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2 Center for Gravitational Physics and Geometry, Physics Department, 104 Davey, Penn State,
University Park, PA 16802, USA
3 Max-Planck-Institut für Gravitationsphysik, Albert-Einstein-Institut, 14476 Golm, Germany

Received 2 February 2005, in final form 21 March 2005
Published 10 May 2005
Online at stacks.iop.org/CQG/22/2001

Abstract
Recently, a multidimensional generalization of the isolated horizon framework
has been proposed (Lewandowski and Pawłowski 2005 Class. Quantum Grav.
22 1573–98). Therein the geometric description was easily generalized to
higher dimensions and the structure of the constraints induced by the Einstein
equations was analysed. In particular, the geometric version of the zeroth law
of black-hole thermodynamics was proved. In this work, we show how the IH
mechanics can be formulated in a dimension-independent fashion and derive
the first law of BH thermodynamics for arbitrarily dimensional IH. We also
propose a definition of energy for non-rotating horizons.

PACS numbers: 04.70.Bw, 04.70.Dy, 04.50.+h

1. Introduction

Four-dimensional isolated horizons (IH) proved to be a useful tool for studying black-hole
mechanics, thermodynamics and even quantum theory [15, 16]. Being quasi-local they are also
useful for numerical relativity (gravitational wave investigation, black-hole merger studies).
It is, therefore, interesting to investigate whether the notion of IH exists in higher dimensions
and check if their physical properties are similar.

The Hamiltonian formulation of general relativity combined with the IH framework made
it possible to formulate the first law of black-hole thermodynamics for both rotating and
non-rotating black holes [2, 5, 17]. Consider spacetimes with axially symmetric IHs (the
spacetimes themselves do not have to be symmetric at all). The first law arises naturally as
one investigates the transformations of the phase space given by flows of vector fields (time
translation). One may ask about the conditions for such transformations to be generated by a
Hamiltonian. It turns out (see [2]) that the only condition constrains the value of the vector
field on the horizon. The condition implies that the generating Hamiltonian must be a function
of the horizon area and angular momentum solely—but does not constrain this function in
any way. One can, however, fix the Hamiltonian function (and therefore the IH energy value)
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by requiring that it agrees with the ADM mass in the case of stationary, asymptotically flat
solution. Note that due to the Kerr solution uniqueness theorems such fixing is consistent: if
the solution is stationary and asymptotically flat, it must be a Kerr metric and the ADM mass
must depend on A and J in the Kerr-like manner.

This work deals with a (N + 2)-dimensional (N > 2) generalization of rotating isolated
horizons [1]. We first check that the Hamiltonian formalism leads to the same conditions
on the Hamiltonian function as in the 4D case. This result is valid for any rotating (axially
symmetric) weakly isolated horizon in any dimension. In order to define the energy however,
we restrict ourselves to non-rotating ones. This is due to the fact that the general uniqueness
theorem for the axially symmetric spacetimes fails in higher dimensions [10]. One cannot
assign safely the energy function using some family of solutions analogous to Kerr solutions
in 4D since there exist other families with different ADM mass for given horizon area and
angular momentum [9, 10]. One would have to argue somehow why the choice of one family
of solutions is more physical than another.

It is true, however, that the conditions for the topology of the horizon to be a sphere and
the existence of two axes of symmetry are strong enough to prove the uniqueness of solution
in five dimensions [11].

Nevertheless, only in the static, non–rotating case do there exist general uniqueness
theorems for arbitrary dimension and for σ -model, vacuum and charged black holes [6–8].
Since we deal with the vacuum case, we will assume the energy dependence on the horizon
area as in the generalized Schwarzschild case.

2. Weakly isolated horizons

In this section we recall the definition of non-expanding horizons (NEH) [1], spell out the
definition of weakly isolated horizons (WIH) and discuss those of their properties which will
prove relevant in the next sections.

The following convention of indices will be adopted:

• Greek indices will be used for objects defined on the whole (N + 2)-dimensional tangent
space of M,

• small Latin letters for objects defined on or contained in the (N +1)-dimensional subspace
(tangent to the horizon) and

• capital Latin letters for the N-dimensional subspace (tangent to a cut).

The symbol ‘d’ will stand for the exterior derivative for any manifold.
The abstract index notation will be used whenever convenient.

