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In this work we extend our previously developed formalism of Newtonian multi-fluid hydrody-
namics to allow for coupling between the fluids and the electromagnetic and gravitational field.
This is achieved within the convective variational principle by using a standard minimal coupling
prescription. In addition to the conservation of total energy and momentum, we derive the conser-
vation of canonical vorticity and helicity, which generalize the corresponding conserved quantities
of uncharged fluids. We discuss the application of this formalism to electrically conducting systems,
magnetohydrodynamics and superconductivity. The equations of electric conductors derived here
are more general than those found in the standard description of such systems, in which the effect
of entrainment is overlooked, despite the fact that it will generally be present in any conducting
multi-constituent system.

I. INTRODUCTION

In the previous paper ﬂ]7 henceforth referred to as Paper I, we have shown how the convective variational principle
can be used to derive the general equations of motion for a system of interacting uncharged fluids. This variational
principle is also at the heart of a series of papers by Carter and Chamel [ﬁ, E, E] based on a fully covariant spacetime
formulation of Newtonian hydrodynamics, which is formally closer to the relativistic formulation.

Here we extend our “3+1” framework developed in Paper I to allow for charged fluids and their coupling to the elec-
tromagnetic and gravitational field. In Paper I we already included the gravitational field via an explicit prescription
for the external force, but now this coupling is derived in a more natural way from the variational principle using the
same minimal coupling procedure as for the electromagnetic field.

Due to the coupling to the electromagnetic field, the resulting theory can only be considered an “approximate”
Newtonian framework, as strict Galilean invariance will be violated. While the Newtonian hydrodynamic equations
are strictly invariant under Galilean transformations, the equations of electrodynamics are invariant only under
Lorentz-transformations. This well known discrepancy lead to the development of relativity, and a coupling between
Newtonian physics and electromagnetism is strictly speaking either inconsistent or selects a preferred frame (“ether”).
As shown in [§], demanding strict Galilean invariance of electrodynamics without an ether forces one to adopt either
an “electric” or “magnetic” limit of the theory, in which certain essential effects would be absent (e.g. the magnetic
force between electric currents or local charge conservation). The only fully consistent approach is to work within a
(locally) Lorentz-invariant relativistic framework, as used for example in [ﬁ, ﬂ]

From a practical point of view, however, a “34+1” non-relativistic formalism is often fully sufficient in terms of
precision and usually more easily applicable to many problems. The aim of this paper is therefore to provide a
flexible and general framework for the description of a wide variety of charged multi-constituent systems in the “non-
relativistic” regime of small velocities and low frequencies (0_2)1. We emphasize that we do not attempt to construct
a strictly Galilean-invariant theory, rather this should be regarded as a truncated theory at order (c=2) of a Taylor
expansion of the underlying fully covariant theory.

For simplicity we restrict our analysis to non-magnetic and non-polarizable fluids, such that the vacuum Maxwell-
equations retain their form on the macroscopic level of hydrodynamics, and the interaction between matter and fields
is restricted to the minimal coupling type. The inclusion of electric and magnetic polarization is postponed to future
work.

Using this variational framework, the fundamental effects of “entrainment” and “chemical coupling”, inherent to
multi-constituent systems (as discussed in Paper I), are automatically included in the formalism. This is a substantial
improvement over the standard “orthodox” description of electrical conductivity and charged fluids in general, in
which these effects are usually completely overlooked. The present framework is also more general in the sense of
being readily applicable to an arbitrary number of interacting constituents and fluids.
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The plan of this paper is as follows: in Sec. IT we extend the variational principle introduced in Paper I to the
case of (“separable”) coupling to the electromagnetic and gravitational fields, and derive the equations of motion for
this coupled system. In Sec. III we derive the conservation of charge and mass as well as of energy and momentum
from the variational principle. Sec. IV is devoted to conserved quantities under transport of the fluid flow, namely
the canonical vorticity and helicity, and their special relation to superconductors. In Sec. V we discuss applications of
this formalism to particular physical systems. In the appendix we derive the non-relativistic form of electrodynamic
equations and show their “approximate” Galilean invariance.

II. VARIATIONAL DESCRIPTION OF MULTI-CONSTITUENT SYSTEMS
A. Kinematics

We follow the notation introduced in Paper I, the various constituents are indexed by capital letters X, Y, ..., which
run over the constituents labels. The fundamental kinematic variables are the constituent number-densities nx and
the associated transport currents nyx, which are related to the respective flow-velocities vy as nx = nxvx. As in
Paper I, we define the relative velocities A xy between fluids X and Y as

AxyE’l}X_'Uy. (1)

In addition to the masses per particle m*, we now admit another transported quantity, namely the charge per particle
¢%. The corresponding total densities and currents are therefore the mass density p and mass current p, given by

p:Znmeu and p:ZanX7 (2)
and also the charge density ¢ and charge current j, defined as
o= nxq*, and j=) nxq*, (3)

where here and in the following Y is used to indicate the sum over repeated constituent indices, no automatic
summation over constituent indices is assumed.

