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Abstract
GEO 600 is a 600 m arm-length, laser interferometric gravitational wave
detector, located about 25 km from Hannover, Germany. Starting in November
2003, GEO 600 took part in a coincident data taking period with other detectors
around the world. During this time, GEO 600 acquired three weeks of
‘science quality’ data. These data are currently being processed to search for
gravitational wave signatures. One such search is that for burst gravitational
waves. To investigate the performance of any burst-search codes used to
analyse the data, burst-like signals were injected into the detector after the
data taking run; this was done by differentially driving the end mirrors of
the interferometer. In this paper, we report on how the first burst hardware
injections were performed on GEO 600, the type of signals injected and the
analysis of the data from the period of injections. Results from the analysis are
also presented and discussed.

PACS numbers: 95.55.Br, 95.75.Kk, 04.80.Nn, 95.55.Ym

1. Introduction

The search for gravitational waves has been going on since the late 1960s when Weber built
the first gravitational wave detector: a resonant-mass detector operating at room temperature.
Today, there are several cryogenic resonant-mass gravitational wave detectors in long-term
operation around the world which are several orders of magnitude more sensitive than earlier
ones. These are ALLEGRO [1], AURIGA [2], EXPLORER and NAUTILUS [3]. In addition
to these, a worldwide network of laser interferometric gravitational wave detectors is rapidly
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coming into operation. One of these is the British–German GEO 600 project [4] located near
Hannover, Germany. In conjunction with the LIGO [5] and TAMA [6] detectors, GEO 600
acquired three weeks of scientifically useful data between 5 November 2003 and 13 January
2004; this data taking period is termed S3. Another interferometric gravitational wave detector,
VIRGO [7] is currently still in the commissioning stage.

The data acquired during the science run are currently being analysed for possible
signatures of signals from many different kinds of sources. One such analysis is the search for
burst gravitational waves. Burst gravitational waves are defined as short, unmodelled pulses
of gravitational radiation which could possibly be emitted from a catastrophic event such as a
stellar core collapse.

A key step in the search for unmodelled bursts is to validate and characterize the analysis
software. So far, various different search algorithms have been developed to try and detect
burst-like signals in the data of gravitational wave detectors. This paper focuses on two of
these algorithms: Excess Power and HACR (Hierarchical Algorithm for Clusters and Ridges).
Other examples of burst-search algorithms are discussed in [8–10]. One desired validation
step for these algorithms is to do hardware injections, that is, to inject a burst-like signal into
the interferometer by introducing known differential arm-length changes. Such injections
appear at the output of the interferometer in the main gravitational wave channel. Analysis of
this data stream should lead to the recovery of the injected signals.

The first burst hardware injections in GEO 600 were performed on 16 and 17 January
2004. The recorded data have been analysed with two burst-search algorithms, Excess Power
and HACR. In this paper, we report on the analysis of this first ever series of burst hardware
injections at GEO 600. We begin with a description of how the injections were performed
and a brief description of each analysis pipeline used. Slightly more emphasis is given to the
details of the HACR algorithm, as this information is previously unpublished. The results of
the two analyses follow, together with some concluding remarks.

2. The injected events

A period of a few hours was chosen shortly after the end of the S3 science run during which
to perform hardware injections of burst-type signals. During this time, some parameters of
the waveforms were varied, producing different sets of injected events. This section gives a
description of the injected signals, together with a brief discussion of how the injections were
performed.

2.1. Generating the signals

Injection of the burst-type signals can be viewed naturally as a four-step process. The first step
is to use a particular waveform model to generate a gravitational wave strain signal. Having
done this, the signal must be converted into a voltage that, when applied differentially to the
Michelson length-control actuators, gives the differential displacement expected from such a
waveform. The signal is then sent to the signal injection hardware and finally is applied to the
length-control actuators of the Michelson control servo [11] to create the desired differential
arm-length changes.

