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Abstract

We demonstrate the irreversibility of a wide class of world-sheet renormalization group (RG) flows to first order iα′ in
string theory. Our techniques draw on the mathematics of Ricci flows, adapted to asymptotically flat target manifold
case of somewhere-negative scalar curvature (of the target space), we give a proof by constructing an entropy tha
monotonically along the flow, based on Perelman’s Ricci flow entropy. One consequence is the absence of periodic
and we are able to give a second, direct proof of this. If the scalar curvature is everywhere positive, we instead co
regularized volume to provide an entropy for the flow. Our results are, in a sense, the analogue of Zamolodchikov’sc-theorem
for world-sheet RG flows on noncompact spacetimes (though our entropy is not the ZamolodchikovC-function).
 2005 Elsevier B.V. All rights reserved.
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0. Introduction

For a wide class of 2-dimensional quantum fie
theories, Zamolodchikov’sc-theorem[1] demonstrate
the irreversibility of renormalization group (RG) flow
In particular, there exists a function defined on
space of 2D renormalizable field theories, t
C-function, which decreases along RG trajector
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and is stationary only at RG fixed points. The fix
points of the RG flow are conformal field theories. T
C-function equals the central charge of the conform
field theory at the fixed points. However, as shown
Polchinski[2], thec-theorem is not valid for a very im
portant class of 2-dimensional quantum field theo
of relevance to string theory: the world-sheet non
ear sigma model onnoncompacttarget spaces. Ther
exists no general proof that RG flows of world-sh
sigma models are irreversible. Indeed, violations o
reversibility are known for other kinds of field theo
RG flows (cf.[3] and references therein). A recent f
cus of study in this area has been RG flows of sig
models with target spaces that are 2-dimensional
noncompact, and the question of whether themassof
.
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the target spacetime changes monotonically along
flow has been investigated[4–7]. However, the mas
at infinity does not changealong the flow; it changes
only at the final fixed point.

In this Letter, we demonstrate the irreversibil
of world-sheet RG flow to first order inα′ on com-
plete, asymptotically flat Riemannian manifolds (
static slices of spacetimes) when all fields other t
the metric and the dilaton are set to zero. In ad
tion to proving that this class of flows does not co
tain periodic solutions, we construct anentropy (by
which we mean a Liapunov function) that increas
monotonically along the flow. Thus, in a sense, our
sult generalises Zamolodchikov’sc-theorem to a wide
class of string theory world-sheet RG flows on no
compact spacetimes. Our entropy is not, however,
C-function. TheC-function for the world-sheet sigm
model was computed by Tseytlin[8], who showed
that it could be obtained as a generalized transf
of the low-energy string effective action divided b
manifold volume. Thus for the class of RG flows
noncompact spacetimes that we are interested in
C-function is zero and cannot serve as an entr
along the flow.

We caution that we work only to first order inα′,
the square of the string scale. As is well known
compact target spaces withR > 0, for example, highe
order stringy corrections cannot be neglected.
flows where even just the second order correction
α′ to the beta functions become significant, we
presently unable to rule out periodic solutions us
our methods. This is because our techniques d
on the theory of quasi-linear differential equation
which does not apply (at least not straightforward
to higher-order RG flow.

To first order inα′, the RG equations for the (strin
frame) metricgab and the dilatonΦD = Ψ/2 are

(1)
∂

∂τ
gij = −α′(Rij + ∇i∇jΨ ),

(2)
∂

∂τ
Ψ = α′

2

(
�Ψ − |∇Ψ |2).

Hereτ is the logarithm of the world-sheet RG sca
The RG equation for the metric first appeared in
1970s[9,10]. Subsequent papers[11] generalised this
analysis to include the effects of other backgrou
fields like the dilaton and the antisymmetric tens
field.
The form of these equations is not diffeomorphi
invariant. A τ -dependent diffeomorphism generat
by ξi = α′

2 ∇iΨ decouples the metric flow from th
dilaton field, so(1) becomes

(3)
∂

∂τ
gij = −α′Rij .

This equation, which we call theHamilton gaugeRG
equation for the metric, arises in mathematics as a
in Hamilton’s programme[12] to address Thurston’
geometrization conjecture for closed 3-manifol
where it is called theRicci flow.

Herein we consider instead asymptotically fl
manifolds with asymptotic structure fixed along t
flow. We take such metrics to satisfy(
gij (τ ) − δij

) ∈O
(
1/rD−2−ε

)
,

∂kgij (τ ) ∈ O
(
1/rD−1−ε

)
,

(4)∂k∂lgij (τ ) ∈O
(
1/rD−ε

)
,

and so on up to at least 4 derivatives, uniformly inτ

for any ε > 0. (Local existence of such solutions w
be presented elsewhere.)