In addition to the dynamics of the matter-system we also want to include the coupling to the gravitational gauge
field ® and the electromagnetic gauge fields Ag and A. The corresponding gauge-invariant field quantities are the
gravitational acceleration g, which is

g=-Vo, (4)
and the electric and magnetic fields E and B, which are
1
E=VA)—-0A, and B=VxA. (5)
c
These fields are invariant under the gauge transformations

1
' =d+C(t), AO’:A0+E<9,51/;, and A'=A+Vy. (6)

B. Dynamics
The dynamics of the system is described by an action Z of the form
7- / AdVdt, (")

in terms of the (generally gauge-dependent) total Lagrangian A. Using the standard minimal coupling prescription,
and assuming the electrodynamic field-contribution to be fully separable from the hydrodynamic Lagrangian, we can
postulate the form of A to be

1.
A= AH(nXanX) + AEM(EuB) + Agrav(g) + (UAO + 2.7 : A) —p®. (8)



The gravitational field Lagrangian Agyay has the well-known expression

1

A rav — T 5~
g 87TG(

Vo), (9)

where G is Newton’s gravitational constant. The electromagnetic field contribution (cf. appendix) in the non-
polarizable case is given by

7i 2 p2
AEM_SW(E B?). (10)

As we have seen in the case of uncharged fluids (cf. Paper I), the hydrodynamic Lagrangian Ay defines the dynamical
momenta p and pX per fluid particle as

Ny OAx

)

dA, = Z (pé( dnx +p~ - dnx) , so Py = (11)

8nX - 8nX '

In a similar manner the variation of the electrodynamic field Lagrangian Ag,, defines the so-called “electric displacement
field” D and the “magnetic field strength” H as conjugate variables to the electromagnetic fields, namely

1 1
dAgy = ED -dE — EH -dB, (12)
and using the explicit form (@) we find
8AEM aAEM
= = = — _ = . 1
D =4r 5E E, H 47 5B B (13)

Although we can trivially identify D = E and H = B in the present non-polarizable case, in the following we
nevertheless keep the formal and conceptual separation between the “kinematical” E and B and the “dynamical” (i.e.
derived from A) quantities D and H.

Due to the presence of the minimal coupling terms in (), the variation of the total Lagrangian A generalizes the
dynamical momenta py and pX to the (gauge-dependent) canonical momenta 7§ and w*X, namely

1
dA = (7 dnx + 7% - dnx) — pd® + 0 dAg + —5 - dA + A + dAgray (14)

from which we obtain the relations
T = py +q Ay —m* D, (15)
1
™ = pt+ g% A, (16)

expressing the canonical momenta in terms of the dynamical momenta and the gauge fields.

C. The equations of motion
We see from definition (B) that the first two Maxwell equations are satisfied identically, i.e.
1
V-B=0, and VXxE+ -0,B=0. (17)
c

Using ([[2) and (@) it is not difficult to show that requiring invariance of the action ([d) under free variations § 4y and
0A of the gauge fields results in the two remaining Maxwell equations

1 4
V-D=dro, and VxH--8,D=—j. (18)
C &

Similarly, requiring invariance of the action () with respect to free infinitesimal variations 0® straightforwardly results
in the Poisson equation for the gravitational field,

V20 = 4nGp. (19)



The derivation of the equations of motion for the fluids is formally completely equivalent to the uncoupled case
discussed in Paper I. The only difference is that the dynamical momenta pg and p* are now replaced by the
corresponding canonical momenta 7 and 7¥.

One has to consider infinitesimal spatial displacements £y and time-shifts 7x of the flowlines, which should be
considered the “true” fundamental quantities describing hydrodynamics (corresponding to the Lagrangian framework),
while free variations for densities and velocities (characteristic for the Eulerian framework) fail to produce the correct
equations, except when adding “ad-hoc” constraints to the Lagrangian. The Eulerian variables, density nx and velocity
vx can be expressed in terms of the underlying flowlines (and initial conditions) alone, and one should therefore also
consider the hydrodynamic Lagrangian Ay in (@) as a function of these variables. These subtleties relating to the
hydrodynamic variational principle are discussed in greater detail in Paper 1.

The resulting induced variations of the densities, dnx, and currents, dnx have been derived in Paper I as

onx = =V-[nx€x]+[nx Vrx —7xOnx], (20)
nx = nx0€x +(nx -V)€x — (€x - V)nx —nx(V-€x) — 0 (nx7x) . (21)

Substituting these expressions into the variation of the total Lagrangian ([Id) and integrating by parts, we arrive at
the following form of the induced action variation

6T = /Z (9 Tx — f¥ - &x) avdt, (22)

where the canonical force densities fX (acting on the constituent) and the energy transfer rates gX (into the con-
stituent) are found explicitly as

X = nyx (BtTrX—ng)X)—nx x (Vxa*)+a¥ Iy, (23)
g% = vx - (X —7*Ix) -7 Ix, (24)

where I'x is the particle creation rate for the constituent X, i.e.
I'sx =0nx +V-nx. (25)