2.1.1. Signal waveform. The injected signals, in units proportional to strain, were sine-
Gaussian waveforms of the form

s(t) = A cos(2πf0t) exp

(
− (t − 0.5)2

2τ 2

)
, (1)
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where A is a scaling amplitude, f0 is the central frequency of the waveform and τ is related to
the quality factor, Q, of the signal by

τ = Q

2πf0
. (2)

The 0.5 s offset is included just to make the waveform peak in the middle of a 1 s data segment.
A digital representation, s[n], of this waveform is produced by setting t = n/fs where fs

is the required sample rate of the output signal.
Having created the digital signal (in units proportional to strain), we need to convert

it into a force that we can apply differentially to the main test masses. The main length-
control actuators used to keep the Michelson interferometer at its operating point can be used
to induce a desired differential arm-length change in the interferometer. These actuators are
located at the bottom of pendulum chains that suspend the main optics of the interferometer (see
[12, 13] for details of the pendulums). For frequencies f above the longitudinal resonance of
these pendulums, the displacement of the test masses follows the signals applied to the actuator
with an f −2 response. In order to ensure that the resulting mirror displacement is directly
proportional to the strain signal we calculated, we must filter the calculated signal with an f 2

response (‘strain-to-force’) before applying it to the actuators. This was done using a time
domain, infinite impulse response (IIR) filter.

The signal generation routine, together with the strain-to-force filter, is implemented as a
LabVIEW virtual instrument that communicates directly with the hardware injection system
via a digital I/O card attached to the PC running the software.

As well as generating the signal for injection, the software is also responsible for
controlling the parameter values that go into the calculation of each injected waveform.
For the experiments described here, the following parameters were varied:

• overall strain amplitude, A,
• central frequency, f0.

The injection of individual events into the detector was designed to occur at a random
offset from the GPS second boundary. The injection times, together with the parameters used
to produce each injected waveform, were stored to a file. As an additional record, the injected
waveforms were recorded using the data acquisition system of GEO [14, 15]. Due to the poor
time accuracy of the PC clock, the injection times recorded to the file were not deemed accurate
enough to do a comparative analysis. Therefore, the recording of the injected waveforms was
subsequently used to determine the time of the peak of the waveform to an accuracy of around
60 µs (see sections 4.1.1 and 4.2.1).

2.1.2. Injection signal generator. In order to do temporally accurate waveform injections into
the detector, a purpose-made injection hardware module was built [16]. The digital waveform
to be injected is first downloaded, along with any relevant timing information, to the on-board
RAM; the orchestration of this process is done by a Programmable Logic Chip in the module.
The processor monitors timing signals provided by an external GPS unit and begins clocking
out the waveform to a digital-to-analogue converter (DAC) at the precise offset from the
1 PPS (pulse-per-second) edge requested by the control computer. For these experiments,
the GPS timing unit of the data acquisition system was used. The signal from the DAC then
passes through an amplification stage to set the signal levels for application to the electrostatic
actuators mounted behind the main test masses.

The differential arm-length change achieved by a particular injection depends on the
calibration factor of the actuators used, in this case, the electrostatic drives. While this factor
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Table 1. Summary of injected signals for the three injection periods.

First period Second period Third period

Time span (UTC) 16/1/04, 23:22 16/1/04, 23:52 17/1/04, 02:56
−16/1/04, 23:51 −17/1/04, 02:55 −17/1/04, 04:35

No. of injected signals 39 150 150
Central frequency f0 (Hz) 1080 1080 723
Amplitude A (arbitrary units) 35 20 35

is known, the injected signals were so far not calibrated to absolute units prior to the analysis
and so only a relative comparison of the amplitudes of the detected to the injected signals is
treated in this paper.

2.2. Summary of injected events

The injected events were grouped into three distinct populations. These are listed in table 1.
All injected events had a Q of 9.

3. Search algorithms

The search for burst-like gravitational wave signals is, in some sense, the most difficult of the
gravitational wave searches currently underway. This is because the number of modelled burst
sources is very small, and even then, these are not well understood. Therefore, the search
needs to focus on unmodelled sources which in principle means that search algorithms need
to be many, or general in their approach.

For this experiment, two search algorithms were chosen that search for arbitrary short-
duration signals in the time/frequency plane. The two methods are called HACR and Excess
Power.

Prior to the hardware injections, Excess Power had never been used to process GEO
data. Therefore, using it to analyse the hardware injections provided, at a minimum, a
demonstration that the algorithm could be applied to GEO data. On the other hand, HACR
was used because it had previously been used to process GEO data and we had some experience
in using the algorithm. HACR could therefore serve as a guide for the performance of the
Excess Power algorithm. Moreover, its infrastructure was designed for quick analysis of GEO
data.

