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Variational desription of multi-�uid hydrodynamis: Coupling to gauge �eldsReinhard PrixMax-Plank-Institut für Gravitationsphysik, Albert-Einstein-Institut, Am Mühlenberg 1, D-14476 Golm, Germany∗(Dated: Feb 6, 2005)In this work we extend our previously developed formalism of Newtonian multi-�uid hydrody-namis to allow for oupling between the �uids and the eletromagneti and gravitational �eld.This is ahieved within the onvetive variational priniple by using a standard minimal ouplingpresription. In addition to the onservation of total energy and momentum, we derive the onser-vation of anonial vortiity and heliity, whih generalize the orresponding onserved quantitiesof unharged �uids. We disuss the appliation of this formalism to eletrially onduting systems,magnetohydrodynamis and superondutivity. The equations of eletri ondutors derived hereare more general than those found in the standard desription of suh systems, in whih the e�etof entrainment is overlooked, despite the fat that it will generally be present in any ondutingmulti-onstituent system. I. INTRODUCTIONIn the previous paper [1℄, heneforth referred to as Paper I, we have shown how the onvetive variational priniplean be used to derive the general equations of motion for a system of interating unharged �uids. This variationalpriniple is also at the heart of a series of papers by Carter and Chamel [2, 3, 4℄ based on a fully ovariant spaetimeformulation of Newtonian hydrodynamis, whih is formally loser to the relativisti formulation.Here we extend our �3+1� framework developed in Paper I to allow for harged �uids and their oupling to the ele-tromagneti and gravitational �eld. In Paper I we already inluded the gravitational �eld via an expliit presriptionfor the external fore, but now this oupling is derived in a more natural way from the variational priniple using thesame minimal oupling proedure as for the eletromagneti �eld.Due to the oupling to the eletromagneti �eld, the resulting theory an only be onsidered an �approximate�Newtonian framework, as strit Galilean invariane will be violated. While the Newtonian hydrodynami equationsare stritly invariant under Galilean transformations, the equations of eletrodynamis are invariant only underLorentz-transformations. This well known disrepany lead to the development of relativity, and a oupling betweenNewtonian physis and eletromagnetism is stritly speaking either inonsistent or selets a preferred frame (�ether�).As shown in [5℄, demanding strit Galilean invariane of eletrodynamis without an ether fores one to adopt eitheran �eletri� or �magneti� limit of the theory, in whih ertain essential e�ets would be absent (e.g. the magnetifore between eletri urrents or loal harge onservation). The only fully onsistent approah is to work within a(loally) Lorentz-invariant relativisti framework, as used for example in [6, 7℄.From a pratial point of view, however, a �3+1� non-relativisti formalism is often fully su�ient in terms ofpreision and usually more easily appliable to many problems. The aim of this paper is therefore to provide a�exible and general framework for the desription of a wide variety of harged multi-onstituent systems in the �non-relativisti� regime of small veloities and low frequenies (

c−2
)1. We emphasize that we do not attempt to onstruta stritly Galilean-invariant theory, rather this should be regarded as a trunated theory at order (c−2) of a Taylorexpansion of the underlying fully ovariant theory.For simpliity we restrit our analysis to non-magneti and non-polarizable �uids, suh that the vauum Maxwell-equations retain their form on the marosopi level of hydrodynamis, and the interation between matter and �eldsis restrited to the minimal oupling type. The inlusion of eletri and magneti polarization is postponed to futurework.Using this variational framework, the fundamental e�ets of �entrainment� and �hemial oupling�, inherent tomulti-onstituent systems (as disussed in Paper I), are automatially inluded in the formalism. This is a substantialimprovement over the standard �orthodox� desription of eletrial ondutivity and harged �uids in general, inwhih these e�ets are usually ompletely overlooked. The present framework is also more general in the sense ofbeing readily appliable to an arbitrary number of interating onstituents and �uids.
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mailto:Reinhard.Prix@aei.mpg.de


2The plan of this paper is as follows: in Se. II we extend the variational priniple introdued in Paper I to thease of (�separable�) oupling to the eletromagneti and gravitational �elds, and derive the equations of motion forthis oupled system. In Se. III we derive the onservation of harge and mass as well as of energy and momentumfrom the variational priniple. Se. IV is devoted to onserved quantities under transport of the �uid �ow, namelythe anonial vortiity and heliity, and their speial relation to superondutors. In Se. V we disuss appliations ofthis formalism to partiular physial systems. In the appendix we derive the non-relativisti form of eletrodynamiequations and show their �approximate� Galilean invariane.II. VARIATIONAL DESCRIPTION OF MULTI-CONSTITUENT SYSTEMSA. KinematisWe follow the notation introdued in Paper I, the various onstituents are indexed by apital letters X ,Y , ..., whihrun over the onstituents labels. The fundamental kinemati variables are the onstituent number-densities nX andthe assoiated transport urrents nX , whih are related to the respetive �ow-veloities vX as nX = nX vX . As inPaper I, we de�ne the relative veloities ∆XY between �uids X and Y as
∆XY ≡ vX − vY . (1)In addition to the masses per partile mX , we now admit another transported quantity, namely the harge per partile

qX . The orresponding total densities and urrents are therefore the mass density ρ and mass urrent ρ, given by
ρ =

∑

nXm
X , and ρ =

∑

mXnX , (2)and also the harge density σ and harge urrent j, de�ned as
σ =

∑

nX q
X , and j =

∑

nX q
X , (3)where here and in the following ∑ is used to indiate the sum over repeated onstituent indies, no automatisummation over onstituent indies is assumed.In addition to the dynamis of the matter-system we also want to inlude the oupling to the gravitational gauge�eld Φ and the eletromagneti gauge �elds A0 and A. The orresponding gauge-invariant �eld quantities are thegravitational aeleration g, whih is

g = −∇Φ , (4)and the eletri and magneti �elds E and B, whih are
E ≡ ∇A0 −

1

c
∂tA , and B ≡ ∇× A . (5)These �elds are invariant under the gauge transformations

