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The Newman-Penrose formalism may be used in numerical relativity to extract coordinate-invariant
information about gravitational radiation emitted in strong-field dynamical scenarios. The main challenge
in doing so is to identify a null tetrad appropriately adapted to the simulated geometry such that Newman-
Penrose quantities computed relative to it have an invariant physical meaning. In black hole perturbation
theory, the Teukolsky formalism uses such adapted tetrads, those which differ only perturbatively from the
background Kinnersley tetrad. At late times, numerical simulations of astrophysical processes producing
isolated black holes ought to admit descriptions in the Teukolsky formalism. However, adapted tetrads in
this context must be identified using only the numerically computed metric, since no background Kerr
geometry is known a priori. To do this, this paper introduces the notion of a quasi-Kinnersley frame. This
frame, when space-time is perturbatively close to Kerr, approximates the background Kinnersley frame.
However, it remains calculable much more generally, in space-times nonperturbatively different from
Kerr. We give an explicit solution for the tetrad transformation which is required in order to find this frame
in a general space-time.
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I. INTRODUCTION

One of the main challenges currently faced by numerical
relativity is that of interpreting its results in a physically
meaningful way. That is, once a given simulation is com-
plete, one must find ways to quantify invariantly the physi-
cal information contained in the gravitational field
described by the numerical variables. A new generation
of experiments designed to detect and interpret gravita-
tional radiation has lent particular importance to one such
problem: that of extracting information about gravitational
waves far from a modeled source. A great deal is known
about gravitational radiation in various approximation
schemes, such as the standard quadrupole formula of lin-
earized gravity and the various approaches (Regge-
Wheeler [1], Zerilli [2], Teukolsky [3]) to black hole
perturbation theory. However, these theories are well-
defined only in the perturbative regime. Each is founded
on an assumed knowledge of a specific background metric
on space-time which, in a typical simulation of strongly
dynamical gravitational fields, is not known a priori.

What is needed is a background-independent formalism
which does not rely on such a priori structures. Rather, one
should seek an approach based on quantities which are
calculable solely from the physical metric, and which yield
information about gravitational radiation in those cases
where such radiation is unambiguously present. Since the
quantities we imagine here would be defined in terms of the
physical metric, they could in principle be calculated at any
point of any space-time. In generic situations, however,
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their interpretation in terms of gravitational radiation
would be lost.

Calculations of the Newman-Penrose Weyl scalar W,
have been used in numerical studies of gravitational wave
forms [4—7]. This technique looks very promising because
Weyl scalars are first of all coordinate independent quan-
tities. In addition, once a suitable tetrad is found, extracting
W, one has immediately the interpretation in terms of the
outgoing radiation.

For such an analysis, an appropriate Newman-Penrose
tetrad must be found. This paper aims to address the
problem of finding the right tetrad to calculate W,. That
is, given only the output of a numerical simulation, we
construct a particular null frame. For space-times which
truly describe perturbations of a Kerr background, our
frame approximates the Kinnersley frame of that back-
ground. However, the construction works somewhat more
generally, and can be applied to many numerical space-
times, including some which differ from Kerr nonpertur-
batively. Specifically the tetrad we seek belongs to one of
the transverse frames introduced in [8]. While three such
frames exist in algebraically general space-times, only one
can approximate the Kinnersley frame when the space-
time is a perturbation of Kerr. Here, we show how to
calculate this physically interesting gquasi-Kinnersley
frame. This is meant to be one of the two steps required
to have the right quantities computed in the Teukolsky
formalism, the second one being related to fixing the
scalings of the vectors constituting such frames (see [9]
for further details), in order to get the right radial falloffs
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for the relevant quantities such as W and W,. This second
step will be the subject of future work. Once this construc-
tion is complete, the goal is to deploy the entire Teukolsky
formalism of black hole perturbation theory in the weak-
field radiation zones of a numerical evolution.

This paper constructs the quasi-Kinnersley frame within
the Newman-Penrose formalism. That is, it operates by
transforming a given, fiducial null tetrad on space-time to
one satisfying the transversality conditions. Because the
Teukolsky formalism is built on the Newman-Penrose
approach, our results take a particularly clear form in this
language. However, many numerical relativity codes do
not currently incorporate the infrastructure needed to de-
fine and transform Newman-Penrose frames on space-time.
Rather, many are based on various 3 + 1 decompositions
of the Einstein equations wherein the quantities of interest
describe a spatial geometry evolving in parameter time.
This approach is meant to be alternative to the one pre-
sented in [9], hereafter paper I, where the quasi-Kinnersley
frame is constructed ab initio, starting from spatial, rather
than space-time, data. Although both papers aim at the
same goal, their techniques are rather different. We present
them separately to preserve clarity in each. The issue of the
quasi-Kinnersley frame is also presented in [10] where this
frame is explicitly found, together with the radiation scalar
[8], for some specific cases.

The outline of this paper is as follows. Section II estab-
lishes notation and gives general definitions, including
those of both transverse and quasi-Kinnersley frames.
Sections III and IV set up and solve the problem of
calculating the three transverse frames in an algebraically
general space-time. Section V shows how to select the
unique quasi-Kinnersley frame from among those three
transverse frames. Section VI will test the construction of
the quasi-Kinnersley frame in a simple case. Finally,
Appendix B gives closed-form expressions for the Weyl
scalars and for the tetrad vectors when the fiducial frame is
the principal null frame, while Appendix C discusses the
existence and plurality of transverse frames in algebrai-
cally special space-times.

I1. DEFINITIONS
A. Weyl scalars

In vacuum space-times, curvature is entirely encoded in
the Weyl tensor C,;,.4. The ten independent components of
this tensor can be expressed in the five complex Weyl
scalars

Wy = Cpypst?mi€"m* (2.1a)
W) = Cppry Pn9€"mS (2.1b)
W, = Cpypst?mim’n’ (2.1c)
Wy = Cppry P (2.1d)
Y, = CpysmPnim'n’, (2.1e)
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where €7, n”, mP and m” comprise a null tetrad. The first
pair of vectors here are real, while the second pair are both
complex and conjugate to one another. The only nonvan-
ishing inner products are ¢’n, = —1 and m’m, = 1.
Relative to this noncoordinate basis, the Weyl scalars are
naturally coordinate independent, but they do depend on
the particular tetrad choice. The freedom in the tetrad is
given by the six-dimensional Lorentz group which, in this
context, is conveniently generated by elementary trans-
formations of three types. For an exhaustive presentation
of these transformations we refer to Appendix A.