Descriptions of the algorithms follow, together with details of the particular
implementation and parameter tunings used to analyse the hardware injection data. The
input parameters of both algorithms were tuned and fixed without prior knowledge of the
injected events.

3.1. HACR pipeline

The HACR algorithm is an example of a class of time/frequency algorithms used to detect
weak, short-period bursts in a noisy time series; it is an adaptation of the TFCluster algorithm
described in [17]. An overview of the HACR pipeline is given in [18]; the mathematical
details of the algorithm are described below.
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3.1.1. HACR algorithm. The time frequency representation that we use is called the
spectrogram, ρ(t, f ), and is defined as

ρ(t, f ) =
∣∣∣∣
∫ ∞

−∞
x(t ′)w(|t − t ′|) e2π if t ′dt ′

∣∣∣∣
2

, (3)

where t is the time, f is the frequency, x(t) is the time series being analysed and w(t) is a
window function. A window function is typically non-zero only in a small interval (τ ) around
the origin. This implies that the contribution to the integral in the equation above comes only
from a small interval around the time of interest. In physical terms, the spectrogram ρ(t, f )

represents a two-dimensional energy density function. Once the spectrogram is constructed,
we identify regions in the spectrogram where the power is larger than some chosen threshold.
Each such contiguous region is then labelled as an event.

For the purpose of analysis, the data are divided into segments of a convenient duration,
T, of approximately a few seconds. Each data segment is then divided into windowed
subsegments of duration τ , and a discrete version of the spectrogram is constructed. The
discrete spectrogram is represented by the two-dimensional set of numbers (referred to later as
pixels) ρjk , where the indices j and k increase uniformly with time and frequency, respectively.
Since each subsegment size is τ , the frequency resolution, �f , is therefore equal to 1/τ . The
resolution in time domain is τ − o where o is the overlap between consecutive subsegments.

The next stage of the algorithm is to examine the discrete spectrogram and identify pixels
with abnormally large power which one would not statistically associate with noise alone.
The mean and variance of the spectrogram pixels is computed for each frequency bin and the
pixels are normalized with respect to this mean and variance. There are two criteria applied
while clustering pixels: first, each pixel in the cluster must have a normalized power higher
than a lower threshold, tl, and at least one pixel in the cluster must have a power larger than
the upper threshold, tu.

Once the clusters have been identified the properties of the cluster are recorded. The
duration and bandwidth of the cluster are simply defined by the extent of the cluster in the
spectrogram in both time and frequency. The ‘central’ frequency and ‘time of occurrence’
of the event are determined by the weighted average of the pixel coordinates. The maximum
pixel power, as well as the normalized power, is also recorded. In addition we also store the
number of pixels in the cluster.

3.1.2. Choice of algorithm parameters. The HACR algorithm requires several parameters
to be set, both for the construction of the spectrogram and for the clustering of pixels. The
timescale, T, should be such that the noise is stationary over this time scale and it should
be much larger than any burst timescale to allow us to get a good estimate of the average
properties of the noise around a possible burst event. In this analysis, T was chosen to be 16 s
since on astrophysical grounds we would not expect gravitational wave burst events to last for
more than a few milliseconds. The window width should be close to the burst time scale in
order to maximize the ratio of signal power to noise power. On the other hand, we would like
to retain as high a frequency resolution as possible. Considering both of these requirements,
we chose a value of 512 samples (or 1/32 s) for τ . The ‘Hanning’ window is used for the
construction of the spectrogram. Consecutive subsegments are overlapped by as much as 80%
to compensate for the attenuation by the window function. The upper and lower normalized
power thresholds, tu and tl, were chosen to be 200 and 20, respectively. Since the dynamic
range of the data is quite large, the data were filtered through a time domain high-pass IIR
filter with a lower cutoff frequency of 50 Hz. This was necessary since we are computing
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the Fourier transform of very short stretches of data and the Hanning window does not have
sufficiently good side-lobe suppression.

3.2. Excess Power pipeline

The Excess Power algorithm is described in [19, 20]. Like HACR, Excess Power is an
algorithm that attempts to identify statistically significant bursts of excess power in the
time/frequency domain. For completeness, a brief overview of this algorithm will be reviewed
in this section.

