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Abstract

With the help of a generalized Raychaudhuri equation non-expanding null
surfaces are studied in an arbitrary dimensional case. The definition and basic
properties of non-expanding and isolated horizons known in the literature in the
four- and three-dimensional cases are generalized. A local description of the
horizon’s geometry is provided. The zeroth law of black-hole thermodynamics
is derived. The constraints have a similar structure to that of the four-
dimensional spacetime case. The geometry of a vacuum isolated horizon
is determined by the induced metric and the rotation 1-form potential, local
generalizations of the area and the angular momentum typically used in the
stationary black-hole solutions case.

PACS numbers: 04.50.+h, 04.70.Bw

1. Introduction

The theory of non-expanding and isolated horizons in four-dimensional spacetime [1-10] is
a quasi-local approach to a black hole in equilibrium. A horizon is a compact, spacelike
2-surface expanding at the speed of light, however, not changing its area element. No
symmetry assumptions are made about a spacetime neighbourhood surrounding the horizon.
In fact, generically there is no Killing vector [11]. The parameters characterizing stationary
black-hole solutions, such as the area and the angular momentum, are replaced by appropriate
local fields [4, 12]. Despite this enormous change in the number of the degrees of freedom,
the zeroth and the first law of black-hole thermodynamics still hold (see also [13, 14]).
On the other hand, an interest in higher-dimensional black-hole solutions is growing [15-19].
The goal of the current and a forthcoming paper [20] is a generalization of those results to
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the higher-dimensional case. Whether or not the generalization would be straightforward was
a priori not known. In the calculations concerning the four- and three-dimensional [21] cases
the Newman—Penrose formalism (and its adaptation to three dimensions) was used many times,
for example in the proof of the zeroth law.

We consider an n-dimensional spacetime of the signature (—, +,...,+) and arbitrary
n > 2. First, we derive a higher-dimensional Raychaudhuri equation for a null, geodesic flow.
This is an easy generalization of the derivation one can find in [22].

Next, we study non-expanding null surfaces. Our considerations are local, therefore
the results may be applied to the surfaces of arbitrary topology. Assuming the usual energy
inequalities (classical), we find that the vanishing of the expansion of a null surface implies the
vanishing of the shear. Consequently, the spacetime covariant derivative preserves the tangent
bundle of each non-expanding null surface, and induces a covariant derivative therein. The
induced degenerate metric tensor and the induced covariant derivative (partially independent
of each other) constitute the geometry of a non-expanding null surface. The geometry is the
subject of our study. The induced degenerate metric tensor can be locally identified with a
metric tensor defined on the (n — 2)-dimensional space of the tangent null curves. We do not
find any restrictions on that n — 2 metric tensor. The rotation of a given non-expanding null
surface is described by a differential 2-form invariant derived from the covariant derivative,
the rotation 2-form. Its properties imply the zeroth law upon quite weak energy conditions.
The remaining components of the surface covariant derivative—briefly speaking, the shear
and expansion of a transversal null vector field—are subject to constraint equations which
dictate a null evolution along the surface.

The constraint equations become particularly important in the case of a surface admitting
a null symmetry, called an isolated null surface. Due to them, in the vacuum case, the
whole geometry of a given non-extremal* null isolated surface is locally characterized by
the induced degenerate metric tensor, the rotation 2-form (or even by their pullbacks to a
spacelike (n — 2)-dimensional subsurface) and the value of the cosmological constant. We
also derive the equations constraining the induced metric and the rotation 2-form in the vacuum
extremal isolated null surface case.

In the last section, we apply our local results to the non-expanding and isolated horizons,
which are defined by assuming the existence of a global, compact spacelike cross-section and
the product structure.

Our characterization of the geometry is used in a coming paper [20] to introduce a
canonical framework for the isolated horizons and to derive the first law in a way analogous
to the four- and three-dimensional cases.

1.1. Assumptions and notation convention

We consider a manifold M of the dimension n > 2 (our primary interest is in the case
n > 4). M is equipped with a (pseudo) metric tensor field g,p of the signature (—, +, ..., +)
(one minus and n — 1 pluses) and the corresponding Levi-Civita connection V,. The
corresponding Riemann’, Weyl, Ricci and Einstein tensors are denoted, respectively, by
mRe Byss ®ce Byss (”)Raﬁ and (")Gaﬂ. We often refer to the Einstein equations, which read

MGop = —Agup + Tup, (1.1)
where A is a constant called cosmological and T4 is the matter energy—momentum tensor.
4 Anisolated null surface (A, [£]) (see definition 5.1) is referred to as extremal (non-extremal) whenever the surface

gravity k®© corresponding to null field £ vanishes (does not vanish) respectively.
5 We use the following convention: [V, Vg]X? = RY s4p X8,
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The following (abstract) index notation will be used in this paper.

(1) Indices of the spacetime tensors will be (and have already been) denoted by lower Greek
letters: o, B, y,65....

(ii) Tensors defined in (n — 1)-dimensional null subspaces (tangent to a null surface except
section 2) will carry indices denoted by lower Latin letters: a, b, c,d . ...

(iii) Capital Latin letters A, B, C, D, ... will be used as the indices of tensors considered in
(n — 2)-dimensional spaces (the quotient of a null space by the null direction, the space
tangent to a spacelike section of a null surface, the space tangent to the manifold of null
curves in a null surface).

2. Null geodesic flows, null surfaces

2.1. Null geodesic flows, generalized Raychaudhuri equation

Consider a null geodesic vector field £, that is a null vector field such that
Vet =Y, 2.1)

where «© is an arbitrary function. We are assuming that £ is a section of a sub-bundle L
of the tangent bundle 7. M whose fibres are one dimensional (the assumption is satisfied by
every nowhere-vanishing ¢). It follows from (2.1) that the sub-bundle L+ C T M consisting
of all the vectors tangent to M and orthogonal to the fibres of L is preserved by the flow of the
vector field £. Therefore, the null flow determines an evolution of tensors defined in the fibres
of L*. Particularly important will be for us the tensor g, (x) induced in each fibre L of L+
by the restriction of the spacetime metric tensor g,g(x). The induced tensor is often referred
to as the degenerate metric tensor. Indeed, for every point x € M, g, (x) is symmetric and
being defined in the (n — 1)-dimensional fibre Lf, it has the signature (0, n). The evolution
of the field g,; defined by the null flow is just

Legap = 2BY (), (2.2)
where B® ;) (x) is the restriction of the derivative tensor

BY 5 = Vgl,, (2.3)
to the vector space L)f, at each x € M. Note that

¢*BY,5 =0, PBYO 5 = ke, (2.4)
therefore the restriction B, is annihilated by ¢,

¢“BY,, =0, ’B®,, =0. (2.5)
The null flow evolution of B([)alg involves the spacetime Riemann tensor Regy s,

LBy =k OBO s+ Lok ® g+ B, ,BOY g — R 500", (2.6)

To read from this equation the equation of the null flow evolution of g, it is convenient
to consider the quotient bundle L' /L, whose fibre at every x € M is the quotient vector
space Ly /L, of the fibres. Given a covariant tensor C 4.5 in Ly /L., we denote its pullback
to L)J; by C,..»; given a vector X“ at x orthogonal to L, we denote by XA ts projection onto
Li / L,. Examples are the very tensors g,;(x) and B® _,(x), which are in fact pullbacks of
tensors defined in Lj / L,, consequently denoted by g4 (x) and B® 5 (x), respectively. The
first of them, g4p, is a non-degenerate, positive definite metric tensor in each fibre of Lt /L.
The quotient bundle is also preserved by the null flow. Using (2.2) we can see that

LiGap =2B"Y 4p). .7
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The tensor B¥) 45 can be decomposed into three parts:
o the trace with respect to G4 (with g2 being an inverse of G4 z)
0 = GABBWY 45, (2.8)
which is called the expansion scalar;

e the traceless symmetric part:

_ 1
© 45 1= BY 4p — ——=09Gup, (2.9)

o
n—2

called the shear tensor; and
e the antisymmetric part B[4 p).

