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We report on a three-loop calculation of the anomalous dimension of the Konishi operator and of the BMN
operator of dimension three. Our results confirm the unique form of the A/ = 4 SYM dilatation operator
compatible with BMN scaling.
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1 Introduction

During the last couple of years, following the important work of BMN [1], spectacular progress has been
made in the understanding of the integrable structure underlying N = 4 supersymmetric Yang-Mills (SYM)
theory [2—4], on the one hand, and its correspondence to string theory [5—7], on the other. An important
part of this program is the development of efficient tools for calculating anomalous dimensions of gauge
invariant composite operators and then comparing to the string theory predictions.

One such remarkable tool is the so-called “dilatation operator" of N' = 4 SYM [3,8]. In this approach one
is able to predict the anomalous dimensions of large classes of operators. The form of the dilatation operator
can be determined by combining various symmetry arguments with some field theory input. In [3] the notion
of one-loop integrability was extended to higher loops. Based on this and on the additional assumption of
BMN scaling, the planar dilatation operator of the SU(2) sector of A" = 4 SYM was elaborated up to three
loops. Later on, a comprehensive treatment of the dilatation operator for the SU(2|3) sector was given in [9].
It was shown that the two-loop dilatation operator is determined up to one free constant, which can be fixed
from the known value of the two-loop anomalous dimension of the Konishi operator. At three loops, after
taking into account the known quantum symmetries, a two-parameter freedom remains. The higher-loop
integrability conjectured in [3] was shown to follow from conformal supersymmetry and the dynamics of
the theory, keeping the above mentioned parameters arbitrary.

In [9] Beisert used the extra assumption of BMN scaling to fix the remaining freedom. The so-called
BMN operators are gauge invariant composite operators made out two complex scalars Z and ®. They form
an SU(2) doublet (the hypermultiplet subset of the SU(3) triplet of scalars of the N” = 4 theory); one of
them (Z) is charged under U (1) C SU(2), the other (®) is not. Schematically, a BMN operator of charge
J + 2 and naive dimension J + 4 is given by

O =Tv(Z2Z--- Z0d)

* Corresponding author E-mail: emeri.sokatchev@cern.ch
** UMR 5108 associée a 1’Université de Savoie

© 2005 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim



Fortschr. Phys. 53, No. 5-6 (2005) / www.fp-journal.org 611

Here one sees J + 2 factors of Z and two “impurities" ® which can be placed in different ways among the
Zs. In the quantum theory such operators acquire anomalous dimension «(g, IV, J) where g is the gauge
coupling and N determines the rang of the gauge group SU (V). String theory arguments lead to a prediction
about the anomalous dimension in the so-called BMN (double scaling) limit

J2
J — o0, N — oo, N fixed

Introduced the coupling

BMN predicted that s must be an analytic function of A" around A\’ = 0. This means that v»s admits
a power expansion in )\’ and hence in g2. Thus, the theory enters the perturbative regime and it becomes
possible to test the string predictions by quantum field theory means.

In this context, “experimental data" in the form of the three-loop anomalous dimensions of any two
BMN operators, obtained by a direct perturbative calculation, would unambiguously determine the three-
loop dilatation operator. This would also provide an indirect check on the hypothesis of BMN scaling at
this level of perturbation theory.

Thus, the necessity of such a three-loop perturbative “experiment” appears quite clear. Rather recently,
a whole series of three-loop anomalous dimensions of operators of twist two were computed in [10, 11],
using sophisticated QCD methods. The simplest among these operators is the Konishi scalar, which is also
the lowest state in the BMN series. The value of its anomalous dimension obtained in [11] is in perfect
agreement with the prediction of [3,9] under the assumption of BMN scaling. However, it is not clear if
the method of [10, 11] generalizes to operators of higher twist, such as the scalar BMN operators with
non-vanishing charge.

In this contribution we report on a three-loop calculation of the anomalous dimension [12] of the first
two operators in the BMN series (with two impurities), the Konishi one (i.e., twist two or J = 0) and the
twist three (or J = 1) one. In the Konishi case we reproduce the result of [11]. The result for the J = 1
case is new. Most remarkably, the two values

21 N3
TE0 = ey
17 N3

J=1:y3= ———
T8 @2y

are exactly those predicted by the dilatation operator whose form is compatible with BMN scaling!

