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Abstract

Motivated by recent disagreements in the context of AdS/CFT, we study the non-planar sector of

the BMN correspondence. In particular, we reconsider the energy shift of states with two stringy

excitations in light-cone string field theory and explicitly determine its complete perturbative con-

tribution from the impurity-conserving channel. Surprisingly, our result neither agrees with earlier

leading order computations, nor reproduces the gauge theory prediction. More than that, it features

half-integer powers of the effective gauge coupling λ′ representing a qualitative difference to gauge

theory. Based on supersymmetry we argue that the above truncation is not suited for conclusive

tests of the BMN duality.
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1 Introduction

In the last two years a lot of progress has been made in understanding the ideas of the AdS/CFT

correspondence. The starting point of a long chain of developments marks the BMN duality [1],

which connects N = 4 U(N) super Yang-Mills (SYM) in the sector of operators with large U(1)R

charge J ∝
√
N → ∞ and type IIB string theory on the maximally supersymmetric plane-wave

background [2]. In contrast to AdS5 ×S5, here the worldsheet σ-model reduces to a free theory in the

light-cone gauge and thus, can easily be quantized [3]. Moreover, string interactions can be treated in

the context of light-cone string field theory [4, 5, 6].

The parameters of the two sides of the duality are linked via [1, 7]1

1

(µα′ p+)2
=
g2
YMN

J2
≡ λ′ and 4π gs (µα′ p+)2 =

J2

N
≡ g2 , (1.1)

and therefore free string theory corresponds to the planar (g2 = 0) sector, while string interactions

are identified with non-planar, interacting gauge theory. This statement has been subject to a wide

range of tests based on the key relation

1

µ
El.c. = ∆ − J , (1.2)

where El.c. is the light-cone energy of string states and ∆ denotes the conformal dimension of the

dual SYM-operators. In particular for the planar case, El.c. could explicitly be verified for so-called

two-impurity operators (i.e. two stringy excitations) up to two loops [1, 8, 9]; for all-loop arguments

see [10, 11]. The extension to the interacting part proved to be much more involved. On the field

theory side, the anomalous dimension of two-impurity operators is known up to O(g2
2λ

′2) [12, 13, 9]

∆ − J = 2 +
g2
2

4π2

[( 1

12
+

35

32n2 π2

)
λ′ +

1

4

( 1

12
+

35

32n2 π2

)2
λ′2 + · · ·

]
, (1.3)

whereas in light-cone SFT only the leading order energy shift has been computed [14]. Over and

above, matrix elements of Hl.c. and the dilatation operator D as well as decay widths of one-string

states and single-trace operators have been successfully compared to leading order, see e.g. [15]. For

more details we refer to the reviews [16] and references therein.

It was subsequently realized, that the BMN correspondence can be generalized in essentially two direc-

tions: Curvature corrections to the plane-wave background can be taken into account [17] having their

counterpart in 1/J corrections of planar BMN gauge theory [18, 19]. On the other hand, a completely

new field was established by considering semiclassical string states in AdS5 × S5 [20] and the insight

that the planar spectrum of SYM operators is governed by an integrable Hamiltonian (long-range)

spin chain [21], leading to a vast class of tests, see the review [22] and references therein. Both cases

show perfect agreement up to two loops [23], see also [24], but – despite of this tremendous progress

– several open questions and puzzles gradually emerged at three loops: In the latter approach, string
1Here µ denotes the curvature scale of the plane-wave geometry and p+ is the light-cone momentum.
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and gauge theory continue to exhibit qualitatively similar structures but start to differ in detail [25].

Somewhat more disturbing results have been found in [17]: degeneracies present in the gauge theory

and crucial for integrability [9, 19, 26] are lifted in the near plane-wave background.

These recent developments raise the question whether disagreements do already occur in the BMN

duality itself, namely in the non-planar, interacting sector. As was pointed out in [27], certain matrix

elements of Hl.c. and D seem to mismatch starting at g2 λ
′2. This however need not necessarily imply

that physical quantities show disagreement as well and deserves a more careful investigation, which

we initiate in the present paper. Eventually one would like to compute independently the energy of

states with two (stringy) excitations on the string theory side and hopefully reproduce (1.3).

Therefore, in section 2, we briefly introduce some well-known facts about the free theory and explicitly

construct the supermultiplet for states with two stringy excitations. Especially we find that states

consisting of two fermionic/bosonic oscillators in general mix with each other.

The evaluation of the energy shift ∼ O(g2
2) demands the knowledge of cubic and quartic terms in the

Hamiltonian. We review (section 3) the formulation of the three-string vertex restricted by the super-

algebra at order g2 and comment on further constraints on the quartic interaction. In particular, we

notice that a term induced by the second order dynamical supercharges cannot a priori be excluded.

It is a known fact, that all members of a supermultiplet receive the same energy corrections. Fur-

thermore (section 4), one can show by using the states in the supermultiplet, degenerate perturbation

theory becomes redundant. Note, that both statements are only valid when including impurity-

conserving and -non-conserving intermediate states. Here, we calculate as a first step the complete

perturbative (in µ−1) impurity-conserving contribution for one particular representation. Quite sur-

prisingly our result disagrees with that given in the literature [14] and also fails to reproduce the

gauge theory prediction (1.3) at two loops. Above all as a qualitative difference to gauge theory the

series features not only integer, but also half-integer powers of λ′. It seems to be apparent that this

truncated analysis does not reveal the whole story. We conclude with a discussion.

2 The free theory

In this section, we introduce the free theory and its symmetries and analyze the underlying supermul-

tiplet structure. Type IIB string theory on the plane-wave space-time can be quantized in light-cone

gauge [3] resulting in the Hamiltonian

H2 =
1

α

∑

n∈Z

ωnNn , (2.1)

where α ≡ α′p+ is the light-cone momentum, the frequencies are given by ωn =
√
n2 + (µα)2 and Nn

indicates the number operator

Nn = α† i
n α

i
n + α† i′

n αi′
n +

(
β†n

)α1α2
(
βn

)
α1α2

+
(
β†n

)α̇1α̇2
(
βn

)
α̇1α̇2

. (2.2)
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Compared to [4] we performed a redefinition of the oscillator basis to have the standard level-matching

condition (cf. Appendix A), i.e. the operator
∑

n 6=0 nNn has to vanish on the space of physical states.

Here the bosonic oscillators αn transform as [4,1] = [(2,2), (1,1)] and [1,4] = [(1,1), (2,2)] under

the transverse SO(4) × SO(4) ≃ SU(2)2 × SU(2)2 isometry of the plane-wave background, whereas

the fermionic oscillators βn give the representations [(2,1), (2,1)] and [(1,2), (1,2)]. Both obey the

standard (anti)-commutation relations.

Due to the effective harmonic oscillator potential of the background geometry, the theory possesses an

essentially unique SO(4) × SO(4) singlet ground state |α〉 (labeled by its light-cone momentum since

P+ is a central element of the plane-wave superalgebra) defined by

αn|α〉 = 0 , βn|α〉 = 0 , n ∈ Z . (2.3)

Excited states are obtained by acting with the creation oscillators on |α〉 subject to the level-matching

condition and can be organized into multiplets of the plane-wave superalgebra. Its bosonic generators

are H, P+, P I , J+I (I = 1, . . . , 8) and the angular momentum generators of the transverse SO(4) ×
SO(4) J ij and J i′j′ , while the 32 supersymmetries are generated by Q+, Q̄+ (both transforming as

[(2,1), (2,1)] and [(1,2), (1,2)]) and Q−, Q̄− (transforming as [(2,1), (1,2)] and [(1,2), (2,1)]).

On a general eigenstate of H2 in a given irreducible representation of SO(4) × SO(4) the nontrivial

action of generators is as follows: Certain combinations of P I and JI+ add or remove a bosonic

zero-mode excitation; this raises or lowers the energy of the state by µ and is the discretized analog

of giving a state transverse momentum. Note, that P I is not a quantum number in the plane-wave

space-time since it does not commute with H. Similarly Q+ and Q̄+ add or remove a fermionic

zero-mode excitation. This is why not the energy but C ≡ ∑
n 6=0 ωnNn, which only counts the

non-zero-mode (‘stringy’) excitations, is a Casimir of the superalgebra. Finally, the most interesting

generators are Q− and Q̄−; these do not change the number of excitations, commute with H and,

therefore transform states of the same energy but different SO(4) × SO(4) representations into each

other. This action of the generators is schematically depicted in Fig. 1. In the following we will

call a multiplet containing states with n stringy excitations a ‘n–impurity’ multiplet. The simplest

example is the ’zero-impurity’, i.e. supergravity multiplet [28]. In this case the highest weight state

is the ground state |α〉 annihilated by all Q−, Q̄− and, therefore, this multiplet is short and protected

against quantum corrections through string interactions.