Since the transformation law for the tensor B4 upon rescalings £ > ¢ = f£ by a
function f is quite simple, namely

By = fBYup +EuVp f. (2.10)
and in particular

BOuy =B, Bup=fBYss, 2.11)
it is often convenient to choose a section £, of the bundle L such that

k) =0 (2.12)
in (2.1). The evolution of the corresponding B~ ,z defined by the flow of ¢, is

Lo, B gp =g PBY caBY pp — MRy apptell. (2.13)
In particular,
£, = _n%(g(&,))z — o) 4y Ay B BENABL _ g g v (2.14)

where (”)R,w is the spacetime Ricci tensor and the capital indices are raised with the inverse
metric tensor §4Z. Note that this geometric identity defines the dynamics of the geometry
gap if we use the Einstein equations and replace the Ricci tensor by the matter energy—
momentum. This is a straightforward generalization of the famous Raychaudhuri equation
in four-dimensional spacetime. The essential feature of this equation is still present in this
n-dimensional case: all the terms on the right-hand side, except B4z B 48! are non-
positive, provided the Einstein equations hold and the energy condition

Ts" €% >0 (2.15)

is satisfied by the matter. In particular, the non-negativity of o© ,go(©48 follows from the
positive definiteness of the metric tensor field G4p.

We have not exhausted all the information contained in the tensor B,z and in
equation (2.6). We will go back to them in the context of the zeroth law of the non-expanding
null surface thermodynamics.

2.2. Null surfaces

An (n — 1)-dimensional submanifold A in M is called a null surface if at every point x € A the
pullback g, (x) of the metric tensor g, (x) onto A is degenerate. Denote by L, the degeneracy
subspace L, C Ty A. It follows from the algebra of a metric tensor of the signature (1, n — 1)
that L, is one dimensional at each point x, provided the g,g(x) is non-degenerate. It consists
of the null vectors tangent to the surface A at x. The spaces L, form a sub-bundle L C TA
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referred to throughout this paper as the null direction bundle. Consider an arbitrary null vector
field £¢ defined (locally) on A, a (local) section of the bundle L. It is geodesic, that is it satisfies
(2.1). The function «® is referred to as the surface gravity corresponding to £. To apply the
definitions and results of section 2.1 (in particular, the Raychaudhuri equation) to the vector
field £ defined on A, itis enough to consider at each point x € A an appropriate local extension
of the bundle L and of the vector field £¢ to a neighbourhood of x in M. Such extension always
exists. Obviously, the tensor B©® ga = Volp depends on the extension; however, at the surface
A, the part B4, defined by the restriction of the derivative to the tangent space to A is
extension independent. Moreover, due to (2.4) the tensor B“#, considered as a vector-valued
1-form defined on A takes values in the tangent bundle T A, therefore it is defined intrinsically
on A and can be denoted by B“?,. Another object defined intrinsically on A is £,B®“# . In
this way equations (2.6), (2.13), (2.14) can be applied to every null vector field £ defined on
and tangent to A. The equations describe the evolution of the tensors g, and B’, along A,
defined by ¢¢. The existence of the surface implies that the antisymmetric part of the pullback
B®,;, vanishes,

B =0. (2.16)

To see this, owing to (2.11), it suffices to show (2.16) for an arbitrary non-trivial example of
£7. Consider a function r defined in a neighbourhood of a point of A in M such that

r|a = const, dr|a # 0. 2.17)

Then €,, = V,r defines a vector field £¢ tangent to the surface A and null thereon. B,
is the pullback to A of the symmetric spacetime tensor VgV, r, so it is symmetric itself. As a
consequence of (2.16), the Raychaudhuri equation reads

1
5509(&)) — _m(g(fo))2 _ U(&)ABG(EU)AB — 2,0 (n)RW’ (2.18)

in the case of £4 = ¢¢ such that the corresponding surface gravity « “) vanishes.

3. Non-expanding null surfaces

3.1. Definition

Suppose that given a null surface A, for every point x € A the expansion 8 of some
non-trivial null vector field £¢ tangent to A at x vanishes,

9O — 0. (3.1

Then, we say that A is non-expanding. This is a property of the surface A only, independent
of a choice of £. Indeed, it follows from (2.11) that if at a given point x the expansion §®
vanishes, then the same is true for every other section ¢’ of the bundle L.

3.2. The vanishing of the shear and DR e

To learn more about the non-expanding null surface case, consider again a vector field £4, a
section of the bundle L, such that

k&) =0. (3.2)

The vanishing of the left-hand side (the expansion 6“~)) of (2.18) and the vanishing of the
antisymmetric part of B, lead to

0=0"ygo 4P +0,0," "R,,. (3.3)
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The first term on the right-hand side is non-negative. We assume the energy inequality (2.15)
which makes the second term also non-negative. Hence, all of them necessarily vanish on A.
Moreover, it follows from the positivity of the metric tensor g4 and the symmetry of ¢ ® 4
that

o po4B =0 = o, p=0. 34
Consequently,

By = 0=£,"6," "Ry, (3.5)
on A.

Since the tensor B, transforms as presented in (2.11) the final conclusion is true for
arbitrary choice of a section £ of the bundle L.

Theorem 3.1. Suppose A is a non-expanding, null, (n — 1)-dimensional surface contained
in a spacetime of signature (1,n — 1); suppose the Einstein field equation holds on A\ with
a cosmological constant and with the matter fields which satisfy the energy condition (2.15).
Then

(i) the surface is shear-free, that is for every null vector field £* defined on and tangent to A
Vi, =0, 3.6)
where V€, is the pullback of the spacetime V,Lg to A;
(ii) the induced degenerate metric q,p in A is invariant with respect to the flow of every null
vector field £* tangent to A,

Leqap = 0; (3.7
(iii) the spacetime Ricci tensor satisfies on A the following condition:
(”)Raﬂﬂafﬂ —0. (3.8)

Property (i) above combined with ¢“g,, = 0 means that locally gq,, is the pullback
of certain metric tensor field §,pz defined on an (n — 2)-dimensional manifold A’. The
manifold A’ is the set of the null curves tangent to the null direction bundle L in an appropriate
neighbourhood A" C A open in A, and the map is the natural projection,

7 AN > A, Gab =T G ap. (3.9)

3.3. The induced covariant derivative

If the assumptions of theorem 3.1 are satisfied, then for any vector fields X, Y, sections of the
tangent bundle 7 A, the covariant derivative VY is again a vector field tangent to A. Indeed,
it is easy to see that Vx Y is necessarily orthogonal to ¢,

£, X'V, Y" = X"V, (,Y") - X"Y*B,, =0, (3.10)
where the first term vanishes by the definition of ¢ and the second due to theorem 3.1. The

induced covariant derivative will be denoted by D,. For the vector fields X“, Y, sections of
the bundle T A, the derivative is just

DxYa = nya, (311)
whereas for a covector W,, a section of the dual bundle T*A, the derivative DxW, is
determined by the Leibnitz rule,

Y*DxW, = Dx(Y*W,) — (DxY“W,. (3.12)
Obviously, the derivative D, is torsion free and annihilates the degenerate metric tensor gy,
Danf = DbDafa Dath = Oa (313)

for every function f.
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3.4. Further conditions on the Riemann tensor necessary at A

The conclusions of theorem 3.1 lead to stronger restrictions on the Riemann tensor at A,
namely

"R beal® =0, (3.14)
where £¢ is a null vector tangent to A. Indeed, the contraction of the Riemann tensor with £ and

any vector fields X¢, Y4, Z¢, sections of T A, can be expressed as a functional homogeneous
in the derivative tensor B® -

X1 Y ZPOR g = XPYZP Vi VL,
=YD, X" Z"BY},, — B} (X" YD, 2" + Z°Y* D, X™)
— 72D x"Y*B® ,,, + BY (X" ZP Dy Y + Y ZP Dy X™).  (3.15)
Note that in the calculation we have used the fact that the spacetime covariant derivative
applied in any direction tangent to A preserves the tangent bundle 7 A.
Thus far only the inequality T,5¢%¢f > 0 was used apart from the zero expansion

assumption and the Einstein equations with possibly non-zero cosmological constant. A
somewhat stronger but still quite mild assumption about the energy-momentum tensor 7,4 is®

Condition 3.2 (stronger energy condition). At every point of the surface A, the vector field
—TH,0Y (3.16)
is causal, that is
g Tt Topt? <0, (3.17)
and future oriented, for every future oriented null vector field £ defined on and tangent to A.

