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Unstable D-particles in type-IIB string theory correspond to sphaleron solutions in the dual gauge
theory. We construct an explicit time-dependent solution for the sphaleron decay on S3 ×R, as well
as the coherent state corresponding to the decay product. We develop a method to count the number
of bulk particles in the AdS/CFT setup. When applied to our coherent state, the naive number

operator Ô
†
J ÔJ is shown to be inappropriate, even in the large-N limit. The reason is that the final

state consists of a large number of particles. By computing all probabilities for finding multi-particle
states in the coherent state, we deduce the bulk particle content of the final state of the sphaleron
decay. The qualitative features of this spectrum are compared with the results expected from the
gravity side, and agreement is found.

PACS numbers: 11.25.-w, 11.25.Tq

I. INTRODUCTION AND SUMMARY

The spectrum of type-IIB string theory contains, apart
from the stable BPS and non-BPS states, also a wide va-
riety of unstable D-branes. These unstable branes con-
tain a tachyon field on their world-volume, and the con-
densation of this field corresponds to the decay of the
brane. Recently, a lot of progress has been made in un-
derstanding the dynamical aspects of the decay of unsta-
ble branes. Most of the analysis was performed directly
using boundary conformal field theory in flat space, ini-
tiated by Sen’s construction of the boundary states for
decaying D-branes [1], or by using the c = 1 matrix model
for the description of the decay of D-branes in 1+1 dimen-
sional string theory [2]. In the present paper we would
like to study the problem of decaying branes in the set-up
of the “standard” AdS/CFT correspondence.

As was argued by Harvey et al. [3], the unstable D-
branes in string-theory are equivalents of “sphalerons”:
they are unstable solutions located at a saddle point of
the potential in configuration space, at the top of a non-
contractible loop [4]. In the context of the AdS/CFT con-
jecture, this correspondence between unstable D-branes
and sphalerons is in fact even more direct. It has
been argued by Drukker et al. [5] that the existence of
sphaleronic saddle points in the potential of the theories
on both sides is a feature which is preserved when go-
ing from weak to strong coupling, despite the fact that
the precise form of the potential receives quantum cor-
rections. The unstable D-particles of string theory are
then in precise correspondence with known sphaleron so-
lutions of the dual gauge theory. Kinematical aspects of
this correspondence were investigated in detail in [5].

In the present paper, we will analyse dynamical as-
pects of this correspondence. Our analysis consists of
three parts. First, we will construct the classical solu-
tion of the decaying sphaleron, and obtain a quantum
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mechanical description of the final stage of this decay us-
ing a coherent state. We then develop the formalism to
count the number of bulk particles into which this final
state decomposes. In the last part, we apply this formal-
ism to a concrete case at finite N and extract qualitative
features of the decay process. Although the whole pro-
cess is highly non-supersymmetric, and thus expected to
be subject to quantum corrections, we will see that there
are indeed qualitative features which agree with known
results derived on the string theory side.1

The dual gauge theory system is studied by considering
a time dependent solution of the decaying sphaleron on
the three-sphere. We are able to find an analytic, classi-
cal solution for the spherically symmetric decay channel
of the sphaleron. While the non-abelian character of the
gauge theory (i.e. the non-vanishing coupling) is crucial
for the existence of the sphaleron solution near the top of
the potential, it turns out that our solution abelianises
near the bottom of the potential valley (i.e. it is a solu-
tion to the free Yang-Mills equations of motion on the
sphere). This allows us to construct a coherent state cor-
responding to the final product of the sphaleron decay.2

This coherent state should be dual to the gas of closed
string particles which is the decay product of an unstable
D-particle.

In order to make a link with calculations on the gravity
side, we then calculate the “number operators” in this
coherent state |c〉 for various single trace operators ÔJ

1 This is to a certain extent similar to the attempts to match the
values of the entropy for AdS black holes, using a calculation of
the free energy in free Yang-Mills theory [6]. The main difference
with respect to this case, however, is in the dependence on the
coupling constant. The leading value of the black hole entropy
and the free Yang-Mills energy are independent of the string/YM
coupling. As we will see, the number of particles produced in the
sphaleron decay does depend on the coupling.

2 Similar descriptions of the Standard Model sphaleron decay using
a coherent state approach have been discussed by Zadrozny [7]
and Hellmund and Kripfganz [8].
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which are dual to closed string particles. There are two
subtle points in this procedure. One is related to the
fact that in gravity calculations one uses the “standard”
notion of particles in the bulk as (angular) momentum
eigenstates, and calculates emission amplitudes for these
particles. Hence, in order to make a comparison with
gravity possible, we cannot directly use the AdS/CFT
correspondence in position space. Instead, we first have
to construct boundary operators that are dual to bulk
angular momentum eigenstates. To construct these op-
erators one projects the composite operators onto eigen
angular momentum operators, by multiplying them with
the appropriate tensorial spherical harmonics and inte-
grating over the sphere. This construction is explained
in the section II C and further illustrated on an explicit
example in appendix VA.

The second subtlety in counting particles in the co-
herent state is related to the fact that the operators
ÔJ which create elementary bulk particles are, from the
point of view of the gauge theory, composite rather than

elementary operators. The naive number operator Ô†
J ÔJ

turns out to be inappropriate; we will see that this is be-
cause it only behaves as a counting operator when both
N → ∞ and the number of particles p in the state satis-
fies p ≪ N . Therefore, in order to count the number of
particles corresponding to an operator ÔJ , one needs to
calculate the probabilities Pp for finding a p-particle state

individually. Since ÔJ particles can appear in combina-
tion with any arbitrary other (multi-particle) operator

ÔK , the expression for finding a p-particle ÔJ state is

Pp =
∑

ÔK

∣

∣

∣

〈

(ÔJ )pÔK

∣

∣

∣ c
〉∣

∣

∣

2

〈

(ÔJ )pÔK

∣

∣

∣ (ÔJ )pÔK

〉

〈c|c〉
. (1)

To see why computing (1) is hard, consider the simplest

terms in the sum, when ÔK is just the identity operator.
This term is

∣

∣

∣

〈

(ÔJ )p
∣

∣

∣ c
〉∣

∣

∣

2

〈

(ÔJ )p
∣

∣

∣
(ÔJ )p

〉

〈c|c〉
=

∣

∣

∣(OJ )p 〈0|c〉
∣

∣

∣

2

p!
(

1 + b(p,J)
N2 + . . .

) , (2)

where OJ without a hat denotes the (positive frequency
part of the) classical expectation value of the opera-

tor ÔJ . When b≪ N , the expression (1) can be summed,
yielding the result one would obtain using the naive num-
ber operator. However, as indicated, the coefficient b in
the denominator depends on p and J , and for large p it
becomes comparable to N2. This invalidates the large-
N approximation for the sum. Closer analysis of our
coherent state shows that, due to the non-perturbative
character of the initial gauge configuration, the classical
expectation values of the operator ÔJ in the coherent
state are very large. The maximal term in (1) is attained
for large p, which grows so fast with N that one cannot
neglect 1/N2 and higher order corrections in the denom-
inator. Moreover, summing all planar contributions does
not yield a good approximation either.

This makes the problem of calculating the energy dis-
tribution in the outgoing state very hard to do analyt-
ically. In section III C we instead adopt a Monte-Carlo
method in order to compute the state norms, and subse-
quently evaluate the sum (1) for all operators in the U(4)
case. We show that, as expected from string calculations,
particles in the final state are suppressed as their mass
increases. We also show that, had one not taken the
full norms in (1) into account, one would incorrectly find
that the energy distribution increases for more and more
massive particles. This is essentially due to the fact that
classical expectation values for all operators grow with
their dimension.

Our results agree in a qualitative sense with results
from previous calculations on the gravity side. The cal-
culations on the gravity side have already been performed
in the literature for decaying D-branes in flat space [9].
To compare these to the gauge theory calculations, we
“embed” these results in the AdS space. A priori, there
is no reason to expect that the flat space results of the
decay should be valid for branes in an AdS background.
However, since the D-particles in question are fully lo-
calised in the bulk space, one expects that the flat space
results should carry over, at least when the radius of the
AdS is large.3 There are two properties of the spectrum
of the decaying brane that we can compare with the dual
gauge theory calculation. The first property of the spec-
trum is constrained by the symmetries of the system, and
concerns emission amplitudes for the states on the lead-
ing Regge trajectory. By slightly refining the calculation
of [9] in section III B we find that all emission amplitudes
for these states are zero. The same result is then sepa-
rately recovered on the gauge theory side by evaluating
the number operator for the corresponding dual compos-
ite operators.