Despite the complicated appearance of some of the
transformation laws for the Weyl scalars, some combina-
tions of them are independent of the tetrad. For example,
two well-known scalar curvature invariants are defined by

= (C, g C P71 — iC, /5 C,,P9) (2.2a)
= %(Cpqmcrsmncmnpq - Cpqrscrsmn*cmnpq)’ (2.2b)

where “C,,"* = %qum"Cmn” is the Hodge dual of the
Weyl tensor. By definition / and J do not depend on tetrads.
However, they can easily be expressed in terms of the Weyl

scalars in an arbitrary tetrad:

I=W,¥, - 4¥;¥, + 392 (2.3)
v, ¥, ¥,

J=det|¥; W, W, (2.3b)
v, ¥, W,

For more details we refer to [11,12].

B. Principal null directions and additional scalar
quantities

Every curvature tensor picks out a family of preferred
principal null directions; principal null directions are those
preferred directions for which W, or W, are vanishing.
More specifically, € is a principal null direction if ¥, = 0
while # is a principal null direction if ¥, = 0 (see [13,14]
for further details). Since these directions are determined
invariantly, they are natural structures to consider for the
type of tetrad construction we contemplate here. In this
section, we review the process of identifying the principal
null directions starting from a fiducial tetrad. This process
introduces a number of quantities whose definitions will be
important below.

The equation to be solved to find the principal directions
sets W, (W) to zero after an n (€) null vector rotation:

a“* Wy + 4a™V, + 6a**V, + 4a* V5 + V¥, = 0. (2.4)

Provided we have not started in a frame where € is already
a principal null vector, so ¥, # 0, we introduce the new

reduced variable
= \Ifoa* + \Ifl, (25)

so that Eq. (2.4) becomes the reduced equation
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4+ 6H?Z +4Gz+ K =0. (2.6)

Here, H, G and K are
H= \I,O‘IIZ - \If% (273.)
K= ‘lfﬁl — 3H2 (2.7¢)

They can be related directly to the curvature invariants /
and J using

W3l = K + 3H?
W3J = HK — H® — G~

(2.8a)
(2.8b)

Unlike I and J, the new quantities H, G and K take
different values in different tetrads. The solution for the
principal null directions is then achieved introducing three
additional quantities «, 8 and 7y defined by

a2 = 2‘1’0/\1 —4H (298.)
y? =2WyA; — 4H, (2.9¢)

where the A variables are the eigenvalues of a specific
matrix Q built from the Weyl scalars (see [12] for further
details). They are given by

A = —(P + 3LP> (2.102)
Ay = —<e2m‘/3p + il %) (2.10b)
Ay = —<e4”i/3P + ¢2mi/3 #) (2.10¢)
where
P =[J++J% = (1/3)3]'/3, (2.11)

Equation (2.11) may lead to some ambiguity. It is easy to
see that different choices of the branch of the cubic root
permute the definitions for the A; variables. The breaking
of this permutation symmetry is essential to the definition
of the quasi-Kinnersley frame [9].

In the end, we find four solutions for Eq. (2.6) which are

g=(@+B+y)/2 zn=(@-B-7)/2
n=(a+B-v)/2 z=(Ca-B+7v)/2

and the solutions of Eq. (2.4) are easily derived from them
using Eq. (2.5).

The triples of quantities (a, 8, y) and (H, G, K) are both
tetrad-dependent. In fact, there is the same amount of
information classifying a given tetrad contained in each
triple. This assertion follows from the relations
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a’+ B2+ 92 =—12H (2.12a)
QB2 + a2y? + B2y? = 36H? — 4K (2.12b)
aBy = 4G. (2.12¢)

The calculation described above could equally well be
done by rotating a given tetrad to make <, rather than n, a
principal null direction. The calculation is essentially the
same, but we outline it here to introduce notation. The

operative equation to solve is
bW, + 4D’V + 60>V, + 46V, + U, =0. (2.13)

In this case, assuming ¥, # 0, we can introduce the
reduced variable

Z2="V,b + ¥, (2.14)
to find the reduced equation
24+ 62 +4G2+K =0, (2.15)
where this time H S G and K are defined as
H=v,7, -V} (2.16a)
G = Vi, — 3V, W, W, + 2V3 (2.16b)
K =W¥3I - 3H% (2.16¢)

The procedure is in this case analogous to the one already
presented, and it uses the definition of other variables &, 8
and ¥ which are given by

@t =2V, —4H (2.17a)
B> =2V, A, — 4H (2.17b)
P2 = 2W, A5 — 4H. (2.17¢)

It is worth noticing that hatted variables are obtained from
nonhatted ones by simply swapping ¥, < ¥, and ¥| <
Vs,

C. Null tetrads and null frames

Hereafter, we will adopt a terminology that clearly dis-
criminates null frames and null tetrads, as follows:
(i) A null tetrad is a specific set of two real null vectors
€ and n and two complex conjugates null vectors m
and .
(i1) A null frame is a class of null tetrads connected by a
spin/boost (type III) transformation.

D. Transverse frames

Although we are not interested in calculating principal
null directions the definitions given in Sec. II B will help us
provide a rigorous definition of transverse frame for a
general Petrov type I space-time.

Following [8] we first define a transverse frame as

Definition 1.—A transverse frame is a frame in which
v, =¥;=0.
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We want to stress here the point that Def. I really
identifies a frame, i.e. a class of tetrads, as it is invariant
under a spin/boost (type III) transformation.

A useful geometrical property of transverse frames is
given by the following proposition:

Proposition I.—A transverse frame for a Petrov type |
space-time is a frame which sees principal null directions
in pairs, each pair being, in the stereographic sphere, at the
same angle 6 and at angles ¢; and ¢, such that ¢, —
b, = .

Let us note at this point that it is clear from Eq. (2.4) that
it becomes a biquadratic if and only if the frame is trans-
verse. Proposition 1 can then be proved as follows: let us
assume that we are in transverse frame and want to com-
pute the principal null directions. Then Eq. (2.4) becomes a
biquadratic and therefore if (a*), is a solution, then (a*), =
—(a*), will be another solution. Using stereographic co-
ordinates, i.e. writing the general solution for Eq. (2.4) as

6\ .
a* = cot<§>e"/’,

we see that this property corresponds to seeing the two
principal null directions at the same angle 6 and at angles
¢, and ¢, such that ¢, — ¢p; = 7.

