e narameters of each operation. Since we are only describ
perform the chi-squared test if a threshold-crossing 198 g therinDcHIRP algorithm itself, we assume that a bank of
found. Therefore, if threshold-crossing triggers are themn templatesM, ;). has already been constructed for a given
the cost of the chi-squared test is small compared to the cogkinimal matcts, according to the methods described 2, 3]
of the filtering. Note that other methods are currently un-5q we are provided with the output error signal of the inter-

der investigation. For example, in an analysis that requireterometer[;] and instrument calibratioR[k] as described in
triggers to be coincident between two different detectibrs,

chi-squared test can be disabled on a first pass of trigger gen
eration on individual detectors and then only applied on the\S

t”%’ffrs th"’.lt sulrv_lvetr:hedc?[m(_:ldence i”tdert'a‘ d h durationT’, stride lengthA, and number of data segmeri¥s
rue signai in the data 1S expected 1o produce a sharg, g pock must be selected. These guantities then defin@a dat
peak in the matched filter output at almost exactly the COMp1ock length according to EQ(3.2). A sample rate\ must
rect termination time, (us_ually within one sample point of be chosen (which must be less than or equal to the sample
thhe correct time 'T £5|mul_at|0trr1]s). Eolr dsufﬁmintly loud (sja?n rate of the detector data acquisition system); the sampde ra
OWEVET, a signal-lo-noise hresnoid may DE CroSSea 101 Sey,j gatq segment length define the number of points in a data
eral samples even though the correct termination time wil egmentN — T/At. As mentioned previously, the lengths

have a muc_h greater 5|gnal-t0-n0|se ratio than nearby time nd sample rate are chosen so thals an integer power of
Non-Gaussian noise artifacts may produce many thresholq-

; ; : - : WO.
crossing triggers, often for a duration S|ml|lar_ o the dmt. The first operation is construction of an un-calibrated av-
of the inspiral template that is used. In principle, a lamge i

. ) . erage power spectrui using a specified data windowy ;)
pulse in the detector output at sampiecan cause triggers for and power spectrum estimation method (Welch’s method, the
median method, or the median-mean method). The number of
periodograms used in the average power spectrum estimate is

_ L Xon.nli]

:m,n[J] = m (9.5)

The initial operation is to divide the detector data intoadat
egments,,[j] suitable for analysis, and so the data segment

3|f X12n,n [7]is only required for one particulgrthen there is a more efficient
way to compute it. However, ttreNDCHIRPalgorithm does not employ the
chi-squared test so much as a veto as a part of a constraingohizetion
of signal-to-noise for times in which the chi-squared ctindiis satisfied. 4 Other methods can also be employed, for example maximizingggers
Thus,xfn’n[j} needs to be computed for glif it is computed at all. that are separated in time by less t¥firp,m -
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typically chosen to be equal to the number of data segmentsgconds performing the chi-squared veto. Of the time taken
although different numbers of periodograms could be choseno perform the chi-squared vetb244 seconds are spent ex-
An inverse spectrum duratidfi,.. is then given in order to  ecuting the again spent doing inverse FFTs. In tatalo
construct the truncated inverse power spect@uik], accord-  seconds of th@900 are spent doing FFTs, which means that
ing to Egs. [ZB)HZ15). The calibration is then applied by d the execution of theINDCHIRP algorithm is FFT dominated,
viding the quantity®).[k]by the modulus squared of the scaled as desired.
response functiohx R[k]|>.

Each input data segment is Fourier transformed and multi-

plied by the scaled response function to obt@iR[k])é, [k]. In practice, theFINDCHIRP algorithm is only a part of the
The quantity ", [k] described in Eq.[{85) can then be con- search for gravitational waves from binary inspiral. Angins
structed. All frequency components 5, [k] below a speci- 3] analysis pipeline typically includes data selectiemplate
fied low frequency cutofffio are set to zero, as are the DC pank generation, trigger generation UsmMyDCHIRP, trigger
and Nyquist components. The template independent norma¢pincidence tests between multiple detectors, vetoesimase
ization constants®[kuign,m] described in Eq.[{B]8) are also instrumental behavior, coherent combination of the optima
computed at this point. filter output from multiple detectors, and finally manual €can