2.1. Non-expanding horizons

Let � be an (N +1)-dimensional null surface in an (N +2)-dimensional spacetime M equipped
with a metric tensor field of the signature (−, +, . . . , +) which satisfies Einstein equations
with or without cosmological constant4, and let l denote a non-vanishing normal vector. If
the expansion of l vanishes everywhere on �, then this property is independent of the choice
of l and we call � a non-expanding null surface. This assumption, combined with a mild
energy condition Tαβlαlβ � 0, implies a restriction [1] on the Ricci tensor:

Rαβlαlβ = 0. (1)

4 In the main part concerning the first law we will restrict ourselves to the vacuum case without cosmological
constant.
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It also implies that the metric tensor q induced on � (degenerate) metric is Lie dragged by any
null vector field tangent to �

Llq = 0. (2)

It follows that there exists on � a differential 1-form ω(l) called the rotation potential, such
that at every x ∈ � and for every X ∈ Tx�,

Xc∇cl = Xcω(l)
c l (3)

where ∇ is the covariant derivative. Moreover, a non-expanding surface � is called a non-
expanding horizon (NEH) if there exists an embedding

�̂ × [0, 1] �→ M (4)

where [0, 1] ⊂ R stands for the interval, such that:

(1) � is the image,
(2) �̂ is an N-dimensional compact, connected manifold,
(3) for every maximal null curve in � there exists x̂ ∈ �̂ such that the curve is the image of

{x̂} × [0, 1].

It follows that the manifold �̂ is the space of the null geodesics generating � and there is
a natural projection

� : � → �̂. (5)

Roughly speaking, the definition of a non-expanding horizon amounts to an extra condition
on the topology of a non-expanding null surface5.

2.2. The definition of weakly isolated horizons

A weakly isolated horizon is a pair: a NEH � equipped with a class [l] of non-vanishing vector
fields, normal to � (i.e. null and tangent) such that:

(i) for every l, l′ ∈ [l] there is a positive constant b such that

l′ = bl, (6)

(ii) the rotation 1-form potential ω(l) is Lie dragged by l

Llω
(l) = 0. (7)

The class [l] will be often referred to as the WIH flow. Note that the rotation 1-form
potential (3) is insensitive to the constant re-scalings (6). Indeed, for every function b : � → R

and a null, nowhere vanishing vector field l tangent to a non-expanding horizon, we have

ω(bl) = ω(l) + d ln b. (8)

Therefore from now on we will skip the suffix (l), whenever a WIH is given.
We will summarize several basic facts concerning NEHs and WIHs. For proofs and

further explanations see [1] and also the four-dimensional case results [4, 5].
To begin with, note that the integral curves of a vector field l normal to NEH � are null

and geodesic in the sense that

lβ∇βl = κ(l)l. (9)

5 Note that no geodesic completeness assumption has been made. Therefore a NEH is not assumed to be extending
to past or future infinity. Physically, it means that a NEH can be formed some time in the past as well as destroyed or
distorted some time in the future.
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The function coefficient κ(l) is called the surface gravity. Under a bit stronger energy condition
that Tαβlβ is causal and future-pointing one may also prove the zeroth law of black-hole
thermodynamics which states that

dκ(l) = Llω
(l). (10)

Using the zeroth law it is easy to prove that every non-expanding horizon � admits a large
class of null vector fields l, each of which defines a distinct weakly isolated horizon [1].

In particular, it follows that the surface gravity is necessarily constant for every WIH. If
κ(l) = 0, the WIH is called extremal. Given a WIH there exists a freedom of rescaling the
vector lα by a constant, positive factor accompanied by the same rescaling of κ(l). Therefore
in the extremal WIH case κ(l) is determined as 0. Otherwise, in the non-extremal case, its
exact value depends on the choice of lα ∈ [l], while its sign is determined.

2.3. Good cuts foliation

Let (�, [l]) be a non-extremal weakly isolated horizon. There exists a natural foliation [4], [1]
of � distinguished by the geometry of (�, [l]). It is defined as follows: let �̃ ⊂ � be any leaf
of the foliation. Then, the pullback ω̃α of the rotation 1-form potential onto �̃ is divergence
free,

q̃ABD̃Aω̃B = 0, (11)

where q̃ is the metric tensor induced on �̃ and D̃ is the corresponding torsion-free covariant
derivative. If we assume that the leaves are global cross-sections of the maximal analytic
extension of �, then the foliation formed by them is unique [1, 4]. It is called a good cuts
foliation of a WIH (�, [l]).

2.4. Symmetries and symmetric WIHs

We consider non-extremal WIHs (�, [l]) here, of induced metric tensor q and the rotation
1-form potential ω.

A vector field X tangent to a WIH (�, [l]) is called a symmetry generator whenever it is
true that

LXl = al, LXq = 0, LXω = 0. (12)

For example, a vector field of the form f l, where f is a function and l ∈ [l], is an
asymmetry generator if and only if f = const. Indeed,

Lf lω = fLf ω + κ(l) df = κ(l) df. (13)

Hence, every WIH admits the null symmetry generators l ∈ [l].
Suppose now a given non-extremal WIH (�, [l]) admits another symmetry generator, a

vector field X which is not everywhere null on �. It follows from the first equality in (12) that
the projection �∗X is a well-defined vector field on the base manifold �̂. Due to the second
equality in (12) we conclude that

