
ar
X

iv
:h

ep
-t

h/
04

11
22

5 
v1

   
24

 N
ov

 2
00

4

AEI-2004-112
hep-th/0411225

IIB supergravity and E10

Axel Kleinschmidt and Hermann Nicolai

Max–Planck–Institut für Gravitationsphysik (Albert–Einstein–Institut)
Mühlenberg 1, D-14476 Golm, Germany

axel.kleinschmidt,hermann.nicolai@aei.mpg.de

Abstract

We analyse the geodesic E10/K(E10) σ-model in a level decomposition
w.r.t. the A8 × A1 subalgebra of E10, adapted to the bosonic sector
of type IIB supergravity, whose SL(2, R) symmetry is identified with
the A1 factor. The bosonic supergravity equations of motion, when
restricted to zeroth and first order spatial gradients, are shown to match
with the σ-model equations of motion up to level ℓ = 4. Remarkably,
the self-duality of the five-form field strength is implied by E10 and the
matching.

1 Introduction

The simple and essentially unique geodesic Lagrangian describing a null world line in the
infinite-dimensional coset manifold E10/K(E10) has been shown to reproduce the dynamics
of the bosonic sector of eleven-dimensional supergravity in the vicinity of a space-like
singularity [1, 2]. This result was subsequently extended to massive IIA supergravity in [3],
where also parts of the fermionic sector were treated for the first time. A main ingredient
in the derivation of these results was the level decomposition of E10 w.r.t. the A9 and D9

subalgebras of E10, respectively. Here, we extend these results to type IIB supergravity,
and demonstrate that this model as well can be incorporated into the E10/K(E10) σ-model
within the framework proposed in [1], by making a level decomposition w.r.t. the A8 ×A1

subalgebra of E10. As we will explain, this decomposition is precisely adapted to type IIB
supergravity, in that it gives rise to the field representation content of IIB supergravity,
where the A1 factor becomes identified with the continuous SL(2, R) symmetry of the
IIB theory. Furthermore, the bosonic supergravity equations of motion, when restricted
to zeroth and first order spatial gradients, match with the σ-model equations of motion
up to and including level ℓ = 4. Perhaps our most important new result here is that the
self-duality of the five-form field strength is implied by the dynamical matching between
the E10/K(E10) σ-model and the supergravity equations of motion, and does not require
local supersymmetry or some other extraneous argument for its explanation.
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Related results had been obtained previously in the framework of another, and concep-
tually different proposal, according to which it is the ‘very extended’ Kac–Moody algebra
E11 that underlies D = 11 supergravity or a suitable extension thereof [4]. This proposal
can likewise be extended to massive IIA, and to IIB supergravity [5, 6], and consistency
with a level decomposition of the adjoint representation of E11 was shown in [7]. By
contrast, the present construction shows that the hyperbolic Kac–Moody algebra E10 is
already ‘big enough’ by itself to accommodate all the maximally supersymmetric theories
in D = 10 and D = 11. Unlike E10, E11 does not allow for an action unless one introduces
an unphysical extraneous coordinate [8]. In the absence of an action principle, the self-
duality restriction on the the five-form field strength, as well as the mutual duality between
the three- and seven-form field strengths must be imposed as an extra requirement.

Combining the known results, we can summarize the correspondence between the max-
imally supersymmetric theories and the maximal rank regular subalgebras of E10 as follows

A9 ⊂ E10 ⇐⇒ D = 11 supergravity

D9 ⊂ E10 ⇐⇒ massive IIA supergravity

A8 × A1 ⊂ E10 ⇐⇒ IIB supergravity

The decompositions of E10 w.r.t. its other rank 9 regular subalgebras AD−2 ×E11−D (for
D = 3, . . . , 9) will similarly reproduce the representation content of maximal supergravities
in D space-time dimensions as the lowest level representations. The first factor here is
identified with the SL(D−1) acting on the spatial vielbein, while E11−D is the Cremmer–
Julia hidden symmetry [9]. The only missing, but perhaps the most interesting, piece in
this analysis is the decomposition w.r.t. the affine subalgebra E9 obtained in the reduction
to two dimensions.

In [3], we have shown that, with the exception of the space-filling D9-brane, E10 can
accommodate all D-branes, such that NSNS and RR fields are associated with even and
odd levels, respectively, in the D9 decomposition of E10.

1 These results are confirmed
by the present investigation, but with the important difference that NSNS and RR fields
occur in the same SL(2, R) multiplets, and hence transform into one another under the
action of SL(2, R). The precise assignment of these fields to parts of the E10 structure is
one of the main results of the present work.