The first step is to create a time/frequency map of the data. This is then tiled with sets of
N tiles, where N is traditionally chosen to be a power of 2 in order to maximize computational
efficiency. The time and frequency spans are split into Nt = 2i and Nf = 2j sections such
that 2i+j = Nt × Nf = N . For each time/frequency tile, the total power within the tile is
computed by summing the power in each time/frequency bin within the boundaries of the tile.
We define the total power in each tile as PT .

For stationary, Gaussian noise, the values of PT follow a chi-squared distribution with
2Nt degrees of freedom. Therefore, the excess power in each tile is calculated by

�PT = PT − 〈PT 〉 = PT − 2NT . (4)

From the distribution of PT , one can assign a confidence, α, to the power observed in each
tile. By then applying a threshold to α, we can extract the tiles with statistically significant
excess power in them as possible event candidates. Central frequencies are estimated by the
frequency of the centre of the tile.

For the results presented in section 4.2, the Excess Power code processed the hardware
injection data in the band between 500 and 1500 Hz. This frequency range was chosen because
this is the frequency region where GEO 600 was most sensitive during the S3 run. The data
were initially split into sub-segments of 16 384 samples (1 s) in length. A confidence threshold
of 10−7 was used to select the triggers. Because GEO data are stored in double precision, it
was necessary to cast it into single precision so that it could be processed by the Excess Power
code (due to limitations of the implementation of the algorithm). Before casting the data to
single precision, a high-pass filter with a corner frequency of 300 Hz was applied. For each
trigger, the Excess Power algorithm gives an estimate of the relative excess power together
with the frequency and time at which the signal power peaks.

4. Results

This section presents the results from running the HACR and Excess Power algorithms over
the data containing the hardware injected signals. For both analyses, some discussion is
given over to parameter estimation and algorithm performance. Both algorithms use a power
signal-to-noise ratio to provide a measure of the strength of the detected signal: in the case of
HACR, this is defined as the ratio of the peak power in a detected event to the average power
at that frequency; for Excess Power, it is defined as the ratio of the detected excess power to
the average power in the time-frequency tile of the given data segment.

4.1. Results of the HACR pipeline

We now describe the results obtained by analysing the data with the HACR algorithm. Two of
the estimated parameters for the detected events as a function of time are presented in figure 1.
The top panel on the graph is a scatter plot of the events on the time/frequency plane and the
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Figure 1. A plot showing two of the estimated output parameters of the HACR algorithm as a
function of time. Also shown are those events that were subsequently identified with hardware
injection events. The discrepancy of the population centred around 800 Hz from the injected events
which had a central frequency of 723 Hz (see table 1), is discussed later in the text.

bottom panel is a scatter plot with the time of occurrence versus the relative power (to the
upper threshold). The points marked as a cross indicate the events that were detected. Some
of these events correspond to the hardware injected signals and the rest are presumed to be
artefacts of the noise.

Since we have the list of times at which the signals were injected we can carry out a
coincidence analysis to determine which of the detected events correspond to injected signals.
In order to take into account possible errors in the detection times introduced by the algorithm,
we allow for a time window of 100 ms around the injected events. If a detected event lies
within this window it is associated with that particular injection. Such events are denoted with
circles in figure 1. A total of 371 events were detected during the injection period. All 339
injected events are matched by a detected event close by. The remaining events which do not
correspond with the injected signals are artefacts of noise. By looking at the two subplots
together, three populations of injected events must be discussed.

4.1.1. Estimation of signal parameters. We now compare the parameters of the detected
signals with those of the injected signals. The HACR algorithm does not assume any form
for the signal and stores only generic properties of each event such as bandwidth, duration,
central frequency. However, simple relationships between parameters of an assumed model
or signal waveform and the properties of a HACR event can often be derived. In what follows
we will illustrate this for each of the parameters of the injected sine-Gaussian signals.

The time of injection will be defined as the time when the sine-Gaussian reaches its peak.
Figure 2 illustrates the timing offset of the detected events from the injected events. For the
first two populations of injections at 1080 Hz, the timing error is very small with a positive
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Figure 2. A figure showing the timing offset of the detected events from the injected events. In all
cases, the offset is dominated by the errors introduced by the algorithm in determining the event
times.

offset of a few samples (0.1 ms) which can be ascribed to the delay caused by the high-pass
filter used to pre-process the data. The standard deviation of the error of the timing estimate
is also very small, around 0.1 ms.

