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Variational des
ription of multi-�uid hydrodynami
s: Coupling to gauge �eldsReinhard PrixMax-Plan
k-Institut für Gravitationsphysik, Albert-Einstein-Institut, Am Mühlenberg 1, D-14476 Golm, Germany∗(Dated: Feb 6, 2005)In this work we extend our previously developed formalism of Newtonian multi-�uid hydrody-nami
s to allow for 
oupling between the �uids and the ele
tromagneti
 and gravitational �eld.This is a
hieved within the 
onve
tive variational prin
iple by using a standard minimal 
ouplingpres
ription. In addition to the 
onservation of total energy and momentum, we derive the 
onser-vation of 
anoni
al vorti
ity and heli
ity, whi
h generalize the 
orresponding 
onserved quantitiesof un
harged �uids. We dis
uss the appli
ation of this formalism to ele
tri
ally 
ondu
ting systems,magnetohydrodynami
s and super
ondu
tivity. The equations of ele
tri
 
ondu
tors derived hereare more general than those found in the standard des
ription of su
h systems, in whi
h the e�e
tof entrainment is overlooked, despite the fa
t that it will generally be present in any 
ondu
tingmulti-
onstituent system. I. INTRODUCTIONIn the previous paper [1℄, hen
eforth referred to as Paper I, we have shown how the 
onve
tive variational prin
iple
an be used to derive the general equations of motion for a system of intera
ting un
harged �uids. This variationalprin
iple is also at the heart of a series of papers by Carter and Chamel [2, 3, 4℄ based on a fully 
ovariant spa
etimeformulation of Newtonian hydrodynami
s, whi
h is formally 
loser to the relativisti
 formulation.Here we extend our �3+1� framework developed in Paper I to allow for 
harged �uids and their 
oupling to the ele
-tromagneti
 and gravitational �eld. In Paper I we already in
luded the gravitational �eld via an expli
it pres
riptionfor the external for
e, but now this 
oupling is derived in a more natural way from the variational prin
iple using thesame minimal 
oupling pro
edure as for the ele
tromagneti
 �eld.Due to the 
oupling to the ele
tromagneti
 �eld, the resulting theory 
an only be 
onsidered an �approximate�Newtonian framework, as stri
t Galilean invarian
e will be violated. While the Newtonian hydrodynami
 equationsare stri
tly invariant under Galilean transformations, the equations of ele
trodynami
s are invariant only underLorentz-transformations. This well known dis
repan
y lead to the development of relativity, and a 
oupling betweenNewtonian physi
s and ele
tromagnetism is stri
tly speaking either in
onsistent or sele
ts a preferred frame (�ether�).As shown in [5℄, demanding stri
t Galilean invarian
e of ele
trodynami
s without an ether for
es one to adopt eitheran �ele
tri
� or �magneti
� limit of the theory, in whi
h 
ertain essential e�e
ts would be absent (e.g. the magneti
for
e between ele
tri
 
urrents or lo
al 
harge 
onservation). The only fully 
onsistent approa
h is to work within a(lo
ally) Lorentz-invariant relativisti
 framework, as used for example in [6, 7℄.From a pra
ti
al point of view, however, a �3+1� non-relativisti
 formalism is often fully su�
ient in terms ofpre
ision and usually more easily appli
able to many problems. The aim of this paper is therefore to provide a�exible and general framework for the des
ription of a wide variety of 
harged multi-
onstituent systems in the �non-relativisti
� regime of small velo
ities and low frequen
ies (

c−2
)1. We emphasize that we do not attempt to 
onstru
ta stri
tly Galilean-invariant theory, rather this should be regarded as a trun
ated theory at order (c−2) of a Taylorexpansion of the underlying fully 
ovariant theory.For simpli
ity we restri
t our analysis to non-magneti
 and non-polarizable �uids, su
h that the va
uum Maxwell-equations retain their form on the ma
ros
opi
 level of hydrodynami
s, and the intera
tion between matter and �eldsis restri
ted to the minimal 
oupling type. The in
lusion of ele
tri
 and magneti
 polarization is postponed to futurework.Using this variational framework, the fundamental e�e
ts of �entrainment� and �
hemi
al 
oupling�, inherent tomulti-
onstituent systems (as dis
ussed in Paper I), are automati
ally in
luded in the formalism. This is a substantialimprovement over the standard �orthodox� des
ription of ele
tri
al 
ondu
tivity and 
harged �uids in general, inwhi
h these e�e
ts are usually 
ompletely overlooked. The present framework is also more general in the sense ofbeing readily appli
able to an arbitrary number of intera
ting 
onstituents and �uids.
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2The plan of this paper is as follows: in Se
. II we extend the variational prin
iple introdu
ed in Paper I to the
ase of (�separable�) 
oupling to the ele
tromagneti
 and gravitational �elds, and derive the equations of motion forthis 
oupled system. In Se
. III we derive the 
onservation of 
harge and mass as well as of energy and momentumfrom the variational prin
iple. Se
. IV is devoted to 
onserved quantities under transport of the �uid �ow, namelythe 
anoni
al vorti
ity and heli
ity, and their spe
ial relation to super
ondu
tors. In Se
. V we dis
uss appli
ations ofthis formalism to parti
ular physi
al systems. In the appendix we derive the non-relativisti
 form of ele
trodynami
equations and show their �approximate� Galilean invarian
e.II. VARIATIONAL DESCRIPTION OF MULTI-CONSTITUENT SYSTEMSA. Kinemati
sWe follow the notation introdu
ed in Paper I, the various 
onstituents are indexed by 
apital letters X ,Y , ..., whi
hrun over the 
onstituents labels. The fundamental kinemati
 variables are the 
onstituent number-densities nX andthe asso
iated transport 
urrents nX , whi
h are related to the respe
tive �ow-velo
ities vX as nX = nX vX . As inPaper I, we de�ne the relative velo
ities ∆XY between �uids X and Y as
∆XY ≡ vX − vY . (1)In addition to the masses per parti
le mX , we now admit another transported quantity, namely the 
harge per parti
le

qX . The 
orresponding total densities and 
urrents are therefore the mass density ρ and mass 
urrent ρ, given by
ρ =