To prove the equivalence of Def. 1 and Prop. 1 in the
other direction let us suppose that we are in a frame in
which our parameters to get the principal null directions
have the property described in Prop. 1, i.e. we can write
them down in the following way:

0\ . o\ .. ..
a; = cot(;‘)e’d’l as = cot(é)e’d"ﬂ”

0,5\ . 0N\ .,
ay = cot(f)e"”z a, = cot(f)e’%“”.

Using these values to build up the polynomial defined in
Eq. (24) we would end up with the term in a* and a*?
missing, this corresponding to having ¥, = W5 = (O in the
frame we are in.

We will hereafter refer to the property introduced in
Prop. 1 as seeing principal null directions in conjugate
pairs, in order to distinguish it from the normal principal
null directions in pairs which define a Petrov type D space-
time. Proposition 1 will be our starting point to define, in
the next section, the quasi-Kinnersley frame.

(2.18)

(2.19)

E. The quasi-Kinnersley frame

The Kinnersley frame [15] is defined for a Petrov type D
space-time. Its definition states that

Definition 2.—A Kinnersley frame for a type D space-
time is a frame where the two real tetrad null vectors
coincide with the two repeated principal null directions
of the Wey]l tensor.

In his original article, Kinnersley makes a second step
with an additional condition that sets the spin coefficient €
to zero. This corresponds to fixing the additional degrees of
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freedom coming from a spin/boost transformation, i.e. to
identifying a particular tetrad out of the Kinnersley frame.
In this paper we will not consider this second step, which
deserves further study, and focus our attention to finding a
particular frame, i.e. a particular class of null tetrads,
which converges to the Kinnersley frame when the
space-time approaches a type D (see also paper I for further
details).
In a type D space-time the following relations hold:

S=1 G=0 K = 9H?, (2.20)
where S is the speciality index defined in [16]
27J?
S = 5 2.2D)

We know that the Kinnersley frame has the additional
property that all the scalars are vanishing except W,, i.e. it
is also a canonical frame [17] for Petrov type D. We would
like here to find that particular frame which converges to
the Kinnersley frame when S — 1. We will dub this quasi-
Kinnersley frame for a Petrov type I space-time. Our
definition is then

Definition 3.—A quasi-Kinnersley frame, for a Petrov
type I space-time, is a frame which converges to the
Kinnersley frame when S — 1.

Let us consider a transverse frame as defined in Prop. 1,
such that it sees the principal null directions in conjugate
pairs. The difference between the angles ¢ of each pair of
null directions must remain fixed to 77, even in the limit
S — 1. On the other hand, we know that for S — 1 the two
principal null directions will eventually converge. The only
way we can see, from our transverse frame, the two pa-
rameters coinciding asymptotically, but keeping the differ-
ence in ¢, is that their absolute value must tend to zero.
Hence, if asymptotically our parameters for finding the
principal null directions tend to zero, this means that our
€ vector is converging to the principal null directions, i.e.
we are in a quasi-Kinnersley frame.

Following this idea, we can conclude that a well-
motivated strategy to find a quasi-Kinnersley frame is to
look for a transverse frame. This conclusion is however not
enough. By saying that a transverse frame sees principal
null directions in conjugate pairs, we are not specifying
which directions it sees in conjugate pairs. Figures 1 and 2
explain better this concept. Let us suppose that our Petrov
type I space-time converges to a type D one, such that the
principal null directions z; and z, will converge, and the
same for z3 and z4. In Fig. 1 we have constructed a
transverse frame whose € null vector sees z; and z, as
conjugate pair (which, in the graph, is indicated by putting
€ in the middle of the two principal null directions it sees in
pairs); consequently its n vector will see z3 and z4 as
conjugate pair, although this is not shown in the figure. It
turns out that this is the quasi-Kinnersley frame as z; and z,
will converge and, in particular, they will converge to €. A
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FIG. 1.

A transverse frame which is also a quasi-Kinnersley
frame: the € vector of the transverse frame sees the two principal
null directions z; and z, as conjugate pair. As the space-time
approaches a Petrov type D one, z; and z, will converge and, in
particular, they converge to €.

counterexample is shown in Fig. 2; here [ sees z, and z3 as
conjugate pair, such that, when z; and z, will converge,
they will not converge to €. This is telling us that we need
an additional condition that the quasi-Kinnersley frame has
to satisfy among all the transverse frames.

As mentioned earlier in the original Kinnersley paper
the additional condition that all the scalars are vanishing
except ¥, holds. In a general transverse frame we know
from Def. 1 that V| = W; = 0, so we want to impose the
additional condition that ¥y, ¥, — 0 when S— 1 in a
quasi-Kinnersley frame. By introducing the radiation sca-
lar ¢ = V,W, (notice that £ is to be evaluated in a trans-
verse frame; see [8]) we end up with the following
proposition:

Proposition 2.—In a Petrov type I space-time, a trans-
verse frame where the radiation scalar £ — 0 for S — 1 is
a quasi-Kinnersley frame.

From the definitions given in this section and in Sec. IID
and discussion above, it is clear that a good strategy to find
a quasi-Kinnersley frame is to search it among transverse
frames, although a transverse frame in general will not be a
quasi-Kinnersley frame.

FIG. 2. A transverse frame which is not a quasi-Kinnersley
frame: the € vector of the frame sees the two principal null
directions z, and z3 as conjugate pair. When z; and z, converge,
they do not converge to €.
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F. The linear theory

Teukolsky [3] studied a perturbed Kerr black hole space-
time in the Newman-Penrose formalism, choosing the
Kinnersley frame for the background metric, where for a
Kerr black hole the only nonvanishing scalar is ¥,. Having
chosen this frame, the equations governing the dynamics of
all the scalars simplify considerably, thus leading to sepa-
rate evolution equations (Teukolsky equation) for W, and
W,. It turns out that, within the linearized framework, i.e.
considering infinitesimal transformations of the original
Kinnersley background, the values of W, and W, are
invariant under gauge or tetrad transformations, so that
they can be given pure physical interpretation of ingoing
or outgoing gravitational radiation, while ¥, and W5 can
be easily set to zero, thus being related to gauge degrees of
freedom. W, is instead related to the background metric.
An analogous interpretation for the scalars, not restricted to
linear theory, is given in [18]: here ¥ and W, are shown to
be associated with transverse gravitational fields (although
not necessarily representing gravitational radiation), W,
and W5 to longitudinal ones, while ¥, is related to the
Coulombian part of the gravitational field.

