PHYSICAL REVIEW D 72, 064019 (2005)

Scale invariant hairy black holes
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Scalar fields coupled to three-dimensional gravity are considered. We uncover a scaling symmetry
present in the black hole reduced action, and use it to prove a Smarr formula valid for any potential. We
also prove that nonrotating hairy black holes exists only for positive total energy. The extension to higher

dimensions is also considered.
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I. INTRODUCTION AND DISCUSSION

The system of gravity coupled to scalar fields has re-
cently been under considerable scrutiny. Asymptotically
AdS hairy black holes have been shown to exist in [1-4].
The issue of defining meaningful conserved charges has
been considered in [1-3,5-7]. Earlier references include
[8—11]. Within the AdS/CFT correspondence, the coupling
of scalar matter was considered in [12,13].

Our aim in this paper is to make some general remarks
on the structure of hairy black holes in three dimensions.
Our key ingredient is the existence of a scale symmetry in
the reduced action governing the black hole ansatz. This
symmetry exists for any potential V(¢) and provides, via
Noether’s theorem, a radially conserved charge. We use
this charge to find a relationship between the black hole
parameters at infinity with those at the horizon.

Our main result is the following. Let M, J, and S be the
total energy, angular momentum, and entropy of a black
hole solution with some nonzero scalar field ¢. Let T and
) be the black hole’s temperature and angular velocity.
Assuming that the matter field is finite at the horizon and
vanishes at infinity, it follows that these parameters must
satisfy the three-dimensional Smarr [14] relation,

M=%TS—QJ. (1)

The remarkable aspect of this result is its universality. In
fact the scalar field and its potential play no role. The only
condition on the matter field is that it must be finite every-
where, and zero asymptotically. Of course this imposes
nontrivial constraints on the class of potentials being con-
sidered, which must elude the no-hair theorems. But, if the
black hole exists, then it must satisfy (1).

The first law of black hole thermodynamics,

M =T8S — Q8J, 2)

is also valid in this theory. Inverting the Smarr relation (1)
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one finds that S(M, J) must be a homogeneous' function of
degree 1/2 of its arguments, S(oM, oJ) = o'/2S(M, J).
This is certainly true for the vacuum Bafiados-Teitelboim-
Zanelli (BTZ) black hole. Our result implies that hairy
black holes, regardless of the potential chosen, satisfy the
same scaling relation.

A remark is in order here: the homogeneity property of
S(M, J) is not a consequence of simple dimensional analy-
sis and scaling arguments as is the case e.g. for the Kerr-
Newman metrics, cf. [15]. This is due to the presence of an
additional dimensionful parameter, the curvature radius of
the AdS space-time or, equivalently, the cosmological
constant.” The reason why (1) holds nevertheless, even in
the presence of scalar hair, is the scaling symmetry and the
associated radially conserved charge.

In the nonrotating case, J = 0, we can use (1) and (2) to
find the general expression for the temperature of non-
rotating black holes,

T = kM2, 3)

where k is a constant with no variation. This means, in
particular, that for any potential V(¢) the specific heat of
the black hole is positive.

It is interesting to compare (3) with the result reported in
[1]. In three dimensions, [1] considered the potential,

V= —é(cosh6¢ + vsinh®¢), 4)

where v is a real parameter. An explicit black hole con-
figuration was displayed, whose temperature as a function
of the total energy follows the general law (3), and «
becomes a complicated function of the parameter v.

The three-dimensional structure can be generalized to
higher-dimensional black holes with toroidal topology
[19,20], as well as to black holes on flat branes [21,22].
This is analyzed in Sec. VIIL.

'In terms of the total mass, the homogeneity property reads
M(cS, a*J) = o> M(S, J).

>Generalized Smarr relations have been considered in [16—
18].
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After this work was completed we became aware of [23]
in which the Smarr relation for hairy black holes in three
dimensions was also found. The parametrization of the
reduced action used in this reference is very different
from ours, and the relevant symmetry is a SL(2, R) group
rather than the scaling symmetry which we have employed.

II. REDUCED ACTION IN D = 3 AND SCALING
SYMMETRY

Consider the action describing three-dimensional grav-
ity coupled to a scalar field ¢,

1

= 167G /(R —8g"9,¢9,¢ — 16V(¢))/—gd’x.

(&)

We assume that V(¢) has a nonzero negative value at ¢ =
0, such that the gravitational background is anti-de Sitter
space.