More important is a second property of the spectrum,
observed in [9], which reflects genuine dynamical features
of the decay. There is strong evidence [1, 9] that the open
strings decay fully into closed string states, i.e. that there
is no open string remnant left after the decay. This con-
clusion is also supported by the matrix model calcula-
tions of [2]. As shown in [9], the emission amplitudes
are exponentially suppressed with the level of the emit-
ted string, at least for high levels (however, due to the
exponential growth of the available states, most of the
energy of the brane gets transferred into a high-density
cloud of very massive closed string states). By studying
the dual gauge model we discover the same qualitative
feature: a suppression of higher-mass string states in the
decay product.

3 To be precise, the D-particle dual to the sphaleron is localised in
the AdS part of space-time, while it is smeared on the S5.



3

II. DECAYING SPHALERONS IN ADS/CFT

A. Classical instability of the sphaleron on S3 × R

The first step in our analysis is to give a detailed de-
scription of the decaying sphaleron on the gauge the-
ory side. Whereas the sphaleron solution on R

4 found
by Klinkhamer and Manton [10] is very complicated and
not known analytically, the situation is much simpler on
S3 × R. Not only is the solution known in this case, but
one can also find an analytic description of the classical
decay of this metastable state.

Following Drukker et al. [5], one can get a sphaleron
solution on S3×R by starting from the instanton solution
on R

4. The latter is given by

Aµ = f(r)(∂µU)U †, U =
xµσµ
r

, r2 = x2
0 + x2

i ,

(3)
where f = r2/(r2 + a2). This function interpolates be-
tween two pure gauge configurations (i.e. the two vacua)
f(r = 0) = 0 and f(r = ∞) = 1. When f(r) = 1/2,
the system is at the top of the potential barrier. By
taking f = 1/2 everywhere one gets a singular solution
to the equation of motion on R4, which is the so-called
“meron”. The f = 1/2 solution is, however, also a solu-
tion on S3 × R, since this manifold can be conformally
mapped to R

4 and Yang-Mills theory in four dimensions
is conformally invariant. The solution obtained in this
way is the Euclidean version of the “sphaleron”, and is
non-singular.4 The Lorentzian version is the same, since
the time component of the potential of the sphaleron is
zero; the solution is completely time-independent.

We want to study the decay of the sphaleron, and we
restrict to those modes which preserve the spatial ho-
mogeneity of the initial sphaleron configuration. This is
because we want to look at the decay of the D-particle
which sits at the “origin” of the anti-de-Sitter space and
is projected in the same way to all points on the bound-
ary. In other words, we only allow for time dependence,
so that energy-momentum tensor should be of the form

T00 = g(t) , Tij = h(t)gij , (4)

where gij is the metric on S3. So the ansatz we make is

A = f(t)Σiσi , (5)

where Σi are the three left-invariant one-forms. The en-
ergy momentum tensor,

Tµν = Tr(FµρFνσg
ρσ) − 1

4
gµν Tr(F 2) (6)

4 The singularity of a meron originates from the region r → 0,
since the action behaves as S ∼

∫

dr r−1. After the conformal
transformation the action density reduces to a constant.

reduces for our ansatz to the desired form (4) with the
functions g and h given by

g(t) = −3

2
R2ḟ2 − 6f2(1 − f)2 ,

h(t) = −1

2
R2ḟ2 − 2f2(1 − f)2 = −g(t)

3
.

(7)

To deduce what is the unknown function f(t) we plug
the ansatz into the action and derive the action for this
function. The value of the action for our ansatz is

S = − 1

4g2
YM

∫

dtdΩFµνF
µν

=
24 vol(S3)

4 g2
YM

∫

dt

R

(

R2

2
ḟ2 − 2f2(1 − f)2

)

,

(8)

where vol(S3) ≡ 2π2 denotes the volume of the unit
sphere and R is the radius of S3 (also see (73), (77)).
The equation of motion for the function f is

R2 f̈ + 4f(1 − f)(1 − 2f) = 0 . (9)

This equation can be integrated once, yielding a con-
served quantity, namely the energy (i.e. the component
T00 = 48 vol(S3)E)

E = R2 ḟ2 + 4f2(1 − f)2 . (10)

By introducing a new variable H(t)

f(t) =
1

2
(1 +H(t)) , (11)

the expression for energy becomes

4E = R2 Ḣ2 + (1 −H2)2 , (12)

which can be further integrated analytically for E = 1
4 .

There are two solutions, corresponding to the fact that
the sphaleron can roll down on either side of the poten-
tial, to the vacua with Chern-Simons number one and
zero respectively. The final result reads (see figure 1)

f±(t) =
1

2





±
√

2

cosh
(√

2
R (t− t0)

) + 1



 . (13)

One can check that these solutions are indeed solutions to
the full equations of motion, not just to the equations ob-
tained from the reduced action. These solutions describe
a configuration that starts from the potential maximum
at t = −∞ (with zero velocity and acceleration), rolls
down one of the two sides of the hill and up the other
side, where it arrives at t = t0. The minimum of the
potential energy (12) is reached when H2 = 1 which cor-

responds to t− t0 = ±R arccosh(
√

2)/
√

2 ≈ ±0.62R; the
evolution is symmetric around t = t0.

5

5 After we had derived this solution, we learned that it has been
obtained before by Gibbons and Steif [11] and Volkov [12, 13],
albeit in a different context.



4

1
2

1+
√

2
2

−tb tbt0

EkinEpot

t→ ∞

f(t)

FIG. 1: The functions f±(t) of the decaying sphaleron on
S3 as given in (13), together with the kinetic and potential
energy (with normalisation as given in (12) and R = 1).

The periodicity of the whole process is natural from
the AdS perspective. Since AdS effectively acts as a box,
the cloud of outgoing radiation is refocused to the origin
of the space, where it arrives as fine-tuned radiation and
“re-builds” the D-particle. In this sense the D-particle
never decays, since there is no real dissipation of the en-
ergy in the system. However, in the limit of large AdS
radius, our flat-space intuition should (at least approxi-
mately) hold. A natural point in time, which should be
associated to the decayed brane, is the point where the
sphaleron has rolled down to the the bottom of the po-
tential, i.e. when all potential energy has been converted
to kinetic energy.

The previous construction can easily be generalised to
describe the decay of a system of coincident D-particles.
The relevant sphaleron configurations have been given
by Drukker et al. [5]. They are obtained by replacing
the Pauli matrices in (3) with Clifford algebra generators
according to

σµ → γµ =











σµ 0 · · · 0
0 σµ · · · 0
...

...
. . . 0

0 0 · · · σµ











. (14)

This will make the various sphalerons sit in mutually
commuting SU(2) factors within U(N). In this case (9)
gets replaced by an independent equation for each of the
functions fi, and the solutions of those are given by (13)
which can differ only by the value of t0. In what follows
we will restrict to the situations in which all these ini-
tial “phases” are the same, i.e. in which all D-particles
start to decay at the same time. Since the field strengths
will also be block-diagonal, traces of powers of them will
decompose as sums of traces of the individual blocks.

B. Coherent state description of the sphaleron
decay

In order to perform an analysis of the spectrum of the
decay in the gauge theory, as a first step one needs to con-
struct a quantum state describing the decayed sphaleron.
For that purpose, it is useful to think about the sphaleron
decay in the following way. Near the top of the potential,
most of the energy of the (perturbed) sphaleron configu-
ration is stored in the potential energy, which arises from
the non-linear terms in the Yang-Mills action. Precisely
these non-linearities in the action ensure the existence of
the sphaleron solution. However, as the sphaleron de-
cays, the potential energy of the sphaleron gets trans-
ferred into kinetic energy, and near the bottom of the
potential valley all of the energy of the configuration is
stored in the kinetic energy. This can be seen most eas-
ily by performing a finite gauge transformation (78) on
the solution (5) with gauge parameter Λ = U †.6 The
solution then reduces to

Aµ = f̃(t)U †(∂µU) , f̃ = f − 1 . (15)

Near the bottom of the potential f̃ ≈ 0, which means
that the derivative part of the field strength, rather than
the non-linear (commutator) part, is dominant. The so-
lution becomes solution of the free Yang-Mills equations
of motion on S3 × R (written in the radiation gauge:
A0 = ∇iA

i = 0)

(

− ∂2
t +

1

R2

(

∇2
S3 − 2

)

)

Alin.
i = 0 . (16)

Indeed, one can easily see that as t → tbottom the solu-
tion (15) with f given by (13) is very well approximated
by the following solution of the linearised equation of
motion (16):

Alin.
i = −1

4
sin

(

2(t− tbottom)

R

)

U †(∂iU) . (17)

Hence near the bottom of the valley, one can think about
the Yang-Mills configuration as dual to a coherent state
of non-interacting closed string states which are the prod-
uct of the D-particle decay. Our goal will then be to de-
termine numbers of various (gravity) “particles” in this
final coherent state. What we precisely mean by this will
be explained in the next section. Let us first construct
this coherent state.