Φ′ = Φ + C(t) , A0
′ = A0 +

1

c
∂tψ , and A′ = A + ∇ψ . (6)B. DynamisThe dynamis of the system is desribed by an ation I of the form

I =

∫

Λ dV dt , (7)in terms of the (generally gauge-dependent) total Lagrangian Λ. Using the standard minimal oupling presription,and assuming the eletrodynami �eld-ontribution to be fully separable from the hydrodynami Lagrangian, we anpostulate the form of Λ to be
Λ = ΛH(nX ,nX ) + ΛEM(E,B) + Λgrav(g) + (σA0 +

1

c
j · A) − ρΦ . (8)



3The gravitational �eld Lagrangian Λgrav has the well-known expression
Λgrav = −

1

8πG
(∇Φ)2 , (9)where G is Newton's gravitational onstant. The eletromagneti �eld ontribution (f. appendix) in the non-polarizable ase is given by

ΛEM =
1

8π

(

E2 − B2
)

. (10)As we have seen in the ase of unharged �uids (f. Paper I), the hydrodynami Lagrangian ΛH de�nes the dynamialmomenta pX0 and pX per �uid partile as
dΛH =

∑

(

pX0 dnX + pX · dnX

)

, so pX0 =
∂ΛH

∂nX

, pX =
∂ΛH

∂nX

. (11)In a similar manner the variation of the eletrodynami �eld LagrangianΛEM de�nes the so-alled �eletri displaement�eld� D and the �magneti �eld strength� H as onjugate variables to the eletromagneti �elds, namely
dΛEM =

1

4π
D · dE −

1

4π
H · dB , (12)and using the expliit form (10) we �nd

D = 4π
∂ΛEM

∂E
= E , H = −4π

∂ΛEM

∂B
= B . (13)Although we an trivially identify D = E and H = B in the present non-polarizable ase, in the following wenevertheless keep the formal and oneptual separation between the �kinematial� E and B and the �dynamial� (i.e.derived from Λ) quantities D and H .Due to the presene of the minimal oupling terms in (8), the variation of the total Lagrangian Λ generalizes thedynamial momenta pX0 and pX to the (gauge-dependent) anonial momenta πX

0 and πX , namely
dΛ =

∑

(πX

0 dnX + πX · dnX ) − ρ dΦ + σ dA0 +
1

c
j · dA + dΛEM + dΛgrav , (14)from whih we obtain the relations

πX

0 = pX0 + qXA0 −mXΦ , (15)
πX = pX +

1

c
qXA , (16)expressing the anonial momenta in terms of the dynamial momenta and the gauge �elds.C. The equations of motionWe see from de�nition (5) that the �rst two Maxwell equations are satis�ed identially, i.e.

∇ · B = 0 , and ∇× E +
1

c
∂tB = 0 . (17)Using (12) and (14) it is not di�ult to show that requiring invariane of the ation (7) under free variations δA0 and

δA of the gauge �elds results in the two remaining Maxwell equations
∇ · D = 4πσ , and ∇× H −

1

c
∂tD =

4π

c
j . (18)Similarly, requiring invariane of the ation (7) with respet to free in�nitesimal variations δΦ straightforwardly resultsin the Poisson equation for the gravitational �eld,

∇2Φ = 4πGρ . (19)



4The derivation of the equations of motion for the �uids is formally ompletely equivalent to the unoupled asedisussed in Paper I. The only di�erene is that the dynamial momenta pX0 and pX are now replaed by theorresponding anonial momenta πX

0 and πX .One has to onsider in�nitesimal spatial displaements ξ
X

and time-shifts τX of the �owlines, whih should beonsidered the �true� fundamental quantities desribing hydrodynamis (orresponding to the Lagrangian framework),while free variations for densities and veloities (harateristi for the Eulerian framework) fail to produe the orretequations, exept when adding �ad-ho� onstraints to the Lagrangian. The Eulerian variables, density nX and veloity
vX an be expressed in terms of the underlying �owlines (and initial onditions) alone, and one should therefore alsoonsider the hydrodynami Lagrangian ΛH in (8) as a funtion of these variables. These subtleties relating to thehydrodynami variational priniple are disussed in greater detail in Paper I.The resulting indued variations of the densities, δnX , and urrents, δnX have been derived in Paper I as

δnX = −∇ · [nX ξ
X

] + [nX · ∇τX − τX ∂tnX ] , (20)
δnX = nX∂tξX

+ (nX · ∇) ξ
X
− (ξ

X
· ∇)nX − nX (∇ · ξ

X
) − ∂t (nX τX ) . (21)Substituting these expressions into the variation of the total Lagrangian (14) and integrating by parts, we arrive atthe following form of the indued ation variation

δI =

∫

∑

(

gX τX − fX · ξ
X

)

dV dt , (22)where the anonial fore densities fX (ating on the onstituent) and the energy transfer rates gX (into the on-stituent) are found expliitly as
fX = nX

(

∂tπ
X −∇πX

0

)

− nX × (∇× πX ) + πX
ΓX , (23)

gX = vX ·
(

fX − πX
ΓX

)

− πX

0 ΓX , (24)where ΓX is the partile reation rate for the onstituent X , i.e.
ΓX ≡ ∂tnX + ∇ · nX . (25)The anonial fore density fX is the total (anonial) momentum hange rate of the onstituent X , and the last termin (23) represents a ontribution that is purely due to the hange of the partile number. By inserting the expliitexpressions (15,16) of the anonial momenta into (23) and (24), we an separate out the purely hydrodynamiontribution fX

H
, whih expresses �uid inertia and pressure, and whih has the same form as in the unharged ase(Paper I), namely

fX

H
≡ nX

(

∂tp
X −∇pX0

)