2.1 The two-impurity supermultiplet

In contrast to the supergravity multiplet, where the state of lowest energy is unique, for the two-

impurity multiplet the states of lowest energy 2ωn
|α| are those with two stringy oscillators, schematically

bosons : α†
nα

†
−n|α〉 , β†nβ

†
−n|α〉 , fermions : α†

nβ
†
−n|α〉 , α†

−nβ
†
n|α〉 .

All of these 256 states are linked to each other by acting with half of the dynamical supercharges

on a highest weight state which we will explicitly determine below, see also [17] for the discussion in

3



P, J, Q +

Ε+µ

E

E+2 µ

Q−

Figure 1: Action of the generators on the supermultiplet. Note, that the horizontal action of Q−

terminates after at most eight units, while the vertical action continues indefinitely.

the case of the near plane-wave background. States with two bosonic oscillators are decomposed into

irreducible representations of SO(4) × SO(4), namely

|[1,1]〉 =
1

2
α† k

n α† k
−n|α〉 , (2.4)

|[3±,1]〉[ij] =
1

2

(
α† i

n α
† j
−n − α† j

n α† i
−n ± εijklα† k

n α† l
−n

)
|α〉 , (2.5)

|[4,4]〉ij′± =
1 ± Ω√

2
α† i

n α
† j′
−n|α〉 , (2.6)

|[9,1]〉(ij) =
1√
2

(
α† i

n α
† j
−n + α† j

n α† i
−n − 1

2
δijα† k

n α† k
−n

)
|α〉 , (2.7)

and analogously for (i, j) → (i′, j′). Here 3
± indicate the (anti)-selfdual representations. Under

worldsheet-parity Ω (i.e. n ↔ −n) the singlets and the symmetric-traceless representations are even,

whereas the (anti)-selfdual are odd. The (δ-function)-normalization2 of |[9,1]〉 is 1 + 1
2δ

ij , all other

states are normalized to one.

Two fermionic oscillators lead to the states (cf. Appendix A for our conventions for the σ-matrices)

|[1,1]〉 =
1

2

(
β†n

)
α1α2

(
β†−n

)α1α2 |α〉 , (2.8)

|[3+,1]〉[ij] =
1

2

(
σij

)α̇1β̇1
(
β†n

)
α̇1α̇2

(
β†−n

)α̇2

β̇1
|α〉 , (2.9)

|[3−,1]〉[ij] =
1

2

(
σij

)α1β1
(
β†n

)
α1α2

(
β†−n

)α2

β1
|α〉 , (2.10)

|[4,4]〉ij′± =
1 ± Ω

2
√

2

(
σi

)α̇1α1
(
σj′)α̇2α2

(
β†n

)
α1α2

(
β†−n

)
α̇1α̇2

|α〉 , (2.11)

|[3−,3−]〉[ij][i
′j′]

=
1

2

(
σij

)α1β1
(
σi′j′)α2β2

(
β†n

)
α1α2

(
β†−n

)
β1β2

|α〉 , (2.12)

2We will always suppress the δ-function normalization factor |α3|δ(α3 + α4), where α3 and α4 denote the light-cone

momenta of the in-/out-states, respectively.
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and similarly for the remaining representations. Here, the singlets and |[3±,3±]〉 have odd, whereas

the (anti)-selfdual representations have even worldsheet-parity. Again we have normalized the states

to one. Notice that only |[9,1]〉(ij), |[1,9]〉(i′j′) and |[3±,3±]〉[ij][i′j′] are uniquely constructed of bosonic

or fermionic oscillators, respectively.

The remaining representations are realized both with bosonic and fermionic oscillators and, therefore

potentially mix with each other3. For completeness we mention that fermionic two-impurity states

transform as [(2,1), (1,2)], [(3,2), (2,1)], [(2,3), (1,2)] and the same representations with the two

SO(4)’s exchanged. These are e.g.

|[(2,1), (1,2)〉±α1α̇2 =
1 ± Ω

2

(
α†
−n

)
α1α̇1

(
β†n

)α̇1

α̇2
|α〉 , (2.13)

|[(2,3), (1,2)〉[ij]±α1α̇2
=

1 ± Ω

2

(
σij

)α̇1β̇1
(
α†
−n

)
α1α̇1

(
β†n

)
β̇1α̇2

|α〉 , (2.14)

|[(3,2), (2,1)〉[ij]± α̇1α2
=

1 ± Ω

2

(
σij

)α1β1
(
α†
−n

)
α1α̇1

(
β†n

)
β1α2

|α〉 . (2.15)

To construct the two-impurity multiplet explicitly we determine the highest weight state that is

annihilated by P I , JI+, Q+ and Q̄+ (no zero-mode excitations), J ij and J i′j′ (a singlet) and by

half of the dynamical supercharges which we choose to be Q̄−
α1α̇2

and Q−
α̇1α2

(cf. Appendix A for their

explicit oscillator expressions). The latter requirements impose three conditions on the most general

ansatz (with |A|2 + |B|2 + |C|2 + |D|2 = 1/4 to normalize it to one)

|[1,1]〉(1) =
(
Aα† i

n α
† i
−n +Bα† i′

n α† i′
−n + C

(
β†n

)
α1α2

(
β†−n

)α1α2 +D
(
β†n

)
α̇1α̇2

(
β†−n

)α̇1α̇2
)
|α〉 , (2.16)

with the (up to a phase in A) unique solution

A =
ωn − µα

4ωn
, B = −

(
ωn + µα

n

)2

A , C = −D = −ie(α)
ωn + µα

n
A . (2.17)

As |[1,1]〉(1) contains states of opposite worldsheet parity, Ω is not a quantum number to label states

in the supermultiplet; in particular for large µ and α < 0 we have

A ∼ 1

2
, B ∼ −n

2

8
λ′ , C = −D ∼ in

4

√
λ′ , (2.18)

reflecting that in the BMN gauge theory the singlet operator built out of scalar impurities starts to

mix with covariant derivatives and fermions at higher (than one) loops. By applying Q−
α1α̇2

and Q̄−
α̇1α2

successively to |[1,1]〉(1) we generate all 28 = 256 states with two stringy excitations. For example,

3In this case it is sometimes convenient to introduce
(
α†

n

)
α1α̇1

≡ 1√
2

(
σi

)
α1α̇1

α† i
n and

(
α†

n

)
α2α̇2

≡ 1√
2

(
σi′

)
α2α̇2

α† i′

n .

Then e.g. |[3+,1]〉
[ij]

= 1
2

(
σij

)α̇1β̇1
(
α†

n

)
α1α̇1

(
α
†
−n

)α1

β̇1

|α〉.
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acting twice with
√
µ δ ≡ eα1α̇2Q−

α1α̇2
+ ēα̇1α2Q̄−

α̇1α2
we find 4

δ2|[1,1]〉(1) =
ie(n)

µα

√
8ωn(ωn + µα)

(
eij|[3−,1]〉[ij](1) − ēij |[3+,1]〉[ij](1)

)
− 4

ωn

µα
eij

′ |[4,4]〉ij′+(1)

− ie(n)

µα

√
8ωn(ωn − µα)

(
ei

′j′ |[1,3+]〉[i
′j′]

(2) − ēi
′j′|[1,3−]〉[i

′j′]
(2)

)
. (2.19)

Here

|[3+,1]〉[ij](1/2) =
(
σij

)α̇1β̇1
(
A(1/2)

(
α†

n

)
α1α̇1

(
α†
−n

)α1

β̇1
+B(1/2)

(
β†n

)
α̇1α̇2

(
β†−n

)α̇2

β̇1

)
|α〉 , (2.20)

|[3−,1]〉[ij](1/2) =
(
σij

)α1β1
(
A(1/2)

(
α†

n

)
α1α̇1

(
α†
−n

)α̇1

β1
−B(1/2)

(
β†n

)
α̇1α̇2

(
β†−n

)α2

β1

)
|α〉 , (2.21)

|[4,4]〉ij′+ (1) =
1 + Ω

4

(
σi

)α̇1α1
(
σj′

)α̇2α2
((
α†

n

)
α1α̇1

(
α†
−n

)
α2α̇2

+ e(α)
(
β†n

)
α1α2

(
β†−n

)
α̇1α̇2

)
|α〉 , (2.22)

and analogously for (i, j) → (i′, j′), while the mixing-coefficients are

A(1/2) =

√
ωn ∓ µα

8ωn
, B(1/2) = ± i e(αn)

√
ωn ± µα

8ωn
. (2.23)

In the large µ limit and α < 0 this yields e.g. A1 ∼ 1
2 , B1 ∼ in

2

√
λ′ so the mixing of states is again a√

λ′ effect. For |[4,4]〉+ (1) the mixing is maximal in agreement with the gauge theory result. Up to

irrelevant phases and an overall factor of
√

2 (which can be absorbed in the definition of eα1α̇2 , ēα̇1α2)

the leading order SUSY variation (2.19) precisely agrees with [18].