L�∗Xq̂ = 0, (14)

hence the vector field �∗X is a Killing vector of the metric tensor defined on the base manifold
�̂. This shows that a generic WIH does not admit non-null symmetries. We now use the good
cuts foliation of � to lift �∗X to a vector field X̃a defined on �, tangent to the good cuts at
every point, and such that

�∗X̃ = �∗X. (15)
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Therefore,

X = f l + X̃, (16)

where the factor f is a function defined on �.
We claim that again

df = 0. (17)

To see this, note first that a stronger condition than the first equation in (12) is necessarily true,
namely

LXl = 0. (18)

Indeed,

0 = LXκ = LX(laωa) = aκ(l), (19)

due to the last equality in (12). Secondly, let us exercise the invariant character of the good
cuts foliation. Introduce a function v : � → R constant on each leaf of the good cut foliation,
and such that laDav = 1. The derivative dv is uniquely defined by l and the foliation, and
both are preserved by the local flow of X, therefore the derivative is necessarily preserved by
the flow of X. Hence

0 = LX dv = df. (20)

Finally, it follows that the vector field

X̃ = X − f l (21)

generates a WIH symmetry itself.
Concluding, if a WIH (�, [l]) admits a non-null vector field X generating a symmetry,

then it admits another symmetry generator φ tangent to the leaves of the good cut foliation,
and such that

X = f l + φ, where f = const. (22)

The vector field

φ̂ = �∗φ (23)

is a Killing vector field of the metric tensor q̂AB induced in the space �̂ of the null geodesics
in �.

Basically, the argument presented above is the same as that of [5] (due to [1]), except a
small gap in the proof of (17) which was filled in this section.

3. The phase space of Einstein vacuums admitting WIH

As in [5], throughout this paper we will use the covariant phase-space formalism, in a version
admitting causal boundaries of the considered spacetime. An exhaustive description of this
formalism can be found for example in [2] (see also [12, 17] for an alternative framework).

Our covariant phase space Γ is, briefly speaking, the space of all the solutions of the
vacuum Einstein equations (without cosmological constant) which admit a non-expanding
horizon. We use the Einstein–Palatini formulation of gravity. The fields are defined on a
given space M, a region of a spacetime M ′. M is contained between three sub-manifolds: �,
M0 and M1, equipped by each point in the phase space with, respectively, a non-expanding
horizon structure, and spacelike surface structures. Below, we first specify the assumptions
about M, and secondly the boundary conditions. In section 8 we discuss the issue of gauge
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Figure 1. The quasi-local case: the spacetime region under consideration is compact and closed,
bounded by three sub-manifolds with boundary M0, M1 and �; M0 and M1 are bounded by
co-dimension 2 compact sub-manifolds, slices of �, and by a single, co-dimension 2, compact
sub-manifold S.
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Figure 2. The asymptotically flat spacetime case: the spacetime region under consideration is
infinite, bounded by sub-manifolds with boundary M0, M1 and �; M0 and M2 are bounded by
co-dimension 2 compact sub-manifolds, slices of �; i0 stands for the assumption that the
gravitational fields be asymptotically flat.

dependence/invariance of our boundary conditions and the invariance of the resulting first law
derived in section 7.

M is a closed region of a manifold M ′, and

Ṁ = M0 ∪ � ∪ M1. (24)

As in the previous sections, � = �̂ × [0, 1] where �̂ is a compact, connected N-dimensional
manifold. Our calculations will be valid for either of the following two cases:

• The properly quasi-local case, figure 1. The space M is compact. The surfaces M0

and M1 are compact, co-dimension 1 sub-manifolds with boundary, the boundary ∂M0

(respectively, ∂M1) consists of an intersection �̃0 (�̃1) with �, and a co-dimension 2
compact sub-manifold S.

• The asymptotically flat case, figure 2. M is an infinite region in M ′. The surfaces M0

and M1 are co-dimension 1 infinite sub-manifolds with boundary. The boundary ∂M0

(respectively, ∂M1) consists of an intersection �̃0 (�̃1) with �.

In both cases we assume that the metric tensors under consideration extend smoothly to
a neighbourhood of M in M ′.

Additionally, in the second case we assume that the metric tensor fields are asymptotically
flat6.

On the manifold � we fix the Cartesian product structure � = �̂ × [0, 1] and on the
manifold �̂ we fix an additional vector field φ̂ later used in the definition of the angular
momentum7.

6 That is, we assume that the manifold M minus some neighbourhood of � is diffeomorphic to SN × R × [0, 1],
where SN is diffeomorphic to an N-dimensional sphere, and there exist spherical coordinates (xα, r, t), flat with
respect to some Minkowski metric tensor gMµν , such that for large r the metric tensor components satisfy:
gµν = gMµν + O( 1

rN−1 ), and ∂ρgµν = O( 1
rN ).

