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Abstract

We consider elastic bodies in rigid rotation, both nonrelativistically
and in special relativity. Assuming a body to be in its natural state in the
absence of rotation, we prove the existence of solutions to the elastic field
equations for small angular velocity.
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1 Introduction

The field of relativistic elasticity is still in its infancy. This work is part of a
program where we set up the field equations and prove existence theorems for
some of the most basic problems, both dynamical and time-independent. In
the present paper we study the equilibrium of an elastic body in rigid uniform
rotation. Interestingly the nonrelativistic case of our result seems to be unknown,
so we have to treat this also.
We will be interested in equilibrium configurations of ideal elastic solids which
are subject to the centrifugal force but otherwise free. The natural boundary
condition, then, is that the so-called ”normal traction”, i.e. the components of
the stress tensor normal to the surface of the body, be zero. The location of this
boundary of the region-in-space occupied by the elastic body can not be given
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freely, but is part of the sought-for solution. It is thus preferable to work in the
material (”Lagrangian”) representation where the maps describing configurations
go from the material space - whose boundary is fixed - into physical space, with
Neumann-type boundary conditions. We note in passing that it is the material
representation which is used almost universally in standard nonrelativistic elastic-
ity. Since the elasticity literature is hard to digest for workers with a background
in relativity, we have made an effort to make this paper reasonably self-contained,
by formulating the necessary concepts and computations in the framework of a
Lagrangian field theory.
Nonrelativistic elasticity in the time-independent case takes the form ”E+F = 0”,
where E is a 2nd order partial differential operator acting on the configuration.
This operator, usually called elasticity operator, is a quasilinear, elliptic operator
on Euclidean space, with coefficients depending on the elastic material. The force
F, usually called ”load”, depends on the problem at hand of course - in our case it
is the centrifugal force. In special relativity this picture essentially survives with
the complication that E now becomes a PDO living on the space of trajectories
of a ”helical” Killing vector with the natural (curved) metric which this 3-space
inherits from Minkowski space. For this reason - and for use in future work on
elasticity in GR - we base our work here on a formulation of E on the background
of an arbitrary curved 3-space.
In Sect.2 we describe our setup for static elasticity, which is the curved-space
generalization of the standard nonrelativistic theory for hyperelastic materials
in the time independent case. The static elasticity operator is viewed as the
Euler-Lagrange expression for a certain action principle. This is done merely for
convenience, since the action principle facilitates the calculations necessary for
moving back and forth between the spatial and the material picture. We also
write down, in the material picture, the linearized elasticity operator at a ”nat-
ural state”, i.e. at a solution of the field equations with zero stress (whence zero
body force). When the physical space has Killing vectors, this operator, with
the obvious choice of function spaces, is neither injective nor surjective. Rather
its range has to satisfy certain integral constraints (often called ”equilibration
conditions” in the literature) on the force involving the Killing vectors and the
natural configuration. There is a related fact concerning the full elasticity oper-
ator: any configuration and any force have to satisfy equilibration conditions, if
the spatial metric has Killing vectors. This lack of surjectivity of the elasticity
operator generalizes a well-known fact in standard mechanics: forces acting on
an otherwise free body at rest have to be such that the total force and the total
torque be zero.
In Sect.3 we derive the equations governing relativistic rotating elastic bodies.
We do this by means of “dimensional reduction” of the general time dependent
theory laid out in our previous work [2], where this reduction is carried out w.r. to
the helical Killing vector corresponding to rigid rotation with angular frequency
ω. The resulting action functional (rather: ”energy functional”) is in fact more
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general than the framework of Sect.2: There automatically appears a force term
in the form of a multiplicative function, namely the norm of the Killing vector
which, in the case at hand, is essentially the centrifugal potential for frequency ω.
As a complication, for purely relativistic reasons, the coefficients of the elasticity
operator have a dependence on ω, which they inherit from the curved spatial
metric, i.e. the natural metric arising by quotienting the Minkowski metric by
the action of the helical Killing vector. To avoid confusion we wish to stress that,
under these circumstances, it is the full equation E +F = 0, which is obtained as
the Euler-Lagrange condition for the energy functional.
Taking the formal limit c → ∞ of the field equations, one obtains the nonrela-
tivistic equations. These of course have the form ”flat elasticity operator + force
=0”, where the second term, i.e. the centrifugal force, is linear in ω2. In Sect.3
we solve these equations for small ω and configurations close to the natural one.
An immediate application of the implicit function theorem is of course forbidden
by the lack of surjectivity of the linearized elasticity operator in flat space. This
is a well-known problem in elasticity, often resulting in bifurcation phenomena
which have led to a lot of difficult work (see e.g. Sect. 7 of [9]). Our problem,
luckily, turns out to be simpler. We first note that the equilibration conditions,
when ω 6= 0, require the configuration to be such that the center of mass in
physical space lie on the rotation axis and that this rotation axis coincide with
one of the principal axes of inertia: We ab initio impose these conditions on our
allowed configurations (including of course the natural configuration, i.e. the un-
deformed body). The resulting space of configurations turns out to be a smooth
manifold near the natural state (which it would not be if there were bifurca-
tions). After a suitable projection of the equations to this manifold, reminiscent
of bifurcation theory, the problem can then be solved using the standard im-
plicit function theorem, provided the constitutive law (expressed in terms of the
so-called “stored-energy function”) satifies the condition of “uniform pointwise
stability”, which is valid for standard elastic materials.
In Sect.4 we solve the relativistic problem. It has the form ”quotient space
elasticity operator + relativistic centrifugal force = 0”. For ω = 0 the quotient
space metric is Euclidean and the relativistic centrifugal force goes to zero like ω2