It is evident that if we choose the quasi-Kinnersley
frame in our numerical simulations, and we fix the particu-
lar tetrad in this frame which shows the correct radial
falloffs, we will be able to interpret, in the linear regime,
V¥, as the outgoing wave contribution. Moreover, the de-
termination of whether we are or not in the linearized
regime can be easily achieved using the speciality index
defined in Eq. (2.21) as well described in [16].

III. THE TRANSVERSE FRAME

In the previous section we defined a transverse frame for
a Petrov type I space-time. Here we want to describe the
general problem of finding a transverse frame, as well as
determining how many transverse frames we expect. We
start from a general Petrov type I space-time having all the
five Weyl scalars nonvanishing; we then perform an n null
rotation (type I) with parameter a and an € null rotation
(type II) with parameter b, and set to zero the final values
of W5 and ¥, ending up with a system of two equations to
be solved for parameters a, and b

\II3 + 361*?2 + 3a*2‘1’1 + a*3‘1’0 + b(\P4 + 4a*‘1’3
+ 60*2\II2 + 4a*3‘1’1 + 0*4\1,0) =0 (31)

\Ifl + (1*\1’0 + 3b(\II2 + 2(1*\1’1 + a*z‘I’O)
+ 3b%(V5 + 3a*V, + 3a™?W, + a®V¥,) + b3 (P,

+ 4a* V5 + 6a* W, + 4a™ W, + a*W)) =0. (3.2)
If we derive b from Eq. (3.1), we get
_ \PS + 36l*\I’2 + 3(1*2\111 + 3*3\1’0 (33)

W, +4a" V5 + 602V, + 405V, + a W,
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This expression for b is well-posed. We might be wonder-
ing if the denominator of Eq. (3.3) can be vanishing. It
turns out that it cannot, as this would mean that the »n vector
after the n null rotation (type I) with parameter a* coin-
cides with one principal null direction. From the definitions
and propositions given in Sec. II D it is clear that the ¢ and
n vectors of a transverse frame do not coincide with the
principal null directions for a Petrov type I space-time.
Substituting Eq. (3.3) into Eq. (3.2), we obtain the
following sixth order equation for the parameter a™:

?10*6 + ?20*5 + ?3(1*4 + T4a*3

+ ?561*2 + Tﬁa* + ?7 = O, (34)

where
P, = -V, V3 - 293 +3W,¥,V,
P, = —2W, WV, — Viv, + 9Wiv, - 6, V3
Py = =50, W, ¥, — 10V;¥2 + 150, W,V
P, = —10¥,V? + 1093,
Ps =5V, ¥ W, + 10¥,V3 — 15%,7, ¥,
Ps =2V, W\ ¥, + VIV, — 9VIV, + 6V, V3
Py =W\ V] +2W3 - 39, ¥,W,.

Equation (3.4) is of course very difficult to solve analyti-
cally and we might turn to numerical methods to find
solutions.

It is worth pointing out here that we could be misled to
the conclusion that we have six transverse frames, as the
equation is of sixth order. This turns out to be wrong, due to
a degeneracy of the transverse frame if we exchange the ¢
and n vectors: the nonvanishing scalars would be ex-
changed as follows:

W, — ¥ v, — W, v, — W,

more precisely, we would obtain a simple exchange ¥, <
V¥, without complex conjugation if we exchanged accord-
ingly m and i, thus preserving the tetrad orientation. This
is exactly the exchange operation introduced in [9].
Although the frame we would get after such exchange
would result as a different solution of Eq. (3.4), it is
actually the same from the physical point of view, as we
have just swapped the outgoing and ingoing contribution
on the scalars W, and ¥,. We will name hereafter this
property as the € < n degeneracy.

We conclude then that it is possible to find three trans-
verse frames for a Petrov type I space-time, up to spin/
boost transformations. This result is in agreement with
what was found in [8].

Another comment to be done on Eq. (3.4) is that its
solutions are all we really need, as once a is obtained, the
parameter b can be easily derived from Eq. (3.3). For this
reason we will no longer mention the parameter b from
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now on, and we will restrict our attention to finding the
solutions for a.

IV. FINDING THE TRANSVERSE FRAMES

We will now derive the general solution for the parame-
ter @ which leads to the three transverse frames. Our goal is
to solve Eq. (3.4). It can be shown easily that this equation
corresponds to setting to zero the quantity G (2.16b) after
the n null rotation (type I) with parameter a, i.e.

&aléa ,?a
1 =

G = 0, 4.1)
where the index a tells us that these are the quantities in the
frame which we get after the n null rotation. The equiva-
lence of Eq. (4.1) with Eq. (3.4) is evident if, in the
substitution of Eq. (3.3) into Eq. (3.2), one does not ex-
plicitly expand the Weyl scalars in terms of a* after the first
n null rotation.

Equation (4.1) expresses in a much more evident way the
presence of three transverse frames. Moreover it gives us a
straightforward way to factorize Eq. (3.4), as each of the
three transverse frames can be defined as follows:

I a* = (4.2a)
I: B4 =0 (4.2b)
II: 94 = 0. (4.2¢)

This conclusion allows us to reduce the degree of the
polynomial originally defined in Eq. (3.4). Let us now
focus our attention on just one transverse frame (frame I)
which verifies the condition &“ = 0. For the sake of sim-
plicity, as we have defined & in Eq. (2.17a), we will study
the completely equivalent condition (&%)? = 0. If we write
this condition in terms of the variables in the original frame
[using Egs. (A2)] we get

Q2+ 9,23+ 9327+ Quz+ Q5 =0,

where

4.3)

Q,=WYoA —2H Q,=-4G
Q5 =6V A\ H + 6H> — 2K Q,=4G(H + ¥yA))
Q,S = _2KH + 2G2 + ’\Ifo)\lK,

and z is the reduced variable defined in Eq. (2.5).
Equation (4.3) is already a good achievement as we passed
from a sixth order equation to a fourth order one. But still
this is not enough. As mentioned previously we are ac-
tually studying the condition (&)> = 0 so we want to be
able to calculate the square root of this polynomial and
reduce it to a second order equation.