7 In the four-dimensional case, when the horizon topology is S2, it was proven that φ̂ must generate SO(2) rotations,
i.e. it must have closed orbits and its flow must be the identity map for some value of the flow parameter [5]. The
normalization of the vector is later fixed when the resulting angular momentum formula is compared with Komar’s.
In our case we cannot exclude that our vector field can have more complicated orbits.
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Figure 3. The structure fixed in � = �̂ × [0, 1]: the Cartesian product structure, the natural
coordinate v on [0, 1] extended to �, the vector field d

dv
extended to � and denoted by l, and a

vector field φ, the natural extension to � of a vector field φ̂ fixed on �̂.

Out of these data we also construct on � (see figure 3): (i) a vector field l, the natural
extension to �̂ × [0, 1] of the vector field d

dv
, v : [0, 1] → [0, 1] being the natural coordinate

on the product, (ii) a function v : � → R, the natural extension of the function v defined on
[0, 1], (iii) a vector field φ, the natural extension of φ̂ to � = �̂ × [0, 1].

On M we consider vacuum gravitational fields such that � is a non-expanding horizon
and l defines a WIH on �. Every gravitational field g is determined by a co-frame, i.e. a
sequence of differential 1-forms (e1, . . . , eN+2) normalized such that

g = −eN+1 ⊗ eN+2 − eN+2 ⊗ eN+1 + η̂AB eA ⊗ eB, (25)

where η̂AB,A,B = 1, . . . , N , is the unit matrix diag(1, . . . , 1). We assume that M is oriented
and the volume form e1 ∧ · · · ∧ eN+2 agrees with its orientation. We also assume the vector
field l defined on � to be future-pointing. We will use the Palatini framework, therefore we
introduce an additional field, which is an anti-symmetric matrix (
αβ)α,β=1,...,N+2 of 1-forms
referred to as the connection 1-forms.

We formulate now the boundary conditions at � explicitly, in the technical way. Given a
differential n-form w in M, its pullback to � will be denoted by w�.

We assume every co-frame (e1, . . . , eN+2) considered in M and about its dual vector frame
(e1, . . . , eN+2) to satisfy

eN+1|� = l (26)

(eN+1)� = dv (27)

(eN+2)� = 0. (28)

The pullbacks to � of the connection 1-forms are subject to the following conditions:(

N+2

1
)
�

= · · · = (

N+2

N

)
�

= 0, (29)

Ll

(

N+1

N+2
)
�

= 0. (30)

Conditions (26), (28) imply that � is null, condition (29) is equivalent to the assumption that
� be a non-expanding horizon contained in a vacuum spacetime (it is exactly equivalent to
(2)), whereas (30) (meaning the same as (7)) is the necessary and sufficient condition for the
vector field l to form a WIH together with �.
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Just to simplify the calculations we introduce a short-hand notation for the following
N + 2 − k-forms

�αβ...γ︸︷︷︸
k

= 1

(N − k + 2)!
εαβ...γ δ...ρ eδ ∧ · · · ∧ eρ︸ ︷︷ ︸

N+2−k

, (31)

and we denote the curvature of 
α
β

Fαβ := d
αβ + 
α
γ ∧ 
γβ. (32)

The Palatini action for the vacuum Einstein equations in arbitrary dimension can be written as

S = C

∫
M

Fαβ ∧ �αβ + S∂ (33)

with C being a constant of dimension LN . The boundary term S∂ is unnecessary in the properly
quasi-local case

S∂ = 0 (34)

whereas in the asymptotically flat case we take it to be

S∂ = −C lim
r→∞

∫
τr


αβ ∧ �αβ (35)

where τr stands for the cylinder (a sphere worldsheet) r = const (see footnote 6). That
additional boundary term is added to ensure that the variational problem with asymptotically
flat boundary conditions is equivalent to the vacuum Einstein equations. Its role can be seen
easily if we compute the variation of S corresponding to an arbitrary vector field δ tangent to
the phase space Γ, namely

δS =
∫

M

S�µν
δ�µν +

∫
M

S
µν
δ
µν − C lim

r→∞

∫
τr


αβ ∧ δ�αβ. (36)

Now, it follows from the asymptotic flatness that the boundary term is zero, whereas the
vanishing of the bulk terms is equivalent to the Einstein equations.

It is easy to check that in neither case do we need to add any surface term associated with
�. This is a consequence of the properties of non-expanding horizons [2, 5].

The covariant phase space is equipped with a pre-symplectic structure, i.e. an
antisymmetric 2-form Ω. It is defined by a pre-symplectic current calculated in the usual
way: take two vector fields δ1 and δ2 tangent to Γ, and consider the following identity:

δ1δ2S − δ2δ1S − [δ1, δ2] S = 0. (37)

If the Einstein equations are satisfied, the left-hand side takes the following form:

δ1δ2S − δ2δ1S − [δ1, δ2] S = −C

∫
∂M

δ1

αβ ∧ δ2�αβ − δ2


αβ ∧ δ1�αβ. (38)

The boundary of M consists of the two spacelike hyper-surfaces M0 and M1, the horizon �,
plus, in the asymptotically flat case, the cylinder τr where r → ∞.