This condition implies, in particular, the previous
Ty 2 0. (3.18)
Now, the vanishing of the Ricci tensor component £/ £” (’”RW on A combined with stronger
energy condition (3.2) leads to further restrictions on the Ricci tensor. Consider the 1-form
RO, = (n)Raﬂgﬂ’ (3.19)
a section of the cotangent bundle 7*A. Due to the vanishing of "Ry, ateachx € A, R,
TFA is the pullback of some R, € (T,A/L)*. The Einstein field equations allow us to

express the non-positive spacetime norm of the field 7*, £” by the non-negative norm of R(© 4
with respect to chB s

0> g"' Tt Tipt! = g""ROL,RYp > 0. (3.20)
Hence, the pullback onto A of the Ricci tensor contracted with £ is identically zero at A,
WRptF =0. (3.21)

Combining this result with condition (3.14) on the Riemann tensor one can obtain the
following condition on the spacetime Weyl tensor at A:
DC upest®|a = 0. (3.22)
In the n = 4 case the condition means that the null direction tangent to the surface A is a
double principal null direction of the Weyl tensor. In [23] the Petrov classification of the Weyl
tensor was generalized to an arbitrary dimension. The Weyl tensor was expressed in a frame
built of real vectors (n, £, 6(4)) such that’

© This inequality automatically holds when the dominant energy condition is assumed, but is much weaker. The
consequences of dropping the condition will be briefly discussed in the appendix.

7 The proposed frame is an analogue of the Newman—Penrose complex null tetrad [24]. The pair of complex null
vectors (m, m) is replaced by a set of real spacelike unit vectors which allows us to generalize the frame to arbitrary
dimension.
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e on a given n-dimensional manifold M the vectors (n, £) are null and normalized by the
condition £*n, = —1;

o the spacelike vectors 6(4) constitute the orthonormal basis of the subspace of 7T M
orthogonal to (n, £).

The proposed classification is based on the behaviour of the Weyl tensor under the boost
transformations (£ — ff,n — f~'n). For a given (fixed) ¢ the Weyl tensor can be
decomposed onto the sum of the terms C ®) such that each of them transforms under the
boost in the following way: C® > f?C®. The integer power b is called the boost weight.
The weight of the leading term (denoted as the boost order 5(£)) depends on the £ only.
Therefore for a given Weyl tensor one can distinguish the set of aligned vectors of the boost
order B(£) < 1. The Weyl tensor is classified as being of type I (II, III, N) if there exists
a null vector £ of the boost order 1 (0, —1, —2), and there does not exist a null vector of a
lower order. Condition (3.22) implies that the boost order of the null direction tangent to A is
at most 0, so the Weyl tensor is at least of type II with respect to the principal classification
introduced in [23] and sketched above.

3.5. Rotation

The covariant derivative D, induced on A preserves the null direction bundle L. Indeed, for
every section £ of L, and every vector field X¢, a section of T A, the vector field Dx£? is
orthogonal to every vector Y tangent to A,

Gar Y X Db = —qpt° XD, Y = 0. (3.23)
This implies that the derivative D, £ is proportional to £ itself,
Dazb _ B((f)ha _ w“)(lﬁb, (3.24)

where w®, is a 1-form defined uniquely on this subset of A on which £ # 0 is defined.
We call 0¥, the rotation 1-form potential, as a generalization of the (n = 4)-dimensional
case [4].

In four dimensions, the evolution of w®, along the surface A upon the null flow is
responsible for the zeroth law of the non-expanding horizon thermodynamics. Therefore, we
study this equation in the current case. It is convenient to investigate the behaviour of the
following object:

Lo, = L,BY?,. (3.25)
The right-hand side is given by (2.6), and after a short calculation it reads

P Lw®, = °Dk® — MR, 00, (3.26)
where we used the fact that

kO = ® 00, (3.27)

The vanishing of the components "R,.,£¢ (see (3.15)) allows us to express the Riemann
tensor component appearing in (3.26) by the Ricci tensor

(n)Rdeachd — _(n)Rcazbgcv (328)
hence the vector field £ can be completely factored out,
Lo0Py = Do ® + MR 0" (3.29)

If stronger energy condition (3.2) holds, then the last term above also vanishes (see
section 3.4).
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In conclusion, the evolution of the rotation potential is described by the following theorem:

Theorem 3.3 (the zeroth law). Suppose A is an (n — 1)-dimensional, non-expanding, null
surface; suppose that the assumptions of theorem 3.1 and stronger energy condition (3.2) are
satisfied. Then, for every null vector field £ defined on and tangent to A, the corresponding
rotation 1-form potential 0 and the surface gravity k'© satisfy the following constraint:

L0, = Doic®. (3.30)

Theorem 3.3 tells us that there is always a choice of the section £ of the null direction
bundle L such that »® is Lie dragged by £. For we can always find a non-trivial section £ of
L such that «® is constant. The relation of black-hole thermodynamic to the original zeroth
law goes the other way around. Indeed, if the vector field £ admits an extension to a Killing
vector defined in a neighbourhood of A, then @® is Lie dragged by the flow; therefore the
left hand side is zero, and hence «© is necessarily (locally) constant.

The dependence of the rotation 1-form potential w®, on a choice of the section £ of L
follows from (2.10): If £/ = f£¢, then

0, =w®, +D,In f. (3.31)
As one can see, its exterior derivative (in the sense of the manifold A) is the surface A invariant,
Qup := D®), — Dy®, = Dy, — Dp®,,. (3.32)

We call it the rotation 2-form. Note that whereas the sections of the null direction bundle L
were considered on A locally, and so were the corresponding rotation 1-form potentials 0",
the rotation 2-form is defined globally on A. An immediate consequence of theorem (3.3) is
that whenever the assumptions are satisfied, the rotation 2-form is orthogonal to the bundle L,
and Lie dragged by any (local) null flow defined by a section £ of L,

Q= Lo, — Dyp(L°0,) =0, (3.33a)
L = 0. (3.33b)

Therefore, the rotation 2-form €2, is at every point x € A the pullback with respect to
T.A — T, A/L, of atensor Qg defined in T.A/L,, such that

L:Qap =0. (3.34)

3.6. Geometry and the constraints

Given a non-expanding null surface A, the pair (g,5, D,), that is the induced degenerate metric
and the induced covariant derivative, respectively, is referred to as the geometry of A. By a
‘constraint’ on the non-expanding surface geometry we mean here every geometric identity
F(qap, Da, (”)Ro,,g) = 0 involving the geometry (q,», D,) and the spacetime Ricci tensor at A
only. Part of the constraints is already solved by theorem 3.1(ii), that is by the conclusion that
qa» be Lie dragged by every null flow generated by a null vector field ¢ tangent to A. Another
example of a constraint is the zeroth law (3.29), (3.30). A complete® set of the functionally
independent constraints is formed by £,g,, = 0 and by an identity satisfied by the commutator
[Le, D,], where £ is a fixed, non-vanishing section of the null direction bundle L. We turn now
to the second identity mentioned above.