The fact that our solution abelianises near the bot-
tom of the potential valley allows us to write down a
coherent state for this configuration (see Cahill [14] and
Pottinger [15] for related work). In order to do so, we
need an expansion of the free Yang-Mills gauge potential

6 Alternatively, this can be seen from the equation (9) in which
the coupling g is restored; the g → 0 limit leads to the same
equation of motion as linearisation of f around f = 1.
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in spherical vector harmonics. In the radiation gauge,
an expansion is given by (we refer the reader to Hamada
and Horata [16] for more on spherical harmonics)

Aabi =
∑

J,y,M

(

âabJMy

e−(2J+1)τ/R

√

2(2J + 1)
Y iJMy(φ, θ, ψ)

+ â†abJMy

e(2J+1)τ/R

√

2(2J + 1)
Y ∗i
JMy(φ, θ, ψ)

)

, (18)

where M = (m,m′) labels the representations of the sim-
ple factors of SO(4)=SU(2)×SU(2) and y sums over the
physical polarisation states of the gauge field. We have
also introduced matrix indices for the adjoint representa-
tion of the U(N) Lie-algebra. The other indices run over
the ranges

J ≥ 1
2 ,

y = ± 1
2 ,

−J − y ≤ m ≤ J + y ,

−J + y ≤ m′ ≤ J − y .
(19)

After quantisation, the operators â†lmn and âlmn satisfy
the canonical commutation relations

[

âabJMy , â
†cd
J′M ′y′

]

= g2
YM δJJ′δMM ′δyy′δ

adδbc . (20)

A coherent state (see Klauder and Skagerstam [17] for
more on coherent states and references to the literature)
corresponding to the classical configuration given by (13)
is constructed by demanding that

âabJMy |c〉 = AabJMy |c〉 , (21)

where AJMy are the coefficients appearing in the Fourier
decomposition of the classical sphaleron configuration, as
in (18). In the Coulomb gauge Aab0 = 0 the coherent state
can be written as

|c〉 = C exp



g−2
YM

∑

J,M,y

Tr
(

AJMy â
†
JMy

)



 |0〉 , (22)

The normalisation factor C is chosen such that |c〉 is of
unit norm and is given by

C = exp
(

− 1
2g

−2
YM Tr

(

∑

JMy

|AJMy |2
)

)

. (23)

A similar construction for the Klinkhamer-Manton
sphaleron in Yang-Mills-Higgs theory on R

(3,1) has been
discussed by Zadrozny [7]. The state (22) is most natural
from the point of view of the gauge theory; we will dis-
cuss the possibility of using alternative coherent states at
the end of section II C.

It is important to note that, due to the properties
of the vector spherical harmonics in (18), the coherent
state (22) has been built from creation operators that ex-
cite only physical excitations: the Gauss law constraint is
automatically implemented using these operators, since

∇ · Âfree = 0 holds as an operator equation. Hence the
coherent state (22) is a legitimate state in the Hilbert
space of the free theory.

Nevertheless, the state (22) does not yet provide a good
description of the system, as it is constructed using the
oscillators of the free theory and does not allow for a
smooth deformation to the interacting theory. At finite
coupling, it does not satisfy the global colour neutrality
constraint. This constraint arises because the commu-
tator term in the Gauss law acts as a source, and by
integrating the constraint over the S3 one finds that this
total charge has to vanish. One therefore imposes that
the commutator part of the non-abelian constraint van-
ishes also at zero coupling [18]. This constraint restricts
the coherent state to the colour singlet part,

|csinglet〉 = Psinglet|c〉 . (24)

In practise, however, we will neither write this projector
nor construct the projected state explicitly. This is be-
cause our calculations always involve projections of the
coherent state onto states which themselves are colour
singlets. Therefore the singlet projection is imposed im-
plicitly throughout. The only thing which we have to
keep in mind is that when the state |c〉 is unit normalised,
the norm of |csinglet〉 is much smaller than one; we will
return to this issue in section III C when we discuss the
decomposition of the coherent state in a specific exam-
ple.7

C. Particles in the AdS/CFT correspondence

In the AdS/CFT correspondence, we have a relation
between string states in the bulk and operators in the
boundary. These operators are, via the operator–state
mapping, interpreted to create “particles” in the bulk
theory at a particular point on the boundary. That is,
one needs to solve for the wave equation of the dual field
in the bulk in the presence of a delta source inserted at
the boundary. This means that the states created in the
bulk are not eigen momentum states, an attribute which
one usually associates to the notion of a particle in field

7 We should also remark that in addition to the configuration (14)
used in the construction of the coherent state |c〉, there exists
a whole family of inequivalent configurations related to (14) by
large gauge rotations. Since the parameters of this family do not
have a counterpart on the gravity side, one needs to integrate
over these configurations when calculating observables on both
sides. A similar situation occurs when one calculates correlation
functions in an SU(2) instanton background: while the size and
position of the instanton do have an AdS interpretation, the
parameters describing the embedding of the SU(2) instanton in
SU(N) do not, and thus have to be integrated over. For all the
observables we will be calculating from |c〉, these integrations
lead to additional overall group factors, which are irrelevant for
our purposes. Hence in what follows, we will ignore this technical
subtlety.
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theories. However, since the AdS/CFT correspondence
is formulated in position space rather than momentum
space, these definitions are natural in this context. Our
string calculation, on the other hand, will be a flat space
calculation, and for us it will be more natural to use
the standard notion of particles in the bulk as angular
momentum eigenstates. For that however, we will first
have to construct boundary operators that are dual to
the bulk angular momentum eigenstates.

The operator–state correspondence is usually discussed
in the context of radial quantisation of conformal field
theories (see e.g. Fubini et al. [19] for a discussion in a
four-dimensional context). One first Wick rotates R×R

3

to the Euclidean regime and then performs a conformal
transformation such that the origin of R

4 corresponds to
t = −∞ in the original frame. Operators inserted at the
origin are then in one-to-one correspondence with states
in the Hilbert space. The entire procedure can, how-
ever, be formulated without doing the conformal rescal-
ing, which is more natural in our setup since, as we have
discussed before, the gauge field configuration on R×S3

is non-singular while the one on R
4 is singular.

The state corresponding to an operator with conformal
weight w is obtained by multiplying with the appropriate
exponential of Euclidean time and taking the limit τ →
−∞ (keeping only the regular part):

|Ô(m)
weight-w〉 = lim

τ→−∞

{

e−wτÔ(m)
weight-w(τ)

}

∣

∣0
〉

≡ Ô
(m)
weight-w|0〉 .

(25)

The last expression shows the shorthand notation that we
will use in order not to clutter expressions unnecessarily.
The hermitian conjugate of an operator is given by

(

Ô(τ)
)†

= Ô†(−τ) . (26)

This procedure mimics the operator–state mapping on R
4

but avoids technical problems related to solutions which
become singular after the conformal transformation.

The operators which we use in (25) are independent of
the angular coordinates on the sphere, i.e. they are ob-
tained from the position dependent operators as follows

Ô(m)
w (τ) = K(m)

w

∫

S3

dΩ Ôµ1...µs

w (τ, φi)Y
(m)
µ1...µs

(φi) . (27)

Here Y (m) denote the lowest lying tensor spherical har-
monics for a given spin s. The index m labels the de-
generacy of such harmonics. The normalisation con-

stants K
(m)
w are chosen such that the states constructed

using (25) are of unit norm. Note that the multiplica-
tion with the time dependent exponent in (25) selects
out composite operators of the required conformal dimen-
sion, but when one expresses these operators in terms of
elementary creation and annihilation operators, one ex-
plicitly sees that different operators Ô are not orthogonal.