The differential (N + 1)-form equal to C times the integrant is called the pre-symplectic
current

j (δ1, δ2) = −C(δ1

αβ ∧ δ2�αβ − δ2


αβ ∧ δ1�αβ). (39)

The pre-symplectic form may be defined by integrating the pre-symplectic current

Ω(δ1, δ2) =
∫

�0,v0 ∪Mv0

j (δ1, δ2) (40)
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Figure 4. The integration surface for the symplectic form.

along any of the surfaces �0,v0 ∪ Mv0 (see figure 4) where �0,v0 is the portion of the surface
� bounded by the slices �̃0 such that v = 0, and �̃v0 such that v = v0,

�0,v0 := �̂ × [0, v0]. (41)

Mv0 is an (N +1)-dimensional sub-manifold of M ′ whose boundary consists of �̃v0 and: either
S in the quasi-local case or the ‘sphere at infinity’ in the asymptotically flat case with Mv0

being asymptotically flat in the asymptotically flat coordinates (see footnote 6). Due to identity
(38), the integral (40) is independent of the choice of surface labelled by any 0 � v0 � 1.
Also the domains of dependence of each of the surfaces which can be used in (40) are equal
to the domain of dependence of M0. In particular, we could choose v0 = 0 and just M0 as the
integration surface. Therefore, the integral depends only on the definition of region M and, in
particular, on the choice of surface M0 itself. Note that by considering an arbitrary value of v0

in (40) we will be able to see explicitly what that dependence is like, and why our final results
are independent of that choice.

In the integral defining the pre-symplectic form (40) the orientation of the surface
�0,v0 ∪ Mv0 is the one given by the Stokes theorem applied to the region bounded by
M0 and �0,v0 ∪ Mv0 . In particular, the volume forms on �0,v0 and, respectively, Mv0 are:
−dv ∧ e1 ∧ · · · ∧ eN , and eN+2 ∧ e1 ∧ · · · ∧ eN .

We will analyse the horizon part of the symplectic form first. The boundary
conditions (26), (27), (28), (29), (30) imply that, in particular, given a gravitation field,
the rotation 1-form potential ω of the WIH (�, [l]) defined by the vector field l is given by the
following pullback to the horizon:

(
N+1N+2)� = −ω. (42)

The induced null surface geometry of � determines the area N-form ε which can be expressed
as

(�N+1N+2)� = (e1 ∧ · · · ∧ eN)� =: −ε. (43)

The area of arbitrary spacelike N-dimensional hyper-surface S̃ ⊂ � is equal to
∫
S̃
ε (provided

that the orientation of S̃ is fixed appropriately). On the other hand,

�N+1A = ± e1 ∧ · · · ∧ eN︸ ︷︷ ︸
no A

∧ eN+2 (44)

�N+2A = ± e1 ∧ · · · ∧ eN︸ ︷︷ ︸
no A

∧ eN+1 (45)

�AB = ± e1 ∧ · · · ∧ eN︸ ︷︷ ︸
no A and B

∧ eN+1 ∧ eN+2. (46)

Note that since �N+1A and �AB contain eN+2, they must vanish when pulled back to �. We
are left therefore with∫

�0,v0

j (δ1, δ2) = −2C

∫
�0,v0

δ1ω ∧ δ2ε − δ2ω ∧ δ1ε. (47)
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We can simplify this expression if we decompose ω to

ω = κ(l) dv + ω̃ (48)

with l�ω̃ = 0. It is straightforward to prove that ω̃ ∧ ε = 0 and therefore the expression for
the horizon part of the symplectic form can be further simplified as∫

�0,v0

j (δ1, δ2) = −2C

(
δ1κ

(l)

∫
�0,v0

d(vδ2ε) − δ2κ
(l)

∫
�0,v0

d(vδ1ε)

)
. (49)

The horizon part of the identity can finally be integrated out to∫
�0,v0

j (δ1, δ2) = −2v0C(δ1κ
(l)δ2a� − δ2κ

(l)δ1a�) (50)

where a� stands for the area of a cross-section of � → �̂.
We conclude that the symplectic form reads

Ω(δ1, δ2) = −2Cv0(δ1κ
(l)δ2a� − δ2κ

(l)δ1a�) − C

∫
Mv0

(δ1

αβ ∧ δ2�αβ − δ2


αβ ∧ δ1�αβ)

:= Ω�0,v0
(δ1, δ2) + Ωbulk(δ1, δ2), (51)

where Ωbulk (the ‘bulk’ part) is the integral and the remaining (first) term constitutes Ω�0,v0

(the ‘horizon’ part). The horizon part is proportional to v0, the distance in terms of the
affine parameter corresponding to l, between the slices �̃v0 and �̃0. The horizon part is
invariant with respect to rescalings of l by a constant, but it depends on the choice of the initial
slice �̃0.