8 Among all the components of the Einstein tensor only its pullback to A can be expressed by (gap, D,) only. It
will be shown further that its value is determined by the commutator [L¢, D,]. The remaining components involve
transversal derivatives of the components of V,, (where the number of determined transversal derivatives is equal to
the number of the remaining components of the Einstein tensor).
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Using formula (3.24), and using (3.14), after simple calculations one can express the
value of the commutator [L,, D,] by the rotation potential, its derivative and the spacetime
Riemann tensor,

[Le, DX? = [2(D@w ) + 0P @) — R (5] X€ (3.35)

(where D,w®.. stands for the tensor, not for a derivative operator acting on X?). It follows
from condition (3.14) that £°™R? (ca)s 1S also proportional to £?, and we can write

[Le, DX = €Ny XC. (3.36)

To spell out what the proportionality factor N, is we need to recall that the degenerate metric
tensor field g,; can be locally defined as the pullback (3.9) of the (n — 2)-dimensional metric
tensor §4p defined on the manifold of the curves generating A. The proportionality factor
can be expressed by the pullback of the spacetime Ricci tensor and the pullback® of the Ricci
tensor 2R 4 of the metric § 43, namely

Noe = Do¥) + 090 + H(MRye — 1 " IR,). (3.37)

Identities (3.36), (3.37) are the constraints in the sense explained at the beginning of this
subsection. They become the gravitational part of the genuine Einstein constraints when
the spacetime Ricci tensor is replaced by the cosmological constant part and by the energy—
momentum tensor of the matter field. As an example, later we will consider the vacuum case.
We did not assume stronger energy condition (3.2) to derive (3.36), (3.37).

The contraction of (3.36), (3.37) with € is equivalent to (3.29). Hence, it defines the
evolution of the rotation 1-form potential »®, already used in the proof of the zeroth law.
Recall that locally there is a nowhere vanishing tangent, null vector field ¢, on A such that

k) =0. (3.38)
The corresponding w“” is Lie dragged by the vector field £,, provided the assumptions of the
zeroth law are satisfied,

Lo = 0. (3.39)

The meaning of the remaining part of the constraint (3.36), (3.37) is explained in the next
subsection after we itemize the derivative D, into components and provide a more explicit
form of equations (3.36), (3.37).

4. Elements of the non-expanding null surface geometry

4.1. Compatible coordinates, foliations

To understand better the elements of the covariant derivative D, induced on a null, non-
expanding surface A, and to investigate further its relation with the spacetime Ricci tensor,
we need to introduce an extra local structure on A.

Let £ be a nowhere vanishing local section of the null direction bundle L. Given £¢, let v
be a real function defined in the domain of £¢, compatible with £¢, that is such that

Dy = 1. 4.1
The function v exists provided we sufficiently reduce the domain of £¢. We will refer to v as
a coordinate compatible with £. The function v is used to define a covector field on A,

n, ;= —D,v. “4.2)

9 The first pullback is defined by the embedding A — M, whereas the second one corresponds to the locally defined
projection 77 : A’ — A’ of a neighbourhood A’ C A onto the space of the null curves in A’
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The covector field has the following properties:
(i) Itis normalized in the sense that
ng = —1, (4.3)
(ii) it is orthogonal to the constancy surfaces A, of the function v.

The surfaces A, will be referred to as slices. The family of the slices is preserved by the null
flow of £, and so is n,,

Leng = 0. 4.4)
At every point x € A, the tensor
gy =8+ n, 4.5)
defines the orthogonal to £¢ projection
T.A > X X9 =g X0 e T, A, (4.6)

onto the tangent space T A,, where A, is the slice passing through x. Hence, instead of X¢
we will write X4, according to the index notation explained in the introduction. Applied to
the covectors, elements of 7, M, on the other hand, §“, maps each of them into the pullback
onto A,

T*A3 Y, > Y, =3V, e TFA,. 4.7)

Hence the result will also be denoted by using a capital Latin index, such as for example ¥ 4.
The field n, could be extended to a section of the pullback TXM to A of the cotangent
bundle 7*M, by the requirement that

g"’'nyn, = 0. 4.8)

Hence n, can be thought of as a transversal to A null vector field from the spacetime point of
view.

4.2. The elements of D,

Each slice A, of the foliation introduced above is equipped with the induced metric tensor § 4 3
defined by the pullback of ¢, (and of g.g) to A,. Denote by D, the torsion-free and metric
covariant derivative determined on A, by the metric tensor §4p. All the slices are naturally
isometric.

The covector field n, gives rise to the following symmetric tensor defined on A:

Sab = Dal’lb. (49)

Given the structure introduced in the previous subsection on A locally (the null vector
field £¢, the foliation by slices A, and the covector field n,), the derivative D, defined on A
is determined by the following information:

e the torsion-free covariant derivative D, corresponding to the Levi-Civita connection of
the induced metric tensor G5,

e the rotation 1-form potential »®, and

e a symmetric tensor S 45 defined in each slice A, by the pullback of D,n;,

Sas =G“4G"Sab (4.10)

and referred to as the transversal expansion-shear tensor.
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Indeed, for every vector field X“ and every covector field Y,, the sections of T A and
T* A, respectively, their derivative can be composed from the following parts:

G“43%y Do X" = D4 X" 4.11a)
G anpyD, X" = Da(X"np) — G aSup (4.11b)
0D, X" = £, X0 + X0 b 4.11¢)
344" 8DaYy = DsY 5 — (Ypt")3" 43" 5 Sav @.11d)
G al’D,Y, = D,(°Y,) — @9 4%y, (4.11e)
DY, = LY, — 09 Y, 0%, 4.11f)

where we have used the notation introduced in the previous section: X4 = Gh.Xe, Yi=
GaYa, @94 = G20,

The careful reader will have noticed that all the components of the tensor S,, were used
above, not only the San part. However, due to the normalization (4.3) the contraction of the
tensor with the null normal to A is equal to

0S = w©,. 4.12)

4.3. The constraints on the elements of D,

The constraints satisfied by D, are expressed in the previous section by the commutator
[Le, D] (3 36), (3.37). Since the foliation we used to decompose D, into the elements Dy,
w®, and S, B is invariant with respect to the flow of £, the evolution of D, comes down to an
evolutlon of D4, w®, and S 5. The slice connection D 4 is invariant with respect to the flow
because of (3.7). The evolution of ¥, is already given by the zeroth law (3.30). To describe
the evolution of the remaining element S 45 we calculate the action of the commutator on the
covector n, and find that the tensor N,;, defined in (3.36) can be expressed by £,S,,, namely

Ny = LoSap. (4.13)
Therefore, by (3.37),
LeSap = D@y + 000 — LR (. (4.14)

The contraction of the expression with £ reproduces the zeroth law. The remaining
component, namely the pullback of £;S,;, onto a slice A,, determines the evolution of the
transversal expansion-shear tensor S4p,

,C(SAB —K()SAB+D(AC() )B)+a)( )Aa)” (n Z)R l(n)’ﬁ,AB, (415)

where the tilde consequently means the projection (4.7), and =21 . g is the Ricci tensor of the
metric tensor induced in slice A, (since locally, every slice A, is naturally isometric with the
space of the null curves A’ equipped with the metric tensor § 45 we denote the corresponding
Ricci tensors in the same way).

5. Isolated null surfaces

5.1. Definition, assumptions, constraints

In this section we continue with the study of the non-expanding, null surfaces. We assume
that the Einstein equations with a (possibly zero) cosmological constant hold on the surface,
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with the energy-momentum tensor 7,4, which satisfies stronger energy conditions (3.2). As
was shown, these assumptions imply that the spacetime Ricci tensor satisfies (3.21).

Let A be a non-expanding null surface. Whereas the induced metric tensor is Lie dragged
by every null vector field tangent to A we could see that the remaining ingredient of the
geometry, the covariant derivative, is subject to the null evolution equation (3.36), (3.37)
implied by the constraints. The equation depends on a choice of the null vector field ¢;
however, in general (and generically in the four-spacetime-dimensional case) a geometry
(gap, D,) does not admit any choice of ¢ such that [£,, D,] = 0.

Definition 5.1. An isolated null surface is a non-expanding null surface A equipped with a
class [£] of tangent, null, non-vanishing vector fields £ such that

Legap =0, [£Le, D] =0 5.D

where q,, is the induced degenerate metric tensor and D, is the induced covariant derivative,
and £, £ € [£] provided £ = ck, where c is a constant.