− nX × (∇× pX ) . (26)Introduing the gravitational and eletromagneti fores fX

grav and fX

EM
, de�ned by their usual expressions

fX

grav = −nXm
X∇Φ , (27)

fX

EM
= nX q

X

(

E +
1

c
vX × B

)

, (28)we an now rewrite the anonial fore densities (23) in the form
fX = fX

H
− fX

grav − fX

EM
+ ΓX πX . (29)The atual physial equations of motion are obtained by presribing the anonial fore densities fX ating on the�uids. If we only require invariane of the ation for a ommon displaement and time shift ξ

X
= ξ and τX = τ , weobtain the minimal equations of motion for the total system, namely

∑

fX = fext , and ∑

gX = gext , (30)where fext and gext are interpretable as the �external� fore density and energy transfer rate ating on the system.This generalizes the more ommon ation priniple of isolated systems, in whih the external in�uenes f ext and gextvanish and therefore the equations of motion would be obtained by requiring the ation to be invariant under smallvariations. �External� here is meant in the sense of not being inluded in the total Lagrangian, whih ould alsoinlude, for example, visous fores.



5D. The hydrodynami Lagrangian ΛHAs shown in Paper I, the hydrodynami Lagrangian density ΛH for the lass of �perfet� (i.e. with an isotropienergy funtion E) multi-�uid systems is given by
ΛH(nX ,nX ) =

∑

mX
n2

X

2nX

− E(nX ,∆
2
XY

) , (31)where ∆XY denotes the relative veloity between �uids X and Y as de�ned in (1). The total di�erential of thethermodynami potential E(nX ,∆
2
XY

) determines the �rst law of thermodynamis for the matter-system, namely
dE =

∑

µX dnX +
1

2

∑

X ,Y

αXY d∆2
XY

, (32)whih de�nes the hemial potentials µX and the symmetri entrainment matrix αXY . The dynamial momenta pX0and p X de�ned in (11) are therefore found as
pX = mXvX −

∑

Y

2αXY

nX

∆XY , (33)
−pX0 = µX −mX

v2
X

2
+ vX · pX . (34)III. GAUSS-TYPE CONSERVATION LAWSA. Conservation of harge and massWe see from (26)�(28) that the fore ontributions fX

H
, fX

grav and fX

EM
are invariant with respet to gauge trans-formations of the gravitational and eletromagneti �elds. However, the last term in the expressions (23) and (24)(aounting for momentum and energy hange due to partile number hanges) is generally gauge dependent. Whilethis is not prohibited for individual onstituent fores, the total equations of motion (30) have to be gauge invariant,and by using (15,16) we an therefore dedue the onstraints

∑

qXΓX = ∂tσ + ∇ · j = 0 , (35)
∑

mX
ΓX = ∂tρ+ ∇ · ρ = 0 , (36)where the total densities and urrents have been de�ned in (2) and (3). Gauge invariane therefore implies onservationof the �harge� assoiated with the gauge �eld. As a further onsequene we �nd the following useful relations,

∑

ΓXπX =
∑

ΓX pX , and ∑

ΓXπ
X

0 =
∑

ΓX p
X

0 . (37)We note that the onservation of mass was already derived in Paper I as a onsequene of Galilean invariane, whihan also be onsidered a gauge freedom. B. Momentum onservationAs shown in Paper I, the purely hydrodynami fore densities fX

H
satisfy the relation

∑

(fX i
H

+ ΓX pX i) = ∂tJ
i
H

+ ∇jT
ij
H
, (38)where the hydrodynami momentum density JH and stress tensor T ij

H are given by
JH ≡

∑

nXpX , and T ij
H

≡
∑

ni
X
pX j + Ψ gij . (39)The �generalized pressure� Ψ is de�ned via the Legendre transformation of ΛH, namely

Ψ ≡ ΛH −
∑

(

nX p
X

0 + nX · pX
)

, (40)



6and gij are the omponents of the metri tensor, whih in Cartesian oordinates is simply gij = δij . Using theserelations together with (29) and (37), we an write the total fore balane equation (30) in the form
f i
ext =

∑

fX i = ∂tJ
i
H

+ ∇jT
ij
H

− f i
grav − f i

EM
, (41)where fgrav ≡

∑

fX

grav and fEM ≡
∑

fX

EM
are the total gravitational and eletromagneti fore densities. Using (27)and (28) we �nd expliitly

fgrav = −ρ∇Φ , (42)
fEM = σE +

1

c
j × B . (43)One an easily verify that the gravitational fore term an be written as the divergene of a tensor, namely

− f i
grav = ∇jT

ij
grav , with T ij

grav =
1

4πG

(

∇iΦ∇jΦ −
1

2
(∇Φ)2 gij

)

. (44)Using the Maxwell equations (17), (18) and the total di�erential (12) of ΛEM, we an show that the total eletromag-neti fore density (43) an be similarly rewritten as
− f i

EM
= ∂tJEM

i + ∇jT
ij
EM
, (45)in terms of the momentum density JEM of the eletromagneti �eld,

JEM ≡
1

4πc
D × B , (46)and the Maxwell stress tensor T ij

EM, whih is found as
T ij

EM
= −

1

4π

(

EiDj +HiBj
)

+

(

ΛEM +
1

4π
H · B

)

gij . (47)Putting all the piees together, we obtain the following form for the total momentum onservation (41):
∂t(J

i
H

+ JEM

i) + ∇jT
ij = f i

ext , (48)where the total stress tensor is given by
T ij ≡ T ij

H
+ T ij

grav + T ij
EM
. (49)An important property of the total stress tensor T ij is that it is symmetri. The symmetry of the gravitational part(44) is obvious, while the symmetry of the hydrodynami stress tensor (39) has been shown in Paper I. It remains toprove the symmetry of the eletromagneti stress tensor (47). In the present non-polarizable ase, this follows triviallyfrom the identities (13). It is interesting to note, however, that this an also be derived more generally as a Noetheridentity of the variational priniple, assuming only the separable form (8) of the Lagrangian.In order to show this, we extend the variational priniple slightly by admitting also metri variations δgij , so that(12) now reads as