The canonical force density £¥ is the total (canonical) momentum change rate of the constituent X, and the last term
in ([Z3) represents a contribution that is purely due to the change of the particle number. By inserting the explicit
expressions ([AMH) of the canonical momenta into [Z3) and @4), we can separate out the purely hydrodynamic
contribution fX, which expresses fluid inertia and pressure, and which has the same form as in the uncharged case

(Paper I), namely

X =ny ((%pX—Vp()f)—nXx(prX). (26)

Introducing the gravitational and electromagnetic forces féav and fX,, defined by their usual expressions
Ny = —nxm Vo, (27)
FX. = nxqg® (E—i— %vx X B) , (28)

we can now rewrite the canonical force densities ([23)) in the form
X X X X X
7= 01 - grav_fEM+Fx7r . (29)

The actual physical equations of motion are obtained by prescribing the canonical force densities £¥ acting on the
fluids. If we only require invariance of the action for a common displacement and time shift £, = & and 7x = 7, we
obtain the minimal equations of motion for the total system, namely

Z fX = fext, and ZQX = Jext » (30)

where feoxt and gext are interpretable as the “external” force density and energy transfer rate acting on the system.
This generalizes the more common action principle of isolated systems, in which the external influences foxt and gexs
vanish and therefore the equations of motion would be obtained by requiring the action to be invariant under small
variations. “External” here is meant in the sense of not being included in the total Lagrangian, which could also
include, for example, viscous forces.



D. The hydrodynamic Lagrangian Ay

As shown in Paper I, the hydrodynamic Lagrangian density Ay for the class of “perfect” (i.e. with an isotropic
energy function &) multi-fluid systems is given by

Au(nx,mx)=> m XE—S(nX,AXY) (31)

where A xy denotes the relative velocity between fluids X and Y as defined in (). The total differential of the
thermodynamic potential €(ny, A%y ) determines the first law of thermodynamics for the matter-system, namely

d€ = " dnx + = Z XY dAYy (32)

which defines the chemical potentials yX and the symmetric entrainment matrix aX¥. The dynamical momenta pg
and p¥X defined in ([Tl are therefore found as

x X 2OZXY
p = M vVx —Z Axy, (33)
y X
b'e X XU§< b'e
—-py = po —m T—F’UX-p . (34)

III. GAUSS-TYPE CONSERVATION LAWS
A. Conservation of charge and mass

We see from [E8)-E8) that the force contributions f:¥, fgiav and fX, are invariant with respect to gauge trans-
formations of the gravitational and electromagnetic fields. However, the last term in the expressions (Z3) and (24)
(accounting for momentum and energy change due to particle number changes) is generally gauge dependent. While
this is not prohibited for individual constituent forces, the total equations of motion B0) have to be gauge invariant,
and by using ([[AIMH) we can therefore deduce the constraints

S Ix = do+V-j=0, (35)
> m Iy = dp+V-p=0, (36)

where the total densities and currents have been defined in ([2]) and (@l). Gauge invariance therefore implies conservation
of the “charge” associated with the gauge field. As a further consequence we find the following useful relations,

ZI’XWX = ZFXpX, and foﬂé( = ZFXP(%{' (37)

We note that the conservation of mass was already derived in Paper I as a consequence of Galilean invariance, which
can also be considered a gauge freedom.

B. Momentum conservation
As shown in Paper I, the purely hydrodynamic force densities f7 satisfy the relation
S+ Ixp™h) = 00T + VT (38)
where the hydrodynamic momentum density Jy and stress tensor T are given by

JHEZnXpX, and TY = Zn pXI 4 W g (39)

The “generalized pressure” ¥ is defined via the Legendre transformation of Ay, namely

U=As— ) (nxp) +nx-p¥), (40)



and g;; are the components of the metric tensor, which in Cartesian coordinates is simply g;; = d;;. Using these
relations together with ([Z9) and 1), we can write the total force balance equation (B0 in the form

féxt:ZinzatJIi_ijTl-ilj _férav_fé:Mv (41)

where forav =Y fX., and fgy = fX, are the total gravitational and electromagnetic force densities. Using (Z7)

grav EM

and [28) we find explicitly

fgrav = —pVo, (42)
1.
fem = oE + 2,7 x B. (43)

One can easily verify that the gravitational force term can be written as the divergence of a tensor, namely

_ - 3 1 o 1 3
S = VTl with T = o (VTR - J(70)2 40 ) (1)

Using the Maxwell equations ([[7), (I8) and the total differential (I2) of Agy, we can show that the total electromag-
netic force density [@3)) can be similarly rewritten as

- f]:él\/l = 8tJEMi + vaé{/l ) (45)

in terms of the momentum density Jy,, of the electromagnetic field,

1
JEMEEDXB; (46)

and the Maxwell stress tensor Té{,“ which is found as

1

TH, =
EM T

o y 1 y
(E'D’ + H'BY) + (AEM +-H- B) g . (47)

Putting all the pieces together, we obtain the following form for the total momentum conservation (EIl):
at(‘]li + JEMi) + VjTij = fcixt ) (48)
where the total stress tensor is given by
TV =T7 + T, + Ty, (49)

An important property of the total stress tensor T% is that it is symmetric. The symmetry of the gravitational part
() is obvious, while the symmetry of the hydrodynamic stress tensor ([d) has been shown in Paper I. It remains to
prove the symmetry of the electromagnetic stress tensor (7). In the present non-polarizable case, this follows trivially
from the identities ([3]). It is interesting to note, however, that this can also be derived more generally as a Noether
identity of the variational principle, assuming only the separable form () of the Lagrangian.