4. Generating functions for spacetime diffeomorphisms

A special class of vector fields tangent to the phase space Γ is defined by the diffeomorphisms
of M. Assign a vector field X defined in a neighbourhood of M to every point in Γ (a solution of
the Einstein equations on M). From our point of view, the flow of X transports the gravitational
field, while the region M is kept fixed. A necessary condition for X is that the flow of X
understood in this way preserves the boundary conditions (26), (27), (28), (29), (30) at �.

The Lie derivative along X defines a vector field δX tangent to Γ (or a variation, as this
object is often called in variational calculus). Our goal is to formulate conditions upon which
the flow of δX is generated by a Hamiltonian function. Namely, we want to determine the
conditions under which there exists a function H on Γ such that

−δH = Ω(δX, δ) (52)

for every vector field δ (variation) tangent to Γ (in other words −dH = δX�Ω, where all the
operations apply to differential forms and vectors in Γ.)

Before we proceed, we introduce several formulae we will use in subsequent calculations.
We assume the vacuum Einstein equations to be satisfied on entire spacetime

D�αβ ≡ d�αβ − 
γ
α ∧ �γβ − 
γ

β ∧ �αγ = 0 (53)

Fαβ ∧ �αβγ = 0. (54)

Those imply the following identities for the variations

Dδ�αβ = δ
γ
α ∧ �γβ − δ
δ

β ∧ �δα (55)

δF αβ ∧ �αβγ = −Fαβ ∧ δ eδ ∧ �αβγ δ. (56)
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These are in fact the linearized Einstein equations.
Two useful identities follow from (31):

δ�αβγ = δ eδ ∧ �αβγ δ (57)

and

X��αβ = Xγ �αβγ (58)

with Xγ = eγ (X).
We now calculate Ωbulk(δX, δ). The variations of the fields are equal to the Lie derivative

along X. By applying the well-known Cartan formula LXα = d(X�α) + X�dα we get

Ωbulk(δX, δ) = −C

∫
Mv0

(d(X�
αβ) ∧ δ�αβ + (X� d
αβ) ∧ δ�αβ

− δ
αβ ∧ d(X��αβ) − δ
αβ ∧ (X� d�αβ)). (59)

This formula can be reduced to mere boundary terms. First we apply integration by parts to
the first and third terms, the definition of curvature 2-form (32) to the second and (53) to the
fourth. We get

Ωbulk(δX, δ) = −C

∫
∂Mv0

((X�
αβ)δ�αβ + δ
αβ ∧ (X��αβ))

−C

∫
Mv0

(−δF αβ ∧ (X��αβ) + (X�Fαβ) ∧ δ�αβ). (60)

The remaining bulk term can be proved to vanish. By virtue of (58) and (56) we have

−δF αβ ∧ (X��αβ) = −Xγ δFαβ ∧ �αβγ = Xγ Fαβ ∧ δ eδ ∧ �αβγ δ. (61)

The bulk term can now be rewritten in the form of

−δF αβ ∧ (X��αβ) + (X�Fαβ) ∧ δ�αβ = δ eδ ∧ (Xγ Fαβ ∧ �αβγ δ − (X�Fαβ) ∧ �αβδ).

(62)

The last term is just the contraction of the right-hand side of Einstein equations (56) with X
and is therefore equal to 0.8 We are left only with the surface terms of the bulk part of the
symplectic form

Ωbulk(δX, δ) = −C

∫
∂Mv0

((X�
αβ)δ�αβ + δ
αβ ∧ (X��αβ)). (63)

The horizon part of the symplectic form, on the other hand, vanishes,

Ω�0,v0
(δX, δ) = −2Cv0(LXκ(l)δa� − δκ(l)LXa�) = 0, (64)

because both the area a� and the surface gravity of l are constant on a WIH.
Finally

Ω(δX, δ) = −C

∫
∂Mv0

((X�
αβ)δ�αβ + δ
αβ ∧ (X��αβ)). (65)

Every vector field X can be split into two parts, say X′ and X′′, one being identically zero
outside some finite neighbourhood of the horizon while the other identically vanishes at the
horizon. In the asymptotically flat case, the contribution of X′′ to (65) is the variation of some

8 All calculations shown here do not differ significantly from the four-dimensional case. This may be traced back
to the fact that in all wedge products of forms the first forms are either the curvature 2-form Fαβ or the connection
1-form 
αβ .
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ADM momentum (see [5]), provided that X′′ satisfies appropriate conditions in the infinity.
X′, on the other hand, is responsible for the horizon contribution to (65).