This article is structured as follows. First, we deduce the generators of E10 and their
relations as appropriate for the A8×A1 decomposition up to ℓ = 4. From this we deduce the
σ-model dynamics which are then shown to be equivalent to the reduced IIB supergravity
equations if the fields are identified in the right way.

2 e10 relations in gl(9) ⊕ so(2, 1) form

Our analysis is based on a decomposition of the hyperbolic Kac–Moody algebra e10 under
its gl(9) ⊕ so(2, 1) subalgebra, as indicated in figure 1. In the table below we list the field
content on the first five levels. All representations occur with outer multiplicity one. For
the decomposition technique we refer readers to [1, 10, 11, 7].

1The possible relevance of the D9-brane for this algebraic analysis was emphasized to us by S. Chaudhuri.
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Figure 1: Dynkin diagram of e10 with nodes marked for a decomposition under

gl(9) ⊕ so(2, 1).

ℓ A8 ⊕ A1 representation Generator Interpretation

1 [0, 0, 0, 0, 0, 0, 1, 0] ⊗ 2 Ea1a2
α F1/D1

2 [0, 0, 0, 0, 1, 0, 0, 0] ⊗ 1 Ea1...a4 D3
3 [0, 0, 1, 0, 0, 0, 0, 0] ⊗ 2 Ea1...a6

α NS5/D5

4 [0, 1, 0, 0, 0, 0, 0, 1] ⊗ 1 Ea1...a7|a8 KK Monopole
[1, 0, 0, 0, 0, 0, 0, 0] ⊗ 3 Ea1...a8

i NS7/D7/*
5 [1, 0, 0, 0, 0, 0, 1, 0] ⊗ 2 ?

[0, 0, 0, 0, 0, 0, 0, 1] ⊗ 2 ?

The sl(2, R) ∼= so(2, 1) representation is labelled by its dimension rather than by its Dynkin
labels for ease of notation. For ℓ = 0 the content is simply the adjoint representation of
the subalgebra gl(9) ⊕ so(2, 1) (which includes the Cartan subalgebra generator h0 of the
omitted black node). We have also listed the generators for the first four levels, whose
complete commutation relations will be worked out below.

In the last column of the table we indicate the interpretation of these representations
in terms of branes of the IIB theory, as suggested by the representation structure and the
study of finite-dimensional U-duality groups [12]. Level ℓ = 0 contains the SL(2, R)/SO(2)
coset degrees of freedom which in supergravity are parametrized by the axion (the source
of the D(−1) instanton) and the dilaton, and a third SO(2) gauge degree of freedom
which can be gauged to zero. At level ℓ = 1 we find the fundamental (F1) string and
Dirichlet (D1) string, which transform as a doublet under SL(2, R) [13]. Evidently the
SL(2, R) symmetry thus mixes NSNS and RR type fields. This feature persists for the
other Dp-branes of IIB string theory which couple to the (p+1)-form RR potentials, with
the exception of the rank-4 potential on ℓ = 2 which is an SL(2, R) singlet, consistent
with the S-self-duality of the D3-brane. For ℓ = 3 we get a doublet of five-branes, while
at ℓ = 4 we find a triplet of seven-branes, the best known of which is the D7-brane (other
members of the multiplet have also been investigated in the literature [14, 15]). The
asterisk indicates a sublety for the seven branes arising from issues of gauge fixing: the
corresponding fields are here interpreted as dual to the spatial gradients of the three ℓ = 0
scalars, hence the gauge fixing implies a constraint on the charges associated with the
three generators. We have also included the level ℓ = 5 representations because this is the
lowest level where a difference between E10 and E11 occurs, and because of their relevance
to nine-branes. There the situation is much less clear, and will be commented upon in the
concluding section.

We now study the commutation relations of the corresponding generators up to |ℓ| = 4.2

2The commutators for the positive level (0 ≤ ℓ ≤ 3) generators and two of the three anti-symmetric
eight-forms on ℓ = 4 were already given in [5], with the generators in representations of GL(10), but
without manifest SL(2, R) covariance. The algebra GIIB introduced there is a truncation of the ℓ ≥ 0
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Level ℓ = 0: The generators are Ka
b and Ji with relations

[Ka
b,K

c
d] = δc

bK
a
d − δa

dKc
b, (1)

[Ji, Jj ] = ǫij
kJk, (2)

[Ji,K
a
b] = 0. (3)

The indices take values a = 1, . . . , 9; i = 1, 2, 3 and the so(2, 1) metric is η = diag(−,+,−)
such that explicitly

[J1, J2] = −J3, [J2, J3] = −J1, [J3, J1] = J2. (4)

