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Abstract

We demonstrate the irreversibility of a wide class of world-sheet renormalization group (RG) flows to first oxdeén in

string theory. Our techniques draw on the mathematics of Ricci flows, adapted to asymptotically flat target manifolds. In the
case of somewhere-negative scalar curvature (of the target space), we give a proof by constructing an entropy that increases
monotonically along the flow, based on Perelman’s Ricci flow entropy. One consequence is the absence of periodic solutions,
and we are able to give a second, direct proof of this. If the scalar curvature is everywhere positive, we instead construct a

regularized volume to provide an entropy for the flow. Our results are, in a sense, the analogue of Zamolodctileorism
for world-sheet RG flows on noncompact spacetimes (though our entropy is not the Zamolodttiikastion).

0 2005 Elsevier B.V. All rights reserved.

0. Introduction

For a wide class of 2-dimensional quantum field
theories, Zamolodchikovstheoren 1] demonstrates
the irreversibility of renormalization group (RG) flow.
In particular, there exists a function defined on the
space of 2D renormalizable field theories, the
C-function, which decreases along RG trajectories
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and is stationary only at RG fixed points. The fixed
points of the RG flow are conformal field theories. The
C-function equals the central charge of the conformal
field theory at the fixed points. However, as shown by
Polchinski2], thec-theorem is not valid for a very im-
portant class of 2-dimensional quantum field theories
of relevance to string theory: the world-sheet nonlin-
ear sigma model ononcompactarget spaces. There
exists no general proof that RG flows of world-sheet
sigma models are irreversible. Indeed, violations of ir-
reversibility are known for other kinds of field theory
RG flows (cf.[3] and references therein). A recent fo-
cus of study in this area has been RG flows of sigma
models with target spaces that are 2-dimensional and
noncompact, and the question of whether thessof
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the target spacetime changes monotonically along the

flow has been investigatdd—7]. However, the mass
at infinity does not changalongthe flow; it changes
only at the final fixed point.

In this Letter, we demonstrate the irreversibility
of world-sheet RG flow to first order in’ on com-
plete, asymptotically flat Riemannian manifolds (or
static slices of spacetimes) when all fields other than
the metric and the dilaton are set to zero. In addi-
tion to proving that this class of flows does not con-
tain periodic solutions, we construct amtropy (by
which we mean a Liapunov function) that increases
monotonically along the flow. Thus, in a sense, our re-
sult generalises Zamolodchikow'stheorem to a wide
class of string theory world-sheet RG flows on non-
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The form of these equations is not diffeomorphism
invariant. A r-dependent diffeomorphism generated
by & = %/V,-II/ decouples the metric flow from the
dilaton field, sa(1) becomes
378 = —a'R;j. 3
This equation, which we call thdamilton gaugeRG
equation for the metric, arises in mathematics as a tool
in Hamilton’s programmé12] to address Thurston’s
geometrization conjecture for closed 3-manifolds,
where it is called th&icci flow

Herein we consider instead asymptotically flat
manifolds with asymptotic structure fixed along the
flow. We take such metrics to satisfy

compact spacetimes. Our entropy is not, however, the (gi,'(f) _ 5”) c 0(1/,D7276)7

C-function. TheC-function for the world-sheet sigma
model was computed by Tseytlii8], who showed

that it could be obtained as a generalized transform 9;9,g;;(r) € O(1/r"~°),

of the low-energy string effective action divided by
manifold volume. Thus for the class of RG flows on

noncompact spacetimes that we are interested in, the
C-function is zero and cannot serve as an entropy

along the flow.

We caution that we work only to first order i,
the square of the string scale. As is well known for
compact target spaces with> 0, for example, higher

order stringy corrections cannot be neglected. For fi
flows where even just the second order corrections in

a’ to the beta functions become significant, we are
presently unable to rule out periodic solutions using

dgij(r) € O(1/rP717e),
4)

and so on up to at least 4 derivatives, uniformlyrin
for anye > 0. (Local existence of such solutions will
be presented elsewhere.)