In the sequel, we will study the irreversibility of(3).
This implies the irreversibility of the system(1), (2),
but is more general. To see this, observe that the
tem (1), (2) is the pullback alongξi of the system
comprised of(3) and the Hamilton gauge dilaton equ
tion

(5)
∂

∂τ
Ψ = α′

2
�Ψ.

By the maximum principle for parabolic equatio
[13], (5) has only monotonic solutions (if, say,Ψ →
const at spatial infinity). In consequence, the flows(3),
(5) and, therefore,(1), (2) are irreversible unless th
dilaton is constant: if it is, then the question reduce
whether(3) has reversible flows. But this question
interesting even when the dilaton is not constant,
this more general case entails no addition burden s
(3) is independent of the dilaton.

Flows that are periodic up to diffeomorphism a
calledbreathers. More precisely, a solution of(3) is a
steady breatherif, for someτ1 < τ2 and a diffeomor-
phismφ,

(6)g(τ1) = φ∗g(τ2).

Expandingandshrinkingbreathers are defined by in
cluding as well an overall rescaling in(6), but cannot
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occur for flows through asymptotically flat spaces w
Euclidean structure at infinity fixed inτ , so we do not
consider them further (though they can produce
teresting physics; cf.[5]). We will demonstrate tha
asymptotically flat breathers occur only in the triv
case in which the metricsall along the flow are relate
by diffeomorphisms and the breather is asteady Ricci
soliton.

Let R be the scalar curvature of the target manifo
From(3) we can derive its flow, which is given by

(7)
∂R

∂τ
= α′

2

(
�R + 2RijR

ij
)
.

Our problem separates into cases according to whe
R can be somewhere negative along the flow, ne
negative but somewhere zero, or always positive
Sections1 and 2, we will adapt Perelman’s recent
discovered Ricci flow entropy for compact man
folds [14]) to the asymptotically flat case and use t
entropy to rule out breathers ifR < 0 somewhere
This entropy is not useful ifR � 0 everywhere along
the flow, so in Section3 we give an entirely differen
entropy-type argument based on regularized volu
In Appendix A, we give alternative, direct (entirel
non-entropic) geometric arguments based on wor
Ivey [15] to rule out nontrivial breathers ifR � 0
somewhere.

1. A Perelman-type entropy

Following Perelman, we will establish an entro
by examining the spectrum of a certain Schrödin
operator. Since we work with noncompact manifol
a certain amount of mathematical care is importa
Thus certain function spaces must make an app
ance. The first isH 1(M), the space of functions tha
are square-integrable with respect to the metric v
ume element onM and have square-integrable (dist
butional) derivative. Foru ∈ H 1(M), R falling off (or
merely bounded), andκ ∈ R, we can define the func
tional

(8)F (κ)[g,u] :=
∫
M

(
4|∇u|2 + κRu2)dV (g).

Next we consider the subsetC ⊆ H 1(M) of nor-
malized (

∫
u2 dV (g) = 1) non-negative functions i
H 1(M). We use these to define the entropy, which

(9)λ(κ)(τ ) := inf
u∈C

F (κ)
(
g(τ), u

)
.

We takeκ � 1: this, we will see, will ensure tha
the entropy is monotonic. Now integrate(8) by parts
and impose fall-off conditions onu to neglect bound
ary terms. This shows thatλ(κ)(τ ) is the left end-
point of the spectrum of the Schrödinger opera
−4∆ + κR. Our arguments will require a discre
spectrum. Perelman worked with compact manifo
where this is always the case, so he setκ = 1. In
our noncompact case, ifR < 0 somewhere, ther
will be a discrete spectrum of eigenfunctions if w
chooseκ large enough. Thenλ(κ)(τ ) will belong to
the minimum eigenfunction̄u ∈ C. (For R � 0 every-
where, the spectrum is continuous and starts fr
zero, soλ(κ)(τ ) = 0 ∀τ : this is not a useful en
tropy.)

We will sometimes “approximate” the elements
C by functions that are exactly∝ 1/rm near infinity,
m > D/2. These functions belong toD = {u ∈ C | u =
w + k/rm, w ∈ C∞

0 , k = const}. D is dense inC, so
continuity of the mapH 1(M) 
 u �→ F (κ)(g(t), u) ∈
R gives

(10)λ(κ)(τ ) = inf
u∈D

F (κ)
(
g(τ), u

)
,

which is more useful than(9) for calculations.
Now say thatg(τ) solves(3) on τ ∈ [0, τ∗]. To find

u(τ), useg(τ) to write the backwards evolution equ
tion

(11)
∂v

∂τ
= α′

2
(−�v + Rv).