for small ω. If one now uses equilibration w. r. to ”1/ω2× relativistic centrifugal
force”, a new situation seems to arise: for ω = 0 we get the same conditions
as before. But for ω 6= 0 we get none: the only Killing vectors of the spatial
metric are now ∂φ and ∂3, and for those the equilibration conditions turn out to
be automatically satisfied. Thus, in order to be able to use an implicit function
argument at ω = 0, we resort to brute force: we split off the non-flat part of the
elasticity operator, which vanishes like ω2, and view it as a contribution to the
force. Now much the same goes through as in the nonrelativistic case. However,
in order to be guaranteed that the set of equilibrated configurations is again a
manifold, we have to assume, in addition to the constitutive condition for the
nonrelativistic case, that some characteristic velocity of the system, in essence
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some upper bound on the sound velocity, be sufficiently small compared to c.
Being guaranteed, by the theorems of Sect.4 and 5, that solutions exist for small ω,
we finally, in Sect.6, calculate these explicitly to linear order in ω2, for a material
which is isotropic in its natural state and for an undeformed body which is an
ellipsoid with rotational symmetry about the rotation axis. In the nonrelativistic
limit our results agree with the ones found by [4], see [8].

2 The static elasticity operator

The basic setup underlying time-independent situations in both nonrelativis-
tic and relativistic elasticity is as follows: We consider maps between two 3-
dimensional Riemannian manifolds given by f : (N, hij) 7→ (Ω, VABC), with the
manifold N describing physical space with smooth metric hij and Ω a domain
in R

3 (open, connected, bounded) with smooth boundary ∂Ω (not necessarily
connected) and VABC a smooth volume form on Ω̄. The domain Ω, called ”body”
or ”material space”, is to be t hought of as the collection of particles making up
the elastic body prior to the action of any external forces, stresses, etc.1 Thus f
is the ”back-to-labels-map”, its inverse Φ : Ω → N is called a configuration. In
nonrelativistic elasticity (N, hij) is Euclidean space. (In the case studied here of
a relativistic body rotating at angular frequency ω, the metric hij will be the one
coming from the Minkowski metric on R

4 with the action of the helical Killing
vector ∂t + ω∂φ quotiented out.) The maps f are required to be one-one and
orientation-preserving, i.e. the function n, defined for each f by

(∂if
A)(x)(∂jf

B)(x)(∂kf
C)(x)VABC(f(x)) = n(x)εijk(x), (1)

is positive. The physical interpretation of f is that of the density of particle
number. We are using coordinates XA on Ω and coordinates xi on N . The
three form εijk is the metric volume element in N associated with hij and the
three form VABC(X) = V (X)ǫABC with V > 0 and ǫ123 = 1 is the volume
element on Ω. (We think of V as having physical dimension [mass/volume].)

Put differently the definition (1) says that nh
1

2 = V det(∂f), where h = det(hij).
An elastic body will be specified by a constitutional law, as follows. There is given
a scalar function of maps f called stored-energy function (of physical dimension
[velocity]2) w = w(f, ∂f, x), smooth in all its arguments. Covariance of w under
spatial diffeomorphisms requires (see e.g. [2]) that w be of the form 2

1It would be unnatural for our purposes to add further structure to the body at this stage -
such as a flat metric, as is common in the literature. Once a choice of reference map (”state”)
has been made, there is of course a metric defined on Ω by the push-forward of hij under this
map.