We shall first consider nonrotating solutions. The gen-
eralization can be done straightforwardly and will be in-
dicated in Sec. VI. Consider static, spherically symmetric
solutions of the form

d 2
ds®> = —y(r)?h(r)dr* + ar + r’dg?,

(6)
Solutions of this form include, for example, black holes
and soliton solutions. The solitons are relevant for AdS/
CFT applications, as recently considered in [24]. We shall
concentrate in this paper on black holes. One can write a
reduced action for this problem,

_(t28_th) fdry(h’+8rh¢'2

+ 16rV(¢)) + B. @)

I[h, vy, $] =

where B is a boundary term that we shall consider below.
The equations of motion are

h' + 8rh¢™ + 16rV =0, —y + 8ryd? =0,
— (ryho') + ryV, =0.

They can be shown to be consistent with the original
Einstein equations.

The key observation is that the action (7) is invariant
under the scale transformations®

®)

7F=or, 9
(7)) = o2h(r), (10)
y(7) = o 2y(r), (11)

In the matter-free case this scale symmetry was already
observed in [25].
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b(7) = ¢(r), 12)

with o a (positive) constant.
By direct application of Noether’s theorem to the above
symmetry one finds that the combination

1
C= y(—h o'+ 8r2h¢’2> (13)

is conserved, C’ = 0. One can in fact prove this directly
from the Egs. (8). A crucial property of this conservation
law is that it holds for any potential V(¢). This will allow
us to make general statements about the nature of 3d black
holes coupled to scalar fields.

Our strategy is now the following. Since C does not
depend on r we can use it to find a relationship between the
asymptotic parameters M, B8 and the horizon r,.. As we
shall see, this relation is precisely the Smarr relation (1).
But before we can state this result, we need to find an
expression for the energy of this system.

III. ENERGY AND ENTROPY

The analysis in this section assumes a generic potential.
For some specific cases, as masses saturating the
Breitenlohner-Freedman bound, a separate analysis may
be needed.

The boundary term B that appears in (7) is fixed by the
condition that, upon varying the action, all boundary terms
cancel for a set of given boundary conditions. At this point
we shall switch to the Euclidean formalism, and interpret
the on-shell action as the free energy of the thermodynam-
ical system [26]. The Euclidean action [, is the same as (7),
except that (7, — #;) = 1 and an overall sign, such that the
weight in the functional integral is e 't

In the Euclidean Hamiltonian formalism, the boundary
consist of two disconnected pieces, one in the asymptotic
region r — oo and the other at the horizon. The boundary
term B is specified by the condition,

1 1
6B=——vy(6h+1 s —o T —7v6h|,—, ,
<G VOh + 16h I8, + ¥,
(14)

where the horizon is defined by the equation A(r,) = 0.
We assume that all fields are regular there.

Assuming that the matter field vanishes at infinity,
Egs. (8) imply that, asymptotically, vy = 0. We write
v(c0) = B, where B is a constant equal to the Euclidean
period at infinity.*

The boundary term now has the form 6B = B6M — 65,
where the variation of mass and entropy are given by

1
SM = _E(ah + 16rh '8 P)|,—cor (15)

“Note that solutions of the form v ~ log(r) will not occur for a
generic potential.
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1
oS G y6hl,—,,. (16)
As usual in the Hamiltonian formalism the entropy comes
from the variation of the action at the horizon[27-29]. Our
task now is to identify the actual values of S and M.

The boundary term at the horizon gives the usual
Bekenstein-Hawking entropy without any modifications.
In fact, from h(ry) = 0 and (h + 8h)(ry + 6ry) =0 it
follows that 4(r) = —h'(r,)6r,,aslongas i/(r,) # 0,
which is satisfied for nonextreme black holes. In addition,
the value of vy at the horizon cannot be arbitrary. To avoid
conical singularities at » = r, one must impose [26]

y(r)h'(ry) = 4m. (17)
These two conditions allow us to identify S as

_ 2@y
4G’
just as in the matter-free system.

We now turn to the problem of integrating (15) to extract
the value of M. This problem is more subtle because we
have not specified the potential. We shall integrate (15) by
using again the scale invariance discussed above, which
maps solutions to solutions.