Using Eqgs. (2.7), (2.8), and (2.9) it is possible to do that,
the second order polynomial being
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2G
2 (————  _z—(H+ Py =0, 4.4
. (WOAI_ZH)z (H + ¥yA)) (4.4)
whose solutions are
G +JG* + (Wyd, — 2H)*(H + WyA,)
A2 = . (45)

\I,O)ll - 2H

The * in Eq. (4.5) is related to the € < n degeneracy.
We can reexpress Eq. (4.5) in a more elegant and suitable
form, as a function of the «, 8 and 7y variables. Moreover,
the same procedure can be applied to Egs. (4.2b) and (4.2¢)
in order to find the parameter to get to the other two
transverse frames. The final result is

@ = 5. [By * @ = B)(a — )]
@ =5glay =B = Y8 — )

(4.6a)

(4.6b)

O =5-[ap =" )y~ B o)

The initial parameter a* can be easily found using
Eq. (2.9).

V. THE QUASI-KINNERSLEY FRAME

Now that we have obtained the solutions for all the
transverse frames in a Petrov type I space-time, we wish
to check if it is possible to determine which one of them is
the quasi-Kinnersley frame we are looking for. As stated in
Sec. IIE this frame must satisfy the additional condition
that £ — 0 when S — 1.

Our starting point is Eqgs. (2.10). We need to calculate
their limit when S — 1. Using Eq. (2.11) we know that
P — J'/3.In order to substitute this value into Egs. (2.10)
we need to express it in function of 1, using I — 27J°. We
face here again the problem of branch choosing to take the
root of a complex number; let us for the moment fix one
branch and have J'/3 — (£)!/2. Using this expression we
get that

A — —2JI]3 (5.1a)
Xy — I3 (5.1b)

Equations (5.1) help us remove the ambiguity of choosing
the right branches. No matter what branches we choose in
taking roots of complex numbers, we will end up having
three A variables, one of which will have a greater absolute
value, precisely twice as much than the other two, in zones
of the space-time close to type D. Once identified that
particular A variable, we will name it A;. The remaining
freedom in naming A, and A5 is not relevant to identify the
quasi-Kinnersley frame.
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Using now the properties of a transverse frame given in
Def. 1 and Egs. (2.9) and (4.2), it can be shown that the
values of W, in the three transverse frames are given by

(Vo) = Ay/2 (5.2a)
(Vo)u = A,/2 (5.2b)
(V) = A3/2. (5.2¢)

Moreover, using Eq. (2.3a), it is possible to show that the
radiation scalar ¢ has the following value in the three
transverse frames:

(O =, — /\3)2/4 (5.3a)
(= (A — 13)*/4 (5.3b)
(f)m = (/\1 - /\2)2/4- (5.3¢)

Hence, using Egs. (5.1), we conclude that the asymptotic
values for £ in the three transverse frames when S — 1 are

(& —0 (5.4a)
(&u — 31/4 (5.4b)
(&)m — 31/4, (5.4¢)

this leads to our conclusion that transverse frame I is the
quasi-Kinnersley frame, as it is the only one that matches
all the criteria given in Prop. 2.

It is worthwhile at this point to compare the definition of
the quasi-Kinnersley frame advanced in this paper with
that contained in the companion paper [9]. In particular, the
present definition operates very simply by identifying that
eigenvalue of the Weyl tensor with the largest modulus.
The companion paper uses a somewhat more general defi-
nition, deriving a nonperturbative formula for the relevant
eigenvalue which holds throughout the disk |S — 1] <1,
and then identifying the quasi-Kinnersley frame as the
eigenvector with that particular eigenvalue. In the limit
S — 1, both of these definitions are entirely equivalent.
However, it is initially not at all clear to what extent they
remain equivalent when S differs from unity by a finite
amount. That is, although the eigenvalues themselves are
degenerate only at the critical points where S =0 or S =
1, this guarantees nothing about their moduli. There could
be points within the region |S — 1| < 1 where two eigen-
values differ only by a phase. Thus, we are led to ask what
the largest neighborhood of unity in the S plane is in which
the quasi-Kinnersley frame, as defined in the companion
paper, is actually associated with the eigenvalue of largest
modulus. The answer is quite unexpected: it is the entire
disk [S — 1] < 1.

Combining Egs. (2.10) and (2.11), one can identify the
three possible eigenvalues of the Weyl tensor with the three
branches of a simple function of S (times a prefactor
involving 7, J and /S which is the same for all three
branches). This is done explicitly in the companion paper.
At § = 1, the quasi-Kinnersley frame is associated with
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Im(S-1)

FIG. 3. A representation of a function giving the three eigen-
values of the Weyl tensor as a function of S in the region |S —
1| < 2. The front lateral axis is the real part of S — 1, while the
other lateral axis is its imaginary part. The vertical axis is the
modulus of the eigenvalue, and the function itself is clearly
triple-valued at most points. The figure demonstrates explicitly
that the moduli of the eigenvalues do not equal one another
except on the branch lines of the underlying complex function,
where of course the eigenvalues themselves are equal.

the branch of largest modulus. Moreover, using these ex-
plicit formulas, one can plot the moduli of this branch
alongside those of the other two in a finite neighborhood
of unity. This is done in Fig. 3 throughout the region |S —
1| < 2. The topmost sheet of this surface is clearly asso-
ciated with the quasi-Kinnersley frame at S = 1, the center
of the polar coordinates used to generate the figure.
Notably, this sheet does not intersect the other sheets,
which give the moduli of the other two eigenvalues, except
where S is real and nonpositive. Thus, within the region
|S — 1] <1 of primary interest, the eigenvalue of largest
modulus is always associated with the quasi-Kinnersley
frame, as defined in the companion paper. Since outside of
this region one encounters subtleties in the branch structure
of this complex function which make even the definition of
the companion paper somewhat problematic, we can con-
clude that the two definitions advanced in these papers are
effectively equivalent. This observation will simplify con-
siderably the practical problem of identifying the quasi-
Kinnersley frame. One need only find the largest eigen-
value of the Weyl tensor.

VI. A SIMPLE CASE

Let us suppose that we are already in a transverse frame
and we want to get the parameters that take us to the other
two frames. In order to simplify the calculations, let us also
fix the particular tetrad in the transverse frame for which
\PO = \If4.