The algorithm now commences a loop over tNe tem-  didate followups. Pipelines vary between specific analyses
plates in the bank, using the specified signal-to-noise-said  description of the pipeline used to search for the coalesten
chi-squared thresholds, and=,, and the method of maxi- of binary neutron stars in the first LIGO science run can be
mizing over triggers. For each templat&/, ;). the find-  found in [6], and a description of the pipeline used in the sec
chirp templateG.,[k] is computed, according to EJ_(B.6). ond LIGO science run to search for binary neutron stars and
The high frequency cutoffnign,, for the template is ob- pinary black hole MACHOS can be found id [7, 9]. Although
tained using Eq.[(36) and used to select the correct valughe use of thesINDCHIRP algorithm is primarily to generate
of ¢*[knign,m] for the template. The normalized signal-to- triggers for a single detector, sections of the complexaign
noise threshold is then computed for this template accgrdintg-noise vector,,, ,[j] can be written to disk along with the
to Eq. [E1P). triggers. If the same templaté/, 11),,, is used to filter the

An inner loop over the findchirp data segments is then endata from two or more interferometers, this complex signal-
tered. For each findchirp segmefit[k]| and findchirp tem-  to-noise data can be used directly as the input to the optimal

plate G,,,[k] the filter output(,, ,, is computed according to  coherentmatched filter for binary inspiral signals [24].
Eq. (89). The trigger selection algorithm described in. Béc

is now used to determine if any triggers should be generated
for this data segment and template, given the suppliedthres
olds and trigger maximization method. If necessary, the chi
squared veto is computed at this stage, according td’Ed). (9.
and the threshold given in E.(D.5). If any triggers are gene
ated, the template parameténd, u),,, are stored, along with
the termination time,, signal-to-noise ratio, effective dis-
tance D g, termination phase,, chi-squared veto parame-
ters, and the normalization constarf}, of the trigger. The
triggers are generated and stored to disk for later stagie of

It is simple to modify therFINDCHIRP algorithm to use re-
tricted post-Newtonian templates higher then secondrorde
y adding addition terms to the construction of the findchirp

template phase in Eq{8l4c). It is expected, however, that
post-Newtonian templates will be inadequate to searcthfor t
coalescence of higher-mass binary black holes in the sensit
band of the LIGO detectors. The motion of the binary will be
highly relativistic and the perturbative post-Newtoniahcci-
R lations will no longer be valid. There are two main approache
analysis plpellne_. : . for searching for such high mass systems, which we briefly

The segment index |s_then incremented and the loop over mention here. The first approach is to use a detection teenplat

the daf[a segments continues. Onceglidata segments _have family (DTF), such as the BCV DTF_[2%, 26]. These tem-
been filtered against the template, the template indésin- 2105 are frequency domain waveforms designed to capture
cremented and the loop over templates continues untVall the characteristics of non-spinning and spinning high mass

templates have been filtered againstéll data segments. systems accurately enough for detection in a matched filter

search that is still computationally accessible. The maahfi
tions to therFINDCHIRP algorithm to implement the BCV DTF

XII. CONCLUSION are extensive, and beyond the scope of this paper; we refer to
[24] for further details. The second approach to detectigh h
Profiling of the inspiral search code based on #neD- mass systems is to use time domain templates bases on post-

CHIRP algorithm was performed on a 3 GHz Pentium 4 CPUNewtonian re-summation techniques, such as the effeatiee o
with a 7 data segments of leng#%6 seconds. The data was body (EOB) [23] or Pade approximants[[29]. In Appendix A
read from disk, re-sampled froi6 384 Hz to4096 Hz and fil-  we describe the modifications necessary to use arbitragy tim
tered against a bank containitgd templates using the FFTW domain waveforms in theINDCHIRP algorithm. These mod-
packagell20] to perform the discrete Fourier transforms; th ifications cannot make use of the factorization used in the st
resulting1255 triggers were written out to disk. Of ti#09  tionary phase templates, but they allow efficient re-uséef t
seconds of execution tim&)88 seconds were spent perform- search code developed and tested for the frequency domain
ing complex FFTs required by the matched filter, ai60 post-Newtonian templates.
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point of the waveform so that if the frequency evolution had
been continued, the termination time would be the (wrapped-
APPENDIX A: ALGORITHM FOR TEMPLATES around) sample point = 0. After placing the waveform in
GENERATED IN THE TIME DOMAIN the segment, we construct the discrete forward Fouries{ran
form of the waveform, as described by Hg.2.3) and construct