The idea is the following. The functions # and ¢ have
scaling dimensions 2 and 0, respectively. From (15) we
conclude that M must have scaling dimension 2. This
means that under the scale variations of # and ¢,

6h = So(—rh' +2h), (19)

S

(18)

8¢ = —réad/, (20)
the corresponding variation of M satisfies
oM =260 M. 2n

We now replace (19) and (20) in (15) and, comparing with
(21), we obtain the desired formula for M.’

1 1
=_ (—h+—rh + 2 2 .
M 8G< h 2rh 8rche ) 22)

Before explaining and discussing the validity of this for-
mula let us check that it gives the right results in known
cases. For a BTZ black hole, h = r> — 8Gm and ¢ = 0.
One finds M = m, as expected. A less trivial example is the
exact hairy black hole solution found in [1] with & = r? +

>The relationship between asymptotic functional variations
and scale transformations can be checked explicitly in some
examples. For the BTZ black hole with i(r) = r> + hy, one has
6h = 6hy. The constant h, has scaling dimension 2, dhy =
280hy. One can check that in fact o(—rh' + 2h) = Shy. In
the system studied in [1], the asymptotic solution is & =~ r> +
4Br — 3(1 + v)B2. It is direct to check that 84 = So(—rh' +
2h) with 6B = 8o B, as claimed. Note finally that this corre-
spondence fails in higher-dimensional gravity. See Sec. VII for
details on this case.

PHYSICAL REVIEW D 72, 064019 (2005)

4Br—3(1+v)B*+O(1/r) and ¢ = (B/r)'/?—
2/3(B/r)** + O(1/r°/%). Replacing this field in (22) one
obtains

_3(1 + v)B?

M ’
8G

(23)
in full agreement with [1].

Now, some comments on the derivation and validity of
(22) are necessary. The variations (19) and (20) do not
explore the full set of asymptotic solutions. In fact, (19)
and (20) represent a 1-parameter (o) set of variations. On
the other hand, the equations are of first order for i(r), and
second order for ¢(r) and the full space of solutions has
three parameters. The key step is that since M is a “func-
tion of state’” (exact differential), its value does not depend
on the path chosen and in this sense the formula (22) is the
correct one. However, we must now make sure that 6M, as
given in (15), is actually an exact differential. An equiva-
lent way of stating this is that the existence of a well-
defined variational principle requires B in (7) to exist, not
just 0B.

We do not need to worry about the first term in (15), 64,
which is exact. The second piece, rh¢’S¢, needs a sepa-
rate analysis. For a generic potential the asymptotic form
of the scalar field on AdS is

a b
¢=I+rA—++-.-, (24)
where, for static black holes, a and b are arbitrary con-
stants and represent the 2 degrees of freedom associated to
¢. The exponents A. are the solutions to a quadratic
equation and satisfy A, + A_ =2 We assume that
both are positive.

Plugging (24) into (15) one finds finite terms of the form
f(a, b)da + g(a, b)6b. In order to write these terms as
total variations (to achieve path independence) one needs
to assume a relationship between a and b. This restriction
on the space of solutions is generic and was also found in
[1-3,30].

The particular choice considered in these references
(generalized here to arbitrary A.) is

AyJA

b= na on =0, (25)

where 7 is held fixed. This choice is consistent with the full
anti-de Sitter asymptotic group, although this will not be
relevant for our discussion.®

For our purposes, the choice (25) is singled out by
demanding scale invariance of the asymptotic solution. In
fact, once a relationship between a and b is assumed, the
only function b = b(a) consistent with (20) is precisely

®Note that this particular choice is by no means the most
general. For solitonic solutions, as in [24], a and b become
related in a different way. We shall consider solitons in this
theory elsewhere.
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(25). We conclude that on the space of solutions satisfying
the boundary conditions (25), the formula (22) for M is
correct.

Finally, we point out that the remarkable cancellations of
divergent pieces in the total mass M, discovered in [1-3],
can be seen in this case from a different perspective. Note
that, up to the factor y(r) which becomes a constant at
infinity, M is exactly equal to the scale charge C displayed
in (13). Since C does not depend on r, it cannot diverge; the
total mass is then finite.

IV. THERMODYNAMICS OF THE HAIRY
BLACK HOLE

A. The first law

The first law for our class of black hole solutions can be
checked by standard Hamiltonian arguments. The form of
the action, derived in the previous section, after all bound-
ary terms have been included, is

I[B] = fdr'y}[ + BM — S(ry), (26)

where M is given in (22) and S is the usual entropy in three
dimensions, given in (18). { = 0 is one of the equations
of motion. By construction, this action has an extremum
when evaluated on solutions with 8 fixed. The on-shell
value of I only depends on 8. The value of M is such that /
has an extremum.