2In standard nonrelativistic elasticity diffeomorphism invariance is replaced by requiring the
validity of the so-called ”principle of material frame indifference” (see e.g. [9]).
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w = w(HAB, fC), (2)

smooth in its arguments, where

HAB = (∂if
A)(∂jf

B)hij . (3)

By virtue of our assumptions HAB is positive definite. It thus has an inverse HAB.
The Cauchy stress tensor σi

j associated with w is defined as follows. Think of
the function L = nw as a Lagrangian density, i.e. consider the action S[f ]

S =

∫

M

nw h
1

2 d3x. (4)

Then σij is the Cauchy stress tensor

− σij = 2
∂(nw)

∂hij
− nwhij = 2n

∂w

∂hij
(5)

The mixed tensor σi
j is the same as the ”canonical stress tensor” σi

j = nwδi
j −

∂(nw)
∂(∂jfA)

(∂if
A) corresponding to the energy functional (4), which can also be

written as

σi
j = −n

∂w

∂(∂jfA)
(∂if

A) (6)

We next define the elasticity operator E by

nEi[f ] = Dj σi
j , (7)

where Di is the covariant derivative w.r. to hij. Clearly Ei is a second-order
quasilinear partial differential operator. Its relation with our variational principle,
as can be checked in a straightforward fashion, is given by

nEi = (∂if
A) EA, (8)

where EA is the Euler-Lagrange expression corresponding to the energy functional
S, i.e.

− EA = h−
1

2∂j

(
h

1

2

∂(nw)

∂(∂jfA)

)
− n

∂w

∂fA
(9)

Having written down the elasticity operator in the ”spatial” (i.e. maps go from
space into body) representation, we have to spell out the boundary conditions.
For a free body these are the conditions of ”vanishing surface traction”, namely:

σi
jnj|f−1(∂Ω) = 0, (10)

where ni is an outward co-normal of the surface f−1(∂Ω). The awkward feature
of the boundary condition Eq.(10) of involving both the map f and its inverse
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Φ = f−1 strongly suggests that one go over to the ”material” representation which
uses Φ as the basic dependent variable. Note that such a change of representation
should not be confused with a change of coordinates on either N or Ω.
The field equations in the material representation are easiest to derive by again
starting from the energy Eq.(4) which now reads

S[Φ] =

∫

Ω

wV d3X, (11)

where the argument HAB in w should be interpreted as a function of (Φ, ∂Φ). As
such it can be viewed as the inverse of the pull-back metric

HAB(X) = (∂AΦi)(X)(∂BΦj)(X)hij(Φ(X)) (12)

of hij under Φ. In the elasticity literature HAB is called the ”(right) Cauchy-
Green strain tensor”. Note that the material Lagrangian contains the dependent
variable Φ only through hij and has arbitrary dependence on the independent
variable X, whereas the spatial Lagrangian contains the independent variable x
only through hij and may depend on f in an arbitrary fashion. The material
Euler-Lagrange expression, by virtue of Eq.(8) and the relation

δΦi(f(x)) = −(∂AΦi)(f(x))δfA(x), (13)

is nothing but Ei, expressed in terms of Φ rather than f . Explicitly one finds
that

Ei[Φ] = V −1∂A

(
V

∂w

∂(∂AΦi)

)
−
∂w

∂Φi
(14)

A calculation shows that Eq.(14) can be written more concisely as

Ei = ∇Aσi
A, (15)

where σi
A is the ”first Piola stress tensor” given by

σi
A =

∂w

∂(∂AΦi)
(16)

and ∇A is given by

(∇Aσi
A)(X) = V −1(X)∂A(V (X)σi

A(X)) − Γk
ij(Φ(X))σk

A(X)(∂AΦj)(X) (17)

with Γi
jk being the Christoffel symbols of the metric hij . Note that no metric on

Ω is required, just the volume form VABC The connection between the Piola and
the Cauchy stress tensor is given by

n(Φ(X))σi
A(X) = ΨA

j(X)σi
j(Φ(X)), (18)
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where
ΨA

i(X)(∂BΦi)(X) = δA
B, (19)

or ΨA
i(X) = (∂if

A)(Φ(X)). Thus the above derivation has in particular recov-
ered a version of the so-called ”Piola identity”, namely

