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Abstract

A paradigm describing black hole evaporation in non-perturbative quantum gravity is developed

by combining two sets of detailed results: i) resolution of the Schwarzschild singularity in loop

quantum gravity [1]; and ii) time-evolution of black holes in the dynamical horizon framework

[2, 3, 4]. Quantum geometry effects introduce a major modification in the traditional space-time

diagram of black hole evaporation, providing a possible mechanism for recovery of information that

is classically lost in the process of black hole formation. The paradigm is developed directly in

the Lorentzian regime and necessary conditions for its viability are discussed. If these conditions

are met, much of the tension between expectations based on space-time geometry and structure of

quantum theory would be resolved.

PACS numbers: 0460P, 0470D
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I. INTRODUCTION

In classical general relativity, a rich variety of initial data on past null infinity, I
−, can

lead to the formation of a black hole.1 Once it is formed, space-time develops a new, future

boundary at the singularity, whence one can not reconstruct the geometry and matter fields

by evolving the data backward from future null infinity, I
+. Thus, whereas an appropriately

chosen family of observers near I
− has full information needed to construct the entire space-

time, no family of observers near I
+ has such complete information. In this sense, the

classical theory of black hole formation leads to information loss. Note that, contrary to

the heuristics often invoked (see, e.g. [5]), this phenomenon is not directly related to black

hole uniqueness results: it occurs even when uniqueness theorems fail, as with ‘hairy’ black

holes [6] or in presence of matter rings non-trivially distorting the horizon [7]. The essential

ingredient is the future singularity, hidden from I
+, which can act as the sink of information

(see, in particular, Penrose’s remarks in [8].)

A natural question then is: what happens in quantum gravity. Is there again a similar

information loss? Hawking’s celebrated work of 1974 [9] analyzed this issue in the framework

of quantum field theory in curved space-times. In this approximation, three main assump-

tions are made: i) the gravitational field can be treated classically; ii) one can neglect the

back-reaction of the spontaneously created matter on the space-time geometry; and iii) the

matter quantum field under investigation is distinct from the collapsing matter, so one can

focus just on spontaneous emission.2 Under these assumptions, Hawking found that there is

a steady emission of particles to I
+ and the spectrum is thermal at a temperature dictated

by the surface gravity of the final black hole. In particular, pure states on I
− evolve to

mixed states on I
+. In a next step, one can include back-reaction. To our knowledge, a

detailed, systematic calculation is still not available. In essence one argues that, as long as

the black hole is large compared to the Planck scale, the quasi-stationary approximation

should be valid. Then, by appealing to energy conservation and the known relation between

the mass and the horizon area of stationary black holes, one concludes that the area of the

1 For simplicity of discussion, in this article we will consider only zero rest mass matter fields and assume

that past null infinity is a good initial value surface. To include massive fields, one can suitably modify

our discussion by adjoining past (future) time-like infinity to past (future) null infinity.
2 Generally, only the first two assumptions are emphasized. However, we will see that the third also has a

bearing on the validity of semi-classical considerations.
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FIG. 1: The standard space-time diagram depicting black hole evaporation

event horizon should steadily decrease. This then leads to black hole evaporation depicted

in figure 1 [9].

If one does not examine space-time geometry but uses instead intuition derived from

Minkowskian physics, one may be surprised that although there is no black hole at the

end, the initial pure state has evolved in to a mixed state. Note however that while space-

time is now dynamical even after the collapse, there is still a final singularity, i.e., a final

boundary in addition to I
+. Therefore, it is not at all surprising that, in this approximation,

information is lost —it is still swallowed by the final singularity [8]. Thus, provided figure

1 is a reasonable approximation of black hole evaporation and one does not add new input

‘by hand’, then pure states must evolve in to mixed states.

The question then is to what extent this diagram is a good representation of the physical

situation. The general argument in the relativity community has been the following (see

e.g. [10]). Figure 1 should be an excellent representation of the actual physical situation

as long as the black hole is much larger than the Planck scale. Therefore, problems, if any,

are associated only with the end point of the evaporation process. It is only here that the

semi-classical approximation fails and one needs full quantum gravity. Whatever these ‘end

effects’ are, they deal only with the Planck scale objects and would be too small to recover

the correlations that have been steadily lost as the large black hole evaporated down to the

Planck scale. Hence pure states must evolve to mixed states and information is lost.