Since the bulk contribution is proportional to a con-
straint, the on-shell value of the action is

1Bl = BM — S(M), 27)

where r, is written as a function of the total energy M
using the solution.” M is not fixed but has to be chosen such
that 7 has an extremum, that is, the first law is satisfied,

BSM = §8. (28)

B. The Smarr relation

We are now ready to prove our main result. We go back
to the expression for the scaling charge C given in (13).
Comparing (13) and (22) we conclude that the scaling
charge is proportional to the total mass. Evaluating C at
infinity we get the exact relation

C = 88MG. 29)

On the other hand, since C is r — independent we can also
evaluate it at the horizon A(r;) = 0 to get

C=2mr,. (30)

"There is a nontrivial assumption here, namely, that r, de-
pends only on M, and not on the scalar field parameter a. We
prove in the next section that black holes exists only for special
values of a = a(M), and hence a is not an independent
parameter.
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Here we have used the condition of absence of conical
singularities (17). Comparing the values of C at infinity and
at the horizon we find the equation

12mr,
M = —
B 2 4G

representing the nonrotating version of (1). This relation is
satisfied for any black hole solution with or without scalar
field. Of course, this is also true for the BTZ vacuum black
hole, as can be readily checked. The rotating case, leading
to (1), will be indicated in Sec. VI.

3D

C. Positivity of energy

We prove now that a hairy black hole can exist only if
the total mass M is positive. To see this we first note that
the field y(r) does not change sign in the whole range r, =
r = oo. In fact, directly from the equations of motion (8)
we can write the formal solution

y(r) = yoe @HPO (32)

where 1y is an arbitrary integration constant. This expres-
sion for vy is manifestly positive, if 7y, is positive. Now, the
scaling charge evaluated at the horizon and at infinity gives
the equation (we relax here the condition (17) and consider
either Minkowskian or Euclidean signature)

16GyeM =y hlyry, (33)

where the subscript + indicates the corresponding function
evaluated at r, . The function 4(r) must be positive outside
the horizon, and vanishes at r. This means that 4/, > 0.
Since y(r) does not change sign and r, is positive, we
conclude that this equation requires

M >0. (34)

D. Temperature and specific heat

Combining (31) and (18) and the first law we derive the
general relation

8MG = K313, (35)

where k is an arbitrary (dimensionless) integration con-
stant, with no variation. This constant cannot be computed
from this analysis and depends on the details of the poten-
tial, as well as all other fixed parameters. For example, for
the BTZ black hole «y = 1 while for the potential (4)
considered in [1] one finds that k, becomes a complicated
function of ».

All thermodynamical properties can now be extracted,
for example, the temperature as a function of the mass
gives

1 2MG

E :T:KO . , (36)

as announced. We can also check that the specific heat,
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M 2mr,

oT 4G’

becomes equal to the entropy (this was also noted by [1] in
their particular example).

(37

V. A CLOSER LOOK AT THE HAIRY BLACK HOLE

A hairy black hole is, by definition, a solution to the
Einstein + matter system displaying a regular horizon. In
particular, the value of the matter field ¢(r) at the horizon
must be finite. We have argued in the previous section that,
if the black hole exists, then the Smarr (1) relation is
satisfied. However, we have said very little about the con-
ditions for the existence of a black hole.

The condition of regularity at the horizon imposes con-
straints on the solutions which can be analyzed using scale
invariance. In this section we will prove that for a given
value of 7 [see (25)], the values of the total mass M and the
parameter a have to be fine tuned in order to have a regular
black hole. This means that, apart from n which acts as an
external parameter with no variation, the only free parame-
ter in the black hole spectrum is the total energy M.

Consider the set of equations of motion (8). We would
like to find a solution displaying a regular event horizon
h(r.) = 0. At the point r = r,, the matter field, and its
derivatives up to some sufficiently high order, must be
finite. In particular,

¢(r+) = ¢o. (38)
Define the new field
x(r) = ¢(r) — ¢o (39

which vanishes at the horizon, y(r.) = 0. Near the hori-
zon the new field y is small and hence, without specifying
V(¢), we write the near horizon series,

V) =vo+tvix + ooy’ + - (40)

where the constants v; depend on the potential V and ¢,.
Under these conditions, the fields 4, v, ¢ have the fol-
lowing series expansions near the horizon

h=h(r—r)+h(r—ry)*+--- (41)
Y=Y+t yvilr—ro)+ ylr—r)+- (42
x=xir—ri)+ xor—ry)* + - (43)

Recall that in the Euclidean formalism the values of 4’ and
v at r = r, are linked by (17), that is h;yy = 4. Our
conclusions, however, do not depend on the signature.