It is only after the integration (27) that one obtains a set
of orthogonal states. See appendix VA for an explicit
example on S2.

Multi-particle states are obtained by acting repeatedly
with the Ôw operators on the vacuum, in analogy with
normal creation operators for elementary particles. In
contrast to elementary operators, however, there is no
simple number operator which can be used to count the
number of composite excitations in a given state. It is
true that

[Ô, Ô†] = 1 + O(N−2) , (28)

and one might expect that this leads to a well-defined
number operator Ô†Ô. However, the coefficients that
multiply the 1/N2 corrections in (28) are operators, not
c-numbers. As a consequence, the strength of the 1/N2

corrections depends on the state in which the number
operator is evaluated,

〈n|Ô†Ô|n〉 = n+
∑

i

ci(n)

N2i
. (29)

The numbers ci(n) can become arbitrarily large
when n → ∞. Since the coherent state contains such
highly excited states, the operator Ô†Ô cannot be used
as a number operator, not even in the N → ∞ limit.8

We will encounter an explicit manifestation of this fact
in section III C, see in particular figure 3.

We will therefore follow a different route. Instead of
trying to use a number counting operator applied to the
coherent state, we will simply project the coherent state
on each state in the Hilbert space of multi-particle states.
Subsequently, using these probabilities, we will calculate
the average energies and particle numbers. Details of this
procedure will be discussed in the section III C.

Let us end this section with a comment on alternatives
to the coherent state (22). From the point of view of the
dual string theory, it might seem more natural to con-

struct a coherent state using the composite operators Ô†
J

in the exponent, rather than the elementary ones â†. Af-
ter all, the ÔJ correspond to elementary string excita-
tions. However, a state of the form

|c̃〉 = C̃ exp
(

∑

i

Oclass.
i Ô†

i

)

|0〉 (30)

is not a coherent state in the sense of (21). The expecta-
tion value of an operator in this coherent state does not
equal the classical value of that operator,

〈

c̃
∣

∣ Ôi
∣

∣c̃
〉

6= Oclass.
i , (31)

8 An proper number operator for composite particles, which pro-
duces the exact occupation number rather than an expression
which is only correct up to N−2 corrections, has been constructed
by Brittin and Sakakura [20, 21]. However, their operator is very
complicated and difficult to handle in practise. We prefer to fol-
low a different route here.
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not even up to 1/N corrections. The reason for this is
essentially given in equation (29), with |n〉 now being

given by |n〉 =
(

Ô†
i

)n |0〉. This is our prime motivation
to use (22) as the sphaleron coherent state.

III. THE DECAY SPECTRUM

A. Counting procedure and symmetry
considerations

Having constructed a coherent state in the gauge the-
ory which is dual to the final state of the D-particle de-
cay (see section II B), we now want to extract information
from it about particle numbers in the decay product. By
particle counting, we mean counting of the states con-
structed in the previous section. The main subtlety for
this calculation lies, as we have discussed in the previous
section, in the fact that we want to count states created
by composite rather than elementary operators. In this
section we will outline the general procedure which we
will use to calculate these numbers, and then apply it to
a special class of operators whose behaviour seems to be
fully determined by the symmetries of the problem.

The basic ingredient in our particle counting proce-
dure is the probability to find a particular multi-particle
state of composite particles in the coherent state. The
probability of finding a multi-particle state consisting of
p1 particles of type OJ1

, p2 particles of type OJ2
etc., is

given by

P(p1; p2; . . . ; pM ) :=

∣

∣

∣

〈

(ÔJ1
)p1 . . . (ÔJM

)pM

∣

∣

∣ c
〉 ∣

∣

∣

2

〈

(

ÔJ1

)p1
. . .
(

ÔJM

)pM

∣

∣

∣

(

ÔJ1

)p1
. . .
(

ÔJM

)pM

〉

〈

c
∣

∣c
〉

.

(32)

For this to work it is of course crucial that the basis
of multi-particle states is constructed to be orthogonal.
9 By definition, the average number of particles of the

9 Even if one has two orthogonal states O†
1|0〉 and O†

2|0〉 created
using composite creation operators, it is generically not true that

〈0|(O1)n(O†
2)n|0〉 = 0. The notation used in (32) is meant to

indicate that proper subtraction terms are included, such as to
make all states appearing in the sum orthogonal. Using these
orthogonal states, the projection operator appearing in (24) takes
the form

Psinglet = 1 +
∑

{p1,p2,...pn}

1/Np1,p2,···pn

×
∣

∣(O1)
p1 (O2)p2 . . . (On)pn

〉〈

(O1)p1 (O2)
p2 . . . (On)pn

∣

∣ , (33)

where the Np1,p2,...pn
are the norms of the states.

type ÔJi
present in the coherent state is now given by

N(Ji) :=

∞
∑

p1=0

· · ·
∞
∑

pM =0

pi P(p1; p2; . . . ; pM ) . (34)

The energy stored in these particles, as measured with
respect to the global time in the bulk, is given by the con-
formal dimension of the corresponding operators. There-
fore, the total energy is given by the expression

E(Ji) :=

∞
∑

p1=0

· · ·
∞
∑

pM =0

∆Ji
pi P(p1; p2; . . . ; pM ) , (35)

where ∆Ji
is the conformal dimension of the operator

ÔJi
. This is actually why we interpret Ô† · · · Ô†|0〉 as

a multi-particle state: the supergravity energy is simply
the sum of the constituent energies, despite the fact that
the norm does not factorise as the product of individual
particle norms.

Due to the general properties of the coherent state,
an evaluation of the numerators in (32) is straightfor-
ward. It amounts to evaluating the classical expressions
for the (multi-)particle operators using the positive fre-
quency part A+ of the rolling sphaleron solution, near
the bottom of the potential. When doing this calcula-
tion one also needs to use formula (27); i.e. for each par-
ticles in the state separately, one needs to remove the eτ

factors and then project onto the corresponding lowest-
lying harmonics. Hence, even though we know the full
time dependent sphaleron solution (5)–(13), we need only
the part of the solution at the end of the decay for the
evaluation of (32).

Since we are looking at a very simple, spherically sym-
metric decay, the final phase of the decay is very much
constrained and is basically independent of the shape of
the potential: it is given by an S-wave on the three-
sphere, with an amplitude determined by the height of
the potential. We have given this solution in (17), and the
Euclidean version of its positive-frequency part is given
by

A+
i =

i

8
exp

( 2

R

(

t− tbottom

)

)

U †(∂iU) ≡ f+(t)U †(∂iU) .

(36)

As we will see in the next section, the real problem
in calculating the numbers of different states is related
to the calculation of the denominators in (32). However,
for the class of operators which are absent from the de-
cay spectrum, i.e. for which numerators in (32) vanish,
one does not need to worry about this issue. The first
operator in this class is the energy momentum tensor. Its
vanishing implies that there is no gravitational radiation
in the bulk, a feature which is expected from the symme-
try of the problem. Namely, since the decay is spherically
symmetric, there are no quadrupole moments turned on,
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and hence no gravitational radiation can be produced.10

The lowest-mass SO(6) singlet that arises from the S5

reduction of the NS-NS two form is given by [22, 23]

Oµν ∼ Tr

(

1

2
FναF

αβFβµ +
1

8
FαβF

αβFµν

)

. (37)

The associated state also has a vanishing overlap with
the sphaleron coherent state. This is due to the fact that
this operator is cubic in the field strength, and our gauge
potentials are “abelianised” SU(N) fields, as explained
in section II B.

In the massive string sector, we also find that the radi-
ation associated to all twist-two fields vanishes. Namely,

N
(

Ôµ1···µs

)

= 0 , for all s , (38)

where the operators are given by

Ôµ1···µs
=

vol(S3)−1R2+s

√

2(g2
YMN)2

:Tr
(

Fν(µ1
∇µ2

...∇µs−1
Fµs)

ν
)

:

− (traces) . (39)

Here the s = 2 operator corresponds to the graviton.
We will see in section III B that all these results can be
matched with the string theory prediction.