3 Turning on Interactions

String interactions in the plane-wave background have been treated within the framework of light-cone

string field theory [4, 5, 6]. Its guiding principles are worldsheet continuity and the realization of the

superalgebra in the full interacting theory: the superalgebra gives rise to two types of constraints –

kinematical and dynamical – depending on whether the participating generators receive g2 corrections

(H, Q− and Q̄−) or not. Kinematical constraints lead to the continuity conditions in superspace,

whereas dynamical constraints require the insertion of interaction point operators [29]. In practice

these constraints will be solved perturbatively, for example H, the full Hamiltonian of the interacting

theory, has an expansion in g2

H = H2 + g2H3 + g2
2H4 + · · · . (3.1)

Here the operator H3 represents a three-string interaction, but it is more convenient to express it as

a state |H3〉 in the multi-string Hilbert space and work in the number basis [30]. Then the dynamical

4We define eij = eα1α̇2

(
σij

)α1β1e
α̇2

β1
, ēij = ēα̇1α2

(
σij

)α̇1β̇1 ē
α2

β̇1

, eij′ = eα1α̇2

(
σi

)α̇1α1
(
σj′

)α̇2α2 ēα̇1α2
, and analo-

gously for ei′j′ etc.
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generators are of the form P|V 〉, where P are the prefactors determined by the dynamical constraints

(i.e. the oscillator expressions of the interaction point operators mentioned above) and the kinematical

part of the vertex |V 〉 common to all the dynamical generators implements the continuity conditions.

These follow for example from [H3, P
I ] = 0, so the interaction vertex is translationally invariant and

conserves transverse momentum. In the number basis the bosonic part of |V 〉 has the form

|Eα〉 = exp


1

2

3∑

s,t=1

∑

m,n∈Z

α† I
m(s)Ñ

st
mnα

† I
n(t)


 |α〉123 , (3.2)

where |α〉123 = |α〉1 ⊗ |α〉2 ⊗ |α〉3 is the tensor product of three (bosonic) vacuum states and Ñ st
mn are

known as Neumann matrices, see [31] for explicit expressions as functions of µ, αs.

To fulfil the dynamical constraints we define the linear combinations of the free supercharges
√

2η Q ≡
Q− + iQ̄− and

√
2η̄ Q̃ = Q− − iQ̄− (η = eiπ/4) which satisfy on the space of physical states e.g.

{Qα1α̇2 , Qβ1β̇2
} = {Q̃α1α̇2 , Q̃β1β̇2

} = −2εα1β1εα̇2β̇2
H ,

{Qα1α̇2 , Q̃β1β̇2
} = −µ εα̇2β̇2

(
σij

)
α1β1

J ij + µ εα1β1

(
σi′j′)

α̇2β̇2
J i′j′ ,

(3.3)

and similar relations for Qα̇1α2 and Q̃β̇1β2
. Since J ij and J i′j′ are not corrected by the interaction, it

follows that at order O(g2) the dynamical generators have to obey

{Q2 α1α̇2 , Q3 β1β̇2
} + {Q3 α1α̇2 , Q2 β1β̇2

} = −2εα1β1εα̇2β̇2
H3 , (3.4)

{Q̃2 α1α̇2 , Q̃3 β1β̇2
} + {Q̃3 α1α̇2 , Q̃2 β1β̇2

} = −2εα1β1εα̇2β̇2
H3 , (3.5)

{Q2 α1α̇2 , Q̃3 β1β̇2
} + {Q3 α1α̇2 , Q̃2 β1β̇2

} = 0 . (3.6)

Substituting the most general ansatz for, say Q3 α1α̇2 , compatible with the requirement that the

Hamiltonian prefactor in its functional form is quadratic in derivatives, into (3.4) and demanding

that the result only involves the tensor εα1β1εα̇2β̇2
fixes Q3 α1α̇2 and consequently also H3 up to their

normalization. The same procedure applies to Q̃3 α1α̇2 and requires that its normalization is the same

as of Q3 α1α̇2 .

In short, the three-string vertex and dynamical supercharges are

g2|H3〉 = −g2 f(µα3 ,
α1
α3

)
κ

4α3
3

[
3∑

s=1

∑

m∈Z

ωm(s)

αs
α† I

m(s)α
J
−m(s) −

µ

2
δIJ

]
vIJ |V 〉 , (3.7)

g2|Q3 β1β̇2
〉 = −g2 η̄ f(µα3 ,

α1
α3

)
1

4α3
3

√
−α

′κ
2
K̃IqIβ1β̇2

|V 〉 , (3.8)

g2|Q3 β̇1β2
〉 = −g2 η̄ f(µα3 ,

α1
α3

)
1

4α3
3

√
−α

′κ
2
K̃IqIβ̇1β2

|V 〉 , (3.9)

with similar expressions for |Q̃3〉. Here κ ≡ α1α2α3, α3 < 0 for the incoming and α1,2 > 0 for the

outgoing strings and K̃I is defined in (A.26). Further we list the relevant parts of vIJ , qIβ1β̇2
and

7



qIβ̇1β2
in the next section, for complete expressions see e.g. [5]. In equations (3.7)-(3.9) we suppressed

the integrals over light-cone momenta αt and the δ-function normalization factor |α3|δ
(∑3

t=1 αt

)
.

More importantly, as alluded to above, the normalization of the dynamical generators is not fixed by

the superalgebra at order O(g2) and can be an arbitrary (dimensionless) function f(µα3 ,
α1
α3

) of the

light-cone momenta and µ due to the fact that P+ is a central element of the algebra. Indeed, it does

not seem that further consistency conditions at higher orders in g2 would allow to fix f .

Now consider the constraints at order O(g2
2). These are e.g.

{Q2 α1α̇2 , Q4 β1β̇2
} + {Q4 α1α̇2 , Q2 β1β̇2

} + {Q3 α1α̇2 , Q3 β1β̇2
} = −2εα1β1εα̇2β̇2

H4 , (3.10)

{Q̃2 α1α̇2 , Q̃4 β1β̇2
} + {Q̃4 α1α̇2 , Q̃2 β1β̇2

} + {Q̃3 α1α̇2 , Q̃3 β1β̇2
} = −2εα1β1εα̇2β̇2

H4 , (3.11)

{Q2 α1α̇2 , Q̃4 β1β̇2
} + {Q4 α1α̇2 , Q̃2 β1β̇2

} + {Q3 α1α̇2 , Q̃3 β1β̇2
} = 0 (3.12)

and have been analyzed in some detail in [32]. In particular, it was found that {Q3, Q3} and {Q3, Q̃3}
diverge in the (2 → 2) - strings channel leading in the latter case to the introduction of a non-vanishing

Q4 (and Q̃4). The new supercharges – together with {Q3, Q3} – generate a contact term H4 needed

for finite scattering amplitudes. An analogue argumentation presumably holds for the (1 → 1) - string

channel. We have checked that for our calculations the above conditions are not violated if Q4 is set

to zero. Still, this constitutes only a necessary but clearly not sufficient requirement.