For the third population of events there seems to be a large offset in the timing estimate.
This offset can be ascribed to the way in which signal injection times were determined. The
recorded injection signal was used to more accurately determine the injection time of each
event. The HACR algorithm determines the time of occurrence of the event by computing a
weighted sum of the pixels as described earlier. This method turns out to be quite accurate
and HACR always picks the time corresponding to the central peak which corresponds to the
time of occurrence.

The injection time, t0, is defined as the time of the peak of the signal. Since the signal
waveform is symmetric about t0, taking the maximum of the absolute value of the signal
should yield the correct time. However, if an offset is added to the signal (as is the case when
recording signals in the DAQ system), this method can identify one of the two neighbouring
peaks of the waveform, depending only on the noise in the signal. The offset was not accounted
for in computing the injection times and as such, this effect shows up in the comparison of
the injected to detected events. In particular, the effect is only present for an odd value of f0

since the central peak in the waveform has negative amplitude in this case. This effect could
be minimized in future by ensuring the recording of the injection signals uses more of the
dynamic range of the input to the data acquisition system, thus reducing the size of any dc
offset relative to the signal size.

It can be seen from figure 2 that the larger offsets correspond to half a cycle at the injection
frequency (723 Hz, or ± 1.4 ms).
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Figure 3. The relationship between the peak amplitude of a software-injected signal and the
relative power estimated by HACR.

We next consider the estimation of the peak amplitude of the injected signals. The HACR
algorithm works with the spectrogram whose pixels can be interpreted as the energy per unit
time per unit frequency. It is difficult to find a direct quantitative relationship between the
observed pixel amplitudes and the peak amplitude of the injected signals. In general
we would expect the relative power computed by the HACR algorithm to be proportional
to the square of the peak amplitude of the signal. This is borne out by simulations whose
results are summarized in figure 3. We carried out software injections using a subset of the data
during the injection period. (We of course avoided the exact times where hardware injections
took place.) The software injections were such that the observed relative power was in a range
that included that observed while analysing the hardware injections. Using figure 3 it is simple
to read off the peak amplitude corresponding to a specific observed relative power.

It can be seen from figure 1 and table 1 that the central frequency of the sine-Gaussians
is estimated to within a few per cent. In other words, the central frequencies of the events
recovered by the HACR algorithm agree with the central frequencies of the injected events
to within 10%. However, in all three populations there seems to be a bias in the observed
frequency. In the first two populations the frequency is underestimated, the means of the
observed frequencies being 1075 Hz and 1065 Hz respectively whereas the injected signals
had a frequency of 1080 Hz. In the third population of events, the frequency is overestimated
and the bias is about 60 Hz. The reason for this is not well understood. However, it must be
recalled that the frequency resolution of the HACR algorithm is 32 Hz.

4.2. Results of the Excess Power pipeline

For Excess Power, a low threshold was chosen and the injected signals were identified by taking
the maximum trigger within a ±1 s window of the injection time and a ±50 Hz frequency
window around the injection frequency; the idea of using a low threshold here was to focus
on testing the parameter estimation of the Excess Power algorithm, not so much on detection
efficiency. Figure 4 plots the normalized excess power and central frequencies of the triggers
found above a confidence threshold of 10−7. Marked in dark circles are the triggers that are
identified as injections using the conditions mentioned above. The large normalized excess
powers of the injected signals make them clearly visible above the background events. While
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Figure 4. A scatter plot of the SNR and central frequencies of triggers observed over the injection
period.

the injected signals are less visible against the large background in the central frequency plot,
the identified triggers show a rather clear trend.

4.2.1. Estimation of signal parameters. A study was made of how well the Excess Power
algorithm can estimate the time at which the signal peaks (which will be referred to as peak
time from here on). Given the injection times, we calculate the standard deviation of the
difference between the injection times and the peak times. This measure (which will be
referred to as timing uncertainty from here on) gives us an idea of how much scatter there is in
the peak time estimate as performed by Excess Power, as well as highlighting any systematic
offsets in the peak time estimates.