Our goal is to derive the contribution from the horizon. We assume X is identically zero
out of a finite neighbourhood of the horizon, and in the properly quasi-local case we assume
the support supp(X) intersects the boundary of Mv0 at � only,

supp(X) ∩ δMv0 ⊂ �. (66)

Suppose that X satisfies the following boundary condition on the horizon:

X|� = κ(X)

κ(l)
l − �(X)φ, (67)

where the quantities κ(X) and �(X) are constant on the horizon, but their values possibly depend
on the gravitational field9. That is, κ(X) and �(X) are functions defined on the phase space Γ.
(One should not confuse �(X) with the symplectic form.) The reason for this notation as
well as the geometric and physical meaning of the two quantities introduced here will be
explained in the next three sections. Form (67) of X at � is a natural assumption in the case
of a WIH admitting a non-null symmetry generator (compare with (22)). We discuss this case
in section 8.

By substituting X into (65) by the right-hand side of (67) and taking into account the
boundary conditions at � ((26), (27) and (28)) we get10

Ω(δX, δ) = −2C

∫
�̃v0

((X�ω)δε + δω ∧ (X�ε))

= −2C

∫
�̃v0

(κ(X)δε − �(X)(φ�ω)δε − �(X)(φ�δω)ε)

= −2C

∫
�̃v0

(κ(X)δε − �(X)δ((φ�ω)ε))

= 2Cκ(X)δa� + 2C�(X)δ

(∫
�̃v0

(φ�ω)ε

)
. (68)

The sign of the first term of the result follows from the orientation of �̃v0 defined by the Stokes
theorem, in which ε is minus the N-volume element.

5. Angular momentum

We now assume that the vector field X coincides with the fixed vector field φ on the horizon,
i.e. �(X) = −1 and κ(X) = 0. Then, Ω(δX, δ) calculated in (68) is necessarily a variation

Ω(δφ, δ) = −2C

∫
�̃v0

δ(φ�ω)ε =: −δJ (φ), (69)

where the generator

J (φ) := 2C

∫
�̃v0

(φ�ω)ε (70)

will be called the WIH angular momentum associated with the vector field φ tangent to �.
(We recall that the orientation of �̃v0 is such that ε is minus the area form.) Due to the fact

9 X is well defined for the gravitational fields such that κ(l) �= 0. In the four (spacetime) dimensional case the
resulting Hamiltonian may be extended by continuity to the extremal points of Γ as well.
10 We use below the following identity satisfied by the pullbacks of the involved differential forms onto �̃v0 :
(ω ∧ ε)�̃v0

= 0.
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that φ�ω is a function constant along the null geodesic generators of � (for both φ and ω

are Lie dragged by l), and the area N-form is both Lie dragged by and orthogonal to l, the
horizon angular momentum J (φ) is independent of v0. The formula agrees with the one given
in [5] in the case of four-dimensional horizons.

6. Area as a generator of null translations

If we take X to be just a null vector proportional to l at (�, [l]), i.e. �(X) = 0, κ(X) �= 0, we
get from (68)

−δHX = 2Cκ(X)δa�. (71)

The necessary condition for the flow to be Hamiltonian is that HX and κ(X) be functions of
a� solely. Conversely, given any function H of the area, one can construct the corresponding
Hamiltonian vector field δX in the following way. Fix a vector field Y in M, such that Y |� = l,
and Y vanishes out of a sufficiently small neighbourhood of �. Given a gravitational field, i.e.
a point in Γ, define in M a vector field X,

X := − 1

2Cκ(l)
H ′Y, (72)

where H ′ is the derivative of H. Then, the corresponding vector field δX tangent to Γ satisfies

−δH = Ω(δX, δ) (73)

for every vector field δ tangent to Γ.
In particular, the horizon area itself is a generator of a semigroup of diffeomorphisms,

whose flow of the horizon � is defined by the null vector field (−2Cκ(l))−1l. In other words,
the horizon area is a generator of the null translations of the horizon, as was first observed in
the case of the Killing horizons in 4-spacetime dimensions in [13] and shown for WIHs in
four spacetime dimensions in [5].

7. The first law

In this section we will show that the requirement that the evolution of the gravitational field
be Hamiltonian for general vector fields X satisfying (67) implies a first law of black-hole
thermodynamics analogous to the case of four spacetime dimensions.

Assume the left-hand side of (68) is a total variation of a quantity H�. The equality reads

−δ(H�) = 2Cκ(X)δa� + �(X)δJ (φ). (74)

Necessary conditions are:

• H�, κ(X) and �(X) are arbitrary functions of a� and J (φ) only,
• an integrability condition analogous to the Maxwell relation in thermodynamics holds:

2C
∂κ(X)

∂J (φ)
= ∂�(X)

∂a�

. (75)

Equation (52) imposes therefore strong constraints on the coefficients of the vector field X
at �.