PHYSICAL REVIEW D 72, 024014 (2005)

Equation (3.4) simplifies enormously if we set ¥ =
V¥, = 0 and ¥, = ¥, in our initial tetrad, and becomes

a® —a* =0, 6.1)

here, the solution a* = 0 indicates that we are already in a
transverse tetrad, while the corresponding tetrad which we
would get by the € < n degeneracy cannot be obtained
with a type I rotation (equivalently it could be obtained
using a parameter a* = o0), this explaining the one order
lowering of the polynomial.
The other relevant solutions are
a=11i-1 —i

(6.2)

Such a solution allows us to derive another simple
geometrical explanation to the presence of three transverse
frames for a Petrov type I space-time, more directly linked
to what an appropriately chosen observer would measure.
Once we have the solution for a*, using Eq. (3.3) we can
find the corresponding values for the b parameter related to
the € null rotation (type II), the result being

b=-1/2,i/2,1/2, —i/2. (6.3)

Now let us suppose that the tetrad we define in the first
transverse frame is built from a timelike vector u and three
spacelike vectors e, e, and e3 in the usual way

1
= —2(u1’ + b (6.4a)
1
nf = _Z(MP —éb) (6.4b)
p— L p g p
my = ﬁ(e1 + ieh). (6.4c)
If we use the parameters a* = 1 and b = —1/2 to get to

the second transverse frame, we obtain the following ex-
pression for the new tetrad vectors:

1

€ﬁ = ﬁ(up - ef) (653)
1
1

mh = — (e} + ie}), (6.5¢)

S

where we have also used a type III rotation to readjust the
normalization constants. Analogously, using a* = i and
b = i/2 we can get to the third transverse frame, whose
tetrad vectors are
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1

=5 + ) (6.62)
1

nf, = —z(u” —éf) (6.6b)
1

mh, = —2(617 —ieh) (6.6¢)

Equations (6.4), (6.5), and (6.6) show that the presence
of three transverse frames corresponds to the freedom an
observer has in choosing one of the three spacelike vectors
in order to construct the two real null vectors € and n. The
remaining two spacelike vectors are then used to construct
the complex null vector m.

Following Szekeres’s gravitational compass [18] ap-
proach, the electric Weyl tensor represents the only direct
curvature contribution to the Jacobi (or, in particular, the
geodesic deviation) equation, and for any Petrov type I
field and any transverse frame can be expressed as [12]

EP4 = Re(W,)el! — 1Re(W¥, + W,)el

where in a frame as (6.4)

p

T — oP ol 4 pPpd — Dol ol P4
e’ = eje] +eyje; —2esey

efl = efed + elel
e} = ejef —ejes,

respectively represent a Coulombian and two transverse
basis tensors. It is actually this expression for EPY than
justifies in general (and not just in a perturbative context)
the “transverse frame” terminology: for a generic tetrad
with ¥, # 0 or W5 # 0 there would also be longitudinal
contributions to (6.7) [18]. For type D space-times, observ-
ers using a canonical null tetrad where only ¥, # 0 (and
associated orthonormal one) do not measure any transverse
contribution. On the other hand, in a type I space-time any
observer associated with a transverse frame would measure
transverse contributions stresses to his/her gravitational
compass, even when no gravitational radiation is present,
as it is clear, for example, from an analysis of the Kasner
[19] and stationary axisymmetric rotating neutron stars
space-times [20]. In these cases, however, the observer
would unambiguously exclude the presence of gravita-
tional radiation by observing a zero superenergy flux (see

e.g. [21)).

VII. CONCLUSIONS

In this paper we have illustrated a method to explicitly
construct this quasi-Kinnersley frame within the Newman-
Penrose formalism [22]. First we have provided the defi-
nition of the quasi-Kinnersley frame for a general Petrov
type I space-time. This definition allowed us to write down
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the basic equations that this particular frame has to satisfy,
and, eventually, to solve them. Using this solution it is
possible to rotate our arbitrary initial null tetrad to the
quasi-Kinnersley frame. In this way we have completely
fixed the 4 degrees of freedom coming from #n (type I) and
€ (type II) vector rotations, remaining with the 2 degrees of
freedom coming from spin/boost (type III) transforma-
tions, which deserve further study. Finally, in the appendi-
ces, we highlighted further details on finding the transverse
frames in the general case and for algebraically special
space-times.

While using the Newman-Penrose formalism [22] to
construct the quasi-Kinnersley frame is certainly well
suited for codes using a characteristic formulation [23],
most numerical relativity is formulated using the 3 + 1
decomposition of Einstein equations. In this context it is
therefore important to construct the quasi-Kinnersley
frame directly from the spatial geometry. This approach
to the construction of the quasi-Kinnersley frame is com-
plementary to the one presented here, and is presented in
paper L. Both approaches identify a quasi-Kinnersley frame
as one of the three transverse frames present in a Petrov
type I space-time. The problem of understanding which
transverse frame is the quasi-Kinnersley frame is faced in
both approaches and different solutions are presented. In
Sec. V we have shown that these solutions are completely
equivalent not only in a perturbative regime, but in the
entire disk |S — 1] < 1.
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APPENDIX A: TETRAD TRANSFORMATIONS

The six parameters of a Lorentz transformation acting
on a null tetrad are conveniently expressed in three com-
plex parameters. These parameters yield frame rotations of
three types:

(i) n vector null rotations (type I) leave € unchanged,
while the other vectors are transformed as follows:

{— ¢ n—n+a'm+am+ aa*{

(AD)
m—m+ al m—m+ a*l
where a is a complex parameter and a* is its com-
plex conjugate. The effect of this transformation on

the Weyl scalars is
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v, — ¥, (A2a)
Y, — WV, +a*¥, (A2b)
v, = W, + 24"V, + ¥, (A2¢)
Vv, — Vs + 3a*W, + 3¢V, + a®¥, (A2d)
v, — W, + 4a* V5 + 64>V, + 443V,

+ a*W,,. (A2¢)

(ii) € vector null rotations (type II) change the tetrad
vectors in the following way:

— L€+ b'm+ bm+ bb'n n—n

(A3)

m—m+ bn m—m+ b*n

where b is a second complex scalar quantity. The
Weyl scalars transform as

\PO i \PO + 4b\I’1 + 6b2q,2 + 4b3\1,3

+ b4, (Ada)
v, — U, + 3bV, + 302V, + bV, (A4b)
v, —» W, +2bW¥; + b2V, (Adc)
Yy — U, + bW, (A4d)
v, -V, (Ade)

(i) Spin/boost transformations (type III) rescale the
vectors € and n, and rotate m and m in their com-
plex plane:

{— A

m— e''m

n— An

: (AS5)
m— e m
where A and 6 are two real scalars. Weyl scalars are
modified according to

W, — A2620, (A6a)
W, — AW, (A6b)
v, — W, (A6c)
W, — Ae 0, (A6d)
W, — A2e 20, (AGe)

APPENDIX B: MORE COMMENTS ON FINDING
THE TRANSVERSE FRAMES

As pointed out in Sec. III, the six transverse frames
initially found are € < n degenerate, so that only three
independent equivalency classes of transverse frames re-
main. In this appendix we look in greater detail into the
properties of the frames under an exchange operation ¢ <
n. To facilitate the discussion, we assume here without loss
of generality that our algebraically general space-time is
written in a principal null frame, for which ¥, = 0 and
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V¥, = 0, which can always be done [11]. This situation is
of little interest for numerical relativity applications, and is
undertaken in this appendix for illustrating some of the
mathematical properties of transverse frames. In this ap-
pendix we recapitulate the construction of the transverse
frames under the assumption that the initial frame is the
principal null one. This assumption allows us to write
explicitly in closed form the real null vectors of the trans-
verse frame. Also, we consider the properties of the trans-
verse frame under the exchange operation € < n.

1. Finding the transverse frames

We assume an algebraically general space-time in the
principal null frame. We then perform two successive null
rotations. The first is a class I rotation (which keeps € fixed)
with parameter a, followed by a class II rotation (which
keeps n fixed) with parameter b. (See Appendix A for
details.) In what follows we denote the Weyl scalars of
the principal null frame by ¥; (i =0...4), V! are the
Weyl scalars in the frame obtained after the first null
rotation, and ‘I’;’ in the frame obtained after the second
null rotation. By Def. 1, we are looking for rotations such
that both W/ and W/ are zero simultaneously.

We next use Eq. (3.3) for the particular case ¥ = 0 =
W, (for the principal null frame), which simplifies to

1 \I}3 + 3a*\1f2 + 361*2\1}1

b = - >
Za* 2\];’3 + 3(1*‘*II2 + 261*2\PI

(BI)

to make W4 = 0. Demanding next that W/ too is zero,

Eq. (3.4) simplifies to

Via*® + 3WiW,a™ + 5Wiv;a™ — 50, Wia*?
—3W,W2a" — W3 = 0. (B2)

The polynomial on the left-hand side of Eq. (B2) can be
easily factored as

(Vya*? — W3)2(Wa*? + x))*(¥a? + x)* =0, (B3)

where

x; =V; + %*(3‘?2 —4/9V3 — 16W,V5) (B4)
and

X, =Wy + %*(3\15 +4/9%3 — 16W,V5). (BS)

As pointed out in Sec. III, we can thus do six different
null rotations to transverse frames. For simplicity, let us
first do the rotations for which W,a*? — ¥, =0.
Specifically, we can do rotations with a* = =,/¥;/¥,
and b = ¥/V,/(4¥;). In the transverse frames we find
that
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1 v, |,
V/'=_Y (3-—2F4 |— B6
073g 1( v, «1f3> (B6a)
1
W,V Vs
I"— + >
Wi =65 8, 2 (B6c)

For either choice of sign we find that the product W ¥ is
the same. Specifically, VW) =2W¥} — 4¥,¥;. Below,
we show how to find the remaining two transverse frames.

The remaining two vectors of the null tetrad, namely, the
complex null vectors m and / can be easily found up to a
rotation in the mm plane by solving the following 7 equa-
tions for the 8 unknown components of the two vectors.
These equations are the conditions that the frame is null, in
addition to the normalization condition. Specifically, m -
m=m-m=0,{m=€m=n-m=n-m=0, m-
m = 1. The indeterminate rotation parameter in the mm
plane does not influence the two real null vectors €, n, and
affects the Weyl scalars only by a phase. In particular, ¥,
and the product ¥yW, (and also the product ¥, V¥;) are
invariant under spatial rotations in the mm plane (class III
rotations).

2. The € < n degeneracy

In the preceding discussion we found that by setting
¥,a*? — W¥; =0 we find two transverse frames. Next,
we show that the two choices of signs correspond to the
degeneracy of € < n (up to a scale factor). Let us attach a
subscript 1 to the choice of the sign + in a*, and a sub-
script 2 to the choice of —. Doing the two null rotations, the
new real null vectors €” and n' satisfy

o 16 _ 1 \I,Tl/4m Il \I’i/4n_1 1(\1,1\1;?)1/4
124 4 q;;l/“ 4 \p;/4 4 (q;}q,;)l/zt
(B7)
and
pl/d /4 Wy 1/4
i S S N L VR

R N A e

Then, we find that n| = K€% and €] = K; 'n!J, where
the scale factor K; = %(\Ifl‘lf*l‘)l/“/(‘lfﬁlf;)l/“. That is, we
find that by choosing different signs for a* we arrive at the
same transverse null frame: we only change the roles of ¢
and n. Also, the product W{W¥} (a radiation scalar) is
invariant under this change of sign, although W{ and ¥/
are separately not.

3. Finding the remaining two transverse frames

To find the remaining transverse null frames, for sim-
plicity let us do null rotations on the frame we already
found, instead of going back to the principal null frame.
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(One could also do null rotations on the principal null
frame, using a*?> = —x, /¥, or a*> = —x,/V¥, with the
corresponding values for b. It is simpler, however, to find
the remaining transverse null frame from the one we al-
ready found.) Specifically, let us assume that we are al-
ready in a transverse null frame, which will henceforth be
denoted by unprimed quantities. Next, we do a class I null
rotation with (a new) parameter a and a class II null
rotation with (a new) parameter b. The composition of
these two null rotations should preserve the transversality
of the frame, i.e., we demand that both ¥{ = 0 and ¥} =
0 simultaneously. Substituting ¥, = 0 = V5 in Eq. (3.3),
we find that the parameter

« 3‘1’2 + Cl*2\1'r0
b= —a
\1,4 + 661*2\1'2 + a*4‘1’0

(B9)

makes W = 0. We also find that Eq. (3.2) reduces under
this situation to

a*(9\1’% - \PO\P4)(\P00*4 - '\II4)

P = B10
! (W, + 6a2W, + a**W)? B10)
The requirement that ¥/ = 0 yields
P
%4 __ T4
=— B11
T, B11)

(The case 9W3 = ¥, W, which also nullifies ¥} degener-
ates to Petrov type D space-time.) We thus find four
solutions. Specifically,