The identification with the Chevalley basis of e10 on the subalgebra nodes is

ea = Ka
a+1, fa = Ka+1

a, ha = Ka
a − Ka+1

a+1, (5)

for a = 1, . . . , 8. The trace K ≡
∑9

a=1 Ka
a is

K = −8h1 − 16h2 − 24h3 − 32h4 − 40h5 − 48h6 − 56h7 − 28h8 − 18h9 − 36h0. (6)

For the ‘decoupled’ sl(2, R) node 9, the identifications are

e9 = J+, f9 = J−, h9 = 2J3, (7)

where J± = J1 ± J2. The maximal compact subalgebra ke10 ⊂ e10 consists of all ‘antisym-
metric’ elements of e10, where the generalized transposition is defined as

xT := −θ(x) , x ∈ e10, (8)

and θ is the Chevalley involution. With this definition, the antisymmetric elements at
level ℓ = 0 are Ka

b − Kb
a and J2; they generate the compact level ℓ = 0 subalgebra

so(9) ⊕ so(2) ⊂ ke10. The symmetric elements at ℓ = 0 are Ka
b + Kb

a, and J1 and J3.
A two-dimensional representation of so(2, 1) is furnished by the Pauli matrices:

σ1 =

(

0 1
1 0

)

, σ2 =

(

0 1
−1 0

)

, σ3 =

(

1 0
0 −1

)

. (9)

We introduce indices α, β = 1, 2 for this representation by writing (σi)
α

β . The tensor
ǫαβ equals σ2 as a set of numbers and satisfies the condition ǫαγǫβδ(σi)

δ
γ = (σi)

α
β. The

inverse ǫαβ = −ǫαβ satisfies ǫαβǫβγ = δα
γ . We also define σi ≡ ηijσj .

The normalizations of the generators within e10 are

〈Ka
b|K

c
d〉 = δa

dδc
b − δa

b δc
d, 〈Ji|Jj〉 = −

1

2
ηij. (10)

consistent with the standard normalization of the Chevalley generators. From this it
can be shown that all compact (i.e. anti-symmetric) generators have negative norm as
expected.

Level ℓ = 1: The only representation is an so(2, 1) doublet of gl(9) two-forms, denoted
by Eab

α and transforming under gl(9) ⊕ so(2, 1) as

[Ka
b, E

cd
α] = −2δ

[c
b Ed]a

α, [Ji, E
cd

α] =
1

2
(σi)

β
αEcd

β. (11)

Borel subalgebra of E11, but does not correspond to a consistent truncation of E11 if the negative level
generators are also included.

4



The transposed field is

Fab
α := (Eab

α)T (12)

and satisfies

[Ka
b, Fcd

α] = 2δa
[cFd]b

α, [Ji, Fcd
α] = −

1

2
(σi)

α
βFcd

β. (13)

The identification of the remaining Chevalley generators yields

e0 = E89
2 , f0 = F89

2 , h0 = −
1

4
K + K8

8 + K9
9 − J3, (14)

where h0 is already identified in gl(9) ⊕ so(2, 1) through (5)–(7).
Demanding the normalization

〈Eab
α|Fcd

β〉 = 2δab
cdδβ

α (15)

leads to the commutator

[Eab
α, Fcd

β] = −
1

2
δβ
αδab

cdK + 4δβ
αδ

[a
[c Kb]

d] − 2δab
cd(σi)βαJi. (16)

Level ℓ = 2: The only representation is an so(2, 1) singlet, transforming as an anti-
symmetric rank four tensor under gl(9). We denote it by Ea1...a4 , and its transpose by
Fa1...a4

:= (Ea1...a4)T . They are obtained by commuting two |ℓ| = 1 elements:

[Eab
α, Ecd

β] = ǫαβEabcd, [Fab
α, Fcd

β] = ǫαβFabcd. (17)

The normalization of commutators is consistent with

〈Ea1...a4 |Fb1...b4〉 = 4! δa1...a4

b1...b4
. (18)

The remaining commutation relations up to |ℓ| ≤ 2 are

[Ea1...a4 , Fb1b2
β] = 12ǫβαδ

[a1a2

b1b2
Ea3a4]

α, (19)

[Fb1...b4 , E
a1a2

α] = 12ǫαβδa1a2

[b1b2
Fb3b4]

β, (20)

[Ea1...a4 , Fb1...b4 ] = −12δa1...a4

b1...b4
K + 96δ

[a1 ...a3

[b1...b3
Ka4]

b4]. (21)

Note that there is no term proportional to Ji in the last commutator which in is agreement
with the IIB supergravity structure as we will see.