In order to show this, we extend the variational principle slightly by admitting also metric variations dg;;, so that
(@) now reads as

SA g iD OFE — iH 6B + O
47 8gij

:47T

591']‘ . (50)

Consider an active time-independent infinitesimal displacement & of the whole system including the metric, which
induces the following Lagrangian changes:

AE; = E'Vi&, AB;=B'Vi&, Agij= -2V . (51)
Using these transformations together with (&), we obtain the induced Lagrangian change of Ay, as

1 N —_ oA
AAEM:_ DZE]_HZB]_gﬂ_aEM

47 Gij

Vi&; - (52)



This active transformation is equivalent to a coordinate transformation —€&, and therefore the requirement of Agy,
being a scalar is AAg,, = 0, which leads to the associated Noether identity

O 1 o o
2 =—|D'E’ —H'"B’| .
8gij 47T[ ] (53)

Using the manifest symmetry of the left-hand side, we obtain
E'D'+ H' B =FE' D'+ H B, (54)
which concludes the proof of the symmetry of T,. Note that in general TEZ{,[ need not be symmetric, only the sum of

all contributions to T% is subject to this constraint. The symmetry of Té{,[ is a special consequence of the assumption
of a “separable” interaction of the form ().

C. Energy conservation

We have seen in Paper I that we can write

Z(UX'f;f—Fxpé()ZatEH-FV'QHa (55)

in terms of the hydrodynamic energy density Ey and energy flux Q,,, which are given by

By=)Y nx-p*—Ay, and Q,=> (-p)nx, (56)
while for the gravitational and electromagnetic work contributions ggrav = Swox - fgav and gpy = > vx - é{M, we
find using 7)) and EJ):

Jgrav = —pP- Vo, (57)
gem = J - E. (58)

Using these expressions, the energy equation ([BO) can be written as
Gext = OBy + V- QH — Ygrav — GEm - (59)

Using Maxwell’s equations () and [I8), one can write the electric work ggy in the form of a conservation law, namely
— gem = Ot Bpy +V - S, (60)

where the electromagnetic field energy density Fy,, is given by
Eou = LE.D- Apy = L (E* + B?) (61)
47 8T ’

and the second equality was obtained using the explicit Lagrangian ([[ll). The energy flux S is given by the Poynting
vector

c
S=—FExH. (62)
4
In the present non-polarizable case, i.e. D = E and B = H, we recover the well-known relation between the energy
flux and momentum of the electromagnetic field, namely Jgy = S/c?. Summarizing, we can cast ([Bd) in the form of
a conservation of total energy, namely

O(Bu +Een) + V- (Qu+S) =gt —p- V. (63)

We note that formally one can also write the gravitational work in the form of a conservation law, but the expression
for energy density and flux are neither unique nor gauge invariant, and one can also not eliminate the mass current
p from these expressions due to the lack of a dynamic law for the gravitational field in the Newtonian framework.



IV. CONSERVATION ALONG FLOWLINES

In this section we show how the conservation of vorticity and helicity, derived for uncharged fluids in Paper I, can
be generalized quite naturally to the case of fluids coupled to the electromagnetic and gravitational field. We note
that the technical steps involved in this discussion are largely analogous to the treatment in Paper I, and we therefore
skip most intermediate steps.

A. Generalized Kelvin-Helmholtz vorticity conservation

We define the hydrodynamic vorticity 2-form w as the exterior derivative of the dynamical momentum 1-form p,
namely w = dp, and the more common dual vorticity vector W, which is W =V x p. -

In the presence of electromagnetic fields, the more fundamental quantity is the canonical vorticity 2-form @, which
is defined in the same way but with respect to the canonical momentum 7, namely

w=dr, (64)
and the dual canonical vorticity vector W is therefore given by
W=Vxm. (65)

With ([I8) we see that the relation between canonical and hydrodynamic vorticity is simply
w=w+2dA, amd W=w+IB. (66)
c c

We note that by the Poincaré property (namely dd = 0), the exterior derivatives of the vorticity 2-forms vanish

identically, i.e. dw = 0, which equivalently expresses the fact that the vorticity vectors are divergence-free, i.e.
V-W=0.