The optimization of therFINDCHIRP algorithm described
above is dependent on the use of frequency domain restricted
post-Newtonian waveforms as the template. Itis a simple mat Gmlk] = {
ter, however, to modify the algorithm (and hence the code
used to |mplem¢nt the _aIgonthm) so that an arbitrary Wave'FinaIIy, we construct the normalization constant
form generated in the time domalr{t) may be used as the
matched filter template. This allows use of inspiral tem-

iLl IVIpC,m[k] klow < k< khigh,m
0 otherwise. (A3)

khlgh,m 1 ~
plates such as the effective one body (EOB) [28] and Pade ER 3 Qe[k]|P1 Mpe,m K] (Ad)
re-summation waveforms [29]. These waveforms are thought moAf W |k R[K]|?

to have a higher overlap with high mass signals in the seasiti

band of the LIGO detectors. In this Appendix, we describewhich is now dependent on the template parameters. Once
the modifications necessary to use time domain templates We have constructed these quantities we may proceed with

FINDCHIRP. _ _ the FINDCHIRP algorithm described in SeE_ VIl and S&C] IX
~ We assume that the desired template waveform is generategl obtain the signal-to-noise ratio and the value of the chi-
in the form squared veto for the particular template we have chosen. The

computational operations required per template are isecka
hintpe,m (t) = Am(t = to) cos [2¢0 — 20m(t —to)] (A1) by O(Nlog N) for the additional real-to-half-complex for-
ward FFT to construdi; vpe,m, andO (V) operations to con-

wheret, and ¢g are the termination time and phase, as de 5
structg,.

scribed in Sedll, and.,,, (¢t) andg,, (t) are the particular am-
plitude and phase evolution for the-th template in the bank.
The bank may include parameterization over binary compo-

nent spins as well as masses. The template waveform is gen- APPENDIX B: BIASIN MEDIAN POWER SPECTRUM

erated from the low frequency cut off,,, and is normalized ESTIMATION
to the canonical distance dMpc. Recall the factorization of
the matched filter output, given by EG(B.3): Here we compute the bias of the median of a set of
periodograms relative to the mean of a set of periodograms.
Zn.mlk] = 4(Af)7LA; Mpe,mFn [k]Gm [K]. (A2) We assume that the periodograms are obtained from Gaussian

noise. In this Appendix, let us focus on one frequency bin of

Since we are now only provided with the numerical value ofthe periodogram, and for brevity we adopt the symbdor
the waveform as a function of time, we cannot perform thethe power in the frequency bin, that is, we define= P. ¢[k]
same factorization of the waveform as for stationary phasgyr ¢ = 1,...,n. (Heren is the number of periodograms in
templates. Instead, to compute the findchirp data segmepeing averaged. It is eithe¥s or Ng/2 depending on the
F, [k], we remove the template dependent amplitude by makchoice of method.) Lef (z) be the distribution function for
ing the replacement~"/6 — 1 in Eq. (85%). Similarly, the . For Gaussian noisg(z) = u~le~*/" where
form of Ay mpe,m IS NOW much simpler, as it becomes just the
dynamic range scaling factot; nvpc,m = x needed to scale b
the waveform to avoid floating point underflow. p=(x) = / af(x)dx (B1)

To construct the findchirp templat&,, [k], we construct a 0
segment of lengttivsample points and populate it with the s thepopulationmean ofz. Sou = (P, [k]). Thepopulation
discrete samples of the template wavefdtp,c,m[j]. The  median is defined by
waveform is sampled at the sampling interval of the matched
filter At. When we place the waveform in this segment, we I A 5
must ensure that the termination of the waveform is place at 9 /0 f(@)dz (B2)
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which yields the substitutiont = Q(Zmea) SO thatdt = f(2med) dTmed
and
T1/9 = pln2. (B3)
9(Tmed) dTmeda = g(t) dt = Ct™ (1 —t)™dt. (B10)
Thus the bias of the population mediaris= In 2. S
The Samp'emean is unbiased Compared to the popu'ation Now that the probablllty distributionis knOWn, we can com-

mean. The sample mean is: pute the expected value for the median. Note that for the ex-
ponential probability distributiot,cq = —pInt. Thus
1 n
== . (B4) 1 !
med)=— (1 —¢)" Intdt
"= (Tmea) NB(m—l—l,m—f—l)/o ( )" In
The expected value af is Al (—1)tt
=pux Y ( é) . (B11)
1 n (=1
T) = — = B5 : .
(@) n ;(w) a (B5) The bias factor is therefore
n £+1
soz is an unbiased estimator pf o= Z (=)™ (B12)
Thesamplemedian, however, does have a bias. The sample - !