4 Computing energy shifts in light-cone SFT

To compute the energy shift of two-impurity states to leading order in g2, the relevant part of the

Hamiltonian is

H = H2 + g2H3 + g2
2H4 , (4.1)

where the contact term H4 acting in the single-string Hilbert space is induced by the cubic super-

charges5

H4 =
1

8
Q3 β1β̇2

Qβ1β̇2
3 +

1

8
Q3 β̇1β2

Qβ̇1β2
3 . (4.2)

As we have seen in section 2, there are generically several two-impurity eigenstates transforming in

the same irreducible representation of SO(4) × SO(4); hence these will mix with each other and we

have to use degenerate perturbation theory to compute their energy shift. The required formula for

the energy shift is standard and reads

δE(2)
n 〈ϕA

n |0〉 = g2
2

∑

B

[
∑

C

∑

p 6=n

〈ϕA
n |H3|ψC

p 〉〈ψC
p |H3|ϕB

n 〉
E

(0)
n − E

(0)
p

+ 〈ϕA
n |H4|ϕB

n 〉
]
〈ϕB

n |0〉 , (4.3)

Here A and B label the degenerate one-string eigenstates,
∑

C

∑
p 6=n |ψC

p 〉〈ψC
p | is the two-string pro-

jector and |0〉 =
∑

A〈ϕA
n |0〉 |ϕA

n 〉. Thus, we essentially have to diagonalize the mixing matrix

MAB = 〈ϕA
n |H3

(
E(0)

n −H2

)−1
H3 +H4|ϕB

n 〉 . (4.4)
5At this point we neglect possible contributions of Q4.
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Since the theory is supersymmetric, this can be achieved by constructing supermultiplets: Suppose

we have constructed the complete supermultiplet by acting with eight supercharges, say Q−
α1α̇2

and

Q̄−
α̇1α2

on a highest weight state that is annihilated by the remaining charges. Now consider two states

|1〉 and |2〉 carrying the same SO(4) × SO(4) quantum numbers, related by, say

|2〉 = Q− 4|1〉 , Q− 4 ≡ Q−
α1α̇2

Q−α̇2

β1
Q−α1

β̇2
Q−β1β̇2 ≡ −

(
Q−)

α1α̇2

(
Q− 3

)α1α̇2 . (4.5)

Therefore we have to show that the off-diagonal matrix elements of MAB vanish

〈1|M |2〉 = 〈1|M Q− 4|1〉 = 〈1|
[(
Q−)

α1α̇2
,M

](
Q− 3

)α1α̇2 |1〉 !
= 0 , (4.6)

where we used that 〈1|Q−
α1α̇2

= 0. As a matter of fact, equation (4.6) is a consequence of supersym-

metry. Recall
[
Q−,H

]
= 0, so in particular to order g2

2 we have the conditions

[
Q−

2 ,H2

]
= 0 , (4.7)

[
Q−

2 ,H3

]
= −

[
Q−

3 ,H2

]
, (4.8)

[
Q−

2 ,H4

]
= −

[
Q−

3 ,H3

]
−

[
Q−

4 ,H2

]
. (4.9)

Applying this to equation (4.6), using
{(
Q−

2

)
α1α̇2

,
(
Q−

3

)α̇1α̇2
}

= 0 and

〈1|H3

(
E(0)

n −H2

)−1[(
Q−

3

)
α1α̇2

,H2

](
Q− 3

2

)α1α̇2 |1〉 = 〈1|H3

(
Q−

3

)
α1α̇2

(
Q− 3

2

)α1α̇2 |1〉 , (4.10)

we find according to (4.9) and the Jacobi identity for {
[
Q−

4 ,H2

]
, Q− 3

2 }, that

〈1|M |2〉 = 〈1|
([(

Q−
3

)
α1α̇2

,H3

]
+

[(
Q−

2

)
α1α̇2

,H4

])(
Q− 3

2

)α1α̇2 |1〉 = 0 . (4.11)

This proves the claim. We would like to stress that this proof is only valid when taking into account

the full two-string projector, i.e. including impurity conserving and non-conserving channels. The

same holds for the well-known statement that all states in a supermultiplet receive the same energy

corrections.

In the following we will compute as an example the energy shift of the symmetric traceless state

|[9,1]〉(ij). Due to the lack of adequate techniques we will restrict ourselves to the analysis of the

impurity-conserving channel. Our result will further demonstrate the necessity of including the missing

channels.

4.1 The energy shift of |[9, 1]〉(ij)

As we saw in section 2, the state |[9,1]〉(ij) given in (2.7) has no counterpart built out of fermionic

oscillators6 and thus, this case is comparatively easy to consider. The relevant expressions for the

vertex are

vij = δij , ql
β1β̇2

= −iZγ̇1β̇2
(σl)

γ̇1

β1
, ql

β̇1β2
= −Yγ1β2(σ

l)
γ1

β̇1
, (4.12)

6The same holds for the |[3±,3±]〉(ij) states on the “fermionic” side.
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while the impurity-conserving part of the two-string projector
∑

C

∑
p 6=n |ψC

p 〉〈ψC
p | reads7

1
loop
2imp =

∫ 1

0

dr

2r(1 − r)

[
α† k

0 |α̃1〉α† l
0 |α̃2〉〈α̃2|αl

0 〈α̃1|αk
0 +

∑

p∈Z

α† k
p α† l

−p |α̃1〉 |α̃2〉〈α̃2| 〈α̃1|αl
−p α

k
p

]
,

1
cont
2imp =

∫ 1

0

dr

r(1 − r)

[
α† k

0 |α̃1〉β† a
0 |α̃2〉〈α̃2|βa

0 〈α̃1|αk
0 +

∑

p∈Z

α† k
p β† a

−p |α̃1〉 |α̃2〉〈α̃2| 〈α̃1|βa
−p α

k
p

]
,

(4.13)

where Y and Z denote the fermionic constituents of the prefactor (cf. (A.29)) and we sum over k, l

and the SO(8) spinor index a. Further we define α̃1 ≡ −α3r and α̃2 ≡ −α3(1 − r) using already the

δ-function normalizations α2
3 δ(α̃1 + α̃2 + α3) δ(α̃1 + α̃2 + α3) = α2

3 δ(α̃1 + α̃2 + α3) δ(α3 + α4) from

the two vertices; the factor |α3|δ(α3 + α4) will be suppressed, as it is cancelled by the normalization

of the external states.

In our notation, the oscillators act on the vacuum right next to them and therefore do not carry an

extra index. This convention also circumvents potential double-countings, e.g. treating α† i
0 |p+〉 |p+〉

and |p+〉α† i
0 |p+〉 as different states although they both correspond to the large J limit of the field

theory operator Tr[φi Z
J/2] Tr[ZJ/2].

When calculating the matrix elements of H3 and Q3, one obtains two contributions for each matrix

element according to the two possibilities of contracting the vacua of 12imp with |α1〉 and |α2〉 of the

vertex, meaning that α1 = −α3r and α2 = −α3(1 − r) in the first and vice versa in the second term.

Both give the same result since the vertex is a symmetric function of the light-cone momenta. One

finds

(ij)〈[9,1]| 〈α̃2|αl
0 〈α̃1|αk

0 |H3〉 = − 2 r(1 − r)
(ωn(3)

α3
+ µ

)
Ñ31

n,0 Ñ
32
n,0 ∆ijkl

(ij)〈[9,1]| 〈α̃2| 〈α̃1|αl
−p α

k
p |H3〉 = − 2 r(1 − r)

(ωn(3)

α3
−
ωp(1)

α3r

)
Ñ31

n,p Ñ
31
n,−p ∆ijkl

(4.14)

for the matrix elements of H3 and

(ij)〈[9,1]| 〈α̃2| (β0)
σ̇1σ̇2 〈α̃1|αk

0 |Q3 β1β̇2
〉 = − 2i C̄ G0(2)

(
Kn(3) +K−n(3)

)
Ñ31

n,0 ∆ijkl(σl)σ̇1
β1
δσ̇2

β̇2

(ij)〈[9,1]| 〈α̃2| 〈α̃1| (β−p)
σ̇1σ̇2 αk

p |Q3 β1β̇2
〉 = − 2i C̄ G|p|(1)

(
Kn(3)Ñ

31
n,p +K−n(3)Ñ

31
n,−p

)
∆ijkl(σl)σ̇1

β1
δσ̇2

β̇2

(ij)〈[9,1]| 〈α̃2| (β0)
σ1σ2 〈α̃1|αk

0 |Q3 β̇1β2
〉 = − 2 C̄ G0(2)

(
Kn(3) +K−n(3)

)
Ñ31

n,0 ∆ijkl(σl)σ1

β̇1
δσ2
β2

(ij)〈[9,1]| 〈α̃2| 〈α̃1| (β−p)
σ1σ2αk

p |Q3 β̇1β2
〉 = − 2 C̄ G|p|(1)

(
Kn(3)Ñ

31
n,p +K−n(3)Ñ

31
n,−p

)
∆ijkl(σl)σ1

β̇1
δσ2
β2

(4.15)

for Q3, where ∆ijkl ≡ 1√
2

{
δikδjl + δilδjk − 1

2δ
ijδkl

}
and C̄ ≡ η̄

4

√
− α′

2 α3
3

√
r(1 − r) 8. Here we have

fixed the normalization function f = 1 such that the gauge theory matrix element 〈m; 1− r|〈r|H̃ |n; 1〉
7Note, for the same reason as described above, fermionic oscillators do not contribute in this case to 1

loop
2imp .