We can write the expression (23] for the canonical force f acting on one constituent in the language of forms as

Oy +v)dx — dmo = ~(f — I'm), (67)

n =

where | indicates summation over adjacent vector- and form-indices.
In the following it will be convenient to separate the “proper force” per particle acting on the right-hand side of
(ED) into its non-conservative part § and a conservative contribution d¢, namely

H(f-Im)=do+§. (63)

Applying the Cartan formula for the Lie derivative of a p-form to the 1-form m, namely £, = = v]dr + d(v]x), allows
us now to rewrite the force equation (E) more conveniently as

(O + £o)m=dQ + 3, (69)

where the scalar Q is given by Q = m9 + v |7 + ¢. Lie derivatives and partial time derivatives commute with exterior
derivatives, so we can apply an exterior derivative to () and with (E4]) we obtain the Helmholtz equation of transport
of canonical vorticity, namely

01+ £4)m = dg, (70)

which shows that the canonical vorticity is conserved under transport by the fluid, if the proper force per particle
acting on the fluid is purely conservative, i.e. if § = 0. In its more common dual form, this equation can be written
as

OW—-VXx(vxW)=VxF, (71)

Substituting the explicit relation (B8] between the dynamical and the canonical vorticity, and using Maxwell’s equation,
this can be re-expressed as

BtW—Vx(va):Vx[S—Fq(E—i—%va)], (72)



which shows that in the case of a charged constituent, the dynamical vorticity W is generally not conserved even in the

absence of a non-conservative external force &, due to the presence of the Lorentz force acting on the fluid. However,

the canonical vorticity is conserved in this case and therefore generalizes the vorticity conservation of uncharged fluids.
For the canonical circulation C of a closed circuit 9%, which is the boundary of a 2-surface X, we have

C= EZ/@:/W'dS, (73)
% b N

where dS is the surface normal element. We see from (B that the canonical circulation C can also be expressed as
the sum of the hydrodynamic vorticity flux (i.e. dynamical circulation) and the magnetic flux through the surface X,
namely

cz/W-ds+9/B-ds. (74)
b cJs

For the comoving time derivative of the circulation C we find using (9)

“ f(aﬁ,ev)z:]gzg (75)

which is Kelvin’s theorem for the conservation of canonical circulation. We note that strict conservation only applies
if the non-conservative force per particle § vanishes, as we have already seen earlier.

B. Vorticity and superconductors

As discussed in more detail in Paper I, the hydrodynamics of superfluids is generally characterized by two funda-
mental properties: the absence of dissipative mechanisms like friction or viscosity, and the constraint of irrotational
flow. While in the case of uncharged superfluids this simply meant the vanishing of the dynamical vorticity W, it
is now the canonical vorticity VW that is constrained to vanish identically in the case of charged superfluids, more
commonly referred to as “superconductors”. The absence of microscopic dissipative mechanisms implies that there is
no non-conservative force acting on the bulk? of the superfluid, i.e.

=0, (76)

which quite generally characterizes perfect conductors of any sort. As a consequence we see that the canonical vorticity
(and equivalently circulation) of a perfect conductor is strictly conserved, as seen in the previous section. The further
constraint of irrotational flow, which distinguishes a superconductor from a mere perfect conductor, reads as

1 1
@ =uwS+=¢dA=0, and WS =WS+-°B=0. (77)
C C

We see from () or D) that if this irrotationality constraint is satisfied at some instant ¢, then it will automatically
remain true for all subsequent times due to the absence of dissipation ([Z6l). We can therefore write the superfluid
momentum 75 (locally) as the gradient of a phase ¢, i.e.

S
WS:pS—I—%A:ﬁVw, (78)

which leads to the well-known London equation for superconductors, as further discussed in Sect.[.Cl The canonical
circulation ([Z3) can therefore be non-zero if 9% encloses a topological defect in the phase ¢, i.e. a region where ¢
(and therefore 79) is not defined, as for example in the case of flow inside a torus, or around a vortex. While in the
case of a perfect irrotational fluid the resulting circulation could have any value, the superfluid phase ¢ is restricted
to change by a multiple of 27 when following a closed loop inside the superfluid around the defect. The resulting
canonical circulation is therefore quantized as

C=2Nrwh, with Ne€Z, (79)

which gives rise to the well-known quantized vortex structure and flux quantization of superconductors.

2 As mentioned in Paper I, this condition can be violated in the core of vortices, leading to “mutual friction”.
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C. Generalized helicity conservation

We now turn to the generalization of the dynamical helicity conservation derived in Paper I. We define the canonical
helicity 3-form H as the exterior product of the momentum 1-form w with the vorticity 2-form w, i.e.

H=rAm, (80)

and we define the dual canonical helicity density h as

where € is the volume form with components €;;,. The helicity scalar can be seen to have the following explicit
expressions

h=aW=m=n -(Vxm). (82)
Using ([@3) and [Z0), the comoving time-derivative of H can be found as
(O + L£o) H = d(Qm) + [d(x AF) + 2dF A ] . (83)

If we further introduce the total canonical helicity H of a volume V as

Hz/vﬂ:/vhdv, (84)

then we find in the absence of non-conservative forces, i.e. § = 0, that the comoving time derivative of H satisfies

M _f ow.as. (85)
dt ov

Therefore the canonical helicity H of a volume V is conserved under transport by the fluid only if, in addition to
§ = 0, the canonical vorticity W vanishes on the surface OV surrounding this volume. We note that in general the

conserved helicity H contains contributions from the purely hydrodynamic “Moffat” helicity p - W and the magnetic
helicity A - B together with “mixed” terms, namely using (B2) we can express