∑

nXm
X , and ρ =

∑

mXnX , (2)and also the 
harge density σ and 
harge 
urrent j, de�ned as
σ =

∑

nX q
X , and j =

∑

nX q
X , (3)where here and in the following ∑ is used to indi
ate the sum over repeated 
onstituent indi
es, no automati
summation over 
onstituent indi
es is assumed.In addition to the dynami
s of the matter-system we also want to in
lude the 
oupling to the gravitational gauge�eld Φ and the ele
tromagneti
 gauge �elds A0 and A. The 
orresponding gauge-invariant �eld quantities are thegravitational a

eleration g, whi
h is

g = −∇Φ , (4)and the ele
tri
 and magneti
 �elds E and B, whi
h are
E ≡ ∇A0 −

1

c
∂tA , and B ≡ ∇× A . (5)These �elds are invariant under the gauge transformations

Φ′ = Φ + C(t) , A0
′ = A0 +

1

c
∂tψ , and A′ = A + ∇ψ . (6)B. Dynami
sThe dynami
s of the system is des
ribed by an a
tion I of the form

I =

∫

Λ dV dt , (7)in terms of the (generally gauge-dependent) total Lagrangian Λ. Using the standard minimal 
oupling pres
ription,and assuming the ele
trodynami
 �eld-
ontribution to be fully separable from the hydrodynami
 Lagrangian, we 
anpostulate the form of Λ to be
Λ = ΛH(nX ,nX ) + ΛEM(E,B) + Λgrav(g) + (σA0 +

1

c
j · A) − ρΦ . (8)



3The gravitational �eld Lagrangian Λgrav has the well-known expression
Λgrav = −

1

8πG
(∇Φ)2 , (9)where G is Newton's gravitational 
onstant. The ele
tromagneti
 �eld 
ontribution (
f. appendix) in the non-polarizable 
ase is given by

ΛEM =
1

8π

(

E2 − B2
)

. (10)As we have seen in the 
ase of un
harged �uids (
f. Paper I), the hydrodynami
 Lagrangian ΛH de�nes the dynami
almomenta pX0 and pX per �uid parti
le as
dΛH =

∑

(

pX0 dnX + pX · dnX

)

, so pX0 =
∂ΛH

∂nX

, pX =
∂ΛH

∂nX

. (11)In a similar manner the variation of the ele
trodynami
 �eld LagrangianΛEM de�nes the so-
alled �ele
tri
 displa
ement�eld� D and the �magneti
 �eld strength� H as 
onjugate variables to the ele
tromagneti
 �elds, namely
dΛEM =

1

4π
D · dE −

1

4π
H · dB , (12)and using the expli
it form (10) we �nd

D = 4π
∂ΛEM

∂E
= E , H = −4π

∂ΛEM

∂B
= B . (13)Although we 
an trivially identify D = E and H = B in the present non-polarizable 
ase, in the following wenevertheless keep the formal and 
on
eptual separation between the �kinemati
al� E and B and the �dynami
al� (i.e.derived from Λ) quantities D and H .Due to the presen
e of the minimal 
oupling terms in (8), the variation of the total Lagrangian Λ generalizes thedynami
al momenta pX0 and pX to the (gauge-dependent) 
anoni
al momenta πX

0 and πX , namely
dΛ =

∑

(πX

0 dnX + πX · dnX ) − ρ dΦ + σ dA0 +
1

c
j · dA + dΛEM + dΛgrav , (14)from whi
h we obtain the relations

πX

0 = pX0 + qXA0 −mXΦ , (15)
πX = pX +

1

c
qXA , (16)expressing the 
anoni
al momenta in terms of the dynami
al momenta and the gauge �elds.C. The equations of motionWe see from de�nition (5) that the �rst two Maxwell equations are satis�ed identi
ally, i.e.

∇ · B = 0 , and ∇× E +
1

c
∂tB = 0 . (17)Using (12) and (14) it is not di�
ult to show that requiring invarian
e of the a
tion (7) under free variations δA0 and

δA of the gauge �elds results in the two remaining Maxwell equations
∇ · D = 4πσ , and ∇× H −

1

c
∂tD =

4π

c
j . (18)Similarly, requiring invarian
e of the a
tion (7) with respe
t to free in�nitesimal variations δΦ straightforwardly resultsin the Poisson equation for the gravitational �eld,

∇2Φ = 4πGρ . (19)



4The derivation of the equations of motion for the �uids is formally 
ompletely equivalent to the un
oupled 
asedis
ussed in Paper I. The only di�eren
e is that the dynami
al momenta pX0 and pX are now repla
ed by the
orresponding 
anoni
al momenta πX

0 and πX .One has to 
onsider in�nitesimal spatial displa
ements ξ
X

and time-shifts τX of the �owlines, whi
h should be
onsidered the �true� fundamental quantities des
ribing hydrodynami
s (
orresponding to the Lagrangian framework),while free variations for densities and velo
ities (
hara
teristi
 for the Eulerian framework) fail to produ
e the 
orre
tequations, ex
ept when adding �ad-ho
� 
onstraints to the Lagrangian. The Eulerian variables, density nX and velo
ity
vX 
an be expressed in terms of the underlying �owlines (and initial 
onditions) alone, and one should therefore also
onsider the hydrodynami
 Lagrangian ΛH in (8) as a fun
tion of these variables. These subtleties relating to thehydrodynami
 variational prin
iple are dis
ussed in greater detail in Paper I.The resulting indu
ed variations of the densities, δnX , and 
urrents, δnX have been derived in Paper I as

δnX = −∇ · [nX ξ
X

] + [nX · ∇τX − τX ∂tnX ] , (20)
δnX = nX∂tξX

+ (nX · ∇) ξ
X
− (ξ

X
· ∇)nX − nX (∇ · ξ

X
) − ∂t (nX τX ) . (21)Substituting these expressions into the variation of the total Lagrangian (14) and integrating by parts, we arrive atthe following form of the indu
ed a
tion variation

δI =

∫

∑

(

gX τX − fX · ξ
X

)

dV dt , (22)where the 
anoni
al for
e densities fX (a
ting on the 
onstituent) and the energy transfer rates gX (into the 
on-stituent) are found expli
itly as
fX = nX

(

∂tπ
X −∇πX

0

)

− nX × (∇× πX ) + πX
ΓX , (23)

gX = vX ·
(

fX − πX
ΓX

)