In the sequel, we will study the irreversibility (3).
This implies the irreversibility of the syste(d), (2),
but is more general. To see this, observe that the sys-
tem (1), (2) is the pullback along; of the system
comprised of3) and the Hamilton gauge dilaton equa-

/

0 o
— ¥ = —AVY,

ot 2 ©®)

our methods. This is because our techniques draw By the maximum principle for parabolic equations

on the theory of quasi-linear differential equations,
which does not apply (at least not straightforwardly)
to higher-order RG flow.

To first order ina’, the RG equations for the (string
frame) metricg,, and the dilatordp = ¥/2 are

a

5 8ii =—o'(Rij +ViV;¥), 1)
0 (X/ 2

—V =—(AY — |V¥|9). 2
o 2( Ve[ @

Here 7 is the logarithm of the world-sheet RG scale.
The RG equation for the metric first appeared in the
1970s[9,10]. Subsequent papefkl] generalised this
analysis to include the effects of other background
fields like the dilaton and the antisymmetric tensor
field.

[13], (5) has only monotonic solutions (if, say, —
const at spatial infinity). In consequence, the fl¢@)s

(5) and, therefore(1), (2) are irreversible unless the
dilaton is constant: if it is, then the question reduces to
whether(3) has reversible flows. But this question is
interesting even when the dilaton is not constant, and
this more general case entails no addition burden since
(3) is independent of the dilaton.

Flows that are periodic up to diffeomorphism are
calledbreathers More precisely, a solution dB) is a
steady breatheif, for somer; < 2 and a diffeomor-
phismg,

g(t1) = 9"g(12). (6)

Expandingandshrinkingbreathers are defined by in-
cluding as well an overall rescaling {6), but cannot
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occur for flows through asymptotically flat spaces with
Euclidean structure at infinity fixed it, so we do not
consider them further (though they can produce in-
teresting physics; cfi5]). We will demonstrate that
asymptotically flat breathers occur only in the trivial
case in which the metricl along the flow are related
by diffeomorphisms and the breather istaady Ricci
soliton

Let R be the scalar curvature of the target manifold.
From(3) we can derive its flow, which is given by

OR a’

= =3 — (AR + 2R;jRY).

@)

Our problem separates into cases according to whether
R can be somewhere negative along the flow, never

negative but somewhere zero, or always positive. In
Sectionsl and 2 we will adapt Perelman’s recently
discovered Ricci flow entropy for compact mani-
folds [14]) to the asymptotically flat case and use this
entropy to rule out breathers R < O somewhere.
This entropy is not useful iR > 0 everywhere along
the flow, so in Sectior® we give an entirely different

entropy-type argument based on regularized volume. m

In Appendix A we give alternative, direct (entirely

non-entropic) geometric arguments based on work of

Ivey [15] to rule out nontrivial breathers iR < 0
somewhere.

1. A Perelman-type entropy

Following Perelman, we will establish an entropy
by examining the spectrum of a certain Schrédinger
operator. Since we work with noncompact manifolds,
a certain amount of mathematical care is important.

Thus certain function spaces must make an appear- gt

ance. The first igf11(M), the space of functions that
are square-integrable with respect to the metric vol-
ume element o/ and have square-integrable (distri-
butional) derivative. For € H(M), R falling off (or
merely bounded), and € R, we can define the func-
tional

F®Olg, ul:= /(4|Vu|2+/<Ru2)dV(g). (8)

M

Next we consider the subsét € H1(M) of nor-
malized (fude(g) = 1) non-negative functions in
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H(M). We use these to define the entropy, which is

A7) = |nf F<K>( (1), u). (9)
We takex > 1: this, we will see, will ensure that
the entropy is monotonic. Now integra®) by parts
and impose fall-off conditions om to neglect bound-
ary terms. This shows that®)(7) is the left end-
point of the spectrum of the Schrédinger operator
—4A 4 «R. Our arguments will require a discrete
spectrum. Perelman worked with compact manifolds
where this is always the case, so he gset 1. In
our noncompact case, iR < 0 somewhere, there
will be a discrete spectrum of eigenfunctions if we

choosex large enough. Then® (r) will belong to
the minimum eigenfunction € C. (For R > 0 every-
where, the spectrum is continuous and starts from
zero, soA®)(z) = 0 Vr: this is not a useful en-
tropy.)