2
h=p-W+La.B+ip.B+a W] (86)
C C

V. APPLICATIONS
A. General description of electric conductors

As a simple application of the foregoing formalism, we consider an electric conductor describable as a two-constituent
system. One constituent consists of the positively charged ions, described by their number density n, velocity v, mass
per ion m and charge per ion ¢ = Ze. The second constituent is a gas of electrons of density ne, velocity ve, mass m,
and charge ¢® = —e. The total charge density and current (B]) are therefore expressible as

oc=e(Zn—n), and jJ=e(Znv—nev.), (87)
and the relative velocity between the two fluids is
A=v—wv,.. (88)

Charge transfer between the two fluids is possible in principle, e.g. we could allow for processes of ionization and
recombination, where electrons are transferred from the ion-fluid to the fluid of free electrons. But for simplicity we
will assume the number of free electrons to be conserved, so we have

I'=0m+V-(nv)=0, and TI.=0n.+V-(nwe) =0. (89)
The total differential of the energy function &(n,n., A?) is
d€ = pdn + p° dne + adA? . (90)
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Using (B3)) and ([B4), the conjugate momenta of electrons and ions are therefore found as
p=mv—2A,  —py=p—3mv’+v-p,

1
P =meve + 22A, —p§ = p° — $mev? +ve - p°. (91)

We neglect the gravitational field, so fgray = 0, and the canonical force densities acting on the electron- and ion-fluid
are obtained from (Z8) and 9) as

f:fH—nZe(E—i—ExB), and fe:fg—i—ene(E—i—ExB), (92)
c c

where the hydrodynamic force densities are obtained from (28], by substituting the dynamical momenta (@), which
yields

fu = nm(Oy+v-V) [v - 2—aA] +nVu — 200,V (93)
nm
2 )
Fi = neme(0r +ve - V) |:'Uc + - :1 A] + ne Vi + 2aA; Vvl . (94)

These equations contain the description of superconductors, magneto-hydrodynamic and the fluid-description of plas-
mas (e.g. see |8, l9]) as special cases. However, they are substantially more general due to the inclusion of the effect
of entrainment, which is usually overlooked in these contexts.

Using the momenta (@T]) and the energy differential the generalized pressure differential Q) is found as

dU = ndp + nedp® — adA?. (95)

We note that in general we cannot introduce “partial pressures”; say, by defining dP,. to be equal n.du®, as this is gener-
ally not a total differential due to interaction energies between the constituents (i.e. the fact that u® = u®(n, ne, A?)).
However, the chemical potentials are always well-defined and are therefore much more natural quantities in general
multi-fluid contexts. In the absence of external forces, i.e. foxt = 0, the force balance equation Il now reads as

0:f+fe:fH+f§—aE—%xB. (96)

We can further prescribe a mutual force between the two fluids, so we introduce a resistivity force of the form f¢ = fg,
and therefore f = —fz. The energy equation ([BO) with Z4)) now takes the form

g+9°=—A" fr = goxt - (97)

Such a resistive force will lead to creation of heat (entropy), which in this model has to be extracted to an “external”
system via gext, as for simplicity we have not explicitly included an entropy constituent in this example. By the
second law of thermodynamics, the friction should produce heat and not absorb it, so we have to extract heat-energy
from the system, i.e. gext < 0, and therefore we can constrain the resistivity force to be of the form

fR=nA, with >0, (98)

where 7 is generally a function of the state-variables describing the system.

B. The MHD limit

In the low-frequency, long-wavelength limit we can assume any net charge densities to be compensated very quickly
by the motion of electrons, so we make the “quasi-neutral” approximation and set:

oc=20, (99)
which by ) implies Zn = n,, and the current density therefore reads as

J =eneA. (100)
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In this low frequency limit we can equally neglect the displacement current 9;D in Maxwell’s equations [[8). Because
the electrons are very light, i.e. me, < m, the inertial forces of the electron fluid can usually be neglected as well, and
so the equation of motion for the electrons, f¢ = fz, can be written with (@2), (@) and [@)) as

eV + 20,V + eno(E + % x B) = 1A. (101)

In order to recover the “standard” MHD framework, we further neglect entrainment, i.e. if we set ad hoc o = 0, so
the pressure differential (@) now reduces to

dP = nedu® +ndy, (102)

where the generalized pressure ¥ can be identified with the usual pressure P in the absence of entrainment. This
allows us to write the force balance equation ([@f) in the form

p(8t+v~V)v+VP—%><B:0. (103)

Using ([[00) we can express the electron velocity as

1

ene

Ve =V — 7, (104)

and so we can write the equation of electron transport () further as

¢

j:c(E+%xB)+£wC— jxB, (105)

enec

where the scalar conductivity ¢ is related to the resistivity coefficient 7 as

©>0. (106)