δΛEM =
1

4π
D · δE −

1

4π
H · δB +

∂ΛEM

∂gij
δgij . (50)Consider an ative time-independent in�nitesimal displaement ξ of the whole system inluding the metri, whihindues the following Lagrangian hanges:

∆Ei = El∇iξl , ∆Bi = Bl∇iξl , ∆gij = −2∇(iξj) . (51)Using these transformations together with (50), we obtain the indued Lagrangian hange of ΛEM as
∆ΛEM =

1

4π

[

Di Ej −Hi Bj − 8π
∂ΛEM

∂gij

]

∇iξj . (52)



7This ative transformation is equivalent to a oordinate transformation −ξ, and therefore the requirement of ΛEMbeing a salar is ∆ΛEM = 0, whih leads to the assoiated Noether identity
2
∂ΛEM

∂gij
=

1

4π

[

DiEj −HiBj
]

. (53)Using the manifest symmetry of the left-hand side, we obtain
EiDj +HiBj = Ej Di +Hj Bi , (54)whih onludes the proof of the symmetry of T ij

EM. Note that in general T ij
EM need not be symmetri, only the sum ofall ontributions to T ij is subjet to this onstraint. The symmetry of T ij

EM is a speial onsequene of the assumptionof a �separable� interation of the form (8). C. Energy onservationWe have seen in Paper I that we an write
∑

(

vX · fX

H
− ΓX p

X

0

)

= ∂tEH + ∇ · Q
H
, (55)in terms of the hydrodynami energy density EH and energy �ux Q

H
, whih are given by

EH =
∑

nX · pX − ΛH , and Q
H

=
∑

(−pX0 )nX , (56)while for the gravitational and eletromagneti work ontributions ggrav ≡
∑

vX · fX

grav and gEM ≡
∑

vX · fX

EM
, we�nd using (27) and (28):

ggrav = −ρ · ∇Φ , (57)
gEM = j · E . (58)Using these expressions, the energy equation (30) an be written as

gext = ∂tEH + ∇ · Q
H
− ggrav − gEM . (59)Using Maxwell's equations (17) and (18), one an write the eletri work gEM in the form of a onservation law, namely

− gEM = ∂tEEM + ∇ · S , (60)where the eletromagneti �eld energy density EEM is given by
EEM =

1

4π
E · D − ΛEM =

1

8π

(

E2 + B2
)

, (61)and the seond equality was obtained using the expliit Lagrangian (10). The energy �ux S is given by the Poyntingvetor
S =

c

4π
E × H . (62)In the present non-polarizable ase, i.e. D = E and B = H , we reover the well-known relation between the energy�ux and momentum of the eletromagneti �eld, namely JEM = S/c2. Summarizing, we an ast (59) in the form ofa onservation of total energy, namely

∂t(EH + EEM) + ∇ · (Q
H

+ S) = gext − ρ · ∇Φ . (63)We note that formally one an also write the gravitational work in the form of a onservation law, but the expressionfor energy density and �ux are neither unique nor gauge invariant, and one an also not eliminate the mass urrent
ρ from these expressions due to the lak of a dynami law for the gravitational �eld in the Newtonian framework.



8IV. CONSERVATION ALONG FLOWLINESIn this setion we show how the onservation of vortiity and heliity, derived for unharged �uids in Paper I, anbe generalized quite naturally to the ase of �uids oupled to the eletromagneti and gravitational �eld. We notethat the tehnial steps involved in this disussion are largely analogous to the treatment in Paper I, and we thereforeskip most intermediate steps.A. Generalized Kelvin-Helmholtz vortiity onservationWe de�ne the hydrodynami vortiity 2-form w as the exterior derivative of the dynamial momentum 1-form p,namely w ≡ dp, and the more ommon dual vortiity vetor W , whih is W = ∇× p.In the presene of eletromagneti �elds, the more fundamental quantity is the anonial vortiity 2-form ̟, whihis de�ned in the same way but with respet to the anonial momentum π, namely
̟ ≡ dπ , (64)and the dual anonial vortiity vetor W is therefore given by

W = ∇× π . (65)With (16) we see that the relation between anonial and hydrodynami vortiity is simply
̟ = w +

q

c
dA , and W = W +

q

c
B . (66)We note that by the Poinaré property (namely dd = 0), the exterior derivatives of the vortiity 2-forms vanishidentially, i.e. d̟ = 0, whih equivalently expresses the fat that the vortiity vetors are divergene-free, i.e.

∇ · W = 0.We an write the expression (23) for the anonial fore f ating on one onstituent in the language of forms as
∂tπ + v⌋dπ − dπ0 =

1

n
(f − Γπ) , (67)where ⌋ indiates summation over adjaent vetor- and form-indies.In the following it will be onvenient to separate the �proper fore� per partile ating on the right-hand side of(67) into its non-onservative part F and a onservative ontribution dφ, namely

1

n
(f − Γπ) = dφ+ F . (68)Applying the Cartan formula for the Lie derivative of a p-form to the 1-form π, namely £v π = v⌋dπ + d(v⌋π), allowsus now to rewrite the fore equation (67) more onveniently as

(∂t + £v)π = dQ+ F , (69)where the salar Q is given by Q = π0 + v⌋π + φ. Lie derivatives and partial time derivatives ommute with exteriorderivatives, so we an apply an exterior derivative to (69) and with (64) we obtain the Helmholtz equation of transportof anonial vortiity, namely
(∂t + £v)̟ = dF , (70)whih shows that the anonial vortiity is onserved under transport by the �uid, if the proper fore per partileating on the �uid is purely onservative, i.e. if F = 0. In its more ommon dual form, this equation an be writtenas

∂tW −∇× (v × W) = ∇× F , (71)Substituting the expliit relation (66) between the dynamial and the anonial vortiity, and using Maxwell's equation,this an be re-expressed as
∂tW −∇× (v × W ) = ∇×