Solve this for some given “initial” datav(τ∗), where√
v(τ∗) ∈ D. Such a solution always exists forτ �

τ∗; moreover,v(τ) > 0, so we can defineu(τ) :=√
v(τ) > 0 andP(τ) := − ln(v(τ )). It can be shown

that

(12)u(τ) ≡ √
v(τ) ≡ e−P/2 ∈ H 1(M), τ � τ∗,

so F (κ)[g(τ), u(τ )] is defined, ande−P(τ) and the
derivatives ofP fall off uniformly, fast enough to al-
low us to discard boundary terms when integrating
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parts.2 We note thatd
dτ

(u2 dV (g)) ≡ d
dτ

(v dV (g)) = 0

(since from (3) we have 1√
g

∂
√

g

∂τ
= −α′

2 R) and

u(τ∗) ∈D implies that

(13)
∥∥u(τ)

∥∥ = 1, τ � τ∗,

so in factu(τ) ∈ C, τ � τ∗. From(11), P(τ) satisfies

(14)
∂P

∂τ
= α′

2

(−�P + |∇P |2 − R
)
.

Now we are in a position to differentiate

F (κ)(τ ) := F (κ)
(
g(τ), e−P(τ)/2)

(15)=
∫ (|∇P |2 + κR

)
e−P dV (g).

Integrating by parts to simplify the result, we get

dF (κ)

dτ

=
∫
M

{
(∇iP∇jP )

∂gij

∂τ
+ 2

(|∇P |2 − �P
)∂P

∂τ

+ κ
∂R

∂τ
+ (|∇P |2 + κR

) ∂

∂τ
log

(
e−P √

g
)}

(16)× e−P dV (g).

We could now insert the flow Eqs.(3), (7), (14)
into (16), but the result would not appear manifes
non-negative. To make it manifest, recall that
flow equations are not form-invariant with respect
τ -dependent diffeomorphisms. Under the diffeom
phism generated by−α′

2 ∇P , Eqs.(3), (7), and (14)
become

(17)
∂

∂τ
gij = −α′(Rij + ∇i∇jP ),

(18)
∂R

∂τ
= α′

2

(
�R + 2RijR

ij − ∇iR∇ iP
)
,

(19)
∂P

∂τ
= −α′

2
(�P + R).

We call these thePerelman gaugeflow equations. But
integrals overM , such asF (κ), are invariant unde
diffeomorphisms. If the diffeomorphism preserves
asymptotic structure, we remain justified in discard

2 The fall-off rates aree−P(τ) ∈ O(1/r2m−ε ), ∂I P (τ) ∈
O(1/r |I |−ε ), ∂I ∂

∂τ
P (τ) ∈ O(1/r |I |+2−ε), uniformly in τ for any

ε > 0, andI a multi-index with 1� |I | � 2.
boundary terms, so(16) holds in such a gauge. Inser
ing the Perelman gauge flow equations into(16), in-
tegrating by parts, and using the boundary conditio
the Ricci identity, and the contracted second Bian
identity, we get

dF (κ)

dτ
= α′

∫
M

(|Rij + ∇i∇jP |2 + (κ − 1)|Rij |2
)

(20)× e−P dV (g),

which is manifestly non-negative ifκ � 1 (which we
take from here on). Henceγ (τ) � γ (τ∗) for τ � τ∗. In
other words we have

(21)F (κ)
(
g(τ), u(τ )

)
� F (κ)

(
g(τ∗), u(τ∗)

)
for τ � τ∗. Usingu(τ) > 0, (12) and(13) we see tha
u(τ) ∈ C and hence by the definition of the entro
and (21) it follows that λ(κ)(τ ) � F (κ)(g(τ∗), u(τ∗))
for τ � τ∗. But recall thatu(τ∗) was taken to be a
arbitrary element ofD and hence we get by(10) that

(22)λ(κ)(τ ) � λ(κ)(τ∗) for τ � τ∗
which proves that theentropy is increasing.

2. No breathers I: R < 0 somewhere

If g is a breather, thenλ(κ)(τ1) = λ(κ)(τ2) =: Λ.
Because entropy is monotonic, thenλ(κ)(τ ) = Λ for
all τ ∈ [τ1, τ2]. We must now show that this stat
ment has geometrical consequences. The trick i
construct a functionu = ū(τ ) that realizes the entrop
Λ at allτ . Now if R < 0 somewhere, we can chooseκ

large enough so that there is a minimizerū(τ2) ∈ C for
the entropy realizingλ(κ)(τ2):

(23)λ(κ)(τ2) = F (κ)
(
g(τ2), ū(τ2)

)
.