The timing uncertainty has direct consequences on how wide a time window should
be set in a search for coincidence triggers between multiple detectors—a technique used to
corroborate the detection of burst gravitational wave signals. The larger the timing uncertainty,
the wider the required coincidence window which leads to a larger number of false alarms.
We obtain a value of 0.13 s which is extremely large, given the huge amplitudes of the injected
signals. Moreover, upon further investigation, we observed that the timing uncertainty is
linked to the length of the data subsegments.

Figure 5 plots the time difference between the injection times and the peak times for
different subsegment lengths. One can see that the timing uncertainty is directly proportional
to the subsegment length. This was because the minimum time width of the Excess Power tiles
is proportional to the subsegment length. The smaller subsegment lengths mean we have a
better time resolution and thus have smaller tiles. In figure 5, we can see that for a subsegment
length of 4096 samples, the timing uncertainty for the hardware injected signals was about
40 ms. This value is still about 40 times larger than that obtained using HACR. We were
not able to reduce the subsegment lengths any further because the smaller tile sizes were too
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in the caption, and the standard deviation, ‘sig’.

(This figure is in colour only in the electronic version)

small for any one tile to encompass the injected signals, causing the normalized excess power
estimates to be reduced.

Another reason for the large timing uncertainties observed for Excess Power was the
choice to define the centre of the tile as the peak time estimate. Figure 6 gives an example of
how this definition of peak time leads to a large timing uncertainty. Because the duration of
the tile is larger than the injected signal, the peak time defined at a large offset from the time
the injected signal occurred.

As with the HACR analysis, sine-Gaussians of different amplitudes were injected directly
into the data in the software to quantify the normalized excess power units in terms of
strain. Figure 7 plots the normalized excess power for the different software-injected signal
amplitudes.

Finally, the central frequency estimated by Excess Power was compared to the injected
values. In the first two periods, the mean observed central frequencies were 1051 Hz and
1049 Hz while the central frequency of the injected signals was 1080 Hz. In the third period,
the mean observed central frequencies were 768 Hz as compared to 723 Hz for the injected
signals. Again we see an over-estimate of the central frequency of the third population of
events due to the bias in the selection of the injected time (the later peak is always picked)
caused by a dc offset in the data acquisition system.

4.3. Pipeline comparison

Table 2 shows a comparison of the parameter estimations from the two pipelines. The mean
injected and detected powers for the three injection periods have been normalized to the first
period. It should be noted that, although the injected amplitude of the first and the third
injection periods was the same, the central frequency was reduced resulting in a lower signal-
to-noise ratio for the injected events. Since the two search algorithms do not estimate absolute
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Figure 7. The observed SNR for different sine-Gaussian amplitudes injected via software.

power but instead some measure of signal-to-noise ratio, we see values far from 1.0 for the
mean detected amplitudes of the third period injections.

5. Summary

Hardware injections of short-duration sine-Gaussian waveforms were performed at
GEO 600 for the first time. Two different burst-search algorithms were used to analyse
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Table 2. Comparison of parameter estimations of detected events. The mean power estimations are
normalized to the mean power determined for the first series of injections; this allows the injected
signal power to be compared relatively to the detected signal powers for the two algorithms.

First period Second period Third period

Time span (UTC) 16/1/04, 23:22 16/1/04, 23:52 17/1/04, 02:56
−16/1/04, 23:51 −17/1/04, 02:55 −17/1/04, 04:35

Injections
f0 (Hz) 1080 1080 723
N events 39 150 150
A2 (normalized) 1.0 0.33 1.0

Excess Power
Mean f0 (Hz) 1051 1049 768
N detections 39 150 150
Mean normalized power 1.0 0.34 0.43

HACR
Mean f0 (Hz) 1075 1065 789
N detections 39 150 150
Mean normalized power 1.0 0.29 1.3

the data containing the injected events. All injected events were identified by both algorithms.
However, the ability of the algorithms to properly estimate the underlying waveform parameters
varied for the different parameters.

The event times were best estimated by the HACR algorithm which achieved an accuracy
of around 1 ms. The Excess Power algorithm uses the central time of the (relatively large)
tile in which the event is located. This leads to larger possible errors. Efforts are being made
to improve the way the algorithm estimates the time of an event. The central frequency was
estimated equally well by both algorithms, with Excess Power having a slightly larger bias
than HACR. The accuracy of the central frequency estimates was around 30 Hz or more for
both.