median is: _ _
for odd n. This result makes sense: As— oo the series

Tmed = median{z,}. (B6)  approachen 2 which is the bias for the population median.
However, forn = 1, a = 1, so there is no bias (the median is
To compute the bias, we first need to obtain the probabilityequal to the mean for one sample!).
distribution for the sample median.
For simplicity, assume now that is odd. The probabil-
ity of the sample median having a value betwegnq and APPENDIX C: CHI-SQUARED STATISTIC FOR A
Tmed + dTmed IS proportional to the probability of one of the MISMATCHED SIGNAL
samples having a value between.q andxeq +dxmeq times
the probability that half of the remaining samples are large For simplicity we write the chi-squared statistic in the
thanz,.q and the other half are smaller thap.q. Thus, the  equivalent form [cf. Eq{Z]1)]
probability distribution forz,,eq is given byg(zmea) Where

X2[j] _ i |Z€[.7] - Z[]]/p|2 (Cl)
g(xmcd) dImcd - =1 02/p
Ol = Q(Tmed)]" Q@™ (Tmed) f (Tmed) dTmea.  (B7)
where
wherem = (n — 1)/2 is half of the remaining samples after Kool ~r117 s
one has been selected as the median. Hgfe) is the upper- BN S[KIMT mpe[F] o2midk/N (C2)
tail probability ofz, i.e., the probability that a sample exceeds W Ss[k] ’
the valuer:
Q)= [ faydo =/ (88) v

- 21 =) alil, (C3)
where the second equality holds for the exponential distrib =
tion function corresponding to the power in Gaussian noiseand
The normalization factoC’ is a combinatoric factor which (N-1)/2] =

ple as the median and then choosing half of the remaining S, [k] (C4)

points to be greater than this value. Thus it has the value

of n (number of ways to select the median sample) timeg=or previty we have dropped the indicesand m; the ex-
n —1 = 2m choose(n — 1)/2 = m (number of ways of pjicit dependence op will also be dropped hereafter. In this

arises from the number of ways of selecting a particular sam- h Ak
y gap EEVIVERS [P npe [K]]°
k=1

choosing half the points to be larger): Appendix we further simplify the notation by adopting nor-
malized template§[k] = h1mpc[k]/o. Interms of these tem-
— 2m+ 1Y _ 1 plates we define the inner products
C=nx (B9)
m B(m+1,m+1)
S SR o
This factor can also be obtained simply by normalizing the (s,u)e = 4Af Z 5,7[k]er"’”3’“/]\’ (C5)

probability distributiong(zcq). To do so it is useful to make k=ky_ 1



for the p different bands, which are chosen so thatu),
1/p, and the inner product

(S’ u) = Z(S’ u)
=

1

L(N=1)/2] . ..,
¢ =4AAf Z M
k=1

Ss[k]
With this notation, the signal-to-noise ratio is given oy =
|(s,u)|? and chi-squared statistic is

oy s = )P

— 1/p

:_|(Svu)|2 +pz |(S’U)f|2'

=1

(C6)

(C7)

To see how the chi-squared statistic is affected by a stron
signal (considerably larger than the noise), suppose tat t
detector outputs[j] consists of the gravitational waveform
av[j] where a specifies the amplitude of the gravitational
wave. Herev[j] is also a normalized [in terms of the inner
product of Eq.[[CB)] gravitational waveform that is not ethac
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compared to if the template]j] were used. The chi-squared
statistic is

2

Xo= ?

%

NE

—a?|(v,u)|* +pa® Y |(v,u)e

~
Il

—

2

NE

<—a?|(v,u)|* + pa (v,v)e(u,u)e

~
Il
—

=—p? +a% < 2p% (C9)
where we have used the Schwarz inequality to obtain the sec-
ond line and the normalization conditidm,«), = 1/p to
obtain the third. Thus, the chi-squared statistic is offisean
amount that is bounded by twice the squared signal-to-noise
ratio observed times the mismatch factor. There is no offset
Bra template that perfectly matched the signal waveform.

It can be shownl[4] that in the presence of a signal and
Gaussian noise that has a non-central chi-squared distribu-
tion [30] withv = 2p—2 degrees of freedom and a non-central
parameten < 2p26 (where now\ may possibly be slightly

is given by thamismatch
5=1-|(v,u). (C8)

The mismatch is the fraction of the signal-to-noise ratiat th
is lost by filtering the true signalv[j] with the template.|;]

squared owing to the presence of the noise). This distabuti
has a mean value of+ )\ and a variance div + 4\. We see
then that the modified chi-squared stati§liof Eq. [&.5) has
amean ofS 2 and a variance of (4 or 8)/(p+ p?§) (4 when

p > p?6 and 8 wherp < p?4) for Gaussian noise. Thus we
would expect to set a threshold &nof =, ~ a few.
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