[

F + q

(

E +
1

c
v × B

)]

, (72)



9whih shows that in the ase of a harged onstituent, the dynamial vortiity W is generally not onserved even in theabsene of a non-onservative external fore F, due to the presene of the Lorentz fore ating on the �uid. However,the anonial vortiity is onserved in this ase and therefore generalizes the vortiity onservation of unharged �uids.For the anonial irulation C of a losed iruit ∂Σ, whih is the boundary of a 2-surfae Σ, we have
C ≡

∮

∂Σ

π =

∫

Σ

̟ =

∫

Σ

W · dS , (73)where dS is the surfae normal element. We see from (66) that the anonial irulation C an also be expressed asthe sum of the hydrodynami vortiity �ux (i.e. dynamial irulation) and the magneti �ux through the surfae Σ,namely
C =

∫

Σ

W · dS +
q

c

∫

Σ

B · dS . (74)For the omoving time derivative of the irulation C we �nd using (69)
dC

dt
=

∮

(∂t + £v)π =

∮

∂Σ

F (75)whih is Kelvin's theorem for the onservation of anonial irulation. We note that strit onservation only appliesif the non-onservative fore per partile F vanishes, as we have already seen earlier.B. Vortiity and superondutorsAs disussed in more detail in Paper I, the hydrodynamis of super�uids is generally haraterized by two funda-mental properties: the absene of dissipative mehanisms like frition or visosity, and the onstraint of irrotational�ow. While in the ase of unharged super�uids this simply meant the vanishing of the dynamial vortiity W , itis now the anonial vortiity W that is onstrained to vanish identially in the ase of harged super�uids, moreommonly referred to as �superondutors�. The absene of mirosopi dissipative mehanisms implies that there isno non-onservative fore ating on the bulk2 of the super�uid, i.e.
FS = 0 , (76)whih quite generally haraterizes perfet ondutors of any sort. As a onsequene we see that the anonial vortiity(and equivalently irulation) of a perfet ondutor is stritly onserved, as seen in the previous setion. The furtheronstraint of irrotational �ow, whih distinguishes a superondutor from a mere perfet ondutor, reads as

̟S = wS +
1

c
qS dA = 0 , and W

S = W S +
1

c
qSB = 0 . (77)We see from (70) or (71) that if this irrotationality onstraint is satis�ed at some instant t, then it will automatiallyremain true for all subsequent times due to the absene of dissipation (76). We an therefore write the super�uidmomentum πS (loally) as the gradient of a phase ϕ, i.e.

πS = pS +
qS

c
A = ~∇ϕ , (78)whih leads to the well-known London equation for superondutors, as further disussed in Set. VC. The anonialirulation (73) an therefore be non-zero if ∂Σ enloses a topologial defet in the phase ϕ, i.e. a region where ϕ(and therefore πS) is not de�ned, as for example in the ase of �ow inside a torus, or around a vortex. While in thease of a perfet irrotational �uid the resulting irulation ould have any value, the super�uid phase ϕ is restritedto hange by a multiple of 2π when following a losed loop inside the super�uid around the defet. The resultinganonial irulation is therefore quantized as

C = 2Nπ~ , with N ∈ Z , (79)whih gives rise to the well-known quantized vortex struture and �ux quantization of superondutors.2 As mentioned in Paper I, this ondition an be violated in the ore of vorties, leading to �mutual frition�.



10C. Generalized heliity onservationWe now turn to the generalization of the dynamial heliity onservation derived in Paper I. We de�ne the anonialheliity 3-form H as the exterior produt of the momentum 1-form π with the vortiity 2-form ̟, i.e.
H ≡ π ∧̟ , (80)and we de�ne the dual anonial heliity density h as
H = h ǫ, (81)where ǫ is the volume form with omponents ǫijk. The heliity salar an be seen to have the following expliitexpressions

h = π ⌋W = π · (∇× π) . (82)Using (69) and (70), the omoving time-derivative of H an be found as
(∂t + £v)H = d(Q̟) +

[

d(π ∧ F) + 2dF ∧ π
]

. (83)If we further introdue the total anonial heliity H of a volume V as
H ≡

∫

V

H =

∫

V

h dV , (84)then we �nd in the absene of non-onservative fores, i.e. F = 0, that the omoving time derivative of H satis�es
dH

dt
=

∮

∂V

QW · dS . (85)Therefore the anonial heliity H of a volume V is onserved under transport by the �uid only if, in addition to
F = 0, the anonial vortiity W vanishes on the surfae ∂V surrounding this volume. We note that in general theonserved heliity H ontains ontributions from the purely hydrodynami �Mo�at� heliity p · W and the magnetiheliity A · B together with �mixed� terms, namely using (82) we an express

h = p · W +
q2

c2
A · B +

q

c
[p · B + A · W ] . (86)V. APPLICATIONSA. General desription of eletri ondutorsAs a simple appliation of the foregoing formalism, we onsider an eletri ondutor desribable as a two-onstituentsystem. One onstituent onsists of the positively harged ions, desribed by their number density n, veloity v, massper ion m and harge per ion q = Ze. The seond onstituent is a gas of eletrons of density ne, veloity ve, mass meand harge qe = −e. The total harge density and urrent (3) are therefore expressible as

σ = e(Zn− ne) , and j = e(Znv − neve) , (87)and the relative veloity between the two �uids is
∆ ≡ v − ve . (88)Charge transfer between the two �uids is possible in priniple, e.g. we ould allow for proesses of ionization andreombination, where eletrons are transferred from the ion-�uid to the �uid of free eletrons. But for simpliity wewill assume the number of free eletrons to be onserved, so we have

Γ = ∂tn+ ∇ · (nv) = 0 , and Γe = ∂tne + ∇ · (neve) = 0 . (89)The total di�erential of the energy funtion E(n, ne,∆
2) is

dE = µdn+ µe dne + αd∆2 . (90)