If we further neglect the “partial pressure” Vu¢, we can write the relation between current j and electric field E’ in
the frame of the ion-background, i.e. E' = E + (v/c) x B as a generalized Ohm’s law, namely

. /
ji = cinEX (107)
where the anisotropic conductivity tensor c;; is
1 -1
Gk = | =0ik + emB'| (108)
d enec
which is not symmetric but satisfies the relation
Clk(B) = Cki(—B). (109)

In this form the generalized Ohm’s law can account for the well-known (classical) Hall effect, while the standard MHD
approach (e.g. see [@, |ﬁ|]) commonly also neglects the “Hall term” 7 x B, so that this equation finally reduces to the
standard Ohm’s law:

. 1
j=c¢E' =¢(E+-vxB). (110)
c
We note that the “orthodox” equations are contained in this framework as special cases, but the description ()

is substantially more general due to the inclusion of the entrainment effect, which will generally be present in any
(interacting) multi-fluid system.

C. Superconductors

In contrast to the previous application, superconductors are perfect conductors, so the electrons can flow past
the ions without friction, i.e. n = 0 in ([@8). Therefore we cannot neglect the inertial and pressure forces of the
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electrons a-priori. As mentioned previously (cf. Sect.[[VB), in addition to the absence of friction, superfluids are also
constrained to be irrotational, so

w;j = Vmy =0, (111)
and in its dual formulation this explicitly reads as
W =Vxn®=Vxp' —<B=0, (112)
c

which we will see after translation to the “orthodox” language represents the (second) London equation. In the absence
of “external” forces acting on the electron fluid, using ([23) we can reduce the equation of motion for the electrons,
¢ =0, to the form

1
0 = Om® —Vn§=0p° — Vpy +e(VAg — E&A) ,
= Op° — Vpj +eE, (113)

where we have used ([[AITH) and the definition (@) of the electric field E. This equation is the (first) London equation
and expresses the acceleration of electrons under gradients of their “potential” p§ and an electric field. This equation
also guarantees that the constraint (IIZ) remains automatically satisfied under the evolution of the electron fluid.
The two equations ([IZ) and ([[I3) were originally proposed (albeit in their “orthodox formulation”) by F. and
H. London IE] and have been very successful in describing the phenomenology of superconductors, and in particular
the behavior in electric and magnetic fields.
We conclude this section by a “translation” into the orthodox formalism (cf. the discussion of superfluid *He in
Paper I). Using the entrainment relation (@) we can express the electron momentum p°© as
(¢}
P, (114)
Me ens

where we have introduced the orthodox pseudo-density ng of superconducting electrons, namely

Ne 2c

= ., with e= . 115
s 1—¢ W c MeNe (115)
With this relation, Eq. (IT2) can now be written in its conventional form as
B Vx (\j), with \=—=< (116)
=—c ,  wit = ,
J e2ng

where we have assumed that the background of ions is stationary and non-rotating, so V x v = 0 and d;v = 0.
Therefore Eq. ([I3) can now be written as

1
E = 0,(Aj) + - Vpp, (117)

where the “partial pressure” term Vp§ = —V(u® — $mev2 4 ve - p°) is often neglected. Eqs. ([I0) and ([[I7) represent
the orthodox formulation of the classic London equations as usually found in the superconductivity literature (e.g.

see [E, 14, E])
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APPENDIX A: APPROXIMATE GALILEAN-INVARIANCE OF ELECTRODYNAMICS

As pointed out in the introduction, the combined electro-hydrodynamics constructed in this paper makes no claim
at being strictly Galilean-invariant. The underlying framework should be thought of as a fully (locally) Lorentz-
invariant theory (as developed in [6, [1]), of which we consider only the small-velocity, low-frequency regime up to
and including effects of order (c‘l). It is well-known (e.g. see [16]) that the first post-Newtonian corrections to
uncharged particle-mechanics in a gravitational field are of order (0_2), and the corresponding limiting theory is the
strictly Galilean-invariant classical mechanics. This is not the case for electrodynamics. As pointed out in [d], one
cannot obtain a Galilean-invariant limit and keep the full Maxwell-equations, except for introducing the infamous
ether. However, as we will show here, by restricting ourselves to a suitable “non-relativistic” regime of small velocities
and low frequencies, the full framework of electrodynamics admits an “approximately” Galilean invariant formulation
up to and including order (¢=!). This will still hold true for the combined electro-hydrodynamics, as there are no
(c71) effects entering from the mechanical sector of the theory. By consistently neglecting terms of order (¢72), the
combined theory can be considered as “approximately” Galilean-invariant in this sense.