We believe that the vanishing of the amplitudes of
the twist-two operators is related to the symmetries of
the system, rather than to genuine dynamical proper-
ties. Hence, in order to gain insight in real dynamics of
the problem, we need to consider number operators for
generic states, which we will do in section III C.

B. Expectations from the string side

The lack of knowledge about string quantisation on the
AdS5×S5 background makes a direct study of D-particle
decay in this background impossible. However, because
the D-particle is a fully localised object, one expects that
its static and dynamic properties are, at least for large
radii, similar to those of the D-particle in flat space [5].
We will employ this argument to use a flat-space string

10 Note that the expression which vanishes is the energy momen-
tum tensor evaluated on the positive frequency part of the solu-
tion: |〈0|T̂µν |c〉|2 = |Tµν(A+

coherent
)|2 = 0. On the other hand,

the classical expression for the energy momentum tensor of the
full configuration is non-zero: Tµν(A+ +A−) 6= 0. Note also that

the T̂µν which is used here is the abelian expression for the en-
ergy momentum tensor, since all our calculations are done in the
free theory. It would be interesting to extend the above analysis
to include interactions. In that case, however, there may be non-
trivial corrections to the coherent state, and both gauge bosons
and scalars will contribute to the numerators in (32).

calculation, rather than one in AdS, when making a com-
parison to the gauge theory results.

In order to analyse the decay products of an unstable
D-brane in string theory, one has to solve for the closed-
string field |Ψc〉 in the presence of a time-dependent
brane source,

(Q+ Q̄)|Ψc〉 = |B〉 . (40)

Here |B〉 is the boundary state for the unstable D-brane
while Q and Q̄ are the BRS operators. The solution
for |Ψ〉 as well as the late-time behaviour was analysed
in [9, 24]. For the final state of the decaying D-particle
it takes the simple form

|Ψ∞
c 〉 := lim

t→∞
|Ψc〉 ∝

∫

d25k⊥
∑

L≥0

exp
[

∞
∑

n=1

− 1

n
α0
−nᾱ

0
−n + αi−nα

i
−n

− ghosts
]∣

∣

∣

level L

×
(

f(L, k⊥)
∣

∣k0 = ωk, k⊥, k‖ = 0
〉

+ f∗(L, k⊥)
∣

∣k0 = −ωk, k⊥, k‖ = 0
〉

)

.

(41)

Here L denotes the oscillator level and f(L, k⊥) is a func-
tion dependent on the level and the transverse momen-
tum.11 This final state can now be projected onto on-
shell closed string states.

The twist-two states which we are interested in are as-
sociated with vertex operators which, for a given level,
carry maximal spin. This is achieved by using the max-
imal number of creation operators for fixed level, i.e. by
building the state using only αµ−1 operators. More pre-
cisely, the particle numbers in the final state will be de-
termined from the following overlaps

Sµ1...µnν1...νn =
〈

kµ
∣

∣αµ1

1 . . . αµn

1 ᾱν11 . . . ᾱνn

1

∣

∣Ψ∞
c

〉

, (42)

where kµ is the momentum of the centre of mass of the
closed string, related to the level n via the mass shell
condition k2 = 2(1−n). The twist-two states are associ-
ated with the part of these vertex operators which have
maximal spin, that is, they are built out from the vertex
operators by contracting them with polarisation tensors
satisfying

ǫµ1...µnν1···νn
= ǫ(µ1...µnν1···νn) , ηµ1ν1ǫµ1...µnν1···νn

= 0 .
(43)

11 There is a subtlety concerning terms in the outgoing state which
grow exponentially in time. Their interpretation is at present not
entirely clear [24]. Moreover, there exists an alternative deriva-
tion in which such terms are not present [25]. We do not want
to go into a discussion of this issue here, and consider only the
terms which are finite at late times.
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For these polarisation tensors, it is easy to see that the
projections (42) vanish. Since only the n = 1 oscillators
appear in the twist-two states, the exponent of (41) effec-
tively reduces to ηµνα

µ
−1ᾱ

ν
−1. All projections (42) then

become proportional to traces of the polarisation tensors,
which vanish by (43). There is therefore no twist-two ra-
diation; in particular, there is no gravitational radiation
(which is expected because there is no quadrupole mo-
ment). The radiation into NS-NS two-form states also
vanishes, because the polarisation tensor is in this case
anti-symmetric.

All of these considerations change when one does not
select the highest-spin state from the polarisation ten-
sor (i.e. when one does not impose (43)). In particular,
the dilaton radiation will not vanish. These observations
match the calculations on the Yang-Mills side performed
in the previous section.12

C. Decay products in U(4) – dynamical
considerations

For a generic operator, the calculation of the numera-
tors in (32) is the same as in section III A, and amounts
to evaluating the classical expression of the (abelianised)
operator using the positive frequency part of the decayed
solution. The main technical problem arises when eval-
uating the denominators of (32). To illustrate this, let
us consider a “simplified” model, based on a non-abelian
scalar field. This model exhibits all of the technical sub-
tleties associated to the determination of the decay prod-
ucts. The crucial ingredients of the vector coherent state,
namely that it is constructed from the lowest-lying spher-
ical harmonics and that it depends non-perturbatively on
the coupling constant, are preserved by this toy model.
However, it avoids the inessential technical complications
associated to the evaluation of tensor spherical harmonics
in the numerators of (32).

The coherent state for a given classical configuration
in this non-abelian scalar theory is given by

|c〉 = C exp

(

1

g2
YM

Tr
(

a â†
)

)

|0〉 ,

C = exp

(

− 1

g2
YM

Tr
(

a†a
)

)

.

(44)

This mimics the construction (22). The unit normalised
(at leading order in 1/N expansion), single-trace opera-

12 The conclusions also rely crucially on the fact that we are re-
stricting here to the D-particle case. The twist-two radiation is,
for other boundary states, generically no longer zero. The final
state (41) will be more complicated, and the n = 1 part of the
exponent will not reduce to ηµναµ

−1ᾱν
−1.

tors which create particles in the out vacuum are

Ô†
J =

1
√

J(g2
YMN)J

Tr
(

(â†)J
)

. (45)

These operators are coordinate independent operators,
obtained using a procedure similar to (27).

With the above normalisation of the operator, the nu-
merators and hence probabilities in (32) depend on the
Yang-Mills coupling in a non-perturbative fashion,

∣

∣

∣〈0|
(

ÔJ
)p|c〉

∣

∣

∣

2

= C2

∣

∣

∣

∣

∣

∣

Tr
(

(a+)J
)

√

J(g2
YMN)J

∣

∣

∣

∣

∣

∣

2p

≡ C2

Jp

(

η2
J

λJ

)p

,

(46)
(where the last equality defines ηJ ; note that it is of the
order N for the configuration (14) and generically scales
as the number of D-particles). This reflects the fact that
our original sphaleron configuration is a non-perturbative
solution of the equations of motion. Note also that the
only way in which the coupling λ appears in (34) and (35)
is through the combination η2

J/λ
J .

The complicated part of the calculation of the average
particle numbers and energies is the computation of the
norms for the states with an arbitrary number of parti-
cles. The norm of the state with p identical particles can
be written as (see also figure 2)

〈

(ÔJ )p (Ô†
J )p
〉

= p!
〈

(ÔJ ) (Ô†
J )
〉p

+

(

p

2

)2
〈

(ÔJ )2 (Ô†
J )2
〉

conn.
(p− 2)!

〈

(ÔJ ) (Ô†
J )
〉(p−2)

+

(

p

3

)2

〈Ô3
J Ô

†3
J 〉conn.(p− 3)!〈ÔJ Ô†

J 〉(p−3)

+

(

p

2

)2(
p− 2

2

)2
〈

(ÔJ )2(Ô†
J )2
〉2

conn.

(p− 4)!

2!
〈ÔJ Ô†

J 〉(p−4)

+ ...
(47)

The first term is at a leading order independent of 1/N ,
the second is suppressed as 1/N2, the last two terms both
scale as 1/N4, and so on. A similar but more complicated
expansion can be written for states involving more than
one type of particle.