(n−1Djσi
j)(Φ(X)) = (∇Aσi

A)(X) (20)

The boundary conditions in the material picture take the form

σi + σi
AnA|∂Ω = 0, (21)

where nA is an outward co-normal of ∂Ω. From Eq.(16) it follows that

σi
A =

∂w

∂(∂AΦi)
= −2HACΨB

i
∂w

∂HBC
. (22)

From this we infer that the second-order terms of Ei are given by

∂Aσi
A = [ΨC

iH
ABHCDσj

D + 2ΨB
(iσj)

A +

+ 2HAEHBF ΨC
iψ

D
jLCEDF ](∂A∂BΦj) + l.o., (23)

where

LABCD =

(
∂2w(HEF , X)

∂HAB∂HCD

)
. (24)

The problems considered in elastostatics are usually written as

Ei[Φ] + Fi[Φ] = 0 (25)

The quantity Fi is called ”load”. It will be convenient to use a more general
terminology with respect to loads and elasticity operators. Namely, we call the
(nonlinear) elasticity operator E the assignment, to any allowable map Φ, of the
pair (Ei, σi), where σi is the function on ∂Ω given by σi = σi

AnA|∂Ω. Similarly a
load F is a pair of functions (Fi, τi) on Ω× ∂Ω, both of which may depend on Φ
(otherwise the load is called ”dead”), and may do so in a nonlocal fashion.
There is a condition on loads in order for Eq.(25) to have solutions, which will
play an important role and which arises as follows: Let ξi(x) be a Killing vector
of the metric hij on N . Then, in order for a map Φ to be solution of the extended
version of Eq.(25), i.e. E + F = 0, the load F = (Fi, τi) has to satisfy

∫

Ω

(ξi ◦ Φ) Fi dV +

∫

∂Ω

(ξi ◦ Φ) τi dO = 0. (26)

The integrals in Eq.(26)3 are with respect to the volume form VABC on Ω. The
proof of Eq.(26) is a straightforward verification based on the Stokes theorem

3More precisely, the quantities σi and τi should be interpreted as two-forms on ∂Ω with σi

corresponding to the pull-back to ∂Ω of the two-form σi
AVABC . Similarly the first term in

Eq.(26) should be interpreted as the integral over Ω of the three-form arising by replacing Fi

with FiVABC .
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and the following identity

[∂A(ξi ◦ Φ) + Γi
jk(ξ

j ◦ Φ)(∂AΦk)]σi
A = 0, (27)

which in turn follows from the Killing equation for ξ together with Eq.(18) or
Eq.(22) (i.e. Eq.(27) is the material version of (Diξj)σij = 0). Loads satisfying
Eq.(26) for all Killing vectors on Φ(Ω̄) are said to be ”equilibrated at Φ”. Sim-
ilarly, for given load L, a map Φ is called equilibrated w.r. to L, if (26) is valid
for all Killing vectors.
We now introduce a reference configuration. This will simply be some given
invertible, orientation-preserving map Φ̄ from Ω̄ to N , obtained by restriction to
Ω̄ of a smooth function defined in a neighbourhood of Ω with smooth inverse on

its image. We in addition require Φ̄−1 to have n =
◦
ρ= const or, in other words,

that
V (X) =

◦
ρ H̄

1

2 (X) (28)

with H̄ = det(H̄AB), H̄AB being the pull-back under Φ̄ of hij. The constant
◦
ρ,

usually called the mass density in the reference configuration, in our convention
will drop out of all our equations. The Eq.(15) can now be written as

Ei = D̄Aσi
A (29)

with D̄A the two-point covariant derivative (see [9]) referring to the metric H̄AB

on Ω̄ and hij on N 4. Given a reference configuration one can define, for any
configuration Φ, the matrix H̄ given by H̄A

B = H̄BCH
AC . Much of elasticity

theory concerns isotropic materials, which are described by stored-energy func-
tions depending on HAB only via the principal invariants of H̄. We will not need
that assumption however.
In this work we will always require that the reference configuration be unstressed,
i.e. σ̄i

A = 0. By the identity (22) unstressedness is equivalent to

(
∂w(HCD, X)

∂HAB

)
|Φ=Φ̄(X) = 0. (30)

The subscript Φ = Φ̄(X) in Eq.(30) is understood in the sense that Φ and ∂Φ
should be replaced by the values respectively of Φ̄ and ∂Φ̄ at X. Clearly there
holds