− πX

0 ΓX , (24)where ΓX is the parti
le 
reation rate for the 
onstituent X , i.e.
ΓX ≡ ∂tnX + ∇ · nX . (25)The 
anoni
al for
e density fX is the total (
anoni
al) momentum 
hange rate of the 
onstituent X , and the last termin (23) represents a 
ontribution that is purely due to the 
hange of the parti
le number. By inserting the expli
itexpressions (15,16) of the 
anoni
al momenta into (23) and (24), we 
an separate out the purely hydrodynami

ontribution fX

H
, whi
h expresses �uid inertia and pressure, and whi
h has the same form as in the un
harged 
ase(Paper I), namely

fX

H
≡ nX

(

∂tp
X −∇pX0

)

− nX × (∇× pX ) . (26)Introdu
ing the gravitational and ele
tromagneti
 for
es fX

grav and fX

EM
, de�ned by their usual expressions

fX

grav = −nXm
X∇Φ , (27)

fX

EM
= nX q

X

(

E +
1

c
vX × B

)

, (28)we 
an now rewrite the 
anoni
al for
e densities (23) in the form
fX = fX

H
− fX

grav − fX

EM
+ ΓX πX . (29)The a
tual physi
al equations of motion are obtained by pres
ribing the 
anoni
al for
e densities fX a
ting on the�uids. If we only require invarian
e of the a
tion for a 
ommon displa
ement and time shift ξ

X
= ξ and τX = τ , weobtain the minimal equations of motion for the total system, namely

∑

fX = fext , and ∑

gX = gext , (30)where fext and gext are interpretable as the �external� for
e density and energy transfer rate a
ting on the system.This generalizes the more 
ommon a
tion prin
iple of isolated systems, in whi
h the external in�uen
es f ext and gextvanish and therefore the equations of motion would be obtained by requiring the a
tion to be invariant under smallvariations. �External� here is meant in the sense of not being in
luded in the total Lagrangian, whi
h 
ould alsoin
lude, for example, vis
ous for
es.



5D. The hydrodynami
 Lagrangian ΛHAs shown in Paper I, the hydrodynami
 Lagrangian density ΛH for the 
lass of �perfe
t� (i.e. with an isotropi
energy fun
tion E) multi-�uid systems is given by
ΛH(nX ,nX ) =

∑

mX
n2

X

2nX

− E(nX ,∆
2
XY

) , (31)where ∆XY denotes the relative velo
ity between �uids X and Y as de�ned in (1). The total di�erential of thethermodynami
 potential E(nX ,∆
2
XY

) determines the �rst law of thermodynami
s for the matter-system, namely
dE =

∑

µX dnX +
1

2

∑

X ,Y

αXY d∆2
XY

, (32)whi
h de�nes the 
hemi
al potentials µX and the symmetri
 entrainment matrix αXY . The dynami
al momenta pX0and p X de�ned in (11) are therefore found as
pX = mXvX −

∑

Y

2αXY

nX

∆XY , (33)
−pX0 = µX −mX

v2
X

2
+ vX · pX . (34)III. GAUSS-TYPE CONSERVATION LAWSA. Conservation of 
harge and massWe see from (26)�(28) that the for
e 
ontributions fX

H
, fX

grav and fX

EM
are invariant with respe
t to gauge trans-formations of the gravitational and ele
tromagneti
 �elds. However, the last term in the expressions (23) and (24)(a

ounting for momentum and energy 
hange due to parti
le number 
hanges) is generally gauge dependent. Whilethis is not prohibited for individual 
onstituent for
es, the total equations of motion (30) have to be gauge invariant,and by using (15,16) we 
an therefore dedu
e the 
onstraints

∑

qXΓX = ∂tσ + ∇ · j = 0 , (35)
∑

mX
ΓX = ∂tρ+ ∇ · ρ = 0 , (36)where the total densities and 
urrents have been de�ned in (2) and (3). Gauge invarian
e therefore implies 
onservationof the �
harge� asso
iated with the gauge �eld. As a further 
onsequen
e we �nd the following useful relations,

∑

ΓXπX =
∑

ΓX pX , and ∑

ΓXπ
X

0 =
∑

ΓX p
X

0 . (37)We note that the 
onservation of mass was already derived in Paper I as a 
onsequen
e of Galilean invarian
e, whi
h
an also be 
onsidered a gauge freedom. B. Momentum 
onservationAs shown in Paper I, the purely hydrodynami
 for
e densities fX

H
satisfy the relation

∑

(fX i
H

+ ΓX pX i) = ∂tJ
i
H

+ ∇jT
ij
H
, (38)where the hydrodynami
 momentum density JH and stress tensor T ij

H are given by
JH ≡

∑

nXpX , and T ij
H

≡
∑

ni
X
pX j + Ψ gij . (39)The �generalized pressure� Ψ is de�ned via the Legendre transformation of ΛH, namely

Ψ ≡ ΛH −
∑

(

nX p
X

0 + nX · pX
)

, (40)



6and gij are the 
omponents of the metri
 tensor, whi
h in Cartesian 
oordinates is simply gij = δij . Using theserelations together with (29) and (37), we 
an write the total for
e balan
e equation (30) in the form
f i
ext =

∑

fX i = ∂tJ
i
H

+ ∇jT
ij
H

− f i
grav − f i

EM
, (41)where fgrav ≡

∑

fX

grav and fEM ≡
∑

fX

EM
are the total gravitational and ele
tromagneti
 for
e densities. Using (27)and (28) we �nd expli
itly

fgrav = −ρ∇Φ , (42)
fEM = σE +

1

c
j × B . (43)One 
an easily verify that the gravitational for
e term 
an be written as the divergen
e of a tensor, namely

− f i
grav = ∇jT

ij
grav , with T ij

grav =
1

4πG

(

∇iΦ∇jΦ −
1

2
(∇Φ)2 gij

)

. (44)Using the Maxwell equations (17), (18) and the total di�erential (12) of ΛEM, we 
an show that the total ele
tromag-neti
 for
e density (43) 
an be similarly rewritten as
− f i

EM
= ∂tJEM

i + ∇jT
ij
EM
, (45)in terms of the momentum density JEM of the ele
tromagneti
 �eld,

JEM ≡
1

4πc
D × B , (46)and the Maxwell stress tensor T ij

EM, whi
h is found as
T ij

EM
= −

1

4π

(

EiDj +HiBj
)