Naively, one might expect that in the large-N limit, all
but the leading term p! in this expansion can be omit-
ted. In formula (34), this would produce an exponential
dependence on the expectation values for the operators
ÔJ . Since the arguments of the exponent (46) increase

with conformal dimension J , one would conclude that
the number of particles produced during the decay in-

creases with the mass of the particle. However, this kind
of truncation of (47) does not make sense in the case of
the non-perturbative coherent state (44), as it would ac-
tually produce probabilities (32) which are larger than
one. The point is that since the numerator (46) is very
large, the maximal probabilities are attained for large
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values pmax of p. Moreover, pmax grows with N , hence in
the large-N limit the sub-leading terms in (47) become
more and more relevant, and are actually comparable to
the leading term.

In trying to estimate how fast the norms (47) have
to grow with p, one can see that even an exponential
growth of the norms, say as p! γp (γ = const.), does not
lead to reasonable results. Namely, if we consider the
expression

∑

p P(J, p), which has to be smaller than one,
and assume exponential growth of norms, we would find
that this sum behaves as

∞
∑

p=0

P(J, p) = C2
∞
∑

p=0

1

p!

(

η2
J

λJγ

)p

= exp

(

η2
J

λJγ

)

exp

(

−N
λ

Tr(a†a)

)

.

(48)

Hence we see that even when N → ∞ (while keeping λ
arbitrary but smaller than one) the result will always be
larger than 1 for some value of J . Since the calculation
of the average number of particles requires a summation
over all J , we conclude that we cannot assume this be-
haviour of the norms.13

The situation which we face here is similar in spirit
to the double-scaling BMN limit. As observed by Krist-
jansen et al. [26] and Constable et al. [27], in the limit
N ∼ J2 → ∞ correlators in general receive contributions
from non-planar graphs of all genera. In this case, a new
expansion parameter J2/N appears. In our case,N → ∞
as well, but now the additional parameter which becomes
large is the value of the pi for which the sum (35) has its
maximum term. It would be interesting to understand
whether our system also exhibits a double-scaling limit
in which some ratio of powers of p and N is kept fixed.

In order to determine the correct values of the norms
of the states, it is useful to write the norms in terms of
correlators of a complex matrix model,

〈

0
∣

∣

[

(

ÔJ1

)p1
. . .
(

ÔJn

)pn

] [

(

Ô†
Jn

)pn

. . .
(

Ô†
J1

)p1
]

∣

∣0
〉

=

∫

dAdĀ
[

(

OJ1

)p1
. . .
(

OJn

)pn

] [

(

O†
Jn

)pn

. . .
(

O†
J1

)p1
]

× exp
(

− Tr(A†A)
)

, (49)

13 Note that if we would have had a perturbative coherent state
instead of a non-perturbative one, the classical expectation val-
ues a in (44) would be of the form a = gY M η, with η a number
independent of the coupling constant. Hence formula (48) would
be replaced with

∞
∑

p=0

P(J, p) = C2
∞
∑

p=0

1

p!

(

η2
J

NJγ

)p

= exp

(

η2
J

NJγ

)

exp
(

−Tr(a†a)
)

.

We now see that a truncation to the first term in (47) (i.e. setting
γ = 1) produces reasonable results for the probabilities (32).

The measure used here is simply a separate integral over
the real and imaginary parts of the complex matrix A,
normalised to give unit result when all pi in the expres-
sion above are zero,

∫

dAdĀ = π−N
N
∏

a,b=1

d(ReAab) d(ImAab) . (50)

This approach has been used by Kristjansen et al. [26, 28]
in order to compute several special cases of (49) analyt-
ically. It is still an open problem to extend those exact
results to the entire class of correlators, in particular to
general situations for which pi > 2. Because we will need
these very general correlators, we have decided to use
an alternative approach, in which the integral is evalu-
ated using Monte-Carlo methods. This provides us with
a technically straightforward way to extract the norms
for arbitrary operator insertions, even for very large pi.
Our results will, for this reason, of course be restricted to
a fixed value for N , and computer resources put a prac-
tical limit on the maximum value that can be handled.
Nevertheless, we will see that interesting results can be
obtained this way.

Before we discuss the results, let us present numerical
evidence which illustrates the necessity of taking the full

norms in (32) into account, i.e. all planar and non-planar
contributions. We compare the results obtained by sum-
ming up a large class of planar diagrams in (47) with the
numerical results obtained using the Monte-Carlo inte-
gration. For the U(4) case, the Monte-Carlo results are
depicted in figure 3 and compared to the analytic answer
obtained by restricting to the first two columns of graphs
in figure 2; these columns contain graphs with an arbi-
trary number of connected four-blob elements. Clearly,
the full norms deviate substantially from this estimate.
Hence, in the remainder we will only employ the norms
obtained by Monte-Carlo integration of (49). Note also
from figure 2 that for large p, the deviation from the ex-
act norm grows with increasing J (and it also grows with
increasingN), and does not improve as one might naively
expect.

With the correct norms of the multi-particle states at
hand, one now obtains sensible results for the sums (34)
and (35). An example in U(2) (which is rather trivial
because there is in this case only one independent single-
trace operator) is plotted in figure 4. Note once more
that the numbers plotted here are much smaller than one.
This is because the norm C which multiplies all of these
results is the norm of the non-singlet coherent state, and
the number of singlets in it is much smaller than the total
number of states. Note, however, that since the norm
of the coherent state appears in all probabilities as an
overall (identical) factor, its absolute value is irrelevant
when considering the ratios of emitted energies or ratios
of numbers of particles. See appendix VB for a more
explicit explanation.

Having resolved the computation of the exact norms
of states, we can now finally compute the energy distri-
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FIG. 2: Generic graphical expansion of the planar part of the norms required in (47). For simplicity we have only depicted
the case in which there is only one type of operator; open dots represent Tr(âJ ) for fixed J and black dots their hermitian
conjugates. The lines represent planar multiple contractions of elementary oscillators. The graphs displayed here correspond
to typical “large” terms in each of the expressions in the sum (47).
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FIG. 3: Norms of states built from J = 2 operators (lower
two curves) and J = 4 operators (upper two curves), as a
function of the total number of operator insertions, for U(4).
The dashed lines are the estimates based on the first two
columns of graphs in figure 2. The continuous lines are the
complete norms extracted from the Monte-Carlo analysis.

bution in the outgoing state of a more interesting ex-
ample. For practical reasons, we will restrict ourselves
to the U(4) case, for which there are only two operators
which create physical states (using only the creation op-
erator for the lowest-lying spherical harmonics). These
operators are Tr

(

(a†)2
)

and Tr
(

(a†)4
)

.14 The proper

14 The restriction to the zero-mode of the scalar field is motivated
by the full sphaleron solution of the earlier sections, which only
turns on the lowest spherical vector harmonics. Naturally, in
the full U(4) there are also operators of the form Tr(DµφDνφ).
However, in the oscillator picture these are turned on by the
oscillators that create the higher spherical tensorial harmonics.
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FIG. 4: Plot of the summed probability, in U(2), to find a

state with zero or more Ô2 operators in |c〉, as a function
of the maximum number of operator insertions pcutoff in (32).
Equivalently, this is the total probability to find a singlet state
in the coherent state. The two continuous lines correspond to
two different values of the coupling constant. The dashed lines
are the individual terms that make up the sum. Observe that
these curves never reach one, which shows that there are still
many states in the coherent state which are non-singlets.

linear combinations of these operators are

Ô†
2 = Tr(a†a†) ,

Ô†
4 = Tr(a†a†a†a†) − 2N2 + 1

N(N2 + 2)
Tr(a†a†)Tr(a†a†) .

(51)

These lead to 〈Ô4 | Ô2Ô2〉 = 0. Multi-particle states will
generically not be orthogonal (see also footnote 9), but
in our case this turns out to be far less important than
the 1/N2 corrections to the norms. We will for simplicity
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use a classical configuration for which

η4
N

=
(η2
N

)2

=
η

N
, (52)

where the ηJ are defined in (46). Closer inspection of
the coherent state of the sphaleron given in (22) shows
that the expectation values of e.g. the Tr(FmnF

mn)
and Tr(FmnF

mnFrsF
rs) states are similarly related.

The energy radiated into O2 and O4 particles can be
computed using formula (35), summed over a suitably
large range of values for p2 and p4. In our particular
case, this formula reduces to

E(J, pcutoff
2 , pcutoff

4 ) =

pcutoff

2
∑

p2=0

pcutoff

4
∑

p4=0

∣

∣

∣

∣

η2
2

λ2

∣

∣

∣

∣

p2 ∣
∣

∣

∣

η2
4

λ4

∣

∣

∣

∣

p4 JpJ
2p24p4

× C2

〈0| (Ô2)p2(Ô4)p4 (Ô†
4)
p4(Ô†

2)
p2 |0〉 〈c|c〉

.