Ēi = Ei[Φ̄] = 0. (31)

We will need the linearization of the Piola tensor in the reference configuration.
This is given by

δσi
A = −2H̄ABΨ̄C

iL̄BCDE δHDE, (32)

4In contrast to [9] these metrics are not chosen independently, but are isometric under the
reference configuration.
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where L̄ABCD = LABCB|Φ=Φ̄(X) and δHAB is the first-order linear PDO acting on
δΦi(X) given by

δHAB = LδΦH̄
AB, (33)

and the Lie derivative in Eq.(33) is taken with respect to the vector field δΦA(X) =
Ψ̄A

i(X)δΦi(X) on Ω. More explicitly Eq.(33) can be written as

δH̄AB = −2 D̄(AδΦB) = −2Ψ̄(A
i D̄

B)δΦi, (34)

since D̄A annihilates Ψ̄B
i (see footnote 4)). We remark that in the so-called ”pre-

stressed case” of linearization at a reference configuration which solves Eq.(31)
without being stress-free there arises an expression more complicated than (32)
for δσi

A and hence for the linearized elasticity operator.
One easily sees that δHAB vanishes if and only if δΦi is of the form δΦi(X) =
ξi(Φ̄(X)) for ξi a Killing vector on (Φ̄(Ω̄) ⊂ N, hij). The linearization of the
elasticity operator E introduced after Eq.(25) is the second-order operator

δE : Φ 7→ (D̄A δσi
A, (δσi

AnA)|∂Ω) (35)

with δσi
A given be Eq.’s (32,34). Clearly, functions (Fi, τi) on Ω × ∂Ω, in order

to lie in the range of δE, have to be equilibrated at Φ̄. Now to the kernel. It is
immediate that the kernel of δE contains all elements δΦ which are ”Killing” in
the above sense or, equivalently, of the form δΦi(X) = (∂AΦ̄i)(X)ηA(X), where
ηA a Killing vector on (Ω̄, ḠAB). This is an expression, on the linearized level, of
the following fact: given an unstressed state Φ̄, then, for any isometry F of N ,
the map F ◦ Φ̄ is also unstressed and hence a solution.
We now suppose the stored-energy function w to be such that δE is ”uniformly
pointwise stable”. This means that, for X ∈ Ω̄,

L̄ABCD(X)MABMCD > 0 ∀MAB = M (AB) 6= 0. (36)

For example in the case of an isotropic homogenous material there are constants
λ and µ, such that

4ρ0 L̄ABCD = λH̄ABH̄CD + 2µH̄C(AH̄B)D, (37)

and in that case uniform pointwise stability is equivalent to the conditions

µ > 0, 3λ+ 2µ > 0. (38)

By a standard integration-by-parts argument, it follows from uniform pointwise
stability that any element δΦ in the kernel of the map δE is Killing. Thus
the map δE has a kernel of the dimension of that of the isometry group of
(Φ̄(Ω), hij) and a cokernel of that same dimension. The latter fact can e.g. be
inferred from the formal self-adjointness of δE, as follows: raising the index i
in δσ̄i

A with h̄ij = hij ◦ Φ̄, E can be viewed as map from functions δΦi(X)
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into themselves, which is formally self-adjoint w.r. to the inner product given
by 〈δµ, δΦ〉 =

∫
Ω
h̄ij(δµ

i)(δΦj)d3V +
∫

δΩ
h̄ij(δµ

i)(δΦj)dO , using the symmetry
L̄ABCB = L̄CDAB

5.
It follows from these observations, that, with an appropriate choice of function
spaces, the operator δL, viewed as a map from some complement of Killing ele-
ments at Φ̄ to loads equilibrated at Φ̄, is an isomorphism 6.

3 Rigidly rotating bodies

In order to derive the equations governing a rigidly rotating elastic body we start
from the time-dependent theory as laid out in [2]. Back-to-label maps now go
from a relativistic spacetime (M, gµν) to (Ω, VABC). The condition of invertibility
in the time-independent case is replaced by the condition that there is a unique-
up-to-sign timelike vector field uµ with uµuνgµν = −1, so that

uµ(∂µf
A) = 0 (39)

The quantity n, in the time-dependent setting, is defined by

(∂µf
A)(∂νf

B)(∂λf
C)VABC = nεµνλρu

ρ. (40)

The spacetime action for the elastic field is given by

S =

∫
nǫ(−g)