8The vectors Kn(t) and Gn(t) appear in the oscillator expansions of the bosonic/fermionic constituents K̃, Y and Z.
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and 123〈α|α1
n α

2
−n α

1
p α

2
−p |H3〉 agree at leading order. It should be mentioned, that regardless of the

form of f the matrix elements necessarily fail to match at higher order [27]. Thus, this choice seems

to be somewhat arbitrary. Moreover, the final result for the energy shift might be very sensitive to

the r-dependence of f due to the integral in the projector.

After plugging in all remaining expressions (cf. Appendix A) the complete result - up to exponential

corrections - for the |[9,1]〉(ij) state reads9

1

µ
δE(2)

n ≈ g2
2

∫ 1

0
dr

sin4(πnr)

8π4 ω2
n(3)

{
n2 + 4µα3 (µα3 − ωn(3))

2 r n2 µ2 α2
3

− r2(1 − r)

µα3

∑

p>0

n2 ωp(1) − 2µ2 α2
3 (ωp(1) − r ωn(3))

ω2
p(1) (ωp(1) − r ωn(3))2

}

≈ g2
2

∫ 1

0
dr

sin4(πnr)

16π4 n2 ω3
n(3) µ

2 α2
3

{[
n2(1 − 2(1 − r)µα3) + 4µα3(µα3 − ωn(3))

]
ωn(3)

− 2n (1 − r)µα3

[
(2µ2 α2

3 + ω2
n(3))(arccsch(µ α3

n ) + π cot(πnr)) + nπ2 r ω2
n(3)csc

2(πnr)
]}

(4.16)

where we have cancelled the normalization factor 1 + 1
2δ

ij on both sides and the sum is computed in

Appendix B10. Performing the integral one finds

1

µ
δE(2)

n ≈ g2
2

768π4 n2 ω3
n(3) µ

2 α2
3

{
n2

(
18ωn(3) − µα3

(
9 + 2ωn(3)(9 + 4π2 ωn(3))

))

− 3µα3

(
9µ2 α2

3 − 24ωn(3) µα3 + 32ω2
n(3)

)
− 18nµα3(ω

2
n(3) + 2µ2 α2

3) arccsch(µ α3

n )
}

=
g2
2

4π2

{( 1

24
+

65

64n2π2

)
λ′ − 3

16π2
λ′3/2 − n2

2

( 1

24
+

89

64n2π2

)
λ′2 +

9n2

32π2
λ′5/2

+ · · ·
}
.

(4.17)

This result leads to several interesting observations, which we will discuss in what follows: First of

all, the leading order contribution in λ′ does not match the anomalous dimension computed in field

theory (see [12, 9]) and also disagrees with the original computation of [14]. The latter mismatch

can be traced back to a reflection-symmetry factor 1
2 introduced in equation (3.3) of [14]. Since the

formula for the energy shift in equation (4.3) is standard quantum mechanical perturbation theory,

such a factor cannot be justified. Further we have been careful to define the two-string projectors –

concerning accidental over-counting – and therefore we are confident that our result is correct.

Even more, when repeating the analogous calculation for the states |[3±,1]〉[ij], one does not obtain

the result given in (4.17) already at leading order in λ′. This computation coincides – up to a factor

of 1
2 – with that of the representation 6 done in [14]11, because the mixing with states consisting of
9Note, that we have used (∆ijkl)2 = 1 + 1

2
δij and |∆ijkl(σl)σ1

β̇1

|2 = 2(1 + 1
2
δij).

10It should be mentioned, that it is not consistent to take µ to infinity before computing the sum as this leads to

divergent series.
11Here only the contact term contributes and thus, the reflection-symmetry factor has no effect. The mismatch by 1

2

is due to the different definition of the projectors (no sums over r = 1, 2), cf. the discussion below (4.13).
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fermionic oscillators starts to effect the energy shift at order λ′2. Since both representations are in

the same multiplet (cf. section 2) and therefore are guaranteed to receive the same energy shift, this

fact clearly shows, that it is not sufficient to restrict oneself only to the impurity-conserving channel.

Moreover, additional contributions of a Q4-induced contact term cannot be ruled out so far. For λ′2

the discrepancies increase. Now, not only the coefficients, but also the n-dependence do not reproduce

the field theory result [9].

A new interesting aspect is the appearance of half-integer powers of λ′. These obviously do not have

a counterpart in perturbative, non-planar SYM. The existence of half-integer powers in the expansion

of Neumann matrix elements have already been noticed in [33], but to our knowledge this constitutes

the first example of their appearance in a physical quantity. Although these might be an artefact

of the truncation to the impurity-conserving channel, we expect them to be a generic feature of the

complete SFT result representing a qualitative difference to the planar sector.

In general one can say, that light-cone SFT is not sufficiently developed yet to give an unambiguous

test of the non-planar part of the BMN correspondence. Apart from the presence of Q4, which remains

to be clarified, this mainly concerns the issue of normalization functions of the vertices not being fixed

by the superalgebra. It would desirable to find a SYM independent method to determine these.
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A Notations and Definitions

In this Appendix we collect our conventions and definitions as well as some useful identities. Compared

to [4] we performed the following redefinitions of our oscillator basis for n > 0 to have the standard

level-matching condition

√
2ai

n ≡ αi
n + αi

−n , i
√

2ai
−n ≡ αi

n − αi
−n , ai

0 ≡ αi
0 , (A.1)

√
2ai′

n ≡ αi′
n + αi′

−n , i
√

2ai′
−n ≡ αi′

n − αi′
−n , ai′

0 ≡ αi′
0 , (A.2)

√
2bα1α2

n ≡ βα1α2
n + βα1α2

−n , i
√

2bα1α2
−n ≡ βα1α2

n − βα1α2
−n , bα1α2

0 ≡ βα1α2
0 , (A.3)

i
√

2bα̇1α̇2
n ≡ −βα̇1α̇2

n + βα̇1α̇2
−n ,

√
2bα̇1α̇2

−n ≡ βα̇1α̇2
n + βα̇1α̇2

−n , bα̇1α̇2
0 ≡ βα̇1α̇2

0 . (A.4)
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The oscillators obey the standard commutation relations12

[αi
m, α

† j
n ] = δmnδ

ij , {
(
βm

)
α1α2

,
(
β†n

)β1β2} = δmnδ
β1
α1
δβ2
α2
. (A.5)

It is convenient to introduce

(
α†

n

)
α1α̇1

≡ 1√
2

(
σi

)
α1α̇1

α† i
n ,

(
α†

n

)
α2α̇2

≡ 1√
2

(
σi′)

α2α̇2
α† i′

n (A.6)

which satisfy

[
(
αm

)
α1α̇1

,
(
α†

n

)β̇1β1 ] = δmnδ
β1
α1
δβ̇1

α̇1
, [

(
αm

)
α2α̇2

,
(
α†

n

)β̇2β2] = δmnδ
β2
α2
δβ̇2

α̇2
. (A.7)

The σ matrices consist of the usual Pauli-matrices together with the 2d unit matrix (spinorial indices

are raised and lowered with εαβ = εα̇β̇ ≡
(

0 1
−1 0

)
) σi

αα̇ =
(
iτ1, iτ2, iτ3,−1

)
αα̇

. Notice the reality

properties
[
σi

αα̇

]†
= σiα̇α

,
[
σiα̇

α

]†
= −σiα

α̇ which are consistent with the above commutation relations.