+

(

ΛEM +
1

4π
H · B

)

gij . (47)Putting all the pie
es together, we obtain the following form for the total momentum 
onservation (41):
∂t(J

i
H

+ JEM

i) + ∇jT
ij = f i

ext , (48)where the total stress tensor is given by
T ij ≡ T ij

H
+ T ij

grav + T ij
EM
. (49)An important property of the total stress tensor T ij is that it is symmetri
. The symmetry of the gravitational part(44) is obvious, while the symmetry of the hydrodynami
 stress tensor (39) has been shown in Paper I. It remains toprove the symmetry of the ele
tromagneti
 stress tensor (47). In the present non-polarizable 
ase, this follows triviallyfrom the identities (13). It is interesting to note, however, that this 
an also be derived more generally as a Noetheridentity of the variational prin
iple, assuming only the separable form (8) of the Lagrangian.In order to show this, we extend the variational prin
iple slightly by admitting also metri
 variations δgij , so that(12) now reads as

δΛEM =
1

4π
D · δE −

1

4π
H · δB +

∂ΛEM

∂gij
δgij . (50)Consider an a
tive time-independent in�nitesimal displa
ement ξ of the whole system in
luding the metri
, whi
hindu
es the following Lagrangian 
hanges:

∆Ei = El∇iξl , ∆Bi = Bl∇iξl , ∆gij = −2∇(iξj) . (51)Using these transformations together with (50), we obtain the indu
ed Lagrangian 
hange of ΛEM as
∆ΛEM =

1

4π

[

Di Ej −Hi Bj − 8π
∂ΛEM

∂gij

]

∇iξj . (52)



7This a
tive transformation is equivalent to a 
oordinate transformation −ξ, and therefore the requirement of ΛEMbeing a s
alar is ∆ΛEM = 0, whi
h leads to the asso
iated Noether identity
2
∂ΛEM

∂gij
=

1

4π

[

DiEj −HiBj
]

. (53)Using the manifest symmetry of the left-hand side, we obtain
EiDj +HiBj = Ej Di +Hj Bi , (54)whi
h 
on
ludes the proof of the symmetry of T ij

EM. Note that in general T ij
EM need not be symmetri
, only the sum ofall 
ontributions to T ij is subje
t to this 
onstraint. The symmetry of T ij

EM is a spe
ial 
onsequen
e of the assumptionof a �separable� intera
tion of the form (8). C. Energy 
onservationWe have seen in Paper I that we 
an write
∑

(

vX · fX

H
− ΓX p

X

0

)

= ∂tEH + ∇ · Q
H
, (55)in terms of the hydrodynami
 energy density EH and energy �ux Q

H
, whi
h are given by

EH =
∑

nX · pX − ΛH , and Q
H

=
∑

(−pX0 )nX , (56)while for the gravitational and ele
tromagneti
 work 
ontributions ggrav ≡
∑

vX · fX

grav and gEM ≡
∑

vX · fX

EM
, we�nd using (27) and (28):

ggrav = −ρ · ∇Φ , (57)
gEM = j · E . (58)Using these expressions, the energy equation (30) 
an be written as

gext = ∂tEH + ∇ · Q
H
− ggrav − gEM . (59)Using Maxwell's equations (17) and (18), one 
an write the ele
tri
 work gEM in the form of a 
onservation law, namely

− gEM = ∂tEEM + ∇ · S , (60)where the ele
tromagneti
 �eld energy density EEM is given by
EEM =

1

4π
E · D − ΛEM =

1

8π

(

E2 + B2
)

, (61)and the se
ond equality was obtained using the expli
it Lagrangian (10). The energy �ux S is given by the Poyntingve
tor
S =

c

4π
E × H . (62)In the present non-polarizable 
ase, i.e. D = E and B = H , we re
over the well-known relation between the energy�ux and momentum of the ele
tromagneti
 �eld, namely JEM = S/c2. Summarizing, we 
an 
ast (59) in the form ofa 
onservation of total energy, namely

∂t(EH + EEM) + ∇ · (Q
H

+ S) = gext − ρ · ∇Φ . (63)We note that formally one 
an also write the gravitational work in the form of a 
onservation law, but the expressionfor energy density and �ux are neither unique nor gauge invariant, and one 
an also not eliminate the mass 
urrent
ρ from these expressions due to the la
k of a dynami
 law for the gravitational �eld in the Newtonian framework.



8IV. CONSERVATION ALONG FLOWLINESIn this se
tion we show how the 
onservation of vorti
ity and heli
ity, derived for un
harged �uids in Paper I, 
anbe generalized quite naturally to the 
ase of �uids 
oupled to the ele
tromagneti
 and gravitational �eld. We notethat the te
hni
al steps involved in this dis
ussion are largely analogous to the treatment in Paper I, and we thereforeskip most intermediate steps.A. Generalized Kelvin-Helmholtz vorti
ity 
onservationWe de�ne the hydrodynami
 vorti
ity 2-form w as the exterior derivative of the dynami
al momentum 1-form p,namely w ≡ dp, and the more 
ommon dual vorti
ity ve
tor W , whi
h is W = ∇× p.In the presen
e of ele
tromagneti
 �elds, the more fundamental quantity is the 
anoni
al vorti
ity 2-form ̟, whi
his de�ned in the same way but with respe
t to the 
anoni
al momentum π, namely
̟ ≡ dπ , (64)and the dual 
anoni
al vorti
ity ve
tor W is therefore given by

W = ∇× π . (65)With (16) we see that the relation between 
anoni
al and hydrodynami
 vorti
ity is simply
̟ = w +

q

c
dA , and W = W +

q

c
B . (66)We note that by the Poin
aré property (namely dd = 0), the exterior derivatives of the vorti
ity 2-forms vanishidenti
ally, i.e. d̟ = 0, whi
h equivalently expresses the fa
t that the vorti
ity ve
tors are divergen
e-free, i.e.