We have assumed that no fractional powers or logs are
present because they would induce divergences in the
derivatives of the fields.

We now plug this series expansion into the equations of
motion and solve for the coefficients order by order. This is
a straightforward exercise that we do not display here. The
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important comment is that all coefficients are fixed in terms
of ¢y and r, (recall that ¢ enters in the coefficient v, in
the series (40) for the potential). There are thus 2 arbitrary
constants at the horizon:

Horizon data : {¢, r}, (44)
as opposed to the series analysis at infinity with
Asymptotic data : {5, a, M}. (45)

What happens here is that the series expansion (42) is not
the most general one. There exists other solutions with logs
or fractional powers (probably depending on the potential),
which are not contained in the regular ansatz.

We conclude that if one integrates from infinity to the
horizon, the values of a, 7 and M must be fine tuned in
order to reach a regular event horizon. Conversely, if one
integrates from the horizon, prescribing the values of r.
and ¢, one gets at infinity a surface in the 7, a, M space.
Actually, we can say something else. We shall prove now
that 7 only depends on the value of ¢, and not on r,

n = (o). (46)

To see this, suppose we are given a solution to the equa-
tions of motion, i(r), y(r), ¢(r) displaying a regular event
horizon. Using scale invariance we can provide immedi-
ately another exact solution to the equations by the simple
transformation

h(r) = o2h(r/o) 47)
y(r) = o 2y(r/o) (48)
$(r) = ¢(r/o) (49)

The new solution is a different one! If the horizon in the
first solution was at r = r,, then the location of the hori-
zon in the second solution is at

Fi=ory. (50)

In fact, 4(7,) = 0. This means that acting with scale trans-
formations, we can cover all possible values of r, . On the
other hand, the value of ¢, remains unchanged since

(71) = ¢p(ry) = ¢y (51)

Acting with scale transformations we thus cover all
solutions with a given value of ¢,. Now, scale transforma-
tions act on the asymptotic parameters leaving 7 invariant.
We thus conclude that the asymptotic parameter 7 is in
one-to-one correspondence with the value of ¢ at the
horizon

by < 1. (52)

8This has also been remarked in [31].
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For a given value of 7, the value of ¢ is determined. In the
example of [1], n = —2/3 and ¢, = tanh ' (1/~/3).

Recall that 7 is fixed in the action principle, and acts as
an external parameter. For fixed n (and hence ¢), the
remaining degrees of freedom are M and a, at infinity, and
r at the horizon. This means that if one integrates from
the horizon, varying the values of r, one obtains at infinity
a curve in the M, a plane. As we have shown this curve will
cover only the M > 0 half plane. Of course, for different
values of 7, the curve changes.

VI. ADDING ANGULAR MOMENTUM

We will now extend the discussion of the thermodynam-
ics to black holes with angular momentum. This requires a
change of the ansatz for the metric (6) to

d 2
dst = y(r)?h(r)ds* + Wrr) + rX(de + n(r)dt)?, 3)
¢ = o).

The reduced action is

1 2p?
T yn &) = <o fdr{y(—% vy

+ 8rhe? + 16rV> 4 an'} +B. (54

Here p = 7, = — %n’ . The bulk term of the action van-

ishes on shell. The equation of motion for n gives p =
const. By shifting the angular coordinate we arrange for
n(ry) =0.

The action is invariant under (9)—(12), augmented by

p(7) = a?p(n), (55)

i(7) = o 2n(r). (56)

This leads to the following radially conserved Noether
charge

1
C= 7<—h ol 8r2h¢'2> —2np. (57

One checks that indeed C' = 0 by virtue of the equations of
motion.