In this section we consider an isolated null surface (A, [£]). We assume A is connected.
Note that given the flow [£], the rotation 1-form w®, is defined uniquely owing to (3.31).
Obviously, it is Lie dragged by [£€],

0L ®, = Lo(DP) = D Lol” = 0. (5.2)

As a consequence, theorem 3.3 takes the familiar form of the zeroth law of black-hole
thermodynamics,

K@ = const, (5.3)

where the value of the surface gravity depends on the choice of £ € [£] unless k) = 0.
The constraint (3.36), (3.37) takes the following form:

Duo®y + 0?00 + LR, — 7 TIR,) = 0. (5.4)

Not surprisingly, a necessary condition is that the pullback of the spacetime Ricci tensor
on A is Lie dragged by [£],

Lo PR = 0. (5.5)

To understand better the meaning of equation (5.4) let us apply the (local) decomposition
of D, introduced in section 4.2. Introduce a foliation of A preserved by [£] and use the
corresponding covector n,, orthogonal to the slices and normalized to an arbitrarily fixed
null vector field £ generating the flow [£]. If the derivative D, satisfies the definition of the
isolated null surface, then the corresponding transversal expansion-shear tensor S,z defined
on the slices is invariant with respect to the null flow

LeSap = Le(3°4G" pDany) = 0, (5.6)

because all the factors in the parenthesis are invariant. Conversely, given a non-expanding
null surface A, a null flow [¢] generated by the nowhere vanishing vector field £, and one of
the foliations defined in section 4.1, the invariance of w®, and S, with respect to the null
flow implies that (A, [£]) is an isolated null surface.

Now, the constraint (4.15) implies

K(E)SAB = D(A(I)(Z)B) + @(Z)A@(Z)B — %(11—2)RAB + (n)jé,AB. (57)
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A characterization of the isolated null surface depends crucially on whether « © vanishes
or not; therefore we define two types of the isolated null surfaces:

() extremal, if k© =0, or

(ii) non-extremal, whenever k© = 0.
The meaning of the constraint (5.7) depends on the type. In the non-extremal case (5.7)
determines S5 given Gap, @? 4 and the pullback ™R ,p of the spacetime Ricci tensor
expressed by the cosmological constant and the matter energy—momentum tensor.

Theorem 5.2 (non-extremal, vacuum isolated null surface). Let (A, [£]) be a non-extremal
isolated null surface; suppose the vacuum Einstein equations with a cosmological constant
A are satisfied. Then, the geometry of A is determined by the induced metric tensor qup, the
rotation 1-form potential 0® , and the value A of the cosmological constant.

If matter fields are present, then typically the geometry is determined just by adding to
(gav, 4, A) appropriate information on the field on A.

In the extremal case, on the other hand, equation (5.4) becomes a condition on @D 4, qaB
and MR ,p.

Theorem 5.3 (extremal, isolated null surface). Suppose (A, [£]) is an extremal isolated null
surface contained in n-dimensional spacetime; then, for every (n — 2)-dimensional spacelike
submanifold A transversal to the orbits of the null flow, the following constraint is satisfied,

D(A(;)(e)g) + (;)M)Ad)(e)g — %('172)7?,‘43 + %(n)ﬁ,AB =0, (58)

where D 5 and "~ R 4y are, respectively, the torsion-free connection and the corresponding
Ricci tensor of the metric tensor §ap induced on A.

In the vacuum case, the geometry of extremal isolated surfaces gives rise to an equation
which can be formulated in a self-contained way. Given an (n — 2)-dimensional manifold
A, consider a pair (q g, ®® A), which consists of, respectively, a metric tensor field (of the
Riemannian signature) and a differential 1-form. The equation reads

OO0 p — L0 DR 5 = L AGas, (5.9

where A is the cosmological constant and G4 is still defined by (4.7). In the case when A
is compact and A = 0, the equation has quite interesting properties. They were discussed in
[25] in the n = 4 case. In particular, it was shown there that if A is topologically a 2-sphere,
then the only axially symmetric solutions are those defined by the extremal Kerr solutions at
their event horizons. The general solution to equation (5.9) is not known.

D(ALT)(Z)B) +o

5.2. Non-expanding null surfaces admitting a two-dimensional null symmetry group

Given an isolated null surface (A, [£]), a priori there may exist another null flow [£'] defining
a symmetry of the geometry (g,5, D,) and being another isolated null surface structure. In
the 4-spacetime dimensions this non-generic case of two-dimensional null symmetry group
was studied in detail (see [4, 25]). In particular, an unexpected relation with the extremal
isolated null surface constraints was discovered and used in the construction of examples
[25]. It turns out that those results can be easily generalized to the surfaces embedded in a
higher-dimensional spacetime. We are concerned with this issue in this subsection.

Suppose then that a non-expanding null surface A admits two distinct isolated null surface
structures [£] and [£]. Let vector fields £ and £’ be generators of the flows. There exists a real
nowhere vanishing function f defined on A such that

¢ = fe. (5.10)
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Each of the commutators [L,, D,] and [L,, D,] is represented, respectively, by the tensors
Nay, and N/, (5.4). According to the very assumption made in this subsection, they both
identically vanish. On the other hand, generally one is related to another by the following
transformation law:

Ny = fNpe + 09Dy f +0®,D.f + DD, f. (5.11)

If both vector fields £ and f £ are the symmetries of (q.5, D,), then both Lie derivatives vanish.
The equation above becomes then a differential condition on the function f, namely

D,Dyf +2w® Dy f =0. (5.12)
Contraction of the condition with £° gives the equation

Dy(Lef +6Pf) =0, (5.13)
which allows us to determine the null evolution of f

Lof +©f =x® = const. (5.14)

By integrating this equation we obtain a solution whose form depends on the surface gravity
NG
Be v+ syl k® 20
k©v— B k® =0,
where v is a coordinate compatible with £ (defined via (4.1)) and B is an arbitrary real function
constant along the null generators.

Note that we used the zeroth law according to which the surface gravity is constant at the
surface. The zeroth law relies on stronger energy condition (3.2).

To determine the function B we need to use the remaining part of (5.12), namely its
projection onto the slice A, (see (4.9), (4.10))

G adi5(DaDy f +20° Dy ) = DaDp f +25° 4D f — 23" 5 Da(€” np +n" ;) Dy f
= DuDpf+28° 4Dy f — SapLef. (5.16)
Without loss of generality we can restrict ourselves to the following cases:
i) «® #£0
(i) €@ =@ =0.
In both of them equation (5.16) is equivalent to the following differential constraint for B:
[DsDp +289 4 Dp) +x©S451B = 0. (5.17)

By the comparison with the constraint (5.7) on the isolated null surface geometry we can
see that the term k¥ S 4 5 can be replaced by the appropriate functional of (G4, @® 4, R ap).
The resulting equation leads to an interesting conclusion. Since B vanishes nowhere (the flows
are both non-trivial and distinct) the set of data (G435, @0 4, DR g, B) satisfies the constraint
(5.17) if and only if the set (Gap, @4 = @© 4 + D4 In B, ™R 4p) satisfies the constraint
(5.8) for the geometry of the extremal isolated null surface. We will go back to the consequence
of this result at the end of the following section.

Fe (5.15)

6. Non-expanding horizons and isolated horizons

Thus far our considerations were purely local. No global assumptions concerning the null
surfaces topology were made. The specific property of a quasi-locally defined black-hole is
its compact character in spacelike dimensions. This notion has not been defined on the most
general level. We consider in our paper the topologically simplest and, at the same time, the
typical case of the Cartesian product structure:
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6.1. Non-expanding horizons

Definition 6.1. A non-expanding null surface A in an n-dimensional spacetime M is called
a non-expanding horizon (NEH) if there is an embedding

A" xR - M 6.1)
such that

o A is the image,

o A" is an (n — 2)-dimensional compact manifold,

o R is the real line,

o for every maximal null curve in A there is & € A" such that the curve is the image of
{x} xR.