Tight as this argument seems, it overlooks two important considerations. First, one would

hope that quantum theory is free of infinities whence figure 1 can not be a good depiction

of physics near the entire singularity —not just near the end point of the evaporation
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process. Second, the event horizon is a highly global and teleological construct. (For a

recent discussion of limitations of this notion, see [11]). Since the structure of the quantum

space-time could be very different from that of figure 1 near (and ‘beyond’) the singularity,

the causal relations implied by the presence of the event horizon of figure 1 is likely to be

quite misleading. Indeed, Hajicek [12] has provided explicit examples to demonstrate that

the Vaidya solutions which are often used to model the evaporating black hole of figure 1

can be altered just in a Planck scale neighborhood of the singularity to change the structure

of the event horizon dramatically and even make it disappear.

The purpose of this article is to point out that these considerations are important and

conclusions drawn from figure 1 are therefore incomplete. More precisely, we will argue that

the loss of information is not inevitable even in space-time descriptions favored by relativists.

As in other discussions of the black hole evaporation process, we will not be able to present

rigorous derivations. Rather, we will present a paradigm3 by drawing on two frameworks

where detailed and systematic calculations have been performed: i) analysis of the fate of the

Schwarzschild singularity in loop quantum gravity; and ii) the dynamical horizon formalism

which describes evolving black holes in classical general relativity. The result is a space-time

description of black hole evaporation in the physical, Lorentzian setting in which one allows

for a quantum extension of the space-time geometry beyond singularity. Since the space-time

no longer has a future boundary at the singularity, pure quantum states on I
− can evolve

to pure quantum states on I
+.

The plausibility of this scenario is supported by the fact that its 2-dimensional version

is realized [13] in the CGHS black hole [14]. There, it is possible to isolate the true degree

of freedom and carry out an exact quantization using, e.g., Hamiltonian methods. On the

resulting Hilbert space, one can in particular define the quantum (inverse) metric operator.

The classical black hole metric arises as the expectation value in a suitable quantum state,

i.e., in the mean field approximation. Hawking effect emerges through the study of small

fluctuations on this mean field. One can explicitly check that this mean field approximation is

good in a significant portion of the quantum space-time. However, the quantum fluctuations

are very large near the entire singularity, whence the approximation fails there. The quantum

(inverse) metric operator itself is well-defined everywhere; only its expectation value vanishes

3 This paradigm was briefly sketched in section 8 of [11].

4



at the classical singularity. Thus, quantum geometry is defined on a manifold which is larger

than the black hole space-time of the mean field approximation. The mean field metric is

well-defined again in the asymptotic region ‘beyond’ the singularity.4 Thus, there is a single

asymptotic region in the distant past and distant future and pure states on I
− evolve to

pure states on I
+ of the full quantum space-time.

In this paper, we will focus on 4 dimensions where the qualitative picture is similar but

the arguments are based on a number of assumptions. We will spell these out at various

steps in the discussion. As we will see, specific calculations need to be performed to test if

the assumptions are valid and the scenario is viable also in 4 dimensions. Our hope is that

the proposed paradigm will provide direction and impetus for the necessary detailed analysis

which will deepen our understanding of the evaporation process, irrespective of whether or

not the paradigm is realized.

The paper is organized as follows. In section 2, we summarize the resolution of the

Schwarzschild singularity by effects associated with the quantum nature of geometry. The

new paradigm for black hole evaporation is presented in section 3. Section 4 contains some

concluding remarks.