11Using (33) and (34), the onjugate momenta of eletrons and ions are therefore found as
p = mv − 2α

n ∆ , −p0 = µ− 1
2mv

2 + v · p ,

pe = meve + 2α
ne

∆ , −pe
0 = µe − 1

2mev
2
e + ve · p

e .
(91)We neglet the gravitational �eld, so fgrav = 0, and the anonial fore densities ating on the eletron- and ion-�uidare obtained from (28) and (29) as

f = fH − nZe(E +
v

c
× B) , and fe = f e

H
+ ene(E +

ve

c
× B) , (92)where the hydrodynami fore densities are obtained from (26), by substituting the dynamial momenta (91), whihyields

fH = nm(∂t + v · ∇)

[

v −
2α

nm
∆

]

+ n∇µ− 2α∆j∇v
j , (93)

fe
H

= neme(∂t + ve · ∇)

[

ve +
2α

neme
∆

]

+ ne∇µ
e + 2α∆j∇v

j
e . (94)These equations ontain the desription of superondutors, magneto-hydrodynami and the �uid-desription of plas-mas (e.g. see [8, 9℄) as speial ases. However, they are substantially more general due to the inlusion of the e�etof entrainment, whih is usually overlooked in these ontexts.Using the momenta (91) and the energy di�erential 90, the generalized pressure di�erential (40) is found as

dΨ = n dµ+ ne dµ
e − α d∆2 . (95)We note that in general we annot introdue �partial pressures�, say, by de�ning dPe to be equal nedµ

e, as this is gener-ally not a total di�erential due to interation energies between the onstituents (i.e. the fat that µe = µe(n, ne,∆
2)).However, the hemial potentials are always well-de�ned and are therefore muh more natural quantities in generalmulti-�uid ontexts. In the absene of external fores, i.e. fext = 0, the fore balane equation (41) now reads as

0 = f + fe = fH + f e
H
− σE −

j

c
× B . (96)We an further presribe a mutual fore between the two �uids, so we introdue a resistivity fore of the form f e = fR,and therefore f = −fR. The energy equation (30) with (24) now takes the form

g + ge = −∆ · fR = gext . (97)Suh a resistive fore will lead to reation of heat (entropy), whih in this model has to be extrated to an �external�system via gext, as for simpliity we have not expliitly inluded an entropy onstituent in this example. By theseond law of thermodynamis, the frition should produe heat and not absorb it, so we have to extrat heat-energyfrom the system, i.e. gext < 0, and therefore we an onstrain the resistivity fore to be of the form
fR = η∆ , with η > 0 , (98)where η is generally a funtion of the state-variables desribing the system.B. The MHD limitIn the low-frequeny, long-wavelength limit we an assume any net harge densities to be ompensated very quiklyby the motion of eletrons, so we make the �quasi-neutral� approximation and set:

σ = 0 , (99)whih by (87) implies Zn = ne, and the urrent density therefore reads as
j = ene∆ . (100)



12In this low frequeny limit we an equally neglet the displaement urrent ∂tD in Maxwell's equations (18). Beausethe eletrons are very light, i.e. me ≪ m, the inertial fores of the eletron �uid an usually be negleted as well, andso the equation of motion for the eletrons, fe = fR, an be written with (92), (94) and (98) as
ne∇µ

e + 2α∆j∇v
j
e + ene(E +

ve

c
× B) = η∆ . (101)In order to reover the �standard� MHD framework, we further neglet entrainment, i.e. if we set ad ho α = 0, sothe pressure di�erential (95) now redues to

dP = ne dµ
e + n dµ , (102)where the generalized pressure Ψ an be identi�ed with the usual pressure P in the absene of entrainment. Thisallows us to write the fore balane equation (96) in the form

ρ (∂t + v · ∇)v + ∇P −
j

c
× B = 0 . (103)Using (100) we an express the eletron veloity as

ve = v −
1

ene
j , (104)and so we an write the equation of eletron transport (101) further as

j = c(E +
v

c
× B) +

c

e
∇µe −

c

enec
j × B , (105)where the salar ondutivity c is related to the resistivity oe�ient η as

c =
e2n2

e

η
> 0 . (106)If we further neglet the �partial pressure� ∇µe, we an write the relation between urrent j and eletri �eld E′ inthe frame of the ion-bakground, i.e. E′ ≡ E + (v/c) × B as a generalized Ohm's law, namely

ji = cikE
k′ , (107)where the anisotropi ondutivity tensor cik is

cik =

[

1

c
δik +

1

enec
ǫiklB

l

]−1

, (108)whih is not symmetri but satis�es the relation
cik(B) = cki(−B) . (109)In this form the generalized Ohm's law an aount for the well-known (lassial) Hall e�et, while the standard MHDapproah (e.g. see [10, 11℄) ommonly also neglets the �Hall term� j ×B, so that this equation �nally redues to thestandard Ohm's law:

j = cE ′ = c(E +
1

c
v × B) . (110)We note that the �orthodox� equations are ontained in this framework as speial ases, but the desription (101)is substantially more general due to the inlusion of the entrainment e�et, whih will generally be present in any(interating) multi-�uid system. C. SuperondutorsIn ontrast to the previous appliation, superondutors are perfet ondutors, so the eletrons an �ow pastthe ions without frition, i.e. η = 0 in (98). Therefore we annot neglet the inertial and pressure fores of the