1

2d4x, (41)

where ǫ is a function of HAB = (∂µf
A)(∂νf

B)gµν . We now suppose the maps
f are time-independent in the sense that uµ is proportional to an everywhere
timelike Killing vector field ξµ. Furthermore suppose M = R

1 × N with N the
quotient of M by the isometry group generated by ξµ. The natural metric on
N is given by hij = gij − g0igoj/g00 in local coordinates (t, xi) on R

1 × N . Since
gij = hij , with hij the inverse of hij , we have that the f ’s, viewed as maps
f : (N, hij) 7→ (Ω, VABC), HAB and n bear the same relationship to each other
as the quantities of the same name in the previous chapter. Since, furthermore,
(−g)

1

2 = (−g00)
1

2h
1

2 we find that

S =

∫
nǫ(−g00)

1

2h
1

2d3x dt, (42)

5This formal selfadjointness runs under the name of the ”Betti reciprocity theorem” in
standard elasticity.

6The necessary Fredholm theory is fairly standard in a Hilbert space (i.e. W 2,2-)setting (see
Ref. [12]). However in this paper we need W 2,p with p > 3, and this can be found e.g. in [11]
in the case when (N, hij) is flat. Luckily this is all we require for the present purposes.
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and the reduced action reads

S =

∫
n ǫ(HAB, fC)(−g00)

1

2h
1

2d3x. (43)

We write ǫ as
ǫ = c2 + w (44)

and g00 as

− g00 = c2e
2U

c2 . (45)

The resulting field equations turn out to be equivalent to

− e−
U

c2Dj(e
U

c2 σi
j) + n(1 +

w

c2
)DiU = 0 (46)

in the spatial picture and

− e−
U

c2 ∇A(e
U

c2 σi
A) + (1 +

w

c2
)DiU = 0 (47)

in the material picture. We now specialize to bodies in SRT which rigidly rotate
at angular speed ω. Thus we take (M, gµν) to be (R4, ηµν) with

ηµνdx
µdxν = −c2dt2 + δij dx

idxj (48)

and ξµ∂µ to be
ξµ∂µ = ∂t + ω ∂φ. (49)

There results

e
2U

c2 = 1 −
ω2r2

c2
(50)

and

hij(x
k;ω)dxidxj = δij dx

idxj +
ω2

c2 − ω2r2
(x1dx2 − x2dx1)2, (51)

where r2 = (x1)2 + (x2)2. We restrict ourselves to the region where r < c
ω
, i.e.

inside the timelike cylinder on which ξµ gets null. Note that 1
c2

enters Eq.(46),

resp. Eq.(47), explicitly, but ω2

c2
enters also implicitly through U and via the

hij-dependence both of the covariant derivative and of that of HAB appearing in
w, n and σi

j , resp. σi
A.

4 The nonrelativistic Theorem

Taking the formal limit of Eq.(47) as c→ ∞ we find

V −1∂A(V σi
A) + ω2(Φ1,Φ2, 0) = 0. (52)
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Here σi
A is given in terms of w by Eq.(16), with HAB = ΨA

iΨ
B

j δ
ij . As usual

the boundary condition is that

σi = (σi
AnA)|∂Ω = 0 (53)

Let Φ̄ be an unstressed reference configuration. It follows that Φ̄ is a solution
of Eq.(52) and of the boundary condition Eq.(53). We can, and will, choose
coordinates XA on Ω so that Φ̄ is the identity map, i.e. XA = Φ̄A(xi) = δA

ix
i.

From Eq.(28) we have that V = const in these coordinates. Thus, apart from an
overall minus-sign, our field equation is of the form (25). We are seeking solutions
Φ of Eq.’s (52,53) for small values of ω which coincide with Φ̄ for ω = 0. We have
the conditions (26) for each element of the Lie algebra of the Euclidean group.
These six conditions, in the presence of (53), amount to the statement that, for
any configuration Φ solving the field equations and the boundary condition, the
total centrifugal force and the total centrifugal torque be zero. The former of
these conditions, namely

ω2

∫

Ω

Φ1d3X = ω2

∫

Ω

Φ2d3X = 0 (54)

states that the center of mass has to be on the axis of rotation. The vanishing of
the total torque reads