II. QUANTUM GEOMETRY AND THE SCHWARZSCHILD INTERIOR

Since the key issues involve the final black hole singularity and since we expect this singu-

larity to be generically space-like, one can first focus just on the interior of the Schwarzschild

horizon. This region is naturally foliated by 3-manifolds which are spatially homogeneous

with the Kantowski-Sachs isometry group. Therefore, we can begin with the Kantowski-

Sachs ‘mini-superspace’ of vacuum, spatially homogeneous space-times. Using quantum ge-

ometry, we can go to the exact quantum theory [1]. The situation is similar but technically

4 There is a qualitative similarity with the theory of ferromagnetism. The (inverse) metric is analogous to

the magnetization vector. If you have a large ferromagnet (such as the earth) a small, central portion of

which is heated beyond the Curie temperature, the mean field approximation will hold far away from this

central region and the magnetization operator will have a well-defined mean value there. That region is

analogous to the part of the full, quantum space-time where there is a well-defined classical metric. The

analysis of the Hawking effect is analogous to that of spin-waves on this part of the ferromagent, where

the mean field approximation holds. While the mean field approximation fails in the central region where

the expectation value of magnetization vanishes, quantum theory provides a good description of the entire

magnet, including the central region, in terms of microscopic spins.
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more complicated than that encountered in the rigorous treatment of spatially homogeneous

and isotropic cosmologies [16]. (See also [15] where the same kind of representation is used,

based on ADM variables.)

The first result is that, although the co-triad and curvature diverge at the singularity in

the classical theory, the corresponding quantum operators are in fact bounded on the full

kinematic Hilbert space. This analysis is analogous to that which showed that the quantum

operator representing the inverse scale factor is bounded above in the spatially homogeneous,

isotropic quantum cosmology [16, 17]. As in that analysis, the co-triad operator has various

nice properties one expects of it and departures from the classical behavior appear only

in the deep Planck regime (i.e. very near what was classical singularity). This finiteness

results from the fact that the ‘polymer representation’ of the Weyl relations underlying

our quantum description is inequivalent to the ‘standard representation’ used in quantum

geometrodynamics (for details, see, e.g., [18]). It is analogous to the finiteness of matter

Hamiltonians in the full theory [19]. This result already indicates that dynamics would be

singularity-free.

Using quantum geometry, one can write down a well-defined Hamiltonian constraint. In

the mini-superspace under consideration, there are only two degrees of freedom. One can

be interpreted as the radius of any (round) 2-sphere in the slice and the other (the norm

of the translational Killing field) is a measure of the anisotropy. It is natural to use the

first as an intrinsic ‘clock’ and analyze how anisotropy ‘evolves’ with passage of this ‘time’.

In quantum theory, one can expand out the state |Ψ〉 as |Ψ〉 =
∑

φ,τ ψ(φ, τ)|φ, τ〉 where φ

are eigenvalues of the anisotropy operator and τ of the radius operator.The Hamiltonian

constraint is of the form:

f+(τ) Ô+ ψ(φ, τ + 2δ) + fo(τ) Ôo ψ(φ, τ) + f−(τ) Ô− ψ(φ, τ − 2δ) = 0 (1)

where f±, fo are rather simple functions of τ , Ô±, Ôo are rather simple operators on functions

of φ alone and δ is a number whose value is determined by the smallest area eigenvalue in

Planck units. Being a constraint, it simply restricts the physically allowed states. However,

one can also regard it as providing ‘time-evolution’ of the quantum state through discrete

time steps of magnitude 2δ (in Planck units). The functions f and the operators Ô are

such that this evolution does not break down at τ = 0 (which corresponds to the classical

singularity). Thus, as in quantum cosmology [16, 20], one finds that the quantum evolution
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does not stop at the singularity; one can evolve right through it [1]. The state remains

pure. However, in the deep Planck regime around the singularity, the notion of a classical

space-time geometry fails to make even an approximate sense. Nonetheless, since there is

no longer a final boundary in the interior, the full quantum evolution is quite different from

the classical one.

This calculation was done [1] in the Kantowski-Sachs mini-superspace and |Ψ〉 represents

the state of the Schwarzschild black hole interior in loop quantum gravity. This black hole

can not evaporate: there is no matter and because of the restriction to spherical symmetry

there can not be Hawking radiation of gravitons either. However, since the generic singularity

is expected to be space-like, one may hope that the general intuition about the resolution

of the Schwarzschild singularity it provides can be taken over to models in which gravity is

coupled to scalar fields, where the evaporation does occur. We will assume that the overall,

qualitative features of our singularity resolution will continue to be valid in these models.