The base space A defined as the space of all the maximal null curves in A can be identified
with the manifold A” given an embedding used in definition 6.1. Whereas the embedding is
not unique, the manifold structure defined in this way on A is unique. There is also a uniquely
defined projection

T:A— A 6.2)

In this section we consider a NEH A. Of course, it inherits all the properties of the non-
expanding null surfaces. The following theorems are applications of the results of section 3
to the non-expanding horizons.

The first theorem summarizes the properties following from the weaker energy assumption
(2.15):

Theorem 6.2. Suppose A is a non-expanding horizon in a spacetime M. Suppose at A the
spacetime Einstein field equations hold and the matter fields satisfy condition (2.15). Let £ be
an arbitrary null vector field tangent to A (in items (iii—vii) below), then

(i) there is a metric tensor field § 4 (called a projective metric) defined on the base space A
such that the degenerate metric tensor qqp induced in A\ by the spacetime metric tensor is
given by the pullback,

Gab = T Gap; (6.3)

(ii) there is a covariant derivative D, defined in the tangent bundle T A such that, for every
two vector fields X, Y,

DyxY = VyY, (6.4)

where V, is the spacetime covariant derivative;
(iii) there is a 1-form w'©, (called the rotation 1-form potential) defined on A such that

D" = w® %, (6.5)
(iv) the rotation 2-form (invariant)
Qab = Daw(z)b - wa(l)a (66)

is uniquely independent of £;
(v) the rotation 1-form potential and the self-acceleration k© := 4w, of £ satisfy

‘Ciw(l)a = DaK(Z) + (H)Rabeb; 6.7)
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(vi) the infinitesimal Lie transport of D, with respect to the null flow of £ is the following
tensor:

[[*Ea Da]f = Eb (D(aw(e)c) + w(l)aw(z)c + %((”)Rac - n*(niz)Rac)) (68)

where ""PR 4p is the Ricci tensor of the metric tensor § op;
(vii) the following components of the pullback onto A of the spacetime Ricci and Riemann
tensor vanish:

0P MRy =0 = 0" DRypeq. (6.9)

In the previous sections we also considered stronger energy condition (3.2). The following
theorem summarizes its consequences for a non-expanding horizon:

Theorem 6.3. Suppose all the assumptions of theorem 6.2 are satisfied and additionally the
matter fields at A satisfy stronger energy condition (3.2); then

e on the base space A, there is a uniquely defined 2-form Q 4 such that the rotation 2-form
invariant is its pullback

Qap = 7 Qap; (6.10)
e the rotation 1-form potential and the self-acceleration satisfy
Low®, = Derc®; (6.11)

e the pullback of the spacetime Ricci tensor and, respectively, the spacetime Weyl tensor
onto A is transversal to the null direction tangent to A,

DR =0=0"DCypea (6.12)

We will consider now the non-expanding horizons where theorem 6.3 applies.

In the case of the non-expanding horizons, there are globally defined, nowhere vanishing
null vector fields £ tangent to A at our disposal. In particular, there is a vector field £4 of the
identically vanishing self-acceleration, x> = 0. There is also a null vector field £ of x©
being an arbitrary constant'’,

«© = const. (6.13)

The vector field £¢ can vanish in a harmless, for our purposes, way on an (n — 2)-dimensional
section of A only. We fix one of the vector fields £¢ (including (£%)) throughout this section.
We will also use a coordinate v compatible with the vector field £ (¢“D,v = 1), and the
covector field n, (= —D,v), both introduced in section 4.1 defined on A (except the zero slice
of £). It follows from the zeroth law (6.11) that the rotation 1-form potential is Lie dragged
by ¢,

Liw®, =0. (6.14)
We discuss below two independent consequences of this fact. The first one is the existence
of a new invariant of the geometry of A, a certain harmonic 1-form invariantly defined on

the base manifold A. The second one concerns the degrees of freedom of a general vacuum
solution (g.p, D) of the constraints (3.7), (3.36), (3.37).

10 The first one, £,, can be defined by fixing appropriately the affine parameter v at each null curve in A. Then, the
second vector field is just £ = v¥,.
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6.1.1. Harmonic invariant. It turns out that »®, defines on the base space A a unique
1-form depending only on the geometry (g,5, D,) of A. Indeed, given the function v, there
is a differential 1-form field ®© 4 defined on A and called the projective rotation 1-form
potential such that

00, = 76O, +c© Dyv. (6.15)

The 1-form ®® 4 is not uniquely defined, though. It depends on the choice of the function
v compatible with £, and on the choice of £¢ itself. Given ¢¢, the freedom is in the
transformations

v=10v+B, LB =0, (6.16a)
6, = 60, + 0D, B. (6.16b)

The transformations £ = f¢“ which preserve condition (6.13) are given by (5.15), and it
can be shown using (3.31) that the only possible form of the corresponding @“” 4 is again
that of (6.16b) with possibly different function B. Therefore, if we apply the (unique) Hodge
decomposition [26] onto the exact, co-exact and the harmonic part, respectively, to &® 4,

&®, = @(L’)Zx + @(E)ZO + @(‘3)1;‘3, (6.17)

then the parts @V and &©" are invariant, that is determined by the geometry (g, D,) of
A only. The co-exact part is determined by the already defined invariant 2-form (3.32), via

Qap = Dx0"§ — Dpd™. (6.18)

The harmonic part of ®© 4 is the new invariant. It did not occur in the case of spherical A
considered in [4]. In the case of a general topology of A, the invariant may be relevant. There
are known non-trivial examples of black holes with non-spherical base spaces. For instance,
in five dimensions there exists asymptotically flat, regular, axi-symmetric solutions (see [16]
for details) of the horizon base space topology S' x S2. The space of harmonic 1-forms is
finite dimensional, so the degrees of freedom identified with the harmonic component of the
rotation 1-form potential are global in character.

6.1.2. Degrees of freedom. Let £*, v and n, be still the same, respectively, vector field,
a compatible coordinate and a covector field introduced below theorem 6.3. The covariant
derivative D, is characterized by the elements defined in section 4.2, subject to the constraints
(3.36), (3.37). Suppose the vacuum Einstein equations with a (possibly zero) cosmological
constant are satisfied on A.

The geometry (g,», D,) can be completely characterized by the following data:

(i) the data defined on the space of the null geodesics A:

e the projective metric tensor § (6.3)
o the projective rotation 1-form potential ®© 4 (3.32)
o the projective transversal expansion-shear data S ; (see (6.19) below)

(i) the values of the surface gravity «© and the cosmological constant A,
where the projective transversal expansion-shear data S‘g g 1s a tensor defined on A by the
following form of a general solution of (4.15),
(D(A(;)(Z)B) + (,’!\)(Z)A(,(A)(Z)B — %(n—Z)RAB — %AQAB)U +7*S° 4B
S for «© =0,
AB = —x© & A A N N - ~
e Va8 g + =5 (D40 gy + V4005 — 1" IRyp — AGaB)

otherwise.

(6.19)
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A part of data depends on the choice of the vector field ¢¢ and the compatible coordinate
v. Given £ such that k® # 0, the compatible coordinate v can be fixed up to a constant
by requiring that the exact part in the Hodge decomposition of the projective rotation 1-form
potential ®© 4 vanishes (see section 6.1.1). The vector £¢ itself, generically, can be fixed
up to a constant factor by requiring that the projective transversal expansion-shear data $°,
be traceless. Indeed, the transformations of £% such that ¥®® remains a non-zero constant
are given by (5.10), (5.15). They are accompanied by the transformations LS., — LgS' ap
determined by (5.11). Contraction of the mentioned equation with the tensor §** defined as
follows,

ﬂ*qab — éab’ Elabnb — O’ (620)

and the assumption that §* £, S,;, = 0 (equivalent to §4% 8?45 = 0) produces the following
gauge condition defined on the slices:

7

) _ i i ® i
(D2 269D 4 + 3B (1 ©8 45 + LS 45)]1B = I,{(W 0GB £,8 s 6.21)

According to the zeroth law and (6.19) the above equation defines at each slice the same
constraint for a NEH’s geometry, and can be rewritten in terms of the objects defined on the
base space A. Hence, the condition that S ap be traceless takes the form of the following
elliptic equation on the function B,

. _ n—2
gAB DR

[i)z +2002D 4 +dive® + |00 — Ai| B=x®G*88 g,

1
2

(6.22)
where divd® := DAd® 4 and |0©? := @@ 4@ 4. The equation generically has a unique
solution. Finally, the remaining rescaling freedom by a constant can be removed by fixing the
value of the surface gravity «© arbitrarily (the area of A can be used as a quantity providing
the appropriate units).