The dependence of H� on a� and J (φ) is arbitrary. In the four-spacetime-dimensional
case some additional conditions on the vector field X were imposed [5], which eventually
determined the generating function H� completely. Firstly, it was not assumed that X was
zero except for a neighbourhood of �. Instead, it was assumed that at the spatial infinity X was
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a normalized generator of a time translation. Then, the corresponding function HX consists
of two contributions, one from � and another from infinity, namely

HX = HADM − H�, (76)

where HADM is the ADM mass. Secondly, it was assumed that X was assigned to each
gravitational field, point in our phase space Γ, in such a way that, whenever the spacetime was
asymptotically flat and stationary, X coincided with the Killing vector field. If this assumption
can be satisfied, then

δX = 0, Ω(δX, δ) = 0, (77)

and, in consequence

δ(H�) = δ(HADM) (78)

for every stationary gravitational field. The two equalities determine H� by the ADM mass
of the Kerr solution, modulo a constant. This is possible due to the uniqueness of a stationary,
asymptotically flat, vacuum black hole of a given area a� and angular momentum J (φ). Since
there is no natural constant of the right units in the vacuum case, the undetermined constant
was set to zero. Remarkably, the resulting H� extends smoothly to the extremal WIH case.
(Incidently, it was not proven that a suitable assignment of X to every point Γ really exists.
The conditions used were necessary only.)

As we mentioned in the introduction, the uniqueness no longer holds for asymptotically
flat, axially symmetric vacuum spacetimes in the general, (N +2)-dimensional case. The issue
is similar to that of hairy black holes [14] in four dimensions.

However, if one restricts the phase space Γ to spherically symmetric (static) gravitational
fields [6–8], then, just as in the four-dimensional case, the value of energy H� as a function
of horizon area can be determined. It is given by the function describing the ADM mass as a
function of the horizon area (see [9])

H� = CN

(
2π

N+1
2



(

N+1
2

)
) 1

N

A1− 1
N (79)

with 
(x) denoting Euler’s gamma function.

8. Invariance and non-invariance

Let us discuss now the gauge invariance of our framework. In order to define the angular
momentum and derive first law (74) we have equipped a non-expanding horizon � with extra
structure: a WIH flow [l], a foliation, a representative l ∈ [l] and a vector field φ̂ defined
on the space � of the null generators of �. Also, the transversal surface M0 was used for
the definition of the pre-symplectic form. It is easy to observe that the generator of the null
translations of �, the area functional a� is in fact uniquely defined given a non-expanding
horizon only, and it is determined just by any cross-section. The definition of the second
relevant parameter, the angular momentum J (φ), involves all the elements of extra structure.
We show below, however, that if the vector field φ̂ generates a local symmetry of the area
element induced in �̂, then a corresponding J (φ) depends only on the geometry of � and on
the vector field φ̂ itself. And again it is determined by an arbitrary cross-section of �. Indeed,
integral (70) can be written as an integral along the base manifold �̂, namely

J (φ) = −2C

∫
�̂

(φ̂�ω̂)ε̂ (80)
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where ε̂ is the area element defined on �̂ by the induced metric tensor q̂ and ω̂ is the pullback
of the rotation 1-form potential ω by the map

�̂ → �̃v0 (81)

naturally defined, given a cross-section �̃v0 . Now, given a non-expanding horizon geometry
on �, a change of the WIH flow [l] and the foliation, both used to define ω̂, amounts to a
transformation

ω̂ �→ ω̂ + dg, where g : �̂ → R. (82)

Consequently ∫
�̂

(φ̂�ω̂′)ε̂ =
∫

�̂

ω̂′ ∧ (φ̂�ε̂)

=
∫

�̂

(ω̂ + dg) ∧ (φ̂�ε̂)

=
∫

�̂

(ω̂ ∧ (φ̂�ε̂) + g(Lφ̂ ε̂))

=
∫

�̂

(φ̂�ω̂)ε̂ +
∫

�̂

gLφ̂ ε̂. (83)

Therefore, in the most elegant formulation of this framework one can add one more boundary
condition, namely the assumption that for every gravitational field in Γ the WIH defined on
the surface � by the vector field l admits a non-null symmetry generator Y such that �∗Y is
a fixed vector field φ̂ on �̂. A generic WIH of this type admits exactly a two-dimensional
group of symmetry generators 2.4. Then, our assumption (67) is equivalent to assuming that
the vector field X restricted to � is a symmetry generator.

9. Discussion and conclusions

We proved that the first law of black-hole thermodynamics holds for arbitrarily dimensional
weakly isolated horizons. We have defined the horizon angular momentum as the generator
of rotational symmetry. We have shown that the assumption that time flow on the horizon is
Hamiltonian leads to a differential condition on the mass function which can be interpreted as
the first law of thermodynamics of black holes.

We also proposed a Hamiltonian function depending on the horizon area and angular
momentum.
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