III. EVAPORATION PROCESS

The physical situation we wish to analyze is the following: some radiation field on I
−

collapses and forms a large, macroscopic black hole which then evaporates. For simplicity,

we will restrict ourselves to the spherically symmetric sector of Einstein gravity coupled to

a massless Klein-Gordon field. The incoming state on I
− will be assumed to be a coherent

state peaked at a classical scalar field representing a large ‘pulse’, i.e., a field which is large

over a compact region of I
− and vanishes (or become negligible) outside this region. Note

that there is a single scalar field, coupled to gravity, whose collapse from I
− leads to the

formation of the black hole and whose quanta are radiated to I
+ during the evaporation

process. There are no test fields; the system is ‘closed’.

In this setting, conclusions drawn from classical general relativity should be valid to

an excellent approximation until we are in the Planck regime near the singularity. Thus,

marginally trapped surfaces would emerge and their area would first grow. In this phase

the world tube of marginally trapped surfaces would be space-like [22, 23] and constitute

a dynamical horizon [3, 4]. During Hawking evaporation, it would be time-like and consti-

tute a time-like membrane [11]. In the spherical symmetric case now under consideration,

this scenario was discussed already in the eighties (see, in particular [12, 24]). However,
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constructions were tailored just to spherical symmetry and made use of some heuristic con-

siderations involving an ‘ergo-region of an approximate Killing field.’ Therefore, although

well-motivated, the discussions remained heuristic. Laws governing the growth of the area

of dynamical horizons and shrinkage of area of time-like membranes are now available in a

general and mathematically precise setting [4]. Furthermore, laws of black hole mechanics

have been extended to these dynamical situations. These results strengthen the older argu-

ments considerably and reenforce the idea that what evaporates is the dynamical horizon

and the time-like membrane [11].

Let us now combine this semi-classical picture with the discussion of section II on the

resolution of the singularity to draw qualitative conclusions on what the black hole evapo-

ration process would look like in full loop quantum gravity. Once this regime is reached, a

priori there are two possibilities:

• a) States which start out semi-classical on I
− never become semi-classical on the ‘other

side’ (in the sense discussed in [21]). Then a space-time description is not possible for the

entire process. However, one can look at the problem quantum mechanically and conclude

that pure states remain pure. If we restricted them only to the classical part of the space-

time and measure observables which refer only to this part, we would get a density matrix

but this is not surprising; it happens even in laboratory physics when one ignores a part of

the system.

• b) As in the CGHS model [13], after evolving through the deep Planck regime, the state

becomes semi-classical on the ‘other side’ so we can again use a classical space-time descrip-

tion.

This calculation is yet to be undertaken in 4 space-time dimensions.5 If it turns out that

the possibility a) holds, it would be impossible to speak of a scattering matrix since there

would not be an adequate I
+ or a space-like surface in the distant future for the ‘final’ states

to live on. Hence, it would be quite difficult to say anything beyond the statement that pure

states remain pure. If b) holds, one can compare various scenarios. Therefore, in the rest of

the article, we will focus on this scenario.

A space-time diagram that could result in scenario b) is depicted in figure 2. Here, the

5 However, a kinematical setting for the gravitational sector of this midi-superspace has been developed

[26]. It should be relatively straightforward to write down the analog of (1), although one would most

likely have to solve it numerically.
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FIG. 2: Space-time diagram of black hole evaporation where the classical singularity is resolved

by quantum geometry effects. The shaded region lies in the ‘deep Planck regime’ where geometry

is genuinely quantum mechanical. H is the dynamical horizon which is first space-like and grows

because of infalling matter and then becomes time-like and shrinks because of Hawking evaporation.