We choose a sequenceun(τ2) ∈ D that converges
to ū(τ2) in H 1(M) and, as above, use the squa
vn(τ2) := u2

n(τ2) as “initial” data at τ2 for a se-
quence of solutionsvn(τ ) := v(τ) of (11) on τ ∈
[τ1, τ2] (where nowτ∗ = τ2). Because we start wit
un(τ2) ∈ D, we are assured thatun(τ) := √

vn(τ ) is
defined (and inC), and so

(24)F (κ)
n (τ ) := F (κ)

(
g(τ), un(τ )

)
, τ ∈ [τ1, τ2]
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is also defined. Repeating the calculations leadin
(20) (usingPn(τ) := − ln(vn(τ ))), we obtain

(25)
dF

(κ)
n

dτ
� 0,

and thereforeF (κ)
n (τ ) � F

(κ)
n (τ2). Putting everything

together, we have forτ ∈ [τ1, τ2] that the breathe
obeys

Λ = λ(κ)(τ2) = λ(κ)(τ1) � λ(κ)(τ )

(26)� F (κ)
n (τ ) � F (κ)

n (τ2) → λ(κ)(τ2)

asn → ∞. In particular, this shows thatF (κ)
n (τ ) →

λ(κ)(τ ) = Λ for eachτ ∈ [τ1, τ2], soun(τ) is a min-
imizing sequence. Thus, passing to a subsequence
necessary, we haveun(τ) → ū(τ ) weakly in
H 1(M) with ū(τ ) ∈ C ⊆ H 1(M) and λ(κ)(τ ) =
F (κ)(g(τ ), ū(τ )), as desired.

Next, integrating Eq.(25) yields
∫ τ2
τ1

dF
(κ)
n

dτ
dτ =

F
(κ)
n (τ2) − F

(κ)
n (τ1) → 0 asn → ∞. SincedF

(κ)
n

dτ
� 0,

then it follows that, once again passing to a sub

quence if necessary, limn→∞ dF
(κ)
n

dτ
= 0 pointwise on

(τ1, τ2) except perhaps on a setS of measure zero
Then (20) (with κ large ande−P = u2

n) implies that∫
M

|Rij |2u2
n dV → 0 asn → ∞ for eachτ /∈ S. It fol-

lows that|Rij |un → 0 in H 1(M), τ /∈ S. But we also
know that|Rij |un → |Rij |ū weakly inH 1(M). By the
uniqueness of weak limits and the fact thatū > 0 we
get thatRij (τ ) = 0 for eachτ ∈ Σ . By continuity inτ ,
Rij (τ ) = 0 for all τ ∈ [τ1, τ2]. Since we assumeR < 0
somewhere, this is a contradiction.

3. No breathers II: R ��� 0

We now assume that 0� R(τ) and that
∫
M

R(τ) <

∞ for all τ ∈ [τ1, τ2]. A wide class of local solution
satisfy this condition: in fact, this is what is needed
ensure that the mass of the manifold is well-defin
and unique. However, for this case the entropy defi
above is always zero and does not rule out breath
We therefore need a new entropy.

Since the scalar curvature satisfies(7), for which
the minimum principle applies, it follows thatR(τ1)�
0 impliesR(τ) � 0 all τ � τ1. Thus if the scalar curva
ture is initially non-negative then it stays non-negat
along the flow. The volume element obeys∂

∂τ
dV (g) =
−α′
2 R dV (g). Integrating this equation yields

(27)
√

g(τ) − √
g(τ1) = −α′

2

τ∫
τ1

R(s)
√

g(s) ds.

Since
∫
M

R(τ)
√

g(τ) dDx is bounded onτ ∈ [τ1, τ2],
it follows that

∫ τ

τ1
R(s)

√
g(s) ds is integrable overM

and hence the new entropy

µ(τ) := −
∫
M

(√
g(τ) − √

g(τ1)
)
dDx

= α′

2

∫
M

τ∫
τ1

R(s)
√

g(s) ds dDx

(28)= α′

2

τ∫
τ1

∫
M

R(s) dV
(
g(s)

)
ds

is finite where, for simplicity, we have takenM = R
D .