ω2

∫

Ω

Φ3Φ1d3X = ω2

∫

Ω

Φ3Φ2d3X = 0, (55)

and this means that the axis of rotation is an eigendirection of

Θij =

∫

Ω

(δijδklΦ
kΦl − ΦiΦj)d3X, (56)

apart from a factor
∫
Ω
ρ̄ d3X the tensor of inertia. Hence rigid rotation is only

possible through a principal axis of inertia of the rotating object.
The above conditions depend on the configuration Φ we want to determine. If
one linearizes at the stress free configuration a kernel and range of the linearized
elasticity operator appears, as explained in Sect.2, and one can not use the im-
plicit function theorem directly. In the known existence theorems this problem
was dealt with as follows:
Stoppelli [10], who gave the first existence theorem for dead loads, in a first step
projects the equation on the range of the linearized operator. In a second step he
shows that one can use the invariance the linearized operator under motions to
construct, from the “projected solution”, a solution of the original equation. This
is similar to the method of Liapunov-Schmidt reduction in bifurcation theory. By
a similar technique, Valent [11] solves various problems including ones with life
loads.
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We propose here yet another method which rests on the fact that our life load is a
differentiable function of the configuration. Therefore we can construct a priori a
manifold of configurations which are equilibrated for the centrifugal force. Using
only these configurations the implicit function theorem directly gives the solution
for small ω, provided our stress free initial configuration Φ̄ is equilibrated for the
centrifugal force and has three different moments of inertia.

We now fix the spaces we will work in to be the standard ones in static elas-
ticity problems. We assume that the boundary of our body Ω is at least C1,
i.e. there are no corners. We take the components of the configurations in
W 2,p(Ω,R3) for p > 3. Then Φ is in C1(Ω̄) and the boundary traction σi

AnA is
in W 1−1/p,p(∂Ω,R3).
We can choose a neighbourhood C of Φ̄ in W 2,p(Ω,R3) small enough so that each
Φ ∈ C has a C1-inverse (see p.224 of [5]). The elasticity operator E of Sect.2,
given by

E : Φ ∈ C 7→ (∂Aσi
A, σi) ∈W 0,p(Ω,R3) ×W 1−1/p,p(∂Ω,R3) (57)

is differentiable. (For the first factor in (57), see Appendix A, for the second
factor, see Remark (6.5) on p.78 of [11].) We call

L = W 0,p(Ω,R3) ×W 1−1/p,p(∂Ω,R3) (58)

the ”load space” and its elements (Fi, τi). The load map F : C −→ L is given
by Fi = ω2Zi together with τi = 0. The form of the centrifugal force Zi =
−(Φ1,Φ2, 0) and the principle of material frame indifference imply (see footnote
5)) that, given any solution (Φ1,Φ2,Φ3) of E + F = 0, (Φ1,Φ2,Φ3 + c) and
(Φ′1,Φ′2,Φ3) where (Φ′1,Φ′2) are a rotation of (Φ1,Φ2) in the (x1, x2)-plane, are
also solutions. We fix this freedom by imposing the conditions

C0 := {Φ|Φ ∈ C,Φ3(0) = 0, (∂2Φ
1)(0) = (∂1Φ

2)(0)}, (59)

where we have also assumed that Ω has been chosen such that 0 ∈ Ω. Clearly C0

is a C1-(in fact: analytic) submanifold of C. Finally we want to restrict ourselves
to configurations, which are equilibrated w.r.t. the centrifugal force, i.e. we define

C0
Z

:= {Φ|Φ ∈ C0,

∫

Ω

Φ1d3X =

∫

Ω

Φ2d3X =

∫

Ω

Φ1Φ3d3X =

∫

Ω

Φ2Φ3d3X = 0}.

(60)
Suppose furthermore that Φ̄ ∈ C0

Z
. Explicitly this means that

∫

Ω

X1d3X =

∫

Ω

X2d3X =

∫

Ω

X1X3d3X =

∫

Ω

X2X3d3X = 0 (61)

Note that the last two equations in (61) mean that the rotation axis concides
with some fixed but arbitrarily chosen principal axes in the given reference con-
figuration. Then we want to show that C0

Z
is a submanifold of finite codimension

13



in C0.
The map H , which sends a configuration to the values of the four integrals in
Eq.(60) is a differentiable map from C0 to R

4. Hence C0
Z
⊂ C0 has codimension

4 near Φ̄ if the four differential 1–forms defined by the four conditions above are
linearly independent at Φ̄. These 1–forms are

A(δΦ) =

∫

Ω

δΦ1d3X , B(δΦ) =

∫

Ω

δΦ2d3X (62)

and

C(δΦ) =

∫

Ω

(X1δΦ3 +X3δΦ1)d3X , D(δΦ) =

∫

Ω

(X2δΦ3 +X3δΦ2)d3X (63)