In region I, there is a well-defined semi-classical geometry.

extended, ‘quantum space-time’ has a single asymptotic region in the future, i.e., there

are no ‘baby universes’. This is an assumption. It is motivated by two considerations: i)

the situation in the CGHS model where detailed calculations are possible and show that the

quantum space-time has this property; and ii) experience with the action of the Hamiltonian

constraint in the spherically symmetric midi-superspace in 4 dimensions. However, only

detailed calculations can decide whether this assumption is correct. We will refer to figure

2 as a ‘Penrose diagram’ where the inverted commas will serve as a reminder that we are

not dealing with a purely classical space-time. Throughout the quantum evolution, the

pure state remains pure and so we again have a pure state on I
+. In this sense there is no

information loss. Noteworthy features of this ‘Penrose diagram’ are the following.

i) Effect of the resolution of the classical singularity: Region marked I is well-

approximated by a classical geometry. Modulo small quantum fluctuations, this geometry

is determined via Einstein’s equations by the classical data on I
− at which the incoming

quantum state is peaked. The key difference between figures 1 and 2 is that while space-time
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‘ends’ at the singularity in figure 1 it does not end in figure 2. But there is not even an

approximate classical space-time in the shaded region representing the ‘deep Planck regime’.

ii) Event horizon: Since the shaded region does not have a classical metric, it is not mean-

ingful to ask questions about causal relations between this region and the rest. Therefore,

although it is meaningful to analyze the causal structure (to an excellent approximation)

within each local semi-classical region, due care must be exercised to address global issues

which require knowledge of the metric on the entire space-time. This is in particular the case

for the notion of the event horizon, the future boundary of the causal past of I+. Because

there is no classical metric in the shaded region, while one can unambiguously find some

space-time regions which are in the past of I+, we can not determine what the entire past of

I
+ is. If we simply cut out this region and look at the remaining classical space-time, we will

find that the past is not all of this space-time. But this procedure can not be justified espe-

cially for purposes of quantum dynamics. Thus, because the geometry in the deep Planck

regime is genuinely quantum mechanical, the global notion of an event horizon ceases to be

useful. It may well be that there is a well-defined, new notion of quantum causality and

using it one may be able to reanalyze this issue. However, the standard classical notion of

the event horizon is ‘transcended’ because of absence of a useful classical metric in the deep

Planck region.

iii) Dynamical horizon: Nonetheless, we can trust classical theory in region I and this

region will admit marginally trapped surfaces. It is reasonable to expect that a spherical

dynamical horizon will be formed. The precise nature of the dynamical horizon during black

hole formation will not play a significant role in our main discussion. Numerical simulations

[22, 23] indicate that in the formation phase, the situation is similar to that with the Vaidya

metrics [4, 11], the dynamical horizon would be space-like and the area will grow during

collapse. In the classical theory, the dynamical horizon will eventually settle down to a null,

isolated horizon which will coincide with (the late portion of) the event horizon. However,

in quantum theory the horizon will shrink because of Hawking radiation. While the black

hole is large, the process will be very slow. Semi-classical calculations indicate that there is

a positive flux of energy out of the black hole. The dynamical horizon H will now ‘evolve’

into a time-like membrane and its area loss will be dictated by the balance law [4]

dR

dt
= −2GTabτ̂

ar̂b (2)
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where R is the area radius of cross-sections of marginally trapped 2-spheres in H , r̂a is

the unit radial normal to H and τ̂a the unit normal within H to the marginally trapped

2-spheres in H . This process is depicted in figure 2. Thus, although we no longer have

a well-defined notion of an event horizon, we can still meaningfully discuss formation and

evaporation of the black hole using dynamical horizons because most of this process occurs in

the semi-classical region and, more importantly, because the notion of a dynamical horizon

is quasi-local. When the black hole is large, the evaporation process is extremely slow.

Therefore, it seems reasonable to assume that the intuition developed from the quantum

geometry of isolated horizons [28] will continue to be valid. If so, the quantum geometry

of this time-like (weakly) dynamical horizon will be described by the U(1) Chern-Simons

theory on a punctured S2, where the punctures result because the polymer excitations of the

bulk geometry pierce the dynamical horizon, endowing it with certain area quanta. During

the evaporation process, the punctures slowly disappear, the horizon shrinks and quanta of

area are converted into quanta of the scalar field, seen as Hawking radiation at infinity.6 The

existence, in the classical theory, of a meaningful generalization of the first law of black hole

mechanics to dynamical horizons [3, 4] supports the view that the process can be interpreted

as evaporation of the dynamical horizon.

iv) Reconciliation with the semi-classical information loss: Consider observers restricted

to lie in region I (see figure 3). For a macroscopic black hole this semi-classical region is very

large. These observers would see the radiation resulting from the evaporation of the horizon.