Some useful identities are

εαβε
γδ = δδ

αδ
γ
β − δγ

αδ
δ
β , (A.8)

σi
αβ̇
σj β̇

β = −δijεαβ + σij
αβ , (σij

αβ ≡ σ
[i
αα̇σ

j]α̇

β = σij
βα) (A.9)

σi
αα̇σ

jα
β̇ = −δijεα̇β̇ + σij

α̇β̇
, (σij

α̇β̇
≡ σ

[i
αα̇σ

j]α

β̇ = σij

β̇α̇
) (A.10)

σk
αα̇σ

k
ββ̇

= 2εαβεα̇β̇ , (A.11)

1

2
εijklσkl

αβ = −σij
αβ , (A.12)

1

2
εijklσkl

α̇β̇
= σij

α̇β̇
. (A.13)

The free dynamical supercharges are
√

|α|
2
Q−

α1α̇2
= −

√
µ|α|

2
√

2
(1 − e(α))

[
α β̇1

0 α1
β†

0 β̇1α̇2
+ α† β2

0 α̇2
β0 α1β2

]

+
∑

k 6=0

[
√
ωk + µαα† β̇1

k α1
βk β̇1α̇2

− ie(αk)
√
ωk − µαα β̇1

k α1
β†

k β̇1α̇2

− e(α)
(√

ωk + µαα β2

k α̇2
β†k α1β2

− ie(αk)
√
ωk − µαα† β2

k α̇2
β†k α1β2

)]
, (A.14)

√
|α|
2
Q−

α̇1α2
=

√
µ|α|

2
√

2
(1 + e(α))

[
α β1

0 α̇1
β†0 β1α2

+ α† β̇2
0 α2

β0 α̇1β̇2

]

+
∑

k 6=0

[
√
ωk + µαα† β̇2

k α2
βk α̇1β̇2

− ie(αk)
√
ωk − µαα β̇2

k α2
β†

k α̇1β̇2

+ e(α)
(√

ωk + µαα β1

k α̇1
β†k β1α2

− ie(αk)
√
ωk − µαα† β1

k α̇1
β†k β1α2

)]
, (A.15)

12Note that e.g.
[
βn

α2

α1

]†
= −β†

n
α1

α2
.
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and Q̄− = e(α)
[
Q−]†

.

Now we present the quantities appearing in the vertex; namely Neumann matrices, bosonic and

fermionic prefactors and all related functions. Note, that for simplicity will already set β1 ≡ r and

β2 ≡ 1 − r (with βt ≡ −αt/α3 and α3 < 0) in some of the expressions. The Neumann matrices

appearing in the bosonic vertex read

Ñ st
mn =





1
2N̄

st
|m||n|

(
1 + Um(s)Un(t)

)
,m, n 6= 0

1√
2
N̄ st

|m|0 ,m 6= 0

N̄ st
00 ,

(A.16)

with13

N̄ st
mn = −(1 − 4µκK)−1 κ

αsωn(t) + αtωm(s)

[
CU−1

(s)C
1/2
(s) N̄

s
]
m

[
CU−1

(t) C
1/2
(t) N̄

t
]
n
, (A.17)

N̄ st
m0 =

√
−2µκ(1 − βt)

√
ωm(s)N̄

s
m , t ∈ {1, 2} , (A.18)

N̄ st
00 = (1 − 4µκK)

(
δst −

√
βsβt

)
, s, t ∈ {1, 2} , (A.19)

N̄ s3
00 = −

√
βs , s ∈ {1, 2} . (A.20)

Here we have used the short cuts

Cn = n , Cn(s) = ωn(s) ≡
√
n2 +

(
µαs

)2
, κ ≡ α1α2α3 , (A.21)

Un(s) =
1

n
(ωn(s) − µαs) , U−1

n(s) =
1

n
(ωn(s) + µαs) . (A.22)

Neglecting exponential corrections ∼ O(e−µα3) the exact µ dependence of the Neumann vectors N̄ s

and scalar K is [31]14

1 − 4µκK ≈ − 1

4πr(1 − r)µα3
, (A.23)

α3N̄
3
n ≈ − sin(nπr)

πr(1 − r)

1

ωn(3)

√
−2µα3(ωn(3) + µα3)

, (A.24)

α3N̄
s
n ≡ α3N̄n(βs) ≈ −

√
βs

2πr(1 − r)

1

ωn(s)

√
−2µα3(ωn(s) − µα3βs)

. (A.25)

The bosonic constituents of the prefactor are defined as

KI =

3∑

s=1

∑

n∈Z

Kn(s)α
I †
n(s) , K̃I =

3∑

s=1

∑

n∈Z

Kn(s)α
I †
−n(s) , (A.26)

13To have a manifest symmetry in 1 ↔ 2 we additionally redefined the oscillators as (−1)s(n+1)αn(s) → αn(s) for n ∈ Z,

s = 1, 2, 3 and analogously for the fermionic oscillators.
14To compare with the definition used in [31] note that N̄s

n here = (−1)s(n+1)Un(s)C
−1/2
n(s) N̄s

n there.
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with (n 6= 0)

K0(s) = (1 − 4µκK)1/2

√
−2µκ

α′
(
1 − βs

)
, K0(3) = 0 , (A.27)

Kn(s) = − κ√
2α′αs

(1 − 4µκK)−1/2(ωn(s) + µαs)
√
ωn(s)N̄

s
|n|

(
1 − Un(s)

)
, (A.28)

while the fermionic constituents of the prefactor are

Y α1α2 =

3∑

s=1

∑

n∈Z

G|n|(s)β
†α1α2

n(s) , Z α̇1α̇2 =

3∑

s=1

∑

n∈Z

G|n|(s)β
† α̇1α̇2

n(s) , (A.29)

with (n 6= 0)

G0(s) = (1 − 4µκK)1/2
√

1 − βs , G0(3) = 0 , (A.30)

Gn(s) =
e(αs)√
2|αs|

√−κ
(1 − 4µκK)1/2

√
(ωn(s) + µαs)ωn(s)N̄

s
|n| . (A.31)

B Sums

The sum over p in equation (4.16) splits up into two parts, namely

∑

p>0

{
n2 1

ωp(1) (ωp(1) − r ωn(3))2
− 2µ2 α2

3

1

ω2
p(1) (ωp(1) − r ωn(3))

}
:= n2 S(µ) − 2µ2 α2

3 T (µ). (B.1)

In the remainder of this section we will use a ≡ −µα3r and b ≡ r ωn(3). Note, that b > a ≥ 0.

For the computation of S(µ) we use the following trick

∑

p>0

1√
p2 + a2

(√
p2 + a2 − b

)2 =
d

db

∑

p>0

√
p2 + a2 + b√

p2 + a2(p2 − b2 + a2)

=
d

db

∑

p>0

[
1

p2 − b2 + a2
+

b√
p2 + a2

(
p2 − b2 + a2

)
]
, (B.2)

where we have integrated over b and expanded with
√
p2 + a2 + b. The first part gives

∑

p>0

1

p2 − b2 + a2
=

1 −
√
b2 − a2π cot

(√
b2 − a2π

)

2
(
b2 − a2

) , (B.3)

while the second can be represented as (using the contour integral method, see e.g. [31])

∑

p>0

b√
p2 + a2

(
p2 − b2 + a2

) =
b

2a(b2 − a2)
− π

2

cot
(√
b2 − a2π

)
√
b2 − a2

+ b

∫ ∞

1

dx coth
(
aπx

)
(
a2x2 + b2 − a2

)√
x2 − 1

.

(B.4)
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We rewrite the integral as

∫ ∞

1

dx coth
(
aπx

)
(
a2x2 + b2 − a2

)√
x2 − 1

=

∫ ∞

1
dx

[
1(

a2x2 + b2 − a2
)√
x2 − 1

− 2

a2
(
x2 + b2

a2 − 1
)√
x2 − 1

(
1 − e2aπx

)
]
≈

arccsch
[

a√
b2−a2

]

b
√
b2 − a2

,

(B.5)

where we utilized that for large a, b2

a2 finite, the second integral can be omitted, thereby again neglecting

exponential corrections. arccsch(x) is the inverse hyperbolic cosecans function. Hence we find

∑

p>0

1√
p2 + a2

(√
p2 + a2 − b

)2 ≈ d

db

[
1

2a(b− a)
− π

cot
(√
b2 − a2π

)
√
b2 − a2

+
arccsch

[
a√

b2−a2

]

b
√
b2 − a2

]

= − 1

2a(b− a)2
+

1

b2 − a2
+

b
(
b2 − a2

)3/2

[
−arccsch

[ a√
b2 − a2

]

+ π cot
(√

b2 − a2π
)

+ π2
√
b2 − a2 csc2

(√
b2 − a2π

)
]
. (B.6)

Now we turn to the sum T (µ). It takes the form

∑

p>0

1
(
p2 + a2

)(√
p2 + a2 − b

) =
∑

p>0

[
1√

p2 + a2
(
p2 − b2 + a2

) +
b(

p2 + a2
)(
p2 − b2 + a2

)
]
, (B.7)

where the first part was already computed in equation (B.4). The remaining sum yields

∑

p>0

1√
p2 + a2

(
p2 − b2 + a2

) =
1

2a2
(
b2 − a2

) − π

2b2
cot

(√
b2 − a2π

)
√
b2 − a2

− π

2ab2
coth

(
πa

)
, (B.8)

and therefore up to exponential corrections one finds

∑

p>0

1(
p2 + a2

)(√
p2 + a2 − b

) ≈ 1

2a2(b− a)
− π

b

cot
(√
b2 − a2π

)
√
b2 − a2

+
arccsch

[
a√

b2−a2

]

b
√
b2 − a2

. (B.9)
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uniqueness of plane-wave string field theory,” arXiv:hep-th/0308062.