(53)

and the maximum values of p2 and p4 which are included
in the sum should be taken sufficiently large as to include
at least the maximum term in the sum. This requirement
is indeed met in our numerical approach. We have com-
puted the ratio of energies in the J = 2 and J = 4 par-
ticles using successive approximations of (53), for larger
and larger pcutoff

2 and pcutoff
4 ,

lim
pcutoff

2
→∞

pcutoff

4
→∞

E(4, pcutoff
2 , pcutoff

4 )

E(2, pcutoff
2 , pcutoff

4 )
=: R(η2/λ2) (54)

for a range of couplings. A typical example is plotted in
figure 5. One clearly sees that the asymptotic value of the
ratio (54), given by the exponent of the asymptotic height
difference between the two surfaces, is smaller than one.
We therefore conclude that our calculation predicts that
higher-energy states in the decay product are suppressed
with respect to the lower-energy ones. This is in qualita-
tive agreement with alternative calculations of this decay
process [9].

It would be very interesting to extend our analysis to
higher-rank gauge groups, perhaps by obtaining an ana-
lytic expression for the norms of the states. For N > 4,
there are more than two gauge singlet states, and it be-
comes possible to determine the suppression factor as a
function of the energy in more detail. We leave this for
future investigations.

IV. DISCUSSION AND OPEN ISSUES

We have presented the formalism to analyse the de-
cay of unstable D-branes in the AdS5 × S5 background
by considering the dual gauge theory. Our results show
qualitative agreement with previous work on D-particle

decay, and our paper provides the basis for further study
of non-perturbative dynamical features of the correspon-
dence. Let us conclude by describing a number of open
issues and possible extensions of our work.

One obvious way to improve on our results would be to
determine analytical expressions for the norms required
in section III C (using the construction of states in terms
of group characters [26, 29, 30]). This would allow one to
extend the results obtained there to large values ofN . We
expect that already for the U(6) model it should be pos-
sible to get evidence that the observed suppression of the
decay products with their mass is actually exponential.
It would be interesting to see whether this suppression
is strong enough to compete with the Hagedorn growth
of the multiplicity of states at high mass levels. Obtain-
ing these results should enable one to check whether the
total energy emitted in the decay product is finite or not.

The flat space string calculation of [9] and the matrix
model calculation of [2] both obtained an infinite total
energy for the final decay product. One might think
that the reason for such behavior is that there is non-
trivial back-reaction of the radiated closed strings on the
boundary state, which has not been taken into account.
However, it was argued in [24, 31, 32] that the time de-
pendent boundary state of [1] already contains the full
information about the closed string sector into which it
is going to decay. Instead, the reason for the divergences
observed in [2, 9] has been attributed to the fact that the
coherent state of the unstable brane has an infinite spread
in energy (in the fermionic description it corresponds to
a sharply localised fermion in position space).

We believe that, whatever the reason for the observed
divergence, the emitted energy calculated from our coher-
ent state should be finite. In our setup there is no issue
of backreaction, since there is no separation between the
source and the “remainder” in our system. For the con-
struction of the coherent state we have used a solution of
the full, non-linear Yang-Mills equations of motion. Also,
as one can check, the coherent state thus constructed
has finite spread both in momentum and position space,
hence avoiding the aforementioned problem.

To make a link of our work to the comments of [24, 32]
and as a comparison to the matrix model, let us note
that the classical tachyon evolution is governed by the
reduced Yang-Mills action (8) (or, to be more precise, to
a similar reduction based on more general gauge group
embeddings of the type (14)). One might hope that this
action is dual to the open string field theory on decaying
D-particles in the bulk of AdS. However, this requires
further analysis.

As we have explained, due to the non-perturbative na-
ture of the initial sphaleron configuration, the compu-
tation of the decay product requires information from
a regime in which both N → ∞ as well as the number
of particles p → ∞. Understanding this double limit
might circumvent the need to calculate the state norms
exactly when calculating the energy distribution in the
final state. Finally, it would be interesting to understand
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FIG. 5: Successive approximations to the logarithm of the total energy radiated in the J = 2 particles (light, blue surface)
and J = 4 particles (dark, red surface). The x and y axes label the maximum value of p2 and p4 in the sum (53). The values
asymptote to the full result in the upper left corner of the graph. The curves in the x − z and y − z plane are similar to the
continuous lines in figure 4. While the present plot shows energies, qualitatively similar plots are obtained for the particle
numbers.

how quantum corrections can be incorporated into our
formalism, in order to see how much they influence the
qualitative characteristics of the decay product.
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V. APPENDIX

A. S2 operator–state correspondence

We will here consider the operator–state correspon-
dence in the context of a simple S2 × R example. Using
the procedure outlined in the main text, let us construct
all states corresponding to set of operators

Ô1 := Tr
(

∂(µχ∂ν)χ
)

− 1

d
gµν Tr

(

∂ρχ∂
ρχ
)

,

Ô2 := Tr
(

∂ρχ∂
ρχ
)

,

Ô3 := Tr
(

χ∂µ∂νχ
)

.

(55)

Using the counting of states introduced by Sundborg [18]
and Polyakov [33] (see also Aharony et al. [34]) we see
that the total number of states created by these operators
is

∂µχ∂νχ :
3 · 4
2

= 6 states ,

χ∂µ∂νχ :
3 · 4
2

− 1 = 5 states ,

(56)

giving in total 11 states. This means that the operators
(55) also create 11 states, since they are all possible op-
erators one can build out of building blocks (56). Let us
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first count the number of states created by the operator
Ô2. The operator has dimension ∆ = 3, hence we can

decompose it onto the various states as follows

lim
τ→−∞

∫

S2

e−3τ
∑

l′′,m′′

Yl′′m′′ ∂ρ

(

∑

l,m

e
1

2
(2l+1)τY ∗

lma
†
lm

)

∂ρ
(

∑

l′,m′

e
1

2
(2l′+1)τY ∗

l′m′a
†
l′m′

)

|0〉 . (57)

Note that while the spherical harmonics which figure in the expansion of the field χ are on-shell, the spherical
harmonics Yl′′m′′ onto which we project need not be on-shell. Clearly the options for (l, l′) in (57) are (2, 0), (i.e.
(0, 2)) and (1, 1). The explicit expressions before integration are (Ni,j are normalisation constants)

∂µχ∂
µχ
∣

∣

∣

(l,l′)=(0,2)
|0〉 =

5

8
√
π

∑

m′

Y ∗
2m′ a

†
00a

†
2m′ |0〉 ,

∂µχ∂
µχ
∣

∣

∣

(l,l′)=(1,1)
|0〉 =

5

4
√
π

[

(a†1,−1)
2N 2

1,−1

(5

4
sin2 θ

)

e2iφ + (a†1,1)
2N 2

1,1

(5

4
sin2 θ

)

e−2iφ

+(a†1,0)
2N 2

1,0

(9

4
cos2 θ

)

+ a†1,1a
†
1,−1N1,1N1,−1

(

− 4 − 5

2
sin2 θ

)

+ a†1,−1a
†
1,0N1,−1N1,0

(5

2
sin θ cos θ

)

eiφ

+ a†1,1a
†
1,0N1,1N1,0

(

− 4 sin θ cos θ
)

e−iφ
]

|0〉 .