∇ · W = 0.We 
an write the expression (23) for the 
anoni
al for
e f a
ting on one 
onstituent in the language of forms as
∂tπ + v⌋dπ − dπ0 =

1

n
(f − Γπ) , (67)where ⌋ indi
ates summation over adja
ent ve
tor- and form-indi
es.In the following it will be 
onvenient to separate the �proper for
e� per parti
le a
ting on the right-hand side of(67) into its non-
onservative part F and a 
onservative 
ontribution dφ, namely

1

n
(f − Γπ) = dφ+ F . (68)Applying the Cartan formula for the Lie derivative of a p-form to the 1-form π, namely £v π = v⌋dπ + d(v⌋π), allowsus now to rewrite the for
e equation (67) more 
onveniently as

(∂t + £v)π = dQ+ F , (69)where the s
alar Q is given by Q = π0 + v⌋π + φ. Lie derivatives and partial time derivatives 
ommute with exteriorderivatives, so we 
an apply an exterior derivative to (69) and with (64) we obtain the Helmholtz equation of transportof 
anoni
al vorti
ity, namely
(∂t + £v)̟ = dF , (70)whi
h shows that the 
anoni
al vorti
ity is 
onserved under transport by the �uid, if the proper for
e per parti
lea
ting on the �uid is purely 
onservative, i.e. if F = 0. In its more 
ommon dual form, this equation 
an be writtenas

∂tW −∇× (v × W) = ∇× F , (71)Substituting the expli
it relation (66) between the dynami
al and the 
anoni
al vorti
ity, and using Maxwell's equation,this 
an be re-expressed as
∂tW −∇× (v × W ) = ∇×

[

F + q

(

E +
1

c
v × B

)]

, (72)



9whi
h shows that in the 
ase of a 
harged 
onstituent, the dynami
al vorti
ity W is generally not 
onserved even in theabsen
e of a non-
onservative external for
e F, due to the presen
e of the Lorentz for
e a
ting on the �uid. However,the 
anoni
al vorti
ity is 
onserved in this 
ase and therefore generalizes the vorti
ity 
onservation of un
harged �uids.For the 
anoni
al 
ir
ulation C of a 
losed 
ir
uit ∂Σ, whi
h is the boundary of a 2-surfa
e Σ, we have
C ≡

∮

∂Σ

π =

∫

Σ

̟ =

∫

Σ

W · dS , (73)where dS is the surfa
e normal element. We see from (66) that the 
anoni
al 
ir
ulation C 
an also be expressed asthe sum of the hydrodynami
 vorti
ity �ux (i.e. dynami
al 
ir
ulation) and the magneti
 �ux through the surfa
e Σ,namely
C =

∫

Σ

W · dS +
q

c

∫

Σ

B · dS . (74)For the 
omoving time derivative of the 
ir
ulation C we �nd using (69)
dC

dt
=

∮

(∂t + £v)π =

∮

∂Σ

F (75)whi
h is Kelvin's theorem for the 
onservation of 
anoni
al 
ir
ulation. We note that stri
t 
onservation only appliesif the non-
onservative for
e per parti
le F vanishes, as we have already seen earlier.B. Vorti
ity and super
ondu
torsAs dis
ussed in more detail in Paper I, the hydrodynami
s of super�uids is generally 
hara
terized by two funda-mental properties: the absen
e of dissipative me
hanisms like fri
tion or vis
osity, and the 
onstraint of irrotational�ow. While in the 
ase of un
harged super�uids this simply meant the vanishing of the dynami
al vorti
ity W , itis now the 
anoni
al vorti
ity W that is 
onstrained to vanish identi
ally in the 
ase of 
harged super�uids, more
ommonly referred to as �super
ondu
tors�. The absen
e of mi
ros
opi
 dissipative me
hanisms implies that there isno non-
onservative for
e a
ting on the bulk2 of the super�uid, i.e.
FS = 0 , (76)whi
h quite generally 
hara
terizes perfe
t 
ondu
tors of any sort. As a 
onsequen
e we see that the 
anoni
al vorti
ity(and equivalently 
ir
ulation) of a perfe
t 
ondu
tor is stri
tly 
onserved, as seen in the previous se
tion. The further
onstraint of irrotational �ow, whi
h distinguishes a super
ondu
tor from a mere perfe
t 
ondu
tor, reads as

̟S = wS +
1

c
qS dA = 0 , and W

S = W S +
1

c
qSB = 0 . (77)We see from (70) or (71) that if this irrotationality 
onstraint is satis�ed at some instant t, then it will automati
allyremain true for all subsequent times due to the absen
e of dissipation (76). We 
an therefore write the super�uidmomentum πS (lo
ally) as the gradient of a phase ϕ, i.e.

πS = pS +
qS

c
A = ~∇ϕ , (78)whi
h leads to the well-known London equation for super
ondu
tors, as further dis
ussed in Se
t. VC. The 
anoni
al
ir
ulation (73) 
an therefore be non-zero if ∂Σ en
loses a topologi
al defe
t in the phase ϕ, i.e. a region where ϕ(and therefore πS) is not de�ned, as for example in the 
ase of �ow inside a torus, or around a vortex. While in the
ase of a perfe
t irrotational �uid the resulting 
ir
ulation 
ould have any value, the super�uid phase ϕ is restri
tedto 
hange by a multiple of 2π when following a 
losed loop inside the super�uid around the defe
t. The resulting
anoni
al 
ir
ulation is therefore quantized as

C = 2Nπ~ , with N ∈ Z , (79)whi
h gives rise to the well-known quantized vortex stru
ture and �ux quantization of super
ondu
tors.2 As mentioned in Paper I, this 
ondition 
an be violated in the 
ore of vorti
es, leading to �mutual fri
tion�.



10C. Generalized heli
ity 
onservationWe now turn to the generalization of the dynami
al heli
ity 
onservation derived in Paper I. We de�ne the 
anoni
alheli
ity 3-form H as the exterior produ
t of the momentum 1-form π with the vorti
ity 2-form ̟, i.e.
H ≡ π ∧̟ , (80)and we de�ne the dual 
anoni
al heli
ity density h as
H = h ǫ, (81)where ǫ is the volume form with 
omponents ǫijk. The heli
ity s
alar 
an be seen to have the following expli
itexpressions

h = π ⌋W = π · (∇× π) . (82)Using (69) and (70), the 
omoving time-derivative of H 
an be found as
(∂t + £v)H = d(Q̟) +

[

d(π ∧ F) + 2dF ∧ π
]

. (83)If we further introdu
e the total 
anoni
al heli
ity H of a volume V as
H ≡