6.1.3. Abstract non-expanding null surface/horizon geometry. Non-expanding null surface
geometry can be defined abstractly. Consider an (n — 1)-dimensional manifold A. Let g,; be a

symmetric tensor of the signature (0, +, ..., +). Let D, be a covariant, torsion-free derivative
such that

D,qp. = 0. (6.23)
A vector £ tangent to A is called null whenever

Gy = 0. (6.24)

Even though we are not assuming any symmetry, every null vector field £¢ is a symmetry
of qup:

Lemma 6.4. Suppose £° is a null vector field tangent to A, then
Ligap = 0. (6.25)

Despite the fact that the lemma is quite surprising, the proof is not difficult. We leave it
to the interested reader.

Given a null vector field £, we can repeat the definitions of section 3, and associate with
it the surface gravity ), and the rotation 1-form potential . Now, a vacuum Einstein
constraint can be defined as an equation on the geometry (q,», D,) per analogy with the
non-expanding null surface case. To spell it out we need one more definition. Introduce on
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A a symmetric tensor ""?R,,;, such that for every (n — 2)-subsurface contained in A the
pullback of “~?R,, to the subsurface coincides with the Ricci tensor of the induced metric,

provided the pullback G4p of g, is a non-degenerate metric tensor. The vacuum constraint is
defined as

[Le. Dl = (Do) + 000 = 5Aqac) = 3" P Rae, (6.26)

and it involves an arbitrary cosmological constant A.
Suppose now that

A=A xR, (6.27)
and the tensor g, is the product tensor defined naturally by a metric tensor § 45 defined in
A and the identically zero tensor defined in R. The analysis of sections 6.1.1 and 6.1.2 can
be repeated for solutions of the vacuum Einstein constraint (6.26). Again the base space A
is equipped with the data of section 6.1.2, that is the projective: metric tensor § 4, rotation
1-form potential &® 4, transversal expansion-shear data $°,3. Completed by the values of
the surface gravity «© and the cosmological constant A the data are free, in the sense that
every data set defines a single solution (q,p, D,).

6.2. Isolated horizons

Definition 6.5. An isolated null surface (A, [£]) such that the surface A is a non-expanding
horizon is called an isolated horizon (IH).

Consider an arbitrary isolated horizon (A, [£]). A generator £ of the null symmetry is
defined globally on A, and it is unique modulo the rescaling £ = aof by a constant aj.
Therefore, the rotation 1-form potential w is defined globally on A and in an independent of
the choice of £ € [£] manner (hence we will drop in this section the suffix (£) on w but keep
it on the surface gravity). It follows from section 5 that for every isolated horizon (A, [£])
the rotation 1-form potential is Lie dragged by the vector field £, additionally the energy
condition (2.15) is satisfied necessarily and the left-hand side of (6.8) is assumed to be zero.
In conclusion,

(i) the rotation 1-form potential is Lie dragged by the horizon symmetry £
Low, = 0; (6.28)
(i) if the matter fields satisfy stronger energy condition (3.2) on A, then the surface gravity
«® is constant,

K® = const; (6.29)
(iii) the pullback of the spacetime Ricci tensor on A is Lie dragged by [£],

Lo PR = 0; (6.30)
(iv) in the case when stronger energy condition (3.2) holds, the tensor S, has the form

Sap = 7 Sap — 2wnpy — kOngny; (6.31)

where § Ap 18 a symmetric tensor defined on A,
(v) the constraint (4.15) applied to S,;, above reads

kOSsp = Dadp) + Dadp — Y PRup + 1R s, (6.32)
where by (")7@,4 p we denoted the tensor uniquely defined on A such that n*(”)ﬁab =
"Rap.

The classification of the isolated null surfaces with respect to whether «® vanishes or

not applies to the isolated horizons, therefore we call an isolated horizon extremal whenever
«® = 0, and non-extremal otherwise.
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6.2.1. Degrees of freedom: the non-extremal case. Suppose the vacuum Einstein equations
(with a possibly non-zero cosmological constant) hold on an isolated horizon (A, [£]), and

«® 0. (6.33)

Since A is a non-expanding horizon, its geometry can be characterized by the data (i) and
(i) discussed in section 6.1.2. Now, however, the data satisfy an extra constraint following
from (5.7), namely

AZB — (6.34)

in (6.19). Therefore, in the non-extremal isolated horizon case, given a generator £ of the
flow [£], the geometry (gq», D,) is completely determined by the projective metric and the
projective 1-form potential (§ 45, ®4) defined on the base manifold A, provided the surface
gravity «® and the cosmological constant are given. The discussion of the gauge degrees of
freedom in the data of section 6.1.2 applies, except that in this case the null flow [£] is given.
The data §,, and @4 are free in the sense of section 6.1.3.

6.2.2. Degrees of freedom—the extremal case. In the extremal case, on the other hand, the
vacuum isolated horizon constraints (5.7) do not constrain the projective transversal expansion-
shear data S’Z g at all. On the other hand, the projective metric tensor § 45 and the projective
rotation 1-form potential @4 necessarily satisfy a constraint

([j(A(;)B) + D 0p — %(n_Z)RAB — %AqAB) =0. (635)

The general solution to this equation is not known even in the case of four-dimensional
spacetimes; however, the number %n(n — 1)(n — 2) of the equations is in the space of
the solutions to the constraints (5.1) equal to the number of the independent variables:
%(n — 2)(n — 3) for the metric [27] plus n — 2 for the rotation. Therefore, one can
expect that extremal isolated horizons should be described by the global degrees of
freedom.

In the extremal case, as opposed to the non-extremal case, the projective rotation 1-form
potential &4 is uniquely defined on A, including the exact part. The projective transversal
expansion-shear tensor S 45, on the other hand, is still the choice of the compatible coordinate
v dependent. The transformation of projective tensor S AB = Se AB 18

SAB_) S‘A3+[DAADAB+26’L\)(ADAB)]f. (636)

The trace of this equation with respect to §4p becomes an elliptic PDE for the function
f. Therefore generically there is a possibility of distinguishing the coordinate v (and the
corresponding family of sections of A) by the requirement that the trace of §, as well as the
trace of S5, be zero.

Finally, in the sense of section 6.1.3, the degrees of freedom in the space of the extremal
isolated horizons, solutions to the constraints (5.1) are given by the solutions (§ 45, ®4) of the
constraint (6.35), and the traceless part of the transversal expansion shear tensor S AB-

6.3. Non-expanding horizons with two-dimensional null symmetry group

In the four-dimensional case (see [4]) there exist non-expanding horizons which admit a two-
dimensional group of the null symmetries. In section 5.2 we investigated the conditions for the
existence of more than one null symmetry of an isolated null surface in arbitrary dimension.
In this section we will investigate further the geometries of the isolated horizons admitting
more than one null symmetry. We will show the following theorem:
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Theorem 6.6. Suppose A is a non-expanding horizon which admits two distinct isolated
horizon structures. Suppose the energy condition (3.2) holds on A. Then, A admits an extremal
isolated horizon structure [£'] and a compatible coordinate v' such that the corresponding
transversal expansion-shear tensor S g identically vanishes at A.