Level ℓ = 3: The only representation is an so(2, 1) doublet of six-forms under gl(9).
The generators Ea1...a6

α and their transpose Fa1...a6

α are obtained via

[Ea1a2
α, Ea3...a6 ] = Ea1...a6

α, [Fa1a2

α, Fa3...a6
] = −Fa1...a6

α, (22)

consistent with the normalization

〈Ea1...a6
α|Fb1...b6

β〉 = 6! δβ
αδa1...a6

b1...b6
. (23)
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The remaining relations are

[Ea1a2
α, Fb1...b6

β ] = −30δβ
αδa1a2

[b1b2
Fb3...b6], (24)

[Fb1b2
β, Ea1...a6

α] = 30δβ
αδ

[a1a2

b1b2
Ea3...a6], (25)

[Ea1...a4 , Fb1...b6
β ] = 360δa1 ...a4

[b1...b4
Fb5b6]

β, (26)

[Fb1...b4 , E
a1...a6

α] = −360δ
[a1...a4

b1...b4
Ea5a6]

α, (27)

[Ea1...a6
α, Fb1...b6

β ] = −540δβ
αδa1...a6

b1...b6
K + 4320δβ

αδ
[a1...a5

[b1...b5
Ka6]

b6]

−720δa1 ...a6

b1...b6
(σi)βαJi. (28)

Level ℓ = 4: The fields are a tensor of mixed A8 Young symmetry, usually called the
‘dual graviton’, transforming as a singlet under so(2, 1), and a fully anti-symmetric A8

eight-form, transforming as a triplet under so(2, 1). They are obtained by

[Ea1a2
α, Ea3...a8

β] =
1

6
ǫαβEa1a2[a3...a7|a8] + Ea1...a8

i(ǫσ
i)αβ. (29)

Therefore

Ea1...a8
i = −

1

2
(σiǫ)

αβ
[

E[a1a2
α, Ea3...a8]

β

]

, (30)

Ea1...a7|a8 = −63 ǫαβ
[

E[a1a2
α, Ea3...a7]a8

β

]

. (31)

This is consistent with the normalizations

〈Ea1...a8
i|Fb1...b8

j〉 =
1

2
· 8! δj

i δ
a1...a8

b1...b8
, (32)

〈Ea1...a7|a8|Fb1...b7|b8〉 =
7 · 7!

8

(

δa1...a7

b1...b7
δa8

b8
+ δ

[a1

b8
δ
a2...a7]
[b1...b6

δa8

b7]

)

. (33)

The remaining commutation relations for the second representation Ea1...a8
i are

[

Ea1...a8
i, Fb1b2

β
]

= 28(σiǫ)
βγδ

[a1a2

b1b2
Ea3...a8]

γ , (34)
[

Ea1...a8
i, Fb1...b4

]

= 0, (35)
[

Ea1...a8
i, Fb1...b6

β
]

= −
1

4
· 8! (σiǫ)

βγδ
[a1...a6

b1...b6
Ea2a8]

γ , (36)

[

Ea1...a8
i, Fb1...b8

j] = −
1

2
· 8!δj

i δ
a1...a8

b1...b8
K + 4 · 8!δj

i δ
[a1...a7

[b1...b7
Ka8]

b8] −
1

2
· 8! ǫi

jkJk, (37)

and the corresponding relations for the transposed fields. We note that the anti-symmetrized
commutator [E[a1...a4 , Ea5...a8]] vanishes, consistent with the E++

7 subsector.
The commutation relations involving Ea1...a7|a8 are

[

Ea1...a7|a8 , Fb1b2
β
]

= +378ǫβα(δ
[a1a2

b1b2
Ea3...a7]a8

α + δ
a8[a1

b1b2
Ea2...a7]

α), (38)
[

Ea1...a7|a8 , Fb1...b4

]

= 1890(δ
[a1 ...a4

b1 ...b4
Ea5...a7]a8 + δ

a8[a1...a3

b1...b4
Ea4...a7]), (39)

[

Ea1...a7|a8 , Fb1...b6
β
]

= 45360ǫβα(δ
[a1...a6

b1...b6
Ea7]a8

α + δ
a8[a1...a5

b1...b6
Ea6a7]

α), (40)
[

Xa1...a7|a8
Ea1...a7|a8, Fb1...b7|b8

]

= −7!
(

Xb1...b7|b8K − Xb1...b7|cK
c
b8

−7Kc
[b1Xb2...b7]c|b8

)

, (41)

where we have introduced an auxiliary tensor Xa1...a7|a8
to simplify the expression in the

last line on the right hand side. Besides the transposed relations of the above, we also find

[Ea1...a8
i, Fb1...b7|b8 ] = 0. (42)
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3 σ-model equations of motion

In this section, we work out the σ-model equations of motion, using the formulation in
terms of K(E10) orthonormal frames developed in [2] and [3] for the A9 and D9 level
decompositions of E10, respectively. Accordingly, we parametrize the coset space in terms
of a ‘matrix’ V ≡ V