The estimation of signal power or amplitude is difficult due to the way that the individual
algorithms define the power in the signal. Nevertheless, some comparisons were performed
but this needs further exploration to be useful. For example, the induced strain of the injected
signals could be determined and used to compare with the detected events.

This set of experiments has proven useful in identifying possible sources of systematic
and random errors inherent to the algorithms tested. Further hardware and software injections
should be performed in the future to confirm and attempt to rectify these sources of error.

Acknowledgments

We would like to thank Patrick Brady and Saikat Majumder from the University of Milwaukee
for the help and support provided to get the Excess Power code to work with GEO data.

References

[1] Heng I S, Daw E, Giaime J, Hamilton W O, McHugh M P and Johnson W W 2002 Allegro: noise performance
and the ongoing search for gravitational waves Class. Quantum Grav. 19 1889–95

[2] Zendri J-P et al 2002 Status report and near future prospects for the gravitational wave detector AURIGA Class.
Quantum Grav. 19 1925–33



3028 R Balasubramanian et al

[3] Astone P (ROG Collaboration) 2004 Seven years of data taking and analysis of data from the Explorer and
Nautilus gravitational wave detectors Class. Quantum Grav. 21 S1585–94

[4] Willke B et al 2004 Status of GEO 600 Class. Quantum Grav. 21 S417–23
[5] Sigg D 2004 Commissioning of LIGO detectors Class. Quantum Grav. 21 S409–15
[6] Takahashi R and the TAMA Collaboration 2004 Status of TAMA300 Class. Quantum Grav. 21 S403–8
[7] Acernese F et al 2004 Status of VIRGO Class. Quantum Grav. 21 S385–94
[8] Arnaud N, Barsuglia M, Bizouard M-A, Brisson V, Cavalier F, Davier M, Hello P, Kreckelbergh S, Porter E K

and Pradier T 2003 Comparison of filters for detecting gravitational wave bursts in interferometric detectors
Phys. Rev. D 67 062004

[9] Klimenko S, Yakushin I, Rakhmanov M and Mitselmakher G 2004 Performance of the WaveBurst algorithm
on LIGO data Class. Quantum Grav. 21 S1685–94

[10] McNabb J W C, Ashley M, Finn L S, Rotthoff E, Stuver A, Summerscales T, Sutton P, Tibbits M, Thorne K and
Zaleski K 2004 Overview of the BlockNormal event trigger generator Class. Quantum Grav. 21 S1705–10

[11] Hewitson M et al 2003 Calibration of the power-recycled gravitational wave detector, GEO 600 Rev. Sci.
Instrum. 74 4184

[12] Gossler S et al 2002 The modecleaner system and suspension aspects of GEO 600 Class. Quantum Grav. 19
1835–42

[13] Plissi M V, Torrie C I, Husman M E, Robertson N A, Strain K A, Ward H, Lück H and Hough J 2000 GEO 600
triple pendulum suspension system: seismic isolation and control Rev. Sci. Instrum. 71 2539–45

[14] Kötter K et al 2002 Data acquisition and detector characterisation of GEO 600 Class. Quantum Grav. 20
1399–407

[15] Kötter K et al 2004 Timing accuracy of the GEO 600 data acquisition system Class. Quantum Grav. 21 493–500
[16] Hewitson M et al 2004 Calibration of the dual-recycled GEO 600 detector for the S3 science run Class. Quantum

Grav. 21 S1711–22
[17] Sylvestre J 2002 Time-frequency detection algorithm for gravitational wave bursts Phys. Rev. D 66 102004
[18] Heng I S, Balasubramanian R, Sathyaprakash B S and Schutz B F 2004 First steps towards characterizing the

hierarchical algorithm for curves and ridges pipeline Class. Quantum Grav. 21 S821
[19] Anderson W G et al 2001 An excess power statistic for detection of burst sources of gravitational radiation

Phys. Rev. D 63 042003
[20] http://www.lsc-group.phys.uwm.edu/lal/lsd.pdf


	1. Introduction
	2. The injected events
	2.1. Generating the signals
	2.2. Summary of injected events

	3. Search algorithms
	3.1. HACR pipeline
	3.2. Excess Power pipeline

	4. Results
	4.1. Results of the HACR pipeline
	4.2. Results of the Excess Power pipeline
	4.3. Pipeline comparison

	5. Summary
	Acknowledgments
	References