Proof. Let [£] and [£'] be two different isolated horizon structures at A generated by £ and £/,
respectively. According to the zeroth law, the surface gravities k® and «*’ are constant on
the horizon. Suppose

k® 0. (6.37)
Let v : A — R be a compatible coordinate. The relation between £ and £’ is
v = fe. (6.38)
where the function f is of the form
Wy )
I AN ©®

where the function B is constant along the null curves in A, and the necessary and sufficient
condition (5.17) for the function B thought of as a function B : A — R can be rewritten in
terms of the data defined on the base manifold A of the null curves:

[ﬁAﬁB + 2(;)(6)(Aﬁ3) + [j(A(f)(l)B) + L’l\)(e)A(;)(Z)B — %(’l_z)RAB + %(n),]%AB]B =0. (640)

where D 4®® 3, should be considered as a tensor, not as an operator.

Note, however, that the function B is independent of the surface gravity of another vector
field we construct with, therefore, either K@) = 0, or, given the functions f” and B, we can
define a new function f”,

fi=Be . (6.41)

Then, the vector field £ = f'# defines an extremal isolated horizon. We will show now that
there is a coordinate v’ : A — R compatible with £ such that the corresponding projective
transversal expansion-shear data S"X p are identically zero. According to equation (6.41) the
general form of a coordinate v’ compatible with £’ is

v = (OB) (e — 1) +vp, (6.42)
where v, is a function constant along the null curves in A. Let us choose vy to be

vy = (kO By, (6.43)
Then the correspondence between the vector fields n, = —D,v’ and n, = —D,v can be
described by the following equation:

n, =v'«%n, — D,InB). (6.44)
The covariant derivative of the above equation determines the transformation S,; = S/,

1 1,

;S;b — ﬁnan; = Sap — D,D,In B. (6.45)

Taking the Lie derivative of this formula with respect to £ and taking into account that
Ly S;b = LS, = 0 we get the following result:

Sy = 0 ). (6.46)

a

Therefore the pullback S’ , of S, identically vanishes, and so does the projective part ',
defined by (6.19). U
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In the case when both the symmetries £ and £ admit extremal isolated horizon structures
equation (6.40) takes the following form:
[DsDp+209 4 Dp)1B = 0. (6.47)
Together with the constraint (6.35) the equation above forms an overdefined system involving
the data §, ®®. The non-existence of the solutions to the system in the case of the horizon
embedded in a four-dimensional electrovac spacetime with vanishing cosmological constant
was shown in [4, 25]; however, one cannot expect to repeat this result in the general case.
It seems that the answer for the question whether the solutions to the system (6.35), (6.47)
do exist requires an analysis for each case of the assumed dimension and the topology of a
horizon base space separately.

7. Conclusion

It turns out that the basic properties of null, non-expanding surfaces are not sensitive to the
spacetime dimension. We have discussed only those properties which were found relevant in
the four-dimensional case. The exception is the characterization of the surfaces admitting a
two-dimensional group of null symmetries and the relation with the extremal isolated surface
constraint.

A new element in the characterization of the non-expanding, null surfaces is the harmonic
1-form invariant defined by the rotation 1-form potential on the space of the null generators
of the surface.
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Appendix. Remarks on the exotic matter case

In the development of the objects describing the geometrical structure of the non-expanding
and isolated horizons, it was assumed that the energy condition (3.2) holds for the matter
fields on the horizon. On the other hand, one may need to deal with the models in which the
considered condition has to be dropped. Then the question arises: How many of the structures
developed here still apply? The current section is an attempt to answer this question.

A.l. Non-expanding horizons

In this paper the energy condition (3.2) was in fact used to develop identity (3.21) only. As
the mentioned identity is equivalent to the condition

Tapt” =0, (AD)
involving the pullback of T),, onto the horizon, even if condition (3.2) is not fulfilled, all the
statements still apply as long as equation (A1) holds. As a ‘toy’!! example of the matter
I This particular case is already exhibited in this paper as the Einstein equation with cosmological constant was

considered. We use it only to illustrate the existence of possible models for which (A1) holds and condition (3.2)
does not. The real applications would be the ‘varying cosmological constant’ models.
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field satisfying (A1) we can consider the cosmological constant represented as a matter field
T,, = —Ag,,. For negative A the stronger energy condition (3.2) does not hold any longer
(—=T",¢" is past-oriented) but equality (A1) is still true.

Consider now the most general situation when nothing about the energy—momentum
tensor is assumed. Then the statements of theorem 6.2 are no longer true: the shear of the
NEH does not have to vanish because the |o“|? term in the Raychaudhuri equation can be
balanced by the negative "R ,,. The presence of shear affects the entire geometrical structure.
For example, only the area form of the metric tensor g4 is preserved by the null flow

L& =0. (A2)

Moreover, the spacetime covariant derivative does not preserve the tangent bundle of the
horizon. Therefore, the internal connection D of the horizon must be introduced another way
than (3.11) and none of the statements in section 6.1 will hold.

One of methods to deal with the problem is to restrict investigated objects to the non-
expanding shear-free horizons defined as the null surfaces equipped with a metric g preserved
by the null flow. The restriction makes sense as the NEHs admitting the isolated horizon
structure (which includes also Killing horizons) necessarily have to belong to this class. Note
that for that class of the horizons condition (2.15) is satisfied due to the Raychaudhuri equation,
so the discussion in the main body of the paper applies here.

The other restriction we can make is to impose the weaker energy condition (2.15) only.
This case has been investigated thorough the main part of the paper: the statements of
theorem 6.2 are true for the considered NEH, whereas those for theorem 6.3 are not.
Note that however the horizon can no longer be of type II in principal classification, the
component ™ C,epe still vanishes, so the horizon is at least of type I (remaining algebraically
special).

A.2. Isolated horizons

If we assume that the horizon admits an isolated horizon structure, its shear and Ricci
component "R, vanish due to the existence of a null symmetry without any assumption
imposed on the energy—momentum tensor of the matter fields.

Because of the modification of the zeroth law the statement x© = const must be replaced
by the following one:

Jakc® = =R, 0", (A3)
so the ‘surface gravity’ defined as £ w, becomes a function constant along the null generators
L@ =0. (A4)

Now without any additional energy assumptions the division into the non-extremal and
extremal TH structures is no longer valid as the structures with «® = 0 at some open subset
of A and k® £ 0 elsewhere are possible. Therefore the structure of the constraint (6.32) (so
the structure of the local degrees of freedom) can be different at distinct open subsets of the
horizon base space.

The problem of classification (and description of the degrees of freedom) can be dealt
with by imposing other assumptions which are satisfied by some class of exotic matter fields.

As the (spacetime) energy—momentum tensor of the matter fields is necessarily divergence
free, the following constraint is true in particular at the horizon:

0T, =0. (A5)
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Suppose now the field £ and a null vector field 7 orthogonal to surfaces A, := {p € A :
v(p) = const} (with v being the coordinate compatible with £) are extended to the spacetime
neighbourhood of A such that at the horizon

n*v, 0" =n"v,n" =0. (A6)

Using identity (6.30) we can after simple calculations express condition (AS) as an (n — 2)-
dimensional differential equation defined on each surface A,

0=Ax® — G 8o Dok® + L, Ry,. (A7)

The only part inhomogeneous in x© is a transversal derivative of the Ricci tensor component
LR g &. If it vanishes on the horizon

L, Reela =0, (A8)

then according to the vanishing of £,§4p and (A4) the equation can be rewritten as a PDE
defined on the base space:

0=Ak® — 8o Dk®. (A9)

The equation is now a homogeneous elliptic PDE defined on a compact manifold. Therefore
if ©© vanishes on some open subset of A then it must vanish on the entire horizon (as both
k® and D 4«© vanish at the edge of the considered subset). Hence the following is true:

Corollary A.1. Given an isolated horizon A equipped with a symmetry € and embedded in a
spacetime satisfying the Einstein field equations, assume that

LpTelz =0, (A10)

for some null vector field n transversal to the leaves of the horizon foliation preserved by the
flow [£]. Then the horizon must belong to one of the following classes:

(i) extremal isolated horizons: surface gravity vanishes everywhere
(ii) non-extremal ones: k® # 0 on a dense subset of .

The assumed condition is equivalent to (A8). When it is satisfied by the matter fields the
partition defined in corollary A.1 can be used instead of the partition proposed in section 6.2.
The structure of the constraint (6.32) then remains global.
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