Now, R(τ) � 0 implies thatµ(τ) is nondecreasing
Moreover we have thatµ(τ2) > µ(τ1) = 0 unless
R(τ) = 0 for all τ ∈ [τ1, τ2]. If R(τ) = 0 for all τ ∈
[τ1, τ2], then from(7) we see thatRij (τ ) = 0 for all τ
which shows thatg(τ1) must be a fixed point. So now
let us assume that there exists aτ ∈ [τ1, τ2] for which
R(τ) �= 0. Then

(29)µ(τ2) > µ(τ1) = 0.

Let G denote det(gij (τ2)). Then, applying the breathe
condition(6) to (28), we get

(30)

µ(τ2) = −α′

2

∫
M

[√
G − det

(
J (φ)

)√
G ◦ φ

]
dDx,

whereJ (φ) is the Jacobian matrix, i.e.,J (φ)ij := ∂jφ
i .

To proceed, we assume that the diffeomorphismφ lies
in the connected component of the identity so t
there exists a 1-parameter family of diffeomorphis
ψt (0 � t � 1) such thatψ0 = id, ψ1 = φ, and ψt

preserves the asymptotic structure for eacht ∈ [0,1].
Now consider the Lagrangian density

(31)L
(
ψi

t , ∂jψ
i
) := det

(
J (ψt )

)√
G ◦ ψt − √

G.

A straightforward calculation shows that the Eule
Lagrange equations are automatically satisfied; tha
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we have the identity

(32)−∂j

∂L
∂∂jψ

i
t

+ ∂L
∂ψi

t

= 0.

Thus if we define

(33)I (t) := α′

2

∫
M

L
(
ψi

t , ∂jψ
i
t

)
dDx,

then differentiatingI (t), integrating by parts, and us
ing (32)yields

(34)
dI

dt
= α′

2

∫
S∞

det
(
J (ψt )

)
J (ψt )

−1j
i

dψi
t

dt
dSj .

If ψt approaches identity asr → ∞ and
∫
S∞

dψi
t

dt
dSi =

0 then we get thatI (t) = const. ButI (1) = µ(τ2), and
I (0) = 0, soµ(τ2) = 0. This shows that if the diffeo
morphismφ has the formφi(x) = xi + φ̄i(x) where∫
S∞ φ̄i dSi = 0 then we must haveµ(τ2) = 0 which

contradicts(29). Therefore ifg(τ1) = φ∗g(τ2), then
the diffeomorphism will, at least, violate

(35)
∫

S∞

(
φi(x) − xi

)
dSi = 0.

Whether there exist solutions periodic modulo diffe
morphisms that violate this condition is an interest
question which deserves attention.

In closing, we ask, can we pass now to RG flo
wherein the second-order corrections are importa
Unfortunately, in such circumstances, we do not kn
whether the flow will always preserve asymptotic fl
ness, even for short times. If it does, then it still m
not have other necessary properties, such as the pr
vation of positive scalar curvature upon which the v
ume entropy argument depends. This is illustrative
the potential difficulties in generalizing our argume
to the second-order case.
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Appendix A

Here we give distinct geometric arguments for
case whereR < 0 somewhere. Our arguments close
parallel those of Ivey[15] for compact manifolds. By
asymptotic flatness,R → 0 uniformly in τ at spatial
infinity. Since the flow is smooth,R has an infimum,
say−k, by assumption negative. Outside a big enou
compact setC := [0, T ]×K asymptotic flatness gua
antees thatR > −k/2. Thus the infimum must be ap
proached insideC, which is compact, soR achieves
the minimum value−k (in C and thus in[0, T ] × M).
Moreover, if the solution is a breather with period< T ,
the minimum must be achieved at least once in
open region(0, T ) × M . But if R has a minimum in
(0, T ) × M , then ∂R

∂t
= 0 and�R � 0 there, so we

conclude from(7) (or (18)—the argument is gaug
invariant) thatRij vanishes there. Taking the trac
R = 0 at the minimum. This is a contradiction, so the
cannot be a breather with period< T and somewhere
negative scalar curvature. ButT is arbitrary.

To conclude, consider the case ofR � 0 with R = 0
at an isolated point. The argument given by Ivey[15]
for this case is essentially local and carries over to
case of asymptotic flatness (though we constructed
own version to verify details). The basic idea is th
(7) obeys a Hopf lemma, which gives thatdR �= 0 if
R = 0 at an isolated point withτ > 0. SincedR must
be zero at an interior minimum, either we never ha
R = 0 for τ > 0, orR = 0 everywhere and througho
the flow. In the latter case, we see from(7) thatRij =
0 everywhere and the breather is a fixed point of
flow.
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