The well-known Lagrangian density Agy of the electrodynamic field F),, = 2V, A4, can be equivalently expressed
in terms of the two (frame-dependent) vectors E and B, namely

1 v 1 2 2
AEM:—167TFHVF H:8_7T(E —B ) 5 (Al)
where E and B, defined for an observer u*, are given by
1
EM = FMy,,, Bt = —56”VMFMu,,. (A2)

Note that both vectors are purely spatial and orthogonal to u”. In the Lorentz-frame defined by u* they can therefore
be identified with the common 3-vectors used in the “3+1” Newtonian language describing the electric and magnetic
field. Conversely, the field-tensor F),, is uniquely specified in terms of E and B, namely

F=unE+" (uAB), (A3)

where * denotes the Hodge duality operation with respect to the 4-dimensional Levi-Civita tensor €, and A stands for
the exterior product. In the Lorentz-frame u* we can write this in components as

0 —-E, —E, —E.
E, 0 B. —B,
E, -B. 0 B,
E. B, -B, 0

F,, = (A4)

Now consider the effect of the transformation to a frame K’ moving with velocity V relative to the original frame
K. Introducing the symbols 3 = V/¢, 8 = |B|, n = 8/0, and v = (1—62)71/2, the corresponding Lorentz-
transformation matrix A can be written as

AO/O =7,
A = Ny =—pyn, (A5)
Ai,j = (y—Dnin® + 6.

Using this, we can transform the frame-components of F),, to K" and translate them back into E’ and B’, which

yields (e.g. see [16])

E, = E|, E|,=y(EL+BxB), (A6)
| = By, Bi=v(BL-BxE), (AT)

where the parallel () and orthogonal (1) projections refer to the boost-direction 3.
The range of validity of the formalism developed in this paper is the “non-relativistic” small-velocity, low-frequency
regime, so we introduce the small parameter ¢ < 1 and require that all characteristic velocities v satisfy |v|/c ~ (g),

and that time-derivatives of field-quantities are small compared to spatial derivatives, i.e. 9;B/c ~ 0:E/c ~ (g).
Consequently we need to restrict ourselves to small Lorentz-boosts, i.e. we assume 3 ~ (¢), and so

y=(1=-) =14 (). (A8)
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We can see that the Lorentz-transformation ([AAAT) of the electromagnetic fields can now be written as

E = E+B3xB+(e%), (A9)
B' = B-BxE+(%). (A10)

As pointed out in Iﬁ], these transformations do not form a strict Galilean invariance group, because they fail to be
additive. But they do form an “approximate” invariance-group up to order (¢2) in the sense discussed above. Namely,
combining two boosts, 8, and 3,5, we find

E' = E' +B,xB' =E+ (B, +8,) x B+ (%), (A11)
B" = B'-3,xE' =B — (3, +8,) x E+ (¢?). (A12)

Let us consider the effect of the transformation (AAATA) on the electrodynamics field-Lagrangian (AT), for which we
easily find

(E” - B”) = ! (E* - B?) + (7). (A13)

T8

1
A;EM = 8_71'
In principle this would conclude our demonstration, as both the Maxwell-equations and the Lorentz-force law are
derivable from this Lagrangian, but for completeness we will also discuss their explicit transformation properties.
Note that in the conventional Newtonian “341” language, the boost V results in the following transformations
(using the fact that 2° = ct) up to order (£2):

t = t, (A14)
 =x-Vt, (A15)
vV = v-V, (A16)
0 = Ol =0 +V -V, (A17)

which are just the usual Galilean boost transformations. Similarly, we obtain the transformation law up to (g2) for
the gauge-field vector A, = (Ap, A) as

A = A+B-A, (A18)
A = A+ A8, (A19)

and one can easily verify using the definition @) of E and B in terms of (Ag, A) that this is consistent with the
transformations (AAATN) up to corrections of (¢2). Tt is also interesting to note the transformation properties of the
charge-density o and the electrical current j. For an individual constituent X, the 4-current j5 = nxul, with the
4-velocity ufy = (c,vx) + (¢%). We therefore find up to order (¢?)

ok =0x, Jx=jx —oxV, (A20)
and by the definition (@) of the total charge-density o and current j one easily finds®
o'=0, jJ=j-0V. (A21)
Applying the transformation (AGQHAT() and [AT4) to the Maxwell-equations ([[7), [[X), we obtain
V-B' = B3-(VxE)=-8-(0;B/c) = (¢?), (A22)
v ><E’+%8§B’ = V><E+%8tB—ﬁ>< %&E—(ﬁ~V)(ﬁxE)+(52)

{v x E + %&B} + (€?), (A23)

V-E —410' = [V-E —4n0|+V-(Bx B)=—-8-(V x B) = (%), (A24)

3 This shows that the current density always transforms according to the “electric limit” as defined in E], irrespective of the presence of
net charges. The authors overlooked the fact that even a space-like current has to be the sum of time-like “elementary” currents, and so
the “magnetic limit” will never apply in real systems.
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VXB/—%(?; ’—%ﬁj’ = VXB—B(VE)—%&E—ﬁX%&B—(ﬁ-v)(ﬁxB)

- (4{3 - 47mﬁ> e

1 4
{v x B - ~0,F — —”g} +(e2), (A25)
(& C

where in the last equation we used the transformation property of the electrical current density ' = j — oV.
Finally, the expression for the Lorentz-force ([28) transforms as

d v’ v v f
TEM By — xB' =E+—-xB-—-xBxE+(2)="L 1 (2), (A26)
ngq c c c ng

which concludes our demonstration of the approximate Galilean invariance of the equations.
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