(

A(t)
)

∈ E10. Here A(t) are ‘local coordinates’ on the infinite di-
mensional coset manifold E10/K(E10). Making use of the local K(E10) invariance, a
convenient choice of gauge is the Borel type triangular gauge, with the fields A = A(ℓ) for
ℓ ≥ 0 to parametrize the E10/K(E10) coset space. The scalar fields A(t) couple via the
Lie algebra-valued ‘velocity’

∂tVV
−1 = P

(0)
ab Sab + Q

(0)
ab Jab + Q(0)J2 + P (0)̂ıJı̂ +

1

2
P (1)

a1a2

αEa1a2
α

+
1

4!
P (2)

a1...a4
Ea1...a4 +

1

6!
P (3)

a1...a6

αEa1...a6
α +

1

7!
P

(4)
a1...a7|a8

Ea1...a7|a8

+
1

8!
P (4)

a1...a8

iEa1...a8
i + . . . ∈ e10 (43)

where hatted indices ı̂ label the SL(2, R)/SO(2) coset generators and hence take only the
values ı̂ = 1, 3:

P (0)̂ıJı̂ ≡ P (0)1J1 + P (0)3J3. (44)

Splitting the ‘velocity’ as ∂tVV
−1 = Q+P, where Q ∈ ke10 is the K(E10) gauge connection

and P ∈ e ⊖ ke10 in the coset, we write

Q = Q
(0)
ab Jab + Q(0)J2 +

∑

ℓ>0

P (ℓ) ⋆
1

2
(E(ℓ) − F (ℓ)), (45)

P = P
(0)
ab Sab + P (0)̂ıJı̂ +

∑

ℓ>0

P (ℓ) ⋆
1

2
(E(ℓ) + F (ℓ)), (46)

with F (ℓ) := (E(ℓ))T , Jab = 1
2 (Ka

b − Kb
a) and Sab = 1

2(Ka
b + Kb

a) and the higher level
contributions are indicated schematically.

Following [2] we define the ‘covariant’ derivative for ℓ > 0

D(0)P (ℓ) ⋆
1

2
(E(ℓ) + F (ℓ))

= ∂tP
(ℓ) ⋆

1

2
(E(ℓ) + F (ℓ)) −

[

Q
(0)
ab Jab, P (ℓ) ⋆

1

2
(E(ℓ) + F (ℓ))

]

−
[

P (ℓ) ⋆
1

2
(E(ℓ) − F (ℓ)), P

(0)
ab Sab

]

(47)

−
[

Q(0)J2, P
(ℓ) ⋆

1

2
(E(ℓ) + F (ℓ))

]

−
[

P (ℓ) ⋆
1

2
(E(ℓ) − F (ℓ)), P (0)̂ıJı̂

]

.

This expression is covariant with respect to both so(9) and so(2). The analogous covariant
derivatives for ℓ = 0 are

(D(0)P
(0)
ab )Sab = ∂tP

(0)
ab Sab − [Q

(0)
ab Jab, P

(0)
cd Scd], (48)

(D(0)P (0)̂ı)Jı̂ = ∂tP
(0)̂ıJı̂ − [Q(0)J2, P

(0)̂ıJı̂]. (49)

This reflects the fact that there are no terms coupling the orthogonal summands so(9) and
so(2).
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The geodesic σ-model Lagrangian reads

L(t) =
1

4
n(t)−1〈P(t)|P(t)〉 (50)

where t is an affine parameter (‘time’), and 〈.|.〉 is the standard bilinear form on the Kac
Moody algebra. This Lagrangian is unique because for infinite dimensional Kac Moody
algebras the only invariant form is quadratic. The above Lagrangian gives rise to the
equation of motion

n∂t(n
−1P) = [Q,P]. (51)

The Lagrange multiplier (‘lapse’) n is needed for invariance under reparametrizations of
the time coordinate t and ensures that the motion on the coset manifold takes place on a
null geodesic. In the truncation to |ℓ| ≤ 4 we set

P (5) = P (6) = · · · = 0 (52)

With the commutation relations derived above we find

nD(0)(n−1P
(0)
ab ) = −

1

16
δabP

(1)
cd

αP
(1)
cd

α +
1

2
P (1)

ac
αP

(1)
bc

α −
1

96
δabP

(2)
c1...c4P

(2)
c1...c4

+
1

12
P (2)

ac1...c3P
(2)
bc1...c3

−
1

16 · 5!
δabP

(3)
c1...c6

αP (3)
c1...c6

α

+
1

2 · 5!
P (3)

ac1...c5
αP

(3)
bc1...c5

α −
1

2 · 7!
δabP

(4)
c1...c7|c8

P
(4)
c1...c7|c8

+
1

2 · 7!
P

(4)
c1...c7|a

P
(4)
c1...c7|b

+
1

2 · 6!
P

(4)
ac1...c6|d

P
(4)
bc1...c6|d

−
1

4 · 8!
δabP

(4)
c1...c8

iP (4)
c1...c8

i +
1

4 · 7!
P (4)

ac1...c7
iP

(4)
bc1...c7

i, (53)

nD(0)(n−1P (0)̂ı) =

(

−
1

4
P

(1)
ab

αP
(1)
ab

β −
1

2 · 6!
P (3)

a1...a6

αP (3)
a1...a6

β

)