13eletrons a-priori. As mentioned previously (f. Set. IVB), in addition to the absene of frition, super�uids are alsoonstrained to be irrotational, so
̟ij = ∇[iπ

e
j] = 0 , (111)and in its dual formulation this expliitly reads as

W
e = ∇× πe = ∇× pe −

e

c
B = 0 , (112)whih we will see after translation to the �orthodox� language represents the (seond) London equation. In the abseneof �external� fores ating on the eletron �uid, using (23) we an redue the equation of motion for the eletrons,

fe = 0, to the form
0 = ∂tπ

e −∇πe
0 = ∂tp

e −∇pe
0 + e(∇A0 −

1

c
∂tA) ,

= ∂tp
e −∇pe

0 + eE , (113)where we have used (15,16) and the de�nition (5) of the eletri �eld E. This equation is the (�rst) London equationand expresses the aeleration of eletrons under gradients of their �potential� pe
0 and an eletri �eld. This equationalso guarantees that the onstraint (112) remains automatially satis�ed under the evolution of the eletron �uid.The two equations (112) and (113) were originally proposed (albeit in their �orthodox formulation�) by F. andH. London [12℄ and have been very suessful in desribing the phenomenology of superondutors, and in partiularthe behavior in eletri and magneti �elds.We onlude this setion by a �translation� into the orthodox formalism (f. the disussion of super�uid 4He inPaper I). Using the entrainment relation (91) we an express the eletron momentum pe as

pe

me
= v −

1

enS
j , (114)where we have introdued the orthodox pseudo-density nS of superonduting eletrons, namely

nS ≡
ne

1 − ε
, with ε ≡

2α

mene
. (115)With this relation, Eq. (112) an now be written in its onventional form as

B = −c∇× (λj) , with λ ≡
me

e2nS
, (116)where we have assumed that the bakground of ions is stationary and non-rotating, so ∇ × v = 0 and ∂tv = 0.Therefore Eq. (113) an now be written as

E = ∂t(Λj) +
1

e
∇pe

0 , (117)where the �partial pressure� term ∇pe
0 = −∇(µe − 1

2mev
2
e + ve ·p

e) is often negleted. Eqs. (116) and (117) representthe orthodox formulation of the lassi London equations as usually found in the superondutivity literature (e.g.see [13, 14, 15℄). AknowledgmentsI would like to thank Brandon Carter and David Langlois for many valuable disussions about the relativistivariational priniple and super�uids. I am also very grateful to Greg Comer and Nils Andersson for many helpfulomments.I aknowledge support from the EU Programme 'Improving the Human Researh Potential and the Soio-EonomiKnowledge Base' (Researh Training Network Contrat HPRN-CT-2000-00137).



14APPENDIX A: APPROXIMATE GALILEAN-INVARIANCE OF ELECTRODYNAMICSAs pointed out in the introdution, the ombined eletro-hydrodynamis onstruted in this paper makes no laimat being stritly Galilean-invariant. The underlying framework should be thought of as a fully (loally) Lorentz-invariant theory (as developed in [6, 7℄), of whih we onsider only the small-veloity, low-frequeny regime up toand inluding e�ets of order (

c−1
). It is well-known (e.g. see [16℄) that the �rst post-Newtonian orretions tounharged partile-mehanis in a gravitational �eld are of order (

c−2
), and the orresponding limiting theory is thestritly Galilean-invariant lassial mehanis. This is not the ase for eletrodynamis. As pointed out in [5℄, oneannot obtain a Galilean-invariant limit and keep the full Maxwell-equations, exept for introduing the infamousether. However, as we will show here, by restriting ourselves to a suitable �non-relativisti� regime of small veloitiesand low frequenies, the full framework of eletrodynamis admits an �approximately� Galilean invariant formulationup to and inluding order (c−1). This will still hold true for the ombined eletro-hydrodynamis, as there are no

(c−1) e�ets entering from the mehanial setor of the theory. By onsistently negleting terms of order (c−2), theombined theory an be onsidered as �approximately� Galilean-invariant in this sense.The well-known Lagrangian density ΛEM of the eletrodynami �eld Fµν = 2∇[µAν] an be equivalently expressedin terms of the two (frame-dependent) vetors E and B, namely
ΛEM =

1

16π
FµνF

νµ =
1

8π

(

E2 − B2
)

, (A1)where E and B, de�ned for an observer uµ, are given by
Eµ = Fµνuν , Bµ = −

1

2
ǫµνλγFλγuν . (A2)Note that both vetors are purely spatial and orthogonal to uµ. In the Lorentz-frame de�ned by uµ they an thereforebe identi�ed with the ommon 3-vetors used in the �3+1� Newtonian language desribing the eletri and magneti�eld. Conversely, the �eld-tensor Fµν is uniquely spei�ed in terms of E and B, namely

F = u ∧ E +∗ (u ∧ B) , (A3)where ∗ denotes the Hodge duality operation with respet to the 4-dimensional Levi-Civita tensor ǫ, and ∧ stands forthe exterior produt. In the Lorentz-frame uµ we an write this in omponents as
Fµν =







0 −Ex −Ey −Ez

Ex 0 Bz −By

Ey −Bz 0 Bx

Ez By −Bx 0






. (A4)Now onsider the e�et of the transformation to a frame K ′ moving with veloity V relative to the original frame

K. Introduing the symbols β ≡ V /c, β = |β|, n = β/β, and γ =
(

1 − β2
)−1/2, the orresponding Lorentz-transformation matrix Λ an be written as

Λ0′

0 = γ ,

Λ0′

j = Λj′
0 = −βγ nj , (A5)

Λi′
j = (γ − 1)njnk + δjk .Using this, we an transform the frame-omponents of Fµν to K ′ and translate them bak into E′ and B′, whihyields (e.g. see [16℄)

E′
‖ = E‖ , E′

⊥ = γ (E⊥ + β × B) , (A6)
B′

‖ = B‖ , B′
⊥ = γ (B⊥ − β × E) , (A7)where the parallel (‖) and orthogonal (⊥) projetions refer to the boost-diretion β.The range of validity of the formalism developed in this paper is the �non-relativisti� small-veloity, low-frequenyregime, so we introdue the small parameter ε≪ 1 and require that all harateristi veloities v satisfy |v|/c ∼ (ε),and that time-derivatives of �eld-quantities are small ompared to spatial derivatives, i.e. ∂tB/c ∼ ∂tE/c ∼ (ε).Consequently we need to restrit ourselves to small Lorentz-boosts, i.e. we assume β ∼ (ε), and so