This would be approximately thermal, only approximately because, among other things, the

space-time geometry is not fixed as in Hawking’s original calculation [9], but evolves slowly.

Although the full quantum state is ‘pure’, there is no contradiction because these observers

look at only part I of the system and trace over the rest which includes a purely quantum

part. In effect, for them space-time has a future boundary where information is lost. Since

the black hole is assumed to be initially large, the evaporation time is long (about 1070 years

for a solar mass black hole). Suppose we were to work with an approximation that the black

hole takes infinite time to evaporate. Then, the space-time diagram will be figure 4 because

the horizon area would shrink to zero only at i+. In this case, there would be an event

6 While Equation (2) relates the change in the area of the time-like dynamical horizon with the flux of the

(negative) energy falling into it, because of the dynamical nature of geometry, there is no simple relation

between this ingoing flux at the horizon and the energy carried by the outgoing quanta on I
+.
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FIG. 3: The solid line with an arrow represents the world-line of an observer restricted to lie in

region I. While these observers must eventually accelerate to reach I
+, if they are sufficiently far

away, they can move along an asymptotic time translation for a long time. The dotted continuation

of the world line represents an observer who is not restricted to lie in region I. These observers can

follow an asymptotic time translation all the way to i
+.

horizon and information would be genuinely lost for any observer in the initial space-time;

it would go to a second asymptotic region which is inaccessible to observers in the initial

space-time. Of course this does not happen because the black hole evaporates only in a

finite time.

v) ‘Recovery’ of the ‘apparently lost’ information: Since the black hole evaporates only

in a finite amount of time, the point at which the black hole shrinks to zero size is not i+

and the space-time diagram looks like figure 3 rather than figure 4. Now, i+ lies to the

‘future’ of the ‘deep Planck’ region and there are observers lying entirely in the asymptotic

region going from i− to i+ (represented by the dotted continuation of the solid line in figure

3). This family of observers will recover the apparently lost correlations. Note that these

observers always remain in the asymptotic region where there is a classical metric to an

excellent approximation; they never go near the deep Planck region. The total quantum

state on I
+ will be pure and will have the complete information about the initial state on

I
−. It looked approximately thermal at early times, i.e., to observers represented by the

12
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FIG. 4: The ‘would be’ space-time if the black hole were to take an infinite time to evaporate.

solid line, only because they ignore a part of space-time. The situation has some similarity

with the EPR experiment in which the two subsystems are first widely separated and then

brought together (see also [29]).

v) Entropy: Since the true state is always pure, one might wonder what happens to black

hole entropy. It is only the observers in region I that ‘sense’ the presence of a black hole. In

the quantum geometry approach to black hole entropy, entropy is not an absolute concept

associated objectively with a space-time. Rather, it is associated with a family of observers

who have access to only a part of space-time. Indeed, the entropy of an isolated horizon

calculated in [27, 28] referred to the family of observers for whom the isolated horizon serves

as the internal boundary of accessible space-time. So, for observers restricted to region I,

that entropy calculation is still meaningful, at least so long as the black hole is macroscopic

(i.e., the area of marginally trapped surfaces on H is much larger than Planck area). And it

is these observers who see the (approximate) Hawking radiation. More precisely, since these

observers have access only to observables of the type AI ⊗ 1, they trace over the part of the

system not in I, getting a density matrix ρI on the Hilbert space HI. Entropy for them is

simply TrIρI ln ρI. Had there been a true singularity ‘ending’ the space-time, this entropy

13



would have become objective in the sense that it would be associated with all observers who

do not fall into the singularity.

IV. CONCLUDING REMARKS

In the last two sections we used a quantum gravity perspective to argue that information

loss is not inevitable in the space-time description of black hole evaporation. The qualita-

tive difference between figures 1 and 2 arises essentially from the fact that the singularity is

resolved in quantum geometry, as per a general expectation that a satisfactory quantum the-

ory of gravity should not have infinities. In this sense the paradigm shift is well-motivated.