(σı̂)βα

+
1

2 · 8!
ǫı̂2̂P (4)

c1...c8
2 P (4)

c1...c8
̂ (54)

nD(0)(n−1P
(1)
ab

α) =
1

4
ǫαβP

(2)
abcdP

(1)
cd

β +
1

2 · 4!
P

(3)
abc1...c4

αP (2)
c1...c4

+
1

160
ǫαβ

(

P (3)
c1...c6

βP
(4)
c1...c6[a|b]

+ P (3)
c1...c6

βP
(4)
a[bc1...c5|c6]

)

−
1

4 · 6!
(σiǫ)

αβP
(4)
c1...c6ab

iP (3)
c1...c6

β, (55)

nD(0)(n−1P (2)
a1...a4

) = −
1

4
P

(3)
a1...a4b1b2

αP
(1)
b1b2

βǫαβ

+
1

128

(

P (2)
c1...c4P

(4)
c1...c4[a1...a3|a4] + P (2)

c1...c4P
(4)
a1...a4c1...c3|c4

)

,(56)

nD(0)(n−1P (3)
a1...a6

α) = −
3

160
ǫαβ

(

P (2)
c1c2

βP
(4)
c1c2[a1...a5|a6] + P (2)

c1c2
βP

(4)
c1a1...a6|c2

)

+
1

8
(ǫσi)

αβP (4)
a1...a6c1c2

iP (1)
c1c2

β, (57)

nD(0)(n−1P
(4)
a1...a7|a8

) = 0, (58)

nD(0)(n−1P (4)
a1...a8

i) = 0. (59)
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Indices on the same level are contracted with the Euclidean flat metrics of so(9) and so(2);
in particular, the indices α, β, . . . are no longer contracted in an SL(2) invariant way.

The consistency of the truncation (52) is ensured by the same arguments as in [2]. Note
that although this requires only a finite number of non-vanishing P (ℓ), the ‘unendlichbein’
V parametrized by the E10/K(E10) coset coordinates A(t) needs to evolve correctly to
ensure the vanishing of P (ℓ) for |ℓ| > 4. This involves the full structure of E10.

4 Comparison with IIB supergravity

We now compare the equations (53)–(59) with the type IIB supergravity equations of
motion [16, 17]. We will use conventions similar to those of [18, 19] in order to make the
SL(2, R) invariance transparent.

As is well known, IIB supergravity requires the following bosonic fields. For the zehn-
bein we choose a pseudo-Gaussian gauge with lapse N and vanishing shift

EM
A =

(

N 0
0 em

a

)

. (60)

In addition, there are an SL(2, R) doublet of two-form potentials A2,α̃ (α̃ = 1, 2) and an
SL(2, R) singlet four-form B4 with self-dual field strength given by

H5 = dB4 +
1

4
ǫα̃β̃A2,α̃dA2,β̃ = ∗H5 (61)

We will drop the rank indices on H5 and dA2 in the remainder. Last but not least, there
are two scalar fields φ and χ (dilaton and axion) which, in a convenient triangular gauge,
parametrize the coset SL(2, R)/SO(2) according to [19]

E =

(

eφ/2 χeφ/2

0 e−φ/2

)

. (62)

The matrix Eα
α̃ can be thought of as an internal zweibein, which serves to convert global

SL(2, R) indices α̃, β̃, . . . into local SO(2) indices α, β, . . . , in complete analogy with the
spatial neunbein em

a which converts global GL(9) indices to local (Lorentz) SO(9) indices,
and vice versa. Thus, the model possesses a local so(9) ⊕ so(2) symmetry, which will be
directly identified with the so(9) ⊕ so(2) subalgebra of e10 in the A8 × A1 decomposition
of E10 developed in the foregoing section. The scalar field φ and χ appear in the IIB
supergravity Lagrangian via

∂MEE−1 = RMJ2 + S ı̂
MJı̂ = ∂MφJ2 + ∂MχeφJ+ (63)

The derivation of the IIB equations of motion is greatly facilitated by the SL(2, R) sym-
metry which fixes many couplings uniquely. Converting the global indices to local indices
we write for the doublet of two-forms

(EdA)ABC α = Eα
α̃EA

MEB
NEC

P ∂[MANP ],α̃, (64)

such that

(EdA)ABC 1 = eφ/2(dA)ABC,1̃ + χeφ/2(dA)ABC,2̃, (65)

(EdA)ABC 2 = e−φ/2(dA)ABC,2̃, (66)
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where 1̃ and 2̃ are global SL(2, R) indices.
For the comparison with the above σ-model equations of motion it is most convenient

to write the bosonic field equations of IIB supergravity in terms of flat SO(1, 9) × SO(2)
indices, viz.