[6] C. S. Chu, V. V. Khoze, M. Petrini, R. Russo and A. Tanzini, “A note on string interaction on the

pp-wave background,” Class. Quant. Grav. 21 (2004) 1999 [arXiv:hep-th/0208148]. C. S. Chu,

M. Petrini, R. Russo and A. Tanzini, “String interactions and discrete symmetries of the pp-wave

background,” Class. Quant. Grav. 20 (2003) S457 [arXiv:hep-th/0211188]. P. Di Vecchia, J. L. Pe-

tersen, M. Petrini, R. Russo and A. Tanzini, “The 3-string vertex and the AdS/CFT duality in

the pp-wave limit,” Class. Quant. Grav. 21 (2004) 2221 [arXiv:hep-th/0304025]. S. Dobashi and

T. Yoneya, “Resolving the Holography in the Plane-Wave Limit of AdS/CFT Correspondence,”

arXiv:hep-th/0406225.

[7] N. R. Constable, D. Z. Freedman, M. Headrick, S. Minwalla, L. Motl, A. Postnikov and W. Skiba,

“PP-wave string interactions from perturbative Yang-Mills theory,” JHEP 0207 (2002) 017

[arXiv:hep-th/0205089]. C. Kristjansen, J. Plefka, G. W. Semenoff and M. Staudacher, “A new

double-scaling limit of N = 4 super Yang-Mills theory and PP-wave strings,” Nucl. Phys. B 643

(2002) 3 [arXiv:hep-th/0205033].

[8] D. J. Gross, A. Mikhailov and R. Roiban, “Operators with large R charge in N = 4 Yang-Mills

theory,” Annals Phys. 301 (2002) 31 [arXiv:hep-th/0205066].

[9] N. Beisert, C. Kristjansen and M. Staudacher, “The dilatation operator of N = 4 super Yang-Mills

theory,” Nucl. Phys. B 664 (2003) 131 [arXiv:hep-th/0303060].

[10] A. Santambrogio and D. Zanon, “Exact anomalous dimensions of N = 4 Yang-Mills operators

with large R charge,” Phys. Lett. B 545, 425 (2002) [arXiv:hep-th/0206079].

[11] N. Beisert, V. Dippel and M. Staudacher, “A novel long range spin chain and planar N = 4 super

Yang-Mills,” arXiv:hep-th/0405001.

[12] N. Beisert, C. Kristjansen, J. Plefka, G. W. Semenoff and M. Staudacher, “BMN correla-

tors and operator mixing in N = 4 super Yang-Mills theory,” Nucl. Phys. B 650 (2003) 125

17

http://suriya.library.cornell.edu/abs/hep-th/0112044
http://suriya.library.cornell.edu/abs/hep-th/0204146
http://suriya.library.cornell.edu/abs/hep-th/0206073
http://suriya.library.cornell.edu/abs/hep-th/0208209
http://suriya.library.cornell.edu/abs/hep-th/0210246
http://suriya.library.cornell.edu/abs/hep-th/0304232
http://suriya.library.cornell.edu/abs/hep-th/0308062
http://suriya.library.cornell.edu/abs/hep-th/0208148
http://suriya.library.cornell.edu/abs/hep-th/0211188
http://suriya.library.cornell.edu/abs/hep-th/0304025
http://suriya.library.cornell.edu/abs/hep-th/0406225
http://suriya.library.cornell.edu/abs/hep-th/0205089
http://suriya.library.cornell.edu/abs/hep-th/0205033
http://suriya.library.cornell.edu/abs/hep-th/0205066
http://suriya.library.cornell.edu/abs/hep-th/0303060
http://suriya.library.cornell.edu/abs/hep-th/0206079
http://suriya.library.cornell.edu/abs/hep-th/0405001


[arXiv:hep-th/0208178]. N. R. Constable, D. Z. Freedman, M. Headrick and S. Minwalla, “Oper-

ator mixing and the BMN correspondence,” JHEP 0210 (2002) 068 [arXiv:hep-th/0209002].

[13] N. Beisert, C. Kristjansen, J. Plefka and M. Staudacher, “BMN gauge theory as a quantum

mechanical system,” Phys. Lett. B 558 (2003) 229 [arXiv:hep-th/0212269].

[14] R. Roiban, M. Spradlin and A. Volovich, “On light-cone SFT contact terms in a plane wave,”

JHEP 0310 (2003) 055 [arXiv:hep-th/0211220].

[15] D. J. Gross, A. Mikhailov and R. Roiban, “A calculation of the plane wave string Hamilto-

nian from N = 4 super-Yang-Mills theory,” JHEP 0305 (2003) 025 [arXiv:hep-th/0208231].

T. Klose, “Conformal dimensions of two-derivative BMN operators,” JHEP 0303, 012 (2003)

[arXiv:hep-th/0301150]. J. Gomis, S. Moriyama and J. Park, “SYM description of pp-

wave string interactions: Singlet sector and arbitrary impurities,” Nucl. Phys. B 665, 49

(2003) [arXiv:hep-th/0301250]. G. Georgiou and V. V. Khoze, “BMN operators with three

scalar impurites and the vertex-correlator duality in pp-wave,” JHEP 0304, 015 (2003)

[arXiv:hep-th/0302064]. D. Z. Freedman and U. Gursoy, “Instability and degeneracy in the BMN

correspondence,” JHEP 0308, 027 (2003) [arXiv:hep-th/0305016]. G. Georgiou, V. V. Khoze

and G. Travaglini, “New tests of the pp-wave correspondence,” JHEP 0310, 049 (2003)

[arXiv:hep-th/0306234]. P. Bonderson, “Decay modes of unstable strings in plane-wave string

field theory,” JHEP 0406, 025 (2004) [arXiv:hep-th/0307033]. P. Gutjahr and J. Plefka, “Decay

widths of three-impurity states in the BMN correspondence,” arXiv:hep-th/0402211. G. Georgiou

and G. Travaglini, “Fermion BMN operators, the dilatation operator of N = 4 SYM, and pp-wave

string interactions,” JHEP 0404, 001 (2004) [arXiv:hep-th/0403188].

[16] A. Pankiewicz, “Strings in plane wave backgrounds,” Fortsch. Phys. 51 (2003) 1139

[arXiv:hep-th/0307027]. J. C. Plefka, “Lectures on the plane-wave string / gauge theory duality,”

Fortsch. Phys. 52 (2004) 264 [arXiv:hep-th/0307101]. J. M. Maldacena, “TASI 2003 lectures on

AdS/CFT,” arXiv:hep-th/0309246. M. Spradlin and A. Volovich, “Light-cone string field theory

in a plane wave,” arXiv:hep-th/0310033. D. Sadri and M. M. Sheikh-Jabbari, “The plane-wave /

super Yang-Mills duality,” arXiv:hep-th/0310119. R. Russo and A. Tanzini, “The duality between

IIB string theory on pp-wave and N = 4 SYM: A status report,” Class. Quant. Grav. 21 (2004)

S1265 [arXiv:hep-th/0401155].

[17] C. G. . Callan, H. K. Lee, T. McLoughlin, J. H. Schwarz, I. Swanson and X. Wu, “Quan-

tizing string theory in AdS(5) x S**5: Beyond the pp-wave,” Nucl. Phys. B 673 (2003) 3

[arXiv:hep-th/0307032]. C. G. . Callan, T. McLoughlin and I. Swanson, “Holography beyond the

Penrose limit,” arXiv:hep-th/0404007. C. G. . Callan, T. McLoughlin and I. Swanson, “Higher

impurity AdS/CFT correspondence in the near-BMN limit,” arXiv:hep-th/0405153. I. Swanson,

“On the integrability of string theory in AdS(5) x S**5,” arXiv:hep-th/0405172.