We will sometimes “approximate” the elements of
C by functions that are exactlyx 1/r™ near infinity,
> D/2. These functions belong®={u €C | u =
w+k/r", we C3°, k=cons}. D is dense irC, so
continuity of the mapHX(M) 5 u — F% (g(t),u) €
R gives
A (2) = inf FY(g(v),u), (10)
ueD
which is more useful tha(®) for calculations.

Now say that(z) solves(3) ont € [0, z,]. To find
u(t), useg(r) to write the backwards evolution equa-
tion

a/
= 5 (~Av+ Rv).

v

(11)

Solve this for some given “initial” data(z,), where
J/v(t4) € D. Such a solution always exists far<
7., moreover,v(r) > 0, so we can define(r) :=
Jv(@) > 0 andP(z) := —In(v(7)). It can be shown
that

ut)=Vo(@)=e % e H (M),

so F[g(1),u(r)] is defined, ande—"™ and the
derivatives ofP fall off uniformly, fast enough to al-
low us to discard boundary terms when integrating by

T < Ty, (12)
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parts? We note thatt (u?dV (g)) = L (vdV(g) =0

(since from (3) we have \}Eaf ¢R) and
u(t,) € D implies that
v =1 =<, (13)
soinfactu(r) € C, t < .. From(11), P(z) satisfies
oP o
AP+ |VP|c— 14
o =5 (-AP+] - R). (14)
Now we are in a position to differentiate

F(K)(‘L’) = F(K)(g(‘t), e—P(T)/Z)

= [(|VP|2+KR)e_PdV(g). (15)

Integrating by parts to simplify the result, we get

dF®
dt

8gij
:/{(ViPVjP) 97
M

B (v er)
K— K —
ot ot

2_Ap\oP
+2(|VP|*— AP) -

log(e " /)

x e Pav(g. (16)

We could now insert the flow Eq93), (7), (14)
into (16), but the result would not appear manifestly
non-negative. To make it manifest, recall that the
flow equations are not form-invariant with respect to
t-dependent diffeomorphisms. Under the diffeomor-
phism generated by%’VP, Egs.(3), (7), and (14)
become

D

97 “-8ij = 05/(Rij +ViV'P), (17)

dR .

== %(AR—}—ZR,/R” ViRV P), (18)
T

aP o

o= AP +R). (19)

We call these th@erelman gaugéow equations. But
integrals overM, such asF®), are invariant under
diffeomorphisms. If the diffeomorphism preserves the
asymptotic structure, we remain justified in discarding

2 The fall-off rates aree=P® ¢ O1/r2"=¢), 31 P(x) €
0@/ r!1=€), 8 L p(r) € O1/r!11+2€), uniformly in t for any
€ > 0, and/ a multi-index with 1< |1| < 2.
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boundary terms, s(l6) holds in such a gauge. Insert-
ing the Perelman gauge flow equations ifi6), in-
tegrating by parts, and using the boundary conditions,
the Ricci identity, and the contracted second Bianchi
identity, we get

dF®
- =a’/(|Rij + ViV P12+ (k — DIR;;1?)
M
x e P dv(g), (20)

which is manifestly non-negative if > 1 (which we
take from here on). Henge(t) < y(ty) for T < 7. In
other words we have

F%(g(0),u(r)) < F®(g(t,), u(ty) (21)

for t < 7. Usingu(tr) > 0, (12) and(13) we see that
u(r) € C and hence by the definition of the entropy
and (21) it follows that A% (t) < F®) (g(1y), u(zy))
for © < 7. But recall thatu(z,) was taken to be an
arbitrary element oD and hence we get biL0) that

Ay <a®(z,) forr <z, (22)

which proves that thentropy is increasing

2. Nobreathers|: R < 0 somewhere

If g is a breather, then® (r1) = 1% (10) =: A.
Because entropy is monotonic, theff)(r) = A for
all t € [r1, 72]. We must now show that this state-
ment has geometrical consequences. The trick is to
construct a functiom = iz(t) that realizes the entropy
A atallz. Now if R < 0 somewhere, we can choose
large enough so that there is a minimizéty) € C for
the entropy realizing. ) (zy):

A (1) = F) (g(12), ii(12)).