∫

V

H =

∫

V

h dV , (84)then we �nd in the absen
e of non-
onservative for
es, i.e. F = 0, that the 
omoving time derivative of H satis�es
dH

dt
=

∮

∂V

QW · dS . (85)Therefore the 
anoni
al heli
ity H of a volume V is 
onserved under transport by the �uid only if, in addition to
F = 0, the 
anoni
al vorti
ity W vanishes on the surfa
e ∂V surrounding this volume. We note that in general the
onserved heli
ity H 
ontains 
ontributions from the purely hydrodynami
 �Mo�at� heli
ity p · W and the magneti
heli
ity A · B together with �mixed� terms, namely using (82) we 
an express

h = p · W +
q2

c2
A · B +

q

c
[p · B + A · W ] . (86)V. APPLICATIONSA. General des
ription of ele
tri
 
ondu
torsAs a simple appli
ation of the foregoing formalism, we 
onsider an ele
tri
 
ondu
tor des
ribable as a two-
onstituentsystem. One 
onstituent 
onsists of the positively 
harged ions, des
ribed by their number density n, velo
ity v, massper ion m and 
harge per ion q = Ze. The se
ond 
onstituent is a gas of ele
trons of density ne, velo
ity ve, mass meand 
harge qe = −e. The total 
harge density and 
urrent (3) are therefore expressible as

σ = e(Zn− ne) , and j = e(Znv − neve) , (87)and the relative velo
ity between the two �uids is
∆ ≡ v − ve . (88)Charge transfer between the two �uids is possible in prin
iple, e.g. we 
ould allow for pro
esses of ionization andre
ombination, where ele
trons are transferred from the ion-�uid to the �uid of free ele
trons. But for simpli
ity wewill assume the number of free ele
trons to be 
onserved, so we have

Γ = ∂tn+ ∇ · (nv) = 0 , and Γe = ∂tne + ∇ · (neve) = 0 . (89)The total di�erential of the energy fun
tion E(n, ne,∆
2) is

dE = µdn+ µe dne + αd∆2 . (90)



11Using (33) and (34), the 
onjugate momenta of ele
trons and ions are therefore found as
p = mv − 2α

n ∆ , −p0 = µ− 1
2mv

2 + v · p ,

pe = meve + 2α
ne

∆ , −pe
0 = µe − 1

2mev
2
e + ve · p

e .
(91)We negle
t the gravitational �eld, so fgrav = 0, and the 
anoni
al for
e densities a
ting on the ele
tron- and ion-�uidare obtained from (28) and (29) as

f = fH − nZe(E +
v

c
× B) , and fe = f e

H
+ ene(E +

ve

c
× B) , (92)where the hydrodynami
 for
e densities are obtained from (26), by substituting the dynami
al momenta (91), whi
hyields

fH = nm(∂t + v · ∇)

[

v −
2α

nm
∆

]

+ n∇µ− 2α∆j∇v
j , (93)

fe
H

= neme(∂t + ve · ∇)

[

ve +
2α

neme
∆

]

+ ne∇µ
e + 2α∆j∇v

j
e . (94)These equations 
ontain the des
ription of super
ondu
tors, magneto-hydrodynami
 and the �uid-des
ription of plas-mas (e.g. see [8, 9℄) as spe
ial 
ases. However, they are substantially more general due to the in
lusion of the e�e
tof entrainment, whi
h is usually overlooked in these 
ontexts.Using the momenta (91) and the energy di�erential 90, the generalized pressure di�erential (40) is found as

dΨ = n dµ+ ne dµ
e − α d∆2 . (95)We note that in general we 
annot introdu
e �partial pressures�, say, by de�ning dPe to be equal nedµ

e, as this is gener-ally not a total di�erential due to intera
tion energies between the 
onstituents (i.e. the fa
t that µe = µe(n, ne,∆
2)).However, the 
hemi
al potentials are always well-de�ned and are therefore mu
h more natural quantities in generalmulti-�uid 
ontexts. In the absen
e of external for
es, i.e. fext = 0, the for
e balan
e equation (41) now reads as

0 = f + fe = fH + f e
H
− σE −

j

c
× B . (96)We 
an further pres
ribe a mutual for
e between the two �uids, so we introdu
e a resistivity for
e of the form f e = fR,and therefore f = −fR. The energy equation (30) with (24) now takes the form

g + ge = −∆ · fR = gext . (97)Su
h a resistive for
e will lead to 
reation of heat (entropy), whi
h in this model has to be extra
ted to an �external�system via gext, as for simpli
ity we have not expli
itly in
luded an entropy 
onstituent in this example. By these
ond law of thermodynami
s, the fri
tion should produ
e heat and not absorb it, so we have to extra
t heat-energyfrom the system, i.e. gext < 0, and therefore we 
an 
onstrain the resistivity for
e to be of the form
fR = η∆ , with η > 0 , (98)where η is generally a fun
tion of the state-variables des
ribing the system.B. The MHD limitIn the low-frequen
y, long-wavelength limit we 
an assume any net 
harge densities to be 
ompensated very qui
klyby the motion of ele
trons, so we make the �quasi-neutral� approximation and set:

σ = 0 , (99)whi
h by (87) implies Zn = ne, and the 
urrent density therefore reads as
j = ene∆ . (100)



12In this low frequen
y limit we 
an equally negle
t the displa
ement 
urrent ∂tD in Maxwell's equations (18). Be
ausethe ele
trons are very light, i.e. me ≪ m, the inertial for
es of the ele
tron �uid 
an usually be negle
ted as well, andso the equation of motion for the ele
trons, fe = fR, 
an be written with (92), (94) and (98) as
ne∇µ

e + 2α∆j∇v
j
e + ene(E +

ve

c
× B) = η∆ . (101)In order to re
over the �standard� MHD framework, we further negle
t entrainment, i.e. if we set ad ho
 α = 0, sothe pressure di�erential (95) now redu
es to

dP = ne dµ
e + n dµ , (102)where the generalized pressure Ψ 
an be identi�ed with the usual pressure P in the absen
e of entrainment. Thisallows us to write the for
e balan
e equation (96) in the form