The boundary terms B must again be chosen such that
0B cancels the boundary terms which appear when one
extremizes the action. One finds

8B = —%{(,B(é‘h + 16rhdp'5¢) + 2ndp}

r=o00

1
+ +
86(75/1 2ndp)

r=ri

= B(6M + Q8J) — 88 (58)

Here we have used that /#(r.) = 0 and the definitions
v(00) = B, n(c0) = BQ. It follows from the equations of
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motion that B and ) are finite. The first two terms are the
contribution from r = oo, the last term is the contribution
from the horizon. Replacing once more the functional
variations by those which follow from the scaling proper-
ties of the fields, combined with the fact that M and J have
weight two, one finds

C =8GB(M + QJ). (59)
From the contribution at r = r, we find again Eq. (18), i.e.
S =2

In order to find a relation between M, J and S, we use the
fact that C is a constant. While its expression at r = 00 was
used to relate it to M and J, we now use its expression at the
horizon to relate it to S. This leads to

1

BM + QJ) = ES' (60)

as promised. One easily verifies that this relation is satis-
fied for the rotating BTZ black hole.

D=4

In four dimensions the equations of motion have a
similar structure, although there are important differences.
For reasons which will become clear very soon, we make
the general ansatz for the metric

d 2
ds? = —y*hde® + “—+ PPy, ©1)

where the “‘sphere” d(); is either a 2-sphere, a 2-torus or a
higher genus surface,

de? + sin20d¢2, k=1
dQ, = { dx* + dyz, k=20 (62)
d6? + sinh’0d¢?, k= —1.

Black holes with unusual topologies were first discussed in
[19,20].
The ansatz (61) leads to the reduced action

(—=1)
8G
+ 16r°V(¢)) + B. (63)

I[h, y, ¢] =

fdry(rh’ +h—k+ 8r°2he¢”?

We have introduced the notation G = “z/T—kG with V, =

[d€Qy. The horizon area is then V,r%. Varying v, h, ¢
one obtains the equations of motion

rh + h — k + 8r*he> + 16r*V(¢) = 0, (64)
—v' + 8ry¢p”? =0, (65)

—(rPyhe) + r*yV 4 = 0. (66)

These equations are similar to those in three dimensions,
(8), except for the constant k appearing in (64). This
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constant, which is a fixed number associated to the sphere’s
curvature, spoils scale invariance.’

However, for the torus topology, k = 0, the equations
are scale invariant and we can immediately generalize the
discussion fromd = 3tod = 4,'"%in particular due to scale
invariance there is a radially conserved charge. Because of
the invariance of the action under the replacements
(r, h(r), y(r), §(r)) — (7, h(F), ¥(F), $(7)) with [c.f. (9)-
(12)]

F=or (67)
h(7) = a2h(r) (68)
y(7) = o 3y(r) (69)
(7 = ¢(r) (70)
one finds
C = y(r*h' —2h + 83 h¢") (71)

with C' = 0 by virtue of the equations of motion.
Equation (18) for the entropy is now

_dmn Yok (72)
46 4G
and
Vo 29 41
M = — (réh + 8r*hep'5 ) (73)
877G

r=00

Using (70) and (68), and the fact that M now has scaling
weight three, one finds from (73) and from comparing with
(71) the relation

247G
Vo

M. (74)

On the other hand, evaluation of C at the horizon gives

C =4mr. (75)

Comparison of (74) and (75) leads to the relation

“Note that if one replaces y = A’ and varies A, the piece A’k is
a boundary term and the action becomes scale invariant. The
space of solutions has an extra integration constant, and for
particular values of that constant, the original equations are
recovered. The main obstruction to follow up this idea is the
relativistic version of the modified equations of motion.

'0The generalization to arbitrary d is straightforward if we take
for dQ4_, the volume element of a flat torus.
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V()r%_
M=—. 76
B oG (76)
In place of (35) one now finds
87GM = Vorrs. (77)

and the specific heat can be computed to be twice the

entropy and for the temperature one finds

_3 o3 o GM\I/3

T 277 K0< Vo ) . (78)

We stress once more that these results are valid for arbi-

trary potentials as long as they lead to a solution for the

scalar field which vanishes asymptotically. The specific

form of the potential only enters through the integration
constant K.

The proof of positivity of M proceeds in exactly the
same way as in d = 3. It depends crucially on the existence
of the scaling charge, i.e. on considering the case k = 0. In
fact, negative mass hairy black holes for k = 1 have re-
cently been constructed in [32].

It is now straightforward to check that for a constant
potential V = —3, i.e. in the presence of a cosmological
constant but no scalar field, one finds the above results with
ko = 1 as one easily verifies given the explicit solution

8
p=p2 = 370" (79)
V()r
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