γ =
(

1 − β2
)−1/2

= 1 + (ε2) . (A8)



15We an see that the Lorentz-transformation (A6,A7) of the eletromagneti �elds an now be written as
E′ = E + β × B + (ε2) , (A9)
B′ = B − β × E + (ε2) . (A10)As pointed out in [5℄, these transformations do not form a strit Galilean invariane group, beause they fail to beadditive. But they do form an �approximate� invariane-group up to order (ε2) in the sense disussed above. Namely,ombining two boosts, β1 and β2, we �nd

E′′ = E′ + β2 × B′ = E + (β1 + β2) × B + (ε2) , (A11)
B′′ = B′ − β2 × E′ = B − (β1 + β2) × E + (ε2) . (A12)Let us onsider the e�et of the transformation (A9,A10) on the eletrodynamis �eld-Lagrangian (A1), for whih weeasily �nd

Λ′
EM

=
1

8π

(

E′2 − B′2
)

=
1

8π

(

E2 − B2
)

+ (ε2) . (A13)In priniple this would onlude our demonstration, as both the Maxwell-equations and the Lorentz-fore law arederivable from this Lagrangian, but for ompleteness we will also disuss their expliit transformation properties.Note that in the onventional Newtonian �3+1� language, the boost V results in the following transformations(using the fat that x0 = ct) up to order (ε2):
t′ = t , (A14)
x′ = x − V t , (A15)
v′ = v − V , (A16)
∂′t ≡ ∂t|x′ = ∂t + V · ∇ , (A17)whih are just the usual Galilean boost transformations. Similarly, we obtain the transformation law up to (ε2) forthe gauge-�eld vetor Aµ = (A0,A) as
A0

′ = A0 + β · A , (A18)
A′ = A +A0β , (A19)and one an easily verify using the de�nition (5) of E and B in terms of (A0,A) that this is onsistent with thetransformations (A9,A10) up to orretions of (ε2). It is also interesting to note the transformation properties of theharge-density σ and the eletrial urrent j. For an individual onstituent X , the 4-urrent jµ

X
= nXu

µ
X
, with the4-veloity uµ

X
= (c,vX ) + (ε2). We therefore �nd up to order (ε2)

σ′
X

= σX , j′
X

= j
X
− σX V , (A20)and by the de�nition (3) of the total harge-density σ and urrent j one easily �nds3

σ′ = σ , j′ = j − σV . (A21)Applying the transformation (A9�A10) and (A14) to the Maxwell-equations (17), (18), we obtain
∇ · B′ = β · (∇× E) = −β · (∂tB/c) = (ε2) , (A22)

∇× E′ +
1

c
∂′tB

′ = ∇× E +
1

c
∂tB − β ×

1

c
∂tE − (β · ∇)(β × E) + (ε2)

=

[

∇× E +
1

c
∂tB

]

+ (ε2) , (A23)
∇ · E′ − 4πσ′ = [∇ · E − 4πσ] + ∇ · (β × B) = −β · (∇× B) = (ε2) , (A24)3 This shows that the urrent density always transforms aording to the �eletri limit� as de�ned in [5℄, irrespetive of the presene ofnet harges. The authors overlooked the fat that even a spae-like urrent has to be the sum of time-like �elementary� urrents, and sothe �magneti limit� will never apply in real systems.
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∇× B′ −

1

c
∂′tE

′ −
4π

c
j′ = ∇× B − β(∇ · E) −

1

c
∂tE − β ×

1

c
∂tB − (β · ∇)(β × B)

−

(

4π

c
j − 4πσβ

)

+ (ε2)

=

[

∇× B −
1

c
∂tE −

4π

c
j

]

+ (ε2) , (A25)where in the last equation we used the transformation property of the eletrial urrent density j′ = j − σV .Finally, the expression for the Lorentz-fore (28) transforms as
f ′

EM

nq
= E′ +

v′

c
× B′ = E +

v

c
× B −

v

c
× β × E + (ε2) =

f

nq
+ (ε2) , (A26)whih onludes our demonstration of the approximate Galilean invariane of the equations.[1℄ R. Prix, Phys. Rev. D. 69, 043001 (2004).[2℄ B. Carter and N. Chamel, Int. J. Mod. Phys D13, 291 (2004), preprint: astro-ph/0305186.[3℄ B. Carter and N. Chamel, astro-ph/0312414 (2003).[4℄ B. Carter and N. Chamel, astro-ph/0410660 (2004).[5℄ M. Le Bella and J.-M. Lévy-Leblond, Nuovo Cimento 14, 217 (1973).[6℄ B. Carter and D. Langlois, Nul. Phys. B531, 478 (1998).[7℄ B. Carter, in Vorties in Unonventional Superondutors and Super�uids, edited by R. P. Huebener, N. Shopohl, andG. Volovik (Springer Verlag, 2002, (preprint: astro-ph/0010109)).[8℄ S. Chandrasekhar, Plasma Physis (Phoenix books. The University of Chiago Press, 1960).[9℄ J. P. Freidberg, Ideal Magnetohydrodynamis (Plenum Press, New York, 1987).[10℄ T. G. Cowling, Magnetohydrodynamis, Monographs on Astronomial Subjets (Adam Hilger, England, 1976).[11℄ J. D. Jakson, Classial Eletrodynamis (John Wiley & Sons, In., 1975).[12℄ F. and H. London, Pro. Roy. So. 149, 71 (1935).[13℄ F. London, Super�uids. Vol. I. Marosopi Theory of Superondutivity (Wiley, New York, 1950).[14℄ D. R. Tilley and J. Tilley, Super�uidity and Superondutivity (IOP Publishing, 1990).[15℄ M. Tinkham, Introdution to superondutivity (MGraw-Hill, 1996), 2nd ed.[16℄ C. W. Misner, K. S. Thorne, and J. A. Wheeler, Gravitation (W. H. Freeman and Company (New York), 1973).
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