. W\ 1/4 1 W\
03,4 = i(@) b3,4 -+ 5(@) (BlZ)

W, \1/4 [ (Wo\1/4
Rtk

The corresponding null vectors are

(B13)

1/4 1/4 .
y24 :lgilﬂm 11 \PO/ m +l (\I'O\Ifo)l/4
Mg 4 qul/“ 4 q,i/4 4 (W, W7)1/4
(B14)
1/4 %1/4 #\1/4
ny4=nd W?/4 + \Pil i (q"‘q'j)l st (B1S)
y \PO \Po (\PO‘PQ)
. #1/4 . 1/4 "
PR TN G NG .
56 4 4 \Ile/“ 4 ‘1’411/4 4 (\I,4\PZ)1/4
(B16)
and
\1,1/2 \11*1/4 (\If \P*)l/4
I =nxi—t mTi—m 147 ¢ (B17)
5,6 \I,(1)/4 \P(«)l/ét (\1,0\1,3)1/4
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Again, we find that n = K¢, €§ = K;'n}, n? =
Ki¢! and €Y =K;'n!, where K,=K;=
4V, W5)V4 /(U WE)/4, That is, the four frames are just
two additional distinct frames, where we interchange the
roles of €, n (up to a scale factor). The Weyl scalars in the
new frame are
\I}(l)l = [\Ifoqfi + 6a*2\1f4‘lf2(9\1f% + \If4\1}0) + 61*4(81\?121

+ ‘P4\P0) + a*S\I’4‘I’8]/(\I’4 + 661*2\1,2 + a*4\I’0)3,

(B18)
\PIZI _ q’4\I’2 - 3Cl*2q,% -:261*4‘1’2‘1:2 + G*ZWO\P4’ (B19)
\P4 + 6a \Ijz +a \IIO
and
\I,X = \I}4 + 60*2\1,2 + a*4‘1’0. (BZO)

Note, that W, W) and W} are unchanged if we choose
asz, as or ay, ag, respectively, to get the two new frames,
because Wj, W) and W} are even functions of a¢*. In
particular, the product W{ W/ is invariant under the change
of sign in a*. On the other hand, if we change a* by a
multiplication by i, i.e. change a3 to a: (or a} to ag) the
Weyl scalars will in general change, because they include
terms which are not quartic in a*.

We showed that we can find all the three distinct trans-
verse null frames for type I space-times, and in general the
product W W} will be different in these three transverse
frames. The above analysis allows us to find all the three
unique radiation scalars W'V, in all the transverse frames
of type I space-times.

APPENDIX C: TRANSVERSE FRAMES FOR
ALGEBRAICALLY SPECIAL SPACE-TIMES

Algebraically special space-times are not likely to arise
in numerical simulation, unless sought explicitly. For com-
pleteness, we discuss in this appendix transverse frames in
algebraically special space-times. A summary of the prop-
erties of transverse frames in algebraically special space-
times appears in Table 1.

1. Type 11

We can always find a standard form frame in which only
V¥, and W5 are nonzero. In that frame do a class I null
rotation with parameter a and a subsequent class II rotation
with parameter b. Demanding that in the new frame ¥/ =
0 implies that

1 \I}:; + 361*\1}2

b= -3 242
261* 2‘1’3 + 361*\1’2

(ChH
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TABLE I. The number of distinct equivalency classes of trans-
verse frames in space-times of each Petrov type and the Weyl
scalars in the transverse frames in terms of the Weyl scalars of
the standard forms (see text). For type I space-times we list the
Weyl scalars in Appendix B. In the case of Petrov type D we
emphasize that we have the singled out Kinnersley frame in
addition to infinitely many non-Kinnersley frames. (The table
lists the Weyl scalar only for the non-Kinnersley cases.) In this
table the unprimed Weyl scalars are in the standard form frames,
and the double-primed scalars are in the transverse frames (TFs).

Petrov type No. of TFs  W¥; ¥/ ¥ W/ vy

I 3 0 0

D 0o ® 1 %\Pz/ﬂ*z 0 _%\Ifz 0 6a*2\If2
1 1 0 0 W, 0 -2,
III 0 oo oo oo oo oo
N 0 0 0 0 0 v,

0 00 0 0 0 0 0

Then, W/ = 0 if either ¥; = 0 (type D), or if

_ Vs
2,

a’ =

(C2)

Thus we find that there is a unique transverse frame (up to
rotations in the m, m plane). In that frame, ¥ = 0, ¥} =

0, V) =W, ¥/ =0, and ¥] = —2W¥]/W¥,, such that
VI = 0. ‘

2. Type D

We can always find a standard form frame in which only
V¥, is nonzero. Notice, that this is already a transverse
frame. In fact, this is the Kinnersley frame, in which the
real null vectors coincide with the directions of the (re-
peated) principal null directions of the Weyl tensor. For any
nonzero a, if we choose b = —1/(2a”), both the new W/
and \I’g’ will be zero. That is, there is an infinite number of
transverse frames. We can parametrize all these frames
with a*. In all these frames W =3W,/a™, ¥/ =0,
W= —1W, ¥/ =0, and V] = 64"?¥,, such that in
all these frames the product W{'W/ = 3 ¥3 is independent
of a*. Notice that among the infinitely many transverse
frames for type D space-times, there is a unique frame that
is singled out, specifically, the Kinnersley frame. In the
Kinnersley frame the radiation scalar vanishes, whereas in
the continuum of non-Kinnersley transverse frames the
radiation scalar is nonzero.

3. Type III

We can always find a standard form frame in which only
W5 is nonzero. If we choose b = —1/(4a*) we can make
=0, but then W/ # 0 (unless W5 =0, which is
type 0). Alternatively, we can choose b = —3/(4a*) which
makes W/ = 0, but W5 # 0 (unless it is type 0). That is, we
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cannot nullify both ¥/ = 0 and ¥4 = 0 simultaneously.
There are no transverse frames for type III space-times.

4. Type N

We can always find a standard form frame in which only
W, is nonzero. Note, that this is already a transverse frame.
No matter which a* we choose, we remain in a transverse

PHYSICAL REVIEW D 72, 024014 (2005)

frame. That is, there is an infinite number of transverse
frames, in all of which W{W¥ = 0.

5. Type 0

In type O space-times all the Weyl scalars are zero, and
all null rotations will preserve this. There are infinitely
many transverse null frames.
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