We choose a sequengg,(t2) € D that converges
to i(r2) in HY(M) and, as above, use the squares
vn(12) := u?(tp) as ‘“initial” data att, for a se-
guence of solutions,(r) := v(r) of (11) on t €

[t1, T2] (Where nowr, = 12). Because we start with

(23)

u,(t2) € D, we are assured that, (t) := /v, (1) is
defined (and i), and so
FX(t):=F“(g(r).un(r)), telrt2]  (24)
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is also defined. Repeating the calculations leading to —%RdV(g). Integrating this equation yields
(20) (using P, (t) := —In(v, (7))), we obtain

an(K) ~o (25) /g(t) —/g(t) = —% / R(s)\/g(s)ds. (27)
1

drt

and thereforeF ") (t) < F{(1,). Putting everything . D.

n = Since f,, R(1)+/g(t)d"x is bounded orr € [r1, 2],
tobgether, we have for € [, 72] that the breather ) 5yc thatf:1 R(5)+/g(s) ds is integrable oven/
obeys and hence the new entropy

A =21 () =2®) (1) <A ¥ (1)

< F}’EK)(T) < F,SK)(TZ) s )»(K)(‘Ez) (26) u(r) = _/(\/ g(t) —+ g(fl))de
M
asn — oo. In particular, this shows that\“) (r) — .
1) (¢) = A for eachr € [t1, T2], SOu,(z) is amin- o — D
imizing sequenceThus, passing to a subsequence if - E//R(S) g(s)dsdx
necessary, we haveu,(r) — u(r) weakly in M T
HY(M) with i(r) € ¢ € HY(M) and 1®) (1) = o
F®) (g(1), (1)), as desired. = E//R(s)dv(g(s))ds (28)
()
Next, integrating Eq/(25) yields [ g = M
)
FY (1) — F¥)(71) — 0 asn — oo. Sincedg'; >0, is finite where, for simplicity, we have taked = RP.

then it follows that, once again passing to a subse- Now, R(t) > 0 implies thatu(r) is nondecreasing.

quence if necessary, lim o d?ﬁ” — 0 pointwise on  Moreover we have thati(tz) > u(r1) = 0 unless
j R(r)y=0forallt e[ry,10]. If R(zr)=0forallr e

(11, T2) except perhaps on a s8tof measure zero.
[1, 72], then from(7) we see thaR;;(r) =0 for all

Then (20) (with « large ande™* = uﬁ) implies that . : -
fM |Ri,-|2u,§dV — 0 asn — oo for eachr ¢ S. It fol- which shows thag (1) must be a fixed point. So now
let us assume that there exists a [z1, 72] for which

lows that|R;;|u, — 0 in HY(M), T ¢ S. But we also 0. Th
know that|R;  [u, — |R;;|i weakly in H1(M). By the R(z) #0. Then
unigueness of weak limits and the fact that 0 we

getthatR;;(r) = 0 for eachr € . By continuity int, w(w@2) > (1) =0. (29)
R;j(r) =0forallt € [r1, 72]. Since we assumg < 0 Let G denote defg;;(12)). Then, applying the breather
somewhere, this is a contradiction. condition(6) to (28), we get

1(t2) = —% /[«/5 — det{J(¢))VG o ¢]d"x,

M

3. Nobreathersll: R>0
(30)

whereJ (¢) is the Jacobian matrix, i.el,(¢>)ij = 8j¢>" .