2 The method of the three-loop calculation

The idea of the method, first proposed in [13] and successfully used at two loops in [14] consists in reducing
the O(g%) computation to O(g*) by means of (super)space differentiation. Consider the simplest example
of the Konishi “current”. Its conformal two-point function has the form

2 U_2 v
(ku(z) k5 (0)) = e(g?) % W

Here 7(g?) = 719% + 729* + ... is the anomalous dimension. Its perturbative origin is in the ultraviolet
divergences of this two-point function. In the free field theory, where g = 0 and v(g?) = 0, this current is
conserved, 0"k, = 0. However, the classical interaction violates this conservation, 0"k, = gb(z) where b
is often called the “classical anomaly". Differentiating (1) we obtain

(01,0 O"KL(O0) )0 = —8c(s”) sy @
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Now, consider the ratio

(9, () HO) _ a0+ ;
(ko(@) k}(0)) EE v

Anselmi computed the one-loop v, from the ratio of two tree level two-point functions

2(bb) g0 2
(kP K} ) g0 x

Trying to generalize this trick to higher loops, one encounters a problem. The Konishi current has not
only a “classical", but also a “quantum" anomaly. This is best understood in the context of the NV = 4
SYM theory formulated in terms of ' = 1 superfields. The matter is described by chiral superfields
ol = ¢l (x) + 0yl () I = 1,2,3), V4 ®! = 0 satisfying the field equations

vdvd@[ = gEIJK[(I)J, @K} (5)
The N = 1 Konishi multiplet is defined by K = Tr (e9V ®;e 9V ®T) = ... + o+ 0k,(z) + ... (V is

the gauge potential). It is a scalar superfield of dimension two containing the Konishi current &, (z). The
superfield analog of the non-conservation 0*k,, = gb(x) is

DaDYK = ge i Tr (<I>I[<I>", @K]) =gB 6)
Thus, the “super-Anselmi trick" becomes

(D’K D’K) _ y(y+2)
(KK) = 2 + 6 terms. 7

Now, the problem is that the classical equation D?K = gB gets modified by the so-called “quantum
Konishi anomaly" [15]. In the quantum theory one should write

ZxD?K = g(ZgB + ZrF) = gK 8)

where F' = Tr(WeW,,) and W, = A\o(x + 0°(0,,)ga F* () is the chiral SYM field strength. The
constants Z are renormalization and mixing factors which can be determined by perturbative calculations.
For instance, at one loop

2

g Ny
T = Fn =1+ 2 T = —2_
K B 6%7 F= 353

C))
and Zp is the“quantum Konishi anomaly". One can view Eq. (8) as the definition of a new operator K,
a mixture of the bare operators B and F'. It is a member (“descendant") of the A’ = 4 SYM Konishi
supermultiplet belonging to a 10 of SU (4).

So, the correct quantum version of Eq. (7) is

(Ko Klp) (v +2)

(KE) — = + 0 terms. (10)

In this equation it is essential to know the finite normalizations of the quantum operators K and K¢ which
are not easy to find out in the perturbative theory. A way out was proposed in [14]. It consists in considering
the chain of N’ = 4 descendants

K — K10 — K84 (11)
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The first step is done by an off-shell A” = 1 supersymmetry transformation and it creates an anomaly; the
second descendant is obtained by an on-shell " = 4 transformation which is not anomalous. The reason
is that this second step transforms both B — ¢gY and F — ¢?Y into the same single-trace dimension four
operator Y = Tr ([®!, ®?][®!, 9?]):

Ky — Kgs =ZgY +gZrY (12)
Apart from K, the bare operators B and F' form another, “protected" (or “short") combination:
Ow=F—gB = ¢°Y —¢’Y =0 (13)

This operator is a descendant of the so-called stress-tensor multiplet, the BPS (or CPO) operator Ozy =
Trdl P!, It receives no quantum corrections and hence has no anomalous dimension,

(00") =(00"),—0 (14)
As a consequence, the operators K1 and O1¢ must be orthogonal,
(K10 Ol,) = (ZB+ ZpF| (F —gB)t) =0 (15)

This condition fixes the mixing coefficients Zg r up to a finite overall normalization.
The crucial point now is that in the ratio

(Ksi Kiy)

T~ 271+ (0F + 292)9° + 22 +13)g" + O(g°) (16)

(Ko Kip)
the finite normalization drops out. Further, from (16) it is clear that we only need the two-point functions
up to order g*. Thus, we have achieved the reduction “3 loops — 2 loops". This “2 loop" calculation can
be further simplified by exploiting the similarity between the Konishi descendant Kg, and another chiral
operator, the protected primary CPO O 5, which leads to a massive cancellation of graphs. The most serious
technical problem is the evaluation of a 4-loop momentum space integral' in dimensional regularization
which was done by D. Kazakov [16].
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