Furthermore, conclusions of the traditional paradigm drawn from the usual space-time dia-

gram 1 are not simply discarded. For a large black hole, they continue to be approximately

valid for a very long time. Figure 3 clarifies the approximation involved. However, from the

conceptual perspective of fundamental physics, conclusions drawn from the complete space-

time diagram 2 are qualitatively different from the standard ones. A pure state from I
−

evolves to a pure state on I
+ and there is no obstruction in quantum theory to evolving the

final state on I
+ backwards to recover full space-time. However the resulting geometry fails

to be globally classical. In the shaded region, it is genuinely quantum mechanical and can

be described only in terms of the quantum geometry states (i.e., in terms of spin-networks).

However, in the region in which one can introduce classical geometry to an excellent approx-

imation, it is meaningful to speak of marginally trapped surfaces, dynamical horizons and

null infinity I
±.7 What ‘evaporates’ is the area of the dynamical horizon.

From the perspective of this paradigm, the conclusion that a pure state must evolve to

a mixed state results if one takes the classical space-time diagram 1, including the singular

boundary in the future, too seriously.8 The viewpoint suggested by the CGHS model is that

the classical singularity is only a reflection of the failure of the mean field approximation.

Quantum geometry is defined on a larger manifold and when the analysis pays due respect

7 Because of the presence of the purely quantum part, the space-time is not asymptotically simple [30];

the classical region admits null geodesics which do not end on I
±. However, it is asymptotically flat and

admits a global null infinity in the sense of [31].
8 Perhaps an analogy from atomic physics would be to base the analysis of the ground state of the hydro-

gen atom on the zero angular momentum, classical electron trajectories, all of which pass through the

‘singularity’ at the origin.
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to this extension, pure states can evolve to pure states, without any information loss.

The two dimensional analog of our paradigm is realized quite well by CGHS black holes

[13]. However, 2 dimensional models have special features that are not shared by higher di-

mensional theories. To carry out the analogous analysis in 4 dimensions, one would have to

complete several difficult steps: i) Discussion of quantum dynamics in the spherically sym-

metric midi-superspace [26]. To be directly useful, we would need to introduce a satisfactory

generalization of the notion of ‘time’ used in [1]; ii) demonstration of the semi-classical be-

havior of the quantum state in regions where the dynamical horizon grows and the time-like

membrane shrinks (in the regime where its area is large); iii) extension of the available the-

ory [28] of quantum geometry from isolated to slowly evolving dynamical horizons; and iv)

establishing that the quantum state becomes semi-classical again on the ‘other side’ of what

was a classical singularity, with a single asymptotic region. To gain intuition on the last is-

sue, numerical simulations of the ‘past evolution’ were recently performed [32] in the simplest

mini-superspace models. It was found that, while the passage through the singularity does

increase the quantum fluctuations somewhat, the state continues to be semi-classical after

it crosses the deep Planck regime to the ‘past’ of what was the classical singularity. While

this behavior is in accordance with the scenario used here, the support it provides is not so

strong since the minisuperspace is highly restricted. Note, however, that any approach to

quantum gravity will have to resolve similar issues if it is to provide a detailed ‘space-time

description’ of the black hole evaporation in the Lorentzian framework. In particular, all

discussions beyond the semi-classical approximation that we are aware of implicitly assume

that there is a semi-classical regime in the future.

Finally, in this paradigm correlations are restored by part of the state that passes through

the singularity and emerges on I
+ to the future of region I of figure 2. Therefore, it is

presumably necessary that this part should carry a non-trivial fraction of the total ADM

mass of space-time (see, however, [29]). This seems physically plausible because one expects

non-trivial space-time curvature also on the ‘other side of the singularity’. However, whether

this is realized in detailed calculations remains to be seen. Thus, the paradigm is based on

pieces of calculations and analogy to the CGHS model, rather than a systematic detailed

analysis. Recall, however, that the traditional reasoning that led to figure 1 was based on

general considerations and plausibility arguments and a systematic analysis of the viability

of approximations is still not available. Nonetheless, it led to a paradigm which proved to
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be valuable in focussing discussions. Our hope is that that the paradigm presented here will

play a similar role.
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