ρ (∂t + v · ∇)v + ∇P −
j

c
× B = 0 . (103)Using (100) we 
an express the ele
tron velo
ity as

ve = v −
1

ene
j , (104)and so we 
an write the equation of ele
tron transport (101) further as

j = c(E +
v

c
× B) +

c

e
∇µe −

c

enec
j × B , (105)where the s
alar 
ondu
tivity c is related to the resistivity 
oe�
ient η as

c =
e2n2

e

η
> 0 . (106)If we further negle
t the �partial pressure� ∇µe, we 
an write the relation between 
urrent j and ele
tri
 �eld E′ inthe frame of the ion-ba
kground, i.e. E′ ≡ E + (v/c) × B as a generalized Ohm's law, namely

ji = cikE
k′ , (107)where the anisotropi
 
ondu
tivity tensor cik is

cik =

[

1

c
δik +

1

enec
ǫiklB

l

]−1

, (108)whi
h is not symmetri
 but satis�es the relation
cik(B) = cki(−B) . (109)In this form the generalized Ohm's law 
an a

ount for the well-known (
lassi
al) Hall e�e
t, while the standard MHDapproa
h (e.g. see [10, 11℄) 
ommonly also negle
ts the �Hall term� j ×B, so that this equation �nally redu
es to thestandard Ohm's law:

j = cE ′ = c(E +
1

c
v × B) . (110)We note that the �orthodox� equations are 
ontained in this framework as spe
ial 
ases, but the des
ription (101)is substantially more general due to the in
lusion of the entrainment e�e
t, whi
h will generally be present in any(intera
ting) multi-�uid system. C. Super
ondu
torsIn 
ontrast to the previous appli
ation, super
ondu
tors are perfe
t 
ondu
tors, so the ele
trons 
an �ow pastthe ions without fri
tion, i.e. η = 0 in (98). Therefore we 
annot negle
t the inertial and pressure for
es of the



13ele
trons a-priori. As mentioned previously (
f. Se
t. IVB), in addition to the absen
e of fri
tion, super�uids are also
onstrained to be irrotational, so
̟ij = ∇[iπ

e
j] = 0 , (111)and in its dual formulation this expli
itly reads as

W
e = ∇× πe = ∇× pe −

e

c
B = 0 , (112)whi
h we will see after translation to the �orthodox� language represents the (se
ond) London equation. In the absen
eof �external� for
es a
ting on the ele
tron �uid, using (23) we 
an redu
e the equation of motion for the ele
trons,

fe = 0, to the form
0 = ∂tπ

e −∇πe
0 = ∂tp

e −∇pe
0 + e(∇A0 −

1

c
∂tA) ,

= ∂tp
e −∇pe

0 + eE , (113)where we have used (15,16) and the de�nition (5) of the ele
tri
 �eld E. This equation is the (�rst) London equationand expresses the a

eleration of ele
trons under gradients of their �potential� pe
0 and an ele
tri
 �eld. This equationalso guarantees that the 
onstraint (112) remains automati
ally satis�ed under the evolution of the ele
tron �uid.The two equations (112) and (113) were originally proposed (albeit in their �orthodox formulation�) by F. andH. London [12℄ and have been very su

essful in des
ribing the phenomenology of super
ondu
tors, and in parti
ularthe behavior in ele
tri
 and magneti
 �elds.We 
on
lude this se
tion by a �translation� into the orthodox formalism (
f. the dis
ussion of super�uid 4He inPaper I). Using the entrainment relation (91) we 
an express the ele
tron momentum pe as

pe

me
= v −

1

enS
j , (114)where we have introdu
ed the orthodox pseudo-density nS of super
ondu
ting ele
trons, namely

nS ≡
ne

1 − ε
, with ε ≡

2α

mene
. (115)With this relation, Eq. (112) 
an now be written in its 
onventional form as

B = −c∇× (λj) , with λ ≡
me

e2nS
, (116)where we have assumed that the ba
kground of ions is stationary and non-rotating, so ∇ × v = 0 and ∂tv = 0.Therefore Eq. (113) 
an now be written as

E = ∂t(Λj) +
1

e
∇pe

0 , (117)where the �partial pressure� term ∇pe
0 = −∇(µe − 1

2mev
2
e + ve ·p

e) is often negle
ted. Eqs. (116) and (117) representthe orthodox formulation of the 
lassi
 London equations as usually found in the super
ondu
tivity literature (e.g.see [13, 14, 15℄). A
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14APPENDIX A: APPROXIMATE GALILEAN-INVARIANCE OF ELECTRODYNAMICSAs pointed out in the introdu
tion, the 
ombined ele
tro-hydrodynami
s 
onstru
ted in this paper makes no 
laimat being stri
tly Galilean-invariant. The underlying framework should be thought of as a fully (lo
ally) Lorentz-invariant theory (as developed in [6, 7℄), of whi
h we 
onsider only the small-velo
ity, low-frequen
y regime up toand in
luding e�e
ts of order (

c−1
). It is well-known (e.g. see [16℄) that the �rst post-Newtonian 
orre
tions toun
harged parti
le-me
hani
s in a gravitational �eld are of order (

c−2
), and the 
orresponding limiting theory is thestri
tly Galilean-invariant 
lassi
al me
hani
s. This is not the 
ase for ele
trodynami
s. As pointed out in [5℄, one
annot obtain a Galilean-invariant limit and keep the full Maxwell-equations, ex
ept for introdu
ing the infamousether. However, as we will show here, by restri
ting ourselves to a suitable �non-relativisti
� regime of small velo
itiesand low frequen
ies, the full framework of ele
trodynami
s admits an �approximately� Galilean invariant formulationup to and in
luding order (c−1). This will still hold true for the 
ombined ele
tro-hydrodynami
s, as there are no

(c−1) e�e
ts entering from the me
hani
al se
tor of the theory. By 
onsistently negle
ting terms of order (c−2), the
ombined theory 
an be 
onsidered as �approximately� Galilean-invariant in this sense.The well-known Lagrangian density ΛEM of the ele
trodynami
 �eld Fµν = 2∇[µAν] 
an be equivalently expressedin terms of the two (frame-dependent) ve
tors E and B, namely
ΛEM =

1

16π
FµνF

νµ =
1

8π

(

E2 − B2
)

, (A1)where E and B, de�ned for an observer uµ, are given by
Eµ = Fµνuν , Bµ = −

1

2
ǫµνλγFλγuν . (A2)Note that both ve
tors are purely spatial and orthogonal to uµ. In the Lorentz-frame de�ned by uµ they 
an thereforebe identi�ed with the 
ommon 3-ve
tors used in the �3+1� Newtonian language des
ribing the ele
tri
 and magneti
�eld. Conversely, the �eld-tensor Fµν is uniquely spe
i�ed in terms of E and B, namely