To proceed, we assume that the diffeomorphgshies

in the connected component of the identity so that
there exists a 1-parameter family of diffeomorphisms
Y (0<t <1 such thatyg = id, 1 = ¢, and ¢,
preserves the asymptotic structure for eaeh[0, 1].
Now consider the Lagrangian density

We now assume thatQ R(zr) and thath R(1) <
oo for all T € [11, T2]. A wide class of local solutions
satisfy this condition: in fact, this is what is needed to
ensure that the mass of the manifold is well-defined
and unique. However, for this case the entropy defined
above is always zero and does not rule out breathers.
We therefore need a new entropy.

Since the scalar curvature satisfi@3, for which
the minimum principle applies, it follows th&(z1) > TR A
0 impliesR(r)p> 0 aﬁ)l T >prp1. Thus if the scalar curva- (w1 0ju') = del Y)VG oy —VG. (31)
ture is initially non-negative then it stays non-negative A straightforward calculation shows that the Euler—
along the flow. The volume element ob&ﬁg&dV(g) = Lagrange equations are automatically satisfied; that is,
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we have the identity
L L
—0; -+ —=0. (32)
09y Yy
Thus if we define
(33)

1(1) = %/z:(w;', 2;91)dPx,
M

then differentiating/ (¢), integrating by parts, and us-
ing (32)yields

dl ! .
= % / det(J () J (¥) Y,
Soo

dt

d i
wtf ds;.

- (34)

If ¢, approaches identity as— oo andeoo dd—‘/;;dS,- =
0 then we get thak(r) = const. But/ (1) = u(12), and
1(0) =0, sou(t2) = 0. This shows that if the diffeo-
morphisme¢ has the formp’ (x) = x’ + ¢’ (x) where
fsm ¢' dS; = 0 then we must havg(r2) = 0 which
contradicts(29). Therefore ifg(t1) = ¢*g(2), then

the diffeomorphism will, at least, violate

/(qsf (x) —x")dS; =0.
Soc
Whether there exist solutions periodic modulo diffeo-
morphisms that violate this condition is an interesting
question which deserves attention.

In closing, we ask, can we pass now to RG flows

(35)
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Appendix A

Here we give distinct geometric arguments for the
case wher&k < 0 somewhere. Our arguments closely
parallel those of Ivey15] for compact manifolds. By
asymptotic flatnessk — 0 uniformly in T at spatial
infinity. Since the flow is smooth® has an infimum,
say—k, by assumption negative. Outside a big enough
compact se€ := [0, T] x K asymptotic flatness guar-
antees thaR > —k/2. Thus the infimum must be ap-
proached insid&, which is compact, s achieves
the minimum value-k (in C and thus in0, T'] x M).
Moreover, if the solution is a breather with periedr,
the minimum must be achieved at least once in the
open region(0, T) x M. But if R has a minimum in
(0,7) x M, then3® =0 and AR > O there, so we
conclude from(7) (or (18)—the argument is gauge
invariant) thatR;; vanishes there. Taking the trace,
R = 0 atthe minimum. This is a contradiction, so there
cannot be a breather with periedT and somewhere
negative scalar curvature. Bfitis arbitrary.

To conclude, consider the casef OwithR =0
at an isolated point. The argument given by Iy&§]
for this case is essentially local and carries over to the
case of asymptotic flatness (though we constructed our
own version to verify details). The basic idea is that
(7) obeys a Hopf lemma, which gives thar = 0 if
R =0 at an isolated point with > 0. Sinced R must

wherein the second-order corrections are important? be zero at an interior minimum, either we never have
Unfortunately, in such circumstances, we do not know R =0 forz > 0, or R = 0 everywhere and throughout

whether the flow will always preserve asymptotic flat-
ness, even for short times. If it does, then it still may

the flow. In the latter case, we see frdif) that R;; =
0 everywhere and the breather is a fixed point of the

not have other necessary properties, such as the preserflow.

vation of positive scalar curvature upon which the vol-

ume entropy argument depends. This is illustrative of

the potential difficulties in generalizing our arguments
to the second-order case.
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