18

http://suriya.library.cornell.edu/abs/hep-th/0208178
http://suriya.library.cornell.edu/abs/hep-th/0209002
http://suriya.library.cornell.edu/abs/hep-th/0212269
http://suriya.library.cornell.edu/abs/hep-th/0211220
http://suriya.library.cornell.edu/abs/hep-th/0208231
http://suriya.library.cornell.edu/abs/hep-th/0301150
http://suriya.library.cornell.edu/abs/hep-th/0301250
http://suriya.library.cornell.edu/abs/hep-th/0302064
http://suriya.library.cornell.edu/abs/hep-th/0305016
http://suriya.library.cornell.edu/abs/hep-th/0306234
http://suriya.library.cornell.edu/abs/hep-th/0307033
http://suriya.library.cornell.edu/abs/hep-th/0402211
http://suriya.library.cornell.edu/abs/hep-th/0403188
http://suriya.library.cornell.edu/abs/hep-th/0307027
http://suriya.library.cornell.edu/abs/hep-th/0307101
http://suriya.library.cornell.edu/abs/hep-th/0309246
http://suriya.library.cornell.edu/abs/hep-th/0310033
http://suriya.library.cornell.edu/abs/hep-th/0310119
http://suriya.library.cornell.edu/abs/hep-th/0401155
http://suriya.library.cornell.edu/abs/hep-th/0307032
http://suriya.library.cornell.edu/abs/hep-th/0404007
http://suriya.library.cornell.edu/abs/hep-th/0405153
http://suriya.library.cornell.edu/abs/hep-th/0405172


[18] N. Beisert, “BMN operators and superconformal symmetry,” Nucl. Phys. B 659 (2003) 79

[arXiv:hep-th/0211032].

[19] N. Beisert, “The su(2|3) dynamic spin chain,” Nucl. Phys. B 682 (2004) 487

[arXiv:hep-th/0310252].

[20] S. S. Gubser, I. R. Klebanov and A. M. Polyakov, “A semi-classical limit of the gauge/string

correspondence,” Nucl. Phys. B 636, 99 (2002) [arXiv:hep-th/0204051]. S. Frolov and

A. A. Tseytlin, “Multi-spin string solutions in AdS(5) x S**5,” Nucl. Phys. B 668, 77 (2003)

[arXiv:hep-th/0304255]. S. Frolov and A. A. Tseytlin, “Semiclassical quantization of rotating

superstring in AdS(5) x S(5),” JHEP 0206, 007 (2002) [arXiv:hep-th/0204226]. G. Arutyunov,

S. Frolov, J. Russo and A. A. Tseytlin, “Spinning strings in AdS(5) x S**5 and integrable sys-

tems,” Nucl. Phys. B 671 (2003) 3 [arXiv:hep-th/0307191].

[21] J. A. Minahan and K. Zarembo, “The Bethe-ansatz for N = 4 super Yang-Mills,” JHEP 0303,

013 (2003) [arXiv:hep-th/0212208]. N. Beisert, “The complete one-loop dilatation operator of N

= 4 super Yang-Mills theory,” Nucl. Phys. B 676, 3 (2004) [arXiv:hep-th/0307015]. N. Beisert

and M. Staudacher, “The N = 4 SYM integrable super spin chain,” Nucl. Phys. B 670, 439 (2003)

[arXiv:hep-th/0307042]. N. Beisert, “Higher loops, integrability and the near BMN limit,” JHEP

0309, 062 (2003) [arXiv:hep-th/0308074].

[22] A. A. Tseytlin, “Spinning strings and AdS/CFT duality,” arXiv:hep-th/0311139.

[23] G. Arutyunov and M. Staudacher, “Matching higher conserved charges for strings and spins,”

JHEP 0403, 004 (2004) [arXiv:hep-th/0310182]. M. Kruczenski, “Spin chains and string theory,”

arXiv:hep-th/0311203. G. Arutyunov and M. Staudacher, “Two-loop commuting charges and the

string / gauge duality,” arXiv:hep-th/0403077.

[24] V. A. Kazakov, A. Marshakov, J. A. Minahan and K. Zarembo, “Classical / quantum integrability

in AdS/CFT,” JHEP 0405, 024 (2004) [arXiv:hep-th/0402207]. M. Kruczenski, A. V. Ryzhov

and A. A. Tseytlin, “Large spin limit of AdS(5) x S**5 string theory and low energy expansion

of ferromagnetic spin chains,” arXiv:hep-th/0403120.

[25] D. Serban and M. Staudacher, “Planar N = 4 gauge theory and the Inozemtsev long range spin

chain,” JHEP 0406, 001 (2004) [arXiv:hep-th/0401057].

[26] T. Klose and J. Plefka, “On the integrability of large N plane-wave matrix theory,” Nucl. Phys.

B 679 (2004) 127 [arXiv:hep-th/0310232].

[27] M. Spradlin and A. Volovich, “Note on plane wave quantum mechanics,” Phys. Lett. B 565

(2003) 253 [arXiv:hep-th/0303220].

[28] R. R. Metsaev and A. A. Tseytlin, “Exactly solvable model of superstring in plane wave Ramond-

Ramond background,” Phys. Rev. D 65, 126004 (2002) [arXiv:hep-th/0202109].

19

http://suriya.library.cornell.edu/abs/hep-th/0211032
http://suriya.library.cornell.edu/abs/hep-th/0310252
http://suriya.library.cornell.edu/abs/hep-th/0204051
http://suriya.library.cornell.edu/abs/hep-th/0304255
http://suriya.library.cornell.edu/abs/hep-th/0204226
http://suriya.library.cornell.edu/abs/hep-th/0307191
http://suriya.library.cornell.edu/abs/hep-th/0212208
http://suriya.library.cornell.edu/abs/hep-th/0307015
http://suriya.library.cornell.edu/abs/hep-th/0307042
http://suriya.library.cornell.edu/abs/hep-th/0308074
http://suriya.library.cornell.edu/abs/hep-th/0311139
http://suriya.library.cornell.edu/abs/hep-th/0310182
http://suriya.library.cornell.edu/abs/hep-th/0311203
http://suriya.library.cornell.edu/abs/hep-th/0403077
http://suriya.library.cornell.edu/abs/hep-th/0402207
http://suriya.library.cornell.edu/abs/hep-th/0403120
http://suriya.library.cornell.edu/abs/hep-th/0401057
http://suriya.library.cornell.edu/abs/hep-th/0310232
http://suriya.library.cornell.edu/abs/hep-th/0303220
http://suriya.library.cornell.edu/abs/hep-th/0202109


[29] S. Mandelstam, “Interacting String Picture Of The Neveu-Schwarz-Ramond Model,” Nucl. Phys.

B 69, 77 (1974). M. B. Green and J. H. Schwarz, “Superstring Interactions,” Nucl. Phys. B 218,

43 (1983).

[30] E. Cremmer and . L. Gervais, “Combining And Splitting Relativistic Strings,” Nucl. Phys. B

76, 209 (1974). E. Cremmer and . L. Gervais, “Infinite Component Field Theory Of Interacting

Relativistic Strings And Dual Theory,” Nucl. Phys. B 90, 410 (1975).

[31] Y. H. He, J. H. Schwarz, M. Spradlin and A. Volovich, “Explicit formulas for Neumann coefficients

in the plane-wave geometry,” Phys. Rev. D 67 (2003) 086005 [arXiv:hep-th/0211198]. J. Lucietti,

S. Schafer-Nameki and A. Sinha, “On the plane-wave cubic vertex,” arXiv:hep-th/0402185.

[32] J. Greensite and F. R. Klinkhamer, “New Interactions For Superstrings,” Nucl. Phys. B 281

(1987) 269. J. Greensite and F. R. Klinkhamer, “Contact Interactions In Closed Superstring

Field Theory,” Nucl. Phys. B 291 (1987) 557. M. B. Green and N. Seiberg, “Contact Interactions

In Superstring Theory,” Nucl. Phys. B 299 (1988) 559. J. Greensite and F. R. Klinkhamer,

“Superstring Amplitudes And Contact Interactions,” Nucl. Phys. B 304 (1988) 108.

[33] I. R. Klebanov, M. Spradlin and A. Volovich, “New effects in gauge theory from pp-wave super-

strings,” Phys. Lett. B 548 (2002) 111 [arXiv:hep-th/0206221].

20

http://suriya.library.cornell.edu/abs/hep-th/0211198
http://suriya.library.cornell.edu/abs/hep-th/0402185
http://suriya.library.cornell.edu/abs/hep-th/0206221

	Introduction
	The free theory
	The two-impurity supermultiplet

	Turning on Interactions
	Computing energy shifts in light-cone SFT
	The energy shift of |[9,1]"526930B (ij)

	Notations and Definitions
	Sums