RAB = −
1

4
S ı̂

ASı̂B +
1

48
HA

C1...C4HBC1...C4
−

1

480
ηABHC1...C5HC1...C5

+
1

4
(EdA)A

CDα(EdA)BCD
α −

1

48
ηAB(EdA)BCDα(EdA)BCD

α, (67)

DAS ı̂
A =

1

12
(EdA)BCD

α(EdA)BCDβ(σı̂)αβ, (68)

for the Einstein equation and the coset SL(2, R)/SO(2). DA is the SO(1, 9) × SO(2)
covariant derivative; splitting the divergence into time and space components, it reads

DAS ı̂
A = ∂0S ı̂

0 + ∂aS ı̂
a + ω0

0
aS ı̂

a + ωa
a
0S ı̂

0 + ωa
a
bS ı̂

b

+
1

2
ǫı̂2̂(R0S ̂

0 + RaS ̂
a), (69)

where ωA BC is the usual spin connection. For the form potentials we obtain

DAHAC1...C4
= −

1

144
ǫαβǫC1...C4

D1...D6(EdA)D1D2D3

α(EdA)D4D5D6

β, (70)

DA(EdA)ABC
α = −

1

4
ǫı̂2̂SAı̂(σ̂)

α
β(EdA)ABC

β +
1

12
HBC

DEF ǫαβ(EdA)DEF
β. (71)

Here, it is not necessary to restrict HC1...C5
to be self-dual. This condition can be imposed

additionally by hand since it is consistent with the Bianchi identity for B4 from (61):

D[A1
HA2...A6] = −

1

4
ǫαβ(EdA)[A1A2A3

α(EdA)A4A5A6]
β. (72)

The Bianchi identities for the two-forms are

D[A1
(dA)A2A3A4]

α̃ = 0. (73)

We can now directly verify our main claim, that the bosonic equations of motion of
IIB supergravity when reduced to one (time) dimension and the E10 σ-model equations
when truncated to |ℓ| ≤ 4 coincide if one makes the following identifications between the
t-dependent σ-model quantities up to ℓ = 4, and the IIB supergravity quantities evaluated
at a fixed, but arbitrarily chosen spatial point x = x0:

n(t) = Ne−1(t,x0), (74)

P
(0)
ab (t) = e(a

m∂temb)(t,x0), (75)

Q
(0)
ab (t) = e[a

m∂temb](t,x0), (76)

P (0)1(t) = S1
t (t,x0) = eφ∂tχ(t,x0), (77)

P (0)3(t) = S3
t (t,x0) = ∂tφ(t,x0), (78)

Q(0)(t) = Rt(t,x0) = eφ∂tχ(t,x0), (79)

P (1)
a1a2

α(t) = Eα
α̃ea

meb
n∂tAmn,α̃(t,x0), (80)
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P (2)
a1...a4

(t) = ea1

m1 · · · ea4

m4Htm1...m4
(t,x0), (81)

P (3)
a1...a6

α(t) =
1

3!
neǫa1...a6c1...c3ec1

m1 · · · ec3
m3Eα

α̃∂m1
Am2...m3,α̃(t,x0) (82)

P
(4)
a1...a7|a8

(t) =
1

2
neǫa1...a7bcΩ̃bc|a8

(t,x0), (83)

P (4)
a1...a8

ı̂(t) = neǫa1...a8bS
ı̂
b(t,x0), (84)

P (4)
a1...a8

2(t) = neǫa1...a8bR
ı̂
b(t,x0). (85)

Here, e = det(em
a) and Ω̃ab|c is the traceless part of the anholonomy,the trace part has been

gauged to zero [2]. Spatial derivatives of the lapse N are neglected in this approximation
and hence, for example, out of the three terms in the covariant derivate (69) involving
the spin connection only the second term survives. For the SL(2, R)/SO(2) coset we have
adopted the parametrization above. The SL(2, R) symmetry plays an important part in

this identification: for instance, the formula for P
(1)
a1a2

α must contain the neunbein and the
zweibein E in precisely the indicated form in order to be compatible with the symmetries.