(58)

We see that projection onto the Yl′′m′′ modes with l′′ = 2

would give five non-zero projections (the a†1,1a
†
1,−1 and

(a†0)
2 come together), which is too many. The correct

procedure is to use the lowest harmonic l′′ = 0, in which
case only one state (the second and third lines in (58)) is
selected. If one repeats similar exercises with the opera-
tors Ô1 and Ô3, one obtains states that are not orthogo-
nal to states obtained from Ô2 unless one uses the appro-
priate lowest lying tensor spherical harmonic. To see this
we need to use the tensor harmonics on S2. There are
four types of lowest-lying 2-tensor spherical harmonics:

η
(lm)
ab = Y (lm)gab , l ≥ 0 , (59)

ψ
(lm)
ab = Y

(lm)
;ab + 1

2 l(l + 1) , l ≥ 2 , (60)

χ
(lm)
ab = Y (lm)ǫab , l ≥ 0 , (61)

φ
(lm)
ab = 1

2

(

φ
(lm)
a;b + φ

(lm)
b;a

)

, l ≥ 2 , (62)

where φ
(lm)
a is a vector spherical harmonic, given by

φ
(lm)
a = ǫa

bY
(lm)
,b . The η mode is a pure trace so it does

not contribute when contracted with Ô1 or Ô3 and the
equations of motion for χ are used. Furthermore, the χ
mode is anti-symmetric, so it also leads to a zero. Thus
we find, by explicitly contracting ψ and φ with the two
operators, multiplying with e−3τ and taking the τ → −∞

limit, and finally integrating over S2, that
∫

S2

ψ
(l=2,m=−2)
ab Ôab1 dΩ ∼

(

a†1,1
)2|0〉 ,

∫

S2

φ
(l=2,m=−2)
ab Ôab1 dΩ = 0 ,

∫

S2

ψ
(l=2,m=−2)
ab Ôab3 dΩ ∼ a†2,2a

†
0,0|0〉 ,

∫

S2

ψ
(l=2,m=−2)
ab Ôab3 dΩ = 0 ,

(63)

and with similar expressions for the other 4 labels (2, 1),
(2, 0), (2,−1) and (2,−2). Note however, that all these
expressions involve different bilinears of operators a† and
hence are automatically orthogonal.

In summary, we thus find that the operators Ô1 and
Ô3 create 5 states each, while operator Ô2 corresponds
to a single state, altogether giving a total of 11 states as
required by (56).

B. Singlet projections

We will here use a simple example to show how the
smallness of the expectation values plotted in e.g. fig-
ure 4 can be understood. As mentioned in the main
text, the crucial reason is that the coherent state used
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to make these plots was the state |c〉 (rather than the
state (24)), and this state contains both singlet and non-
singlet states. We have argued that the suppression in
figure 4 is determined by the number of singlets versus the
number of non-singlet states in |c〉. To illustrate this, we
will here use the J = 2 operator in U(2), for a non-abelian

scalar. There are four elementary operators â†, . . . d̂†,

Â† =

(

â† b̂†

ĉ† d̂†

)

. (64)

and each of these satisfies a canonical commutation rela-
tion with its conjugate. For the classical field, let us take
the simple example of

Aclass. =

(

η 0
0 0

)

. (65)

This implies that the coherent state is given by

|c〉 = C exp
( 1

g2
Tr
(

Aclass.Â
†)
)

|0〉 = C exp
( 1

g2
ηâ†
)

|0〉 .
(66)

The correct normalisation constant is thus

C2 = exp
(

− η2

g2

)

. (67)

We always compute projections of the coherent state onto
gauge-singlet states. Let us consider the p = 1 case,

∣

∣

∣

〈

0
∣

∣Tr(Â2)
∣

∣c
〉

∣

∣

∣

2

〈

0
∣

∣Tr(Â2) Tr((Â†)2)
∣

∣0
〉 〈

c
∣

∣c
〉 . (68)

The norm in the denominator equals 2N2g4 = 8g4. This
gives, if one adds the trivial p = 0 term,

P(J = 2) = C2
(

1+
η4

8 g4
+ . . .

)

=

(

1 + η4

8 g4 + . . .
)

(

1 + η2

g2 + η4

2 g4 + . . .
) .

(69)
Here we have expanded C2 in the second step. The fact
that P(J = 2) comes out smaller than 1 has two reasons.
Firstly, the odd powers of η2/g2 are manifestly absent
from the numerator, since they correspond to the states
with odd powers of the operator â and are hence mani-
festly non-singlets. Secondly, the coefficient of η4/g4 in
the numerator is only 1/8, as compared to the 1/2 in the
denominator. This is because out of all quadratic opera-
tors that involve the operator â in some combination with

the operators â . . . d̂, only one is a trace operator. We are
focusing on the operators that necessarily involve â, since
all other operators are absent in the coherent state. In

the sector which contains â2, b̂ĉ and d̂2, there are three
of those,

Ô1 = â2+2b̂ĉ+ d̂2 , Ô2 = â2−2b̂ĉ+ d̂2 , Ô3 = â2− d̂2 .
(70)

As given here, these are orthogonal. However, only Ô1 is
a single-trace operator.

If we also compute the projection of the coherent state
onto Ô2 and Ô3, and add these probabilities to the one
found for Ô1, we get

P(J = 2) = C2
(

1 +
η4

g4

[1

8
+

1

8
+

1

4

]

+ . . .
)

. (71)

Now the 1/2 precisely matches the 1/2 in C2.

Note that this issue becomes more and more serious as
we go up in the number of operator insertions. The very
small numbers as presented in section III C thus arise
because these only count multi-particle singlet states, as
opposed to generic multi-particle states.

C. Geometrical expressions

In this section we collect some intermediate results of
the calculations and some useful formulae that were used
in the main text. The coordinates which we use on R×S3

are related to Cartesian coordinates via

z1 = x0 + ix1

r cos

(

θ

2

)

=

(

cos

(

φ+ ψ

2

)

+ i sin

(

φ+ ψ

2

))

,

z2 = x3 + ix4

r cos

(

θ

2

)

=

(

cos

(

φ− ψ

2

)

+ i sin

(

φ+ ψ

2

))

,

(72)

after which we perform a conformal rescaling to obtain
the metric

ds2 = −dt2+
R2

4

(

dθ2+dψ2+dφ2+2 cos θ dψdφ
)

. (73)

The coordinate ranges are given by θ ∈ [0, π〉, φ ∈ [0, 2π〉
and ψ ∈ [0, 4π〉. The volume of the S3 part is thus com-
puted to be vol(S3) = 2π2R3. The inverse metric is

gθθ =
4

R2
gφφ = gψψ =

4

R2 sin2(θ)
gψφ = − 4 cos θ

R2 sin2 θ
(74)

and the connection

Γθφψ =
1

2
sin θ ,

Γφφθ = Γψψθ =
cos θ

2 sin θ
,

Γφψθ = Γψφθ = − 1

2 sin θ

(75)
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The gauge potential (5) in coordinates (t, θ, φ, ψ) reads

At = 0 ,

Aθ =
i

2
f(t)(cosφσ2 − sinφσ3) ,

Aφ =
i

2
f(t)σ1 ,

Aψ =
i

2
f(t)(cos θ σ1 + sin θ sinφσ2 + sin θ cosφσ3) .

(76)
The field strength is defined by

Fµν = ∂µAν − ∂νAµ − [Aµ, Aν ] , (77)

and the corresponding gauge transformations are

Aµ → ΛAµΛ
† − Λ∂µΛ

† . (78)

For the sphaleron configuration (5), the field strenghts
are given by

Fθφ = B(sin φσ2 + cosφσ3) ,

Fθψ = B(− sin θσ1 + sinφ cos θσ2 + cos θ cosφσ3) ,

Fφψ = B(sin θ cosφσ2 − sin θ sinφσ3)

F0θ =
ḟ

f
Aθ F0ψ =

ḟ

f
Aψ F0φ =

ḟ

f
Aφ ,

B ≡ if

2
(1 − f) .

(79)
The lowest-order vector spherical harmonics are related
to the canonically normalised left-invariant one-forms as

Y1
2 (0,0)

1
2

=
i

2

1
√

vol(S3)
Σ3 , Σ1 =

√

2 vol(S3)i
(

Y1
2 (1,0)

1
2

+ Y1
2 (−1,0)

1
2

)

,

Y1
2 (−1,0)

1
2

=
1

2
√

2

1
√

vol(S3)

(

− Σ2 − iΣ1
)

, Σ1 =
√

2 vol(S3)i
(

Y1
2 (1,0)

1
2

+ Y1
2 (−1,0)

1
2

)

,

Y1
2 (1,0)

1
2

=
1

2
√

2

1
√

vol(S3)

(

+ Σ2 − iΣ1
)

, Σ3 = −2i
√

vol(S3)Y1
2 (0,0)

1
2
.

(80)

Here the left-invariant one-forms are given by

Σ1 = cosψ dθ + sinψ sin θ dφ ,

Σ2 = − sinψ dθ + cosψ sin θ dφ ,

Σ3 = cos θ dφ+ dψ ,

(81)

For the explanation of indices, see formula (19).
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