F = u ∧ E +∗ (u ∧ B) , (A3)where ∗ denotes the Hodge duality operation with respe
t to the 4-dimensional Levi-Civita tensor ǫ, and ∧ stands forthe exterior produ
t. In the Lorentz-frame uµ we 
an write this in 
omponents as
Fµν =







0 −Ex −Ey −Ez

Ex 0 Bz −By

Ey −Bz 0 Bx

Ez By −Bx 0






. (A4)Now 
onsider the e�e
t of the transformation to a frame K ′ moving with velo
ity V relative to the original frame

K. Introdu
ing the symbols β ≡ V /c, β = |β|, n = β/β, and γ =
(

1 − β2
)−1/2, the 
orresponding Lorentz-transformation matrix Λ 
an be written as

Λ0′

0 = γ ,

Λ0′

j = Λj′
0 = −βγ nj , (A5)

Λi′
j = (γ − 1)njnk + δjk .Using this, we 
an transform the frame-
omponents of Fµν to K ′ and translate them ba
k into E′ and B′, whi
hyields (e.g. see [16℄)

E′
‖ = E‖ , E′

⊥ = γ (E⊥ + β × B) , (A6)
B′

‖ = B‖ , B′
⊥ = γ (B⊥ − β × E) , (A7)where the parallel (‖) and orthogonal (⊥) proje
tions refer to the boost-dire
tion β.The range of validity of the formalism developed in this paper is the �non-relativisti
� small-velo
ity, low-frequen
yregime, so we introdu
e the small parameter ε≪ 1 and require that all 
hara
teristi
 velo
ities v satisfy |v|/c ∼ (ε),and that time-derivatives of �eld-quantities are small 
ompared to spatial derivatives, i.e. ∂tB/c ∼ ∂tE/c ∼ (ε).Consequently we need to restri
t ourselves to small Lorentz-boosts, i.e. we assume β ∼ (ε), and so

γ =
(

1 − β2
)−1/2

= 1 + (ε2) . (A8)



15We 
an see that the Lorentz-transformation (A6,A7) of the ele
tromagneti
 �elds 
an now be written as
E′ = E + β × B + (ε2) , (A9)
B′ = B − β × E + (ε2) . (A10)As pointed out in [5℄, these transformations do not form a stri
t Galilean invarian
e group, be
ause they fail to beadditive. But they do form an �approximate� invarian
e-group up to order (ε2) in the sense dis
ussed above. Namely,
ombining two boosts, β1 and β2, we �nd

E′′ = E′ + β2 × B′ = E + (β1 + β2) × B + (ε2) , (A11)
B′′ = B′ − β2 × E′ = B − (β1 + β2) × E + (ε2) . (A12)Let us 
onsider the e�e
t of the transformation (A9,A10) on the ele
trodynami
s �eld-Lagrangian (A1), for whi
h weeasily �nd

Λ′
EM

=
1

8π

(

E′2 − B′2
)

=
1

8π

(

E2 − B2
)

+ (ε2) . (A13)In prin
iple this would 
on
lude our demonstration, as both the Maxwell-equations and the Lorentz-for
e law arederivable from this Lagrangian, but for 
ompleteness we will also dis
uss their expli
it transformation properties.Note that in the 
onventional Newtonian �3+1� language, the boost V results in the following transformations(using the fa
t that x0 = ct) up to order (ε2):
t′ = t , (A14)
x′ = x − V t , (A15)
v′ = v − V , (A16)
∂′t ≡ ∂t|x′ = ∂t + V · ∇ , (A17)whi
h are just the usual Galilean boost transformations. Similarly, we obtain the transformation law up to (ε2) forthe gauge-�eld ve
tor Aµ = (A0,A) as
A0

′ = A0 + β · A , (A18)
A′ = A +A0β , (A19)and one 
an easily verify using the de�nition (5) of E and B in terms of (A0,A) that this is 
onsistent with thetransformations (A9,A10) up to 
orre
tions of (ε2). It is also interesting to note the transformation properties of the
harge-density σ and the ele
tri
al 
urrent j. For an individual 
onstituent X , the 4-
urrent jµ

X
= nXu

µ
X
, with the4-velo
ity uµ

X
= (c,vX ) + (ε2). We therefore �nd up to order (ε2)

σ′
X

= σX , j′
X

= j
X
− σX V , (A20)and by the de�nition (3) of the total 
harge-density σ and 
urrent j one easily �nds3

σ′ = σ , j′ = j − σV . (A21)Applying the transformation (A9�A10) and (A14) to the Maxwell-equations (17), (18), we obtain
∇ · B′ = β · (∇× E) = −β · (∂tB/c) = (ε2) , (A22)

∇× E′ +
1

c
∂′tB

′ = ∇× E +
1

c
∂tB − β ×

1

c
∂tE − (β · ∇)(β × E) + (ε2)

=

[

∇× E +
1

c
∂tB

]

+ (ε2) , (A23)
∇ · E′ − 4πσ′ = [∇ · E − 4πσ] + ∇ · (β × B) = −β · (∇× B) = (ε2) , (A24)3 This shows that the 
urrent density always transforms a

ording to the �ele
tri
 limit� as de�ned in [5℄, irrespe
tive of the presen
e ofnet 
harges. The authors overlooked the fa
t that even a spa
e-like 
urrent has to be the sum of time-like �elementary� 
urrents, and sothe �magneti
 limit� will never apply in real systems.
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∇× B′ −

1

c
∂′tE

′ −
4π

c
j′ = ∇× B − β(∇ · E) −

1

c
∂tE − β ×

1

c
∂tB − (β · ∇)(β × B)

−

(

4π

c
j − 4πσβ

)

+ (ε2)

=

[

∇× B −
1

c
∂tE −

4π

c
j

]

+ (ε2) , (A25)where in the last equation we used the transformation property of the ele
tri
al 
urrent density j′ = j − σV .Finally, the expression for the Lorentz-for
e (28) transforms as
f ′

EM

nq
= E′ +

v′

c
× B′ = E +

v

c
× B −

v

c
× β × E + (ε2) =

f

nq
+ (ε2) , (A26)whi
h 
on
ludes our demonstration of the approximate Galilean invarian
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