With these identifications, eq. (53) coincides with the Einstein equation (67), if we

recall from [2] that nD(0)(n−1P
(0)
ab ) can be directly identified with the part of the spatial

Ricci tensor containing only time derivatives, −N2R
(0)
ab , cf. Eqn. (4.66) of [2]. The contri-

bution from ℓ = 4 on the r.h.s. of the ℓ = 0 equation of motion gives the leading terms of
Rab in the first spatial derivatives of the vielbein, but there appears a mismatch involving

the contribution from P
(4)
a1...a8

i to the Einstein equation, analogous to the one involving the
subleading terms from the curvature as in [2]. The coset eq. (54) is mapped to (68) in the
reduction. The equations of motion (71) and the Bianchi identities (73) are mapped to the
σ-model equations (55) and (57), respectively. Equations (58) and (59) are related to the
factorization of the vielbeine of the two cosets in the vicinity of a space-like singularity [2].

Remarkably, the self-duality of the five-form field strength H5 is built into E10. The
right hand side of (71) is expanded to

Hbcdef ǫαβ(EdA)def
β − 3N2Hbcdetǫ

αβ(EdA)det
β. (86)

The second term is precisely of the form of the [(ℓ = 2), (ℓ = 1)] term generated by E10

in (55) but the first term appears to be in conflict with E10. This puzzle is resolved by
restricting H5 to be self-dual such that

Hbcdef ǫαβ(EdA)def
β =

1

4!
N−1ǫbcdefc1...c4Htc1...c4ǫ

αβ(EdA)def
β, (87)

and then is recognized as the
[

(ℓ = 3), (ℓ = 2)
]

contribution to (55). Likewise, matching
eq. (56) with (70) requires the self-duality of the five-form field strength and then can be
read either as the Bianchi identity or the equation of motion. Therefore, E10 is related to
IIB dynamically only for self-dual field strength of the five-form.

5 Conclusions

As we have shown the geodesic action of the E10/K(E10) σ-model based on the standard
bilinear form for E10, with manifest SL(2, R) symmetry together with the representation
content up to ℓ ≤ 4 implies the self-duality constraint of the five-form field strength of
IIB supergravity. In the standard derivation of the bosonic IIB equations of motion this
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self-duality cannot be deduced from the bosonic symmetries, but becomes necessary only
when one adds fermions to make the theory locally supersymmetric. In addition all the
other fields of type IIB supergravity theory can be accommodated naturally, and their
dynamics is equivalent to those in the σ-model, at least up to the level considered here.

In contradistinction to the non-hyperbolic algebra E11, the hyperbolic Kac Moody al-
gebra E10 does not allow for a source of the D9-brane of IIB string theory in any natural
way [3, 7]. If one insists that the D9-brane is essential for string dualities, one would there-
fore conclude that E10 is ‘too small’ [20]. The D9-brane couples to a ten-form potential,
which in ten space-time dimensions has vanishing field strength and hence no dynamical
degrees of freedom (a generalization of the IIB theory with a doublet of ten-form poten-
tials has been given in [21]). In eleven dimensions, on the other hand, the equation of
motion for such a rank-ten potential implies constancy of the associated field strength.
This is a well-known mechanism for generating masses and a cosmological constant in
(super-)gravity [22]. Yet, a cosmological term in eleven dimensions is inconsistent with
32 supersymmetries, and therefore such a modification of D = 11 supergravity does not
appear to exist [23]. Disregarding this fact for the moment, an appropriate field trans-
forming in a singlet representation of SL(10) can be identified in an A9 decomposition of
E11 [7, 4]. In terms of a D10 decomposition of E11 analogous to [3], the corresponding
generator is part of an SO(10, 10) multiplet which includes all RR potentials. To recover
these representations from the perspective taken here, we have to decompose E11 under
A9 ×A1, with SL(10) ⊂ SO(10, 10). Indeed, one finds new SL(10) singlet representations
at level ℓ = 5, which are absent in E10, and contain the D9-brane generator. However, the
relevant representation is an SL(2, R) quadruplet. Therefore, E11 would predict the exis-
tence of four nine-brane objects, transforming under SL(2, R), whereas current superstring
wisdom seems to be compatible only with a doublet of such objects [24, 14, 21].

Finally, we mention that it is believed that the continuous SL(2, R) symmetry of IIB
supergravity is broken to SL(2, Z) by quantum effects in the string theory. Similar effects
have recently been discussed for the full E10(R) → E10(Z) in [25]. The inclusion of fermions
along the lines of [3] seems straight-forward, with the local SO(9) appearing here being
identified with the diagonal subgroup of SO(9, 9).

Acknowledgements: We are grateful to E. Bergshoeff and S. Chaudhuri for correspon-
dence.
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