Suppose a linear combination exists, i.e.

aA(δΦ) + bB(δΦ) + c C(δΦ) + dD(δΦ) = 0 (64)

for constants (a, b, c, d) ∈ R
4, which vanishes for all δΦi ∈ W 2,p(Ω,R3) in the

tangent space of C0
Z

at Φ̄, i.e. satisfying δΦ3(0) = 0, (∂1δΦ
2)(0) = (∂2δΦ

1)(0).
Choosing δΦ1 = δΦ2 = 0 we obtain

∫

Ω

(
cX1 + dX2

)
δΦ3 d3X = 0. (65)

Choosing δΦ3 = X1 and successively δΦ3 = X2 and using the Schwarz inequality,
we infer c = d = 0. Similarly we obtain a = b = 0 from considering δΦ2 = (X2)2

and δΦ1 = (X1)2. Maximal codimension at Φ̄ implies maximal codimension
nearby. Therefore the level sets of H are closed submanifolds with the property
that the tangent space splits into an infinite dimensional closed subspace tangent
to H = const and some finite dimensional subspace (see e.g. Theorem 3.5.4
of [1]). We note that the above proof works for any Φ̄ which is equilibrated. No
condition like ”no axis of equilibrium” (see [11]) appears at this point. We collect
the above rsults in the

Lemma 1: The configurations in C0
Z

form a differentiable closed submanifold of
codimension 4 in C0 for Φ sufficiently close to the identity.

We can say more about possible finite dimensional complements of C0
Z
. Let us

assume the equilibrium configuration (Ω, Φ̄) to be such that all three moments
inertia are different, hence the principal axes of inertia are uniquely determined.
This implies that any small rotation around the x1 or x2 – axis and translation
in x1, x2 – directions will destroy equilibration! Therefore the corresponding 4
Killing vectors span a complement of C0

Z
at Φ̄.

We now turn to the nonlinear map

G : C0
Z
× R → L (66)
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defined by the l.h. side of Eq.(52), i.e.

G[Φ;ω] =
(
Ei[Φ] + ω2Zi[Φ], σi[Φ]

)
(67)

We have that G[Φ̄, 0] = 0. We want to solve the equation G[Φ, ω] = 0 for small ω
by the implicit function theorem. The map G is differentiable (see Appendix A).
The derivative of G with respect to Φ at Φ̄ and ω = 0 is the linearized elasticity
operator together with the linearized normal traction on the boundary, i.e.

DG

DΦ
[Φ;ω]|(Φ̄;0) =

(
DEi

DΦ
[Φ]|Φ̄ ,

Dσi

DΦ
[Φ]|Φ̄

)
= δE : TΦ̄(C0

Z
) → L. (68)

We now recall the discussion of Sect.2. If we consider the elasticity operator δE
as a map C → L we have Ker(δE)= Killing vectors and Range(δE) = LΦ̄, the
loads equilibrated at Φ̄. Hence on the tangent space of C0

Z
the kernel is trivial

as we showed above. To deal with the range we proceed as follows: Choose a
(6–dimensional) complement S6 to LΦ̄ which defines a unique linear projection

P : L = LΦ̄ ⊕ S6 → LΦ̄ (69)

As is done in bifurcation theory we can solve the ”projected equation” i.e.

P ◦ (Ei[Φ] + ω2Zi[Φ]) = 0, P ◦ σi[Φ] = 0 (70)

by the implicit function theorem for small ω 6= 0 because the derivative of P ◦E,
namely P ◦δE, is an isomorphism at Φ̄. Denote this configuration by Φω. Finally
we show that Φω already solves our problem: fix any configuration Φ ∈ C0

Z
and

consider the codimension-6-linear-subspace LΦ ⊂ L of all loads equilibrated at
Φ. These are all (Fi, τi) satisfying

∫

Ω

Fi d
3X +

∫

∂Ω

τi dO = 0 ,

∫

Ω

(Φ ∧ F)i d
3X +

∫

∂Ω

(Φ ∧ τ)i dO = 0 (71)

The projection P , when restricted to LΦ, defines an isomorphism Pφ : LΦ → LΦ̄

(see [7]) because, for configurations Φ near Φ̄, the complement S6 of LΦ̄ is still a
complement of LΦ. In particular LΦ and LΦ̄ just intersect at the origin. For all
Φ ∈ C0

Z
we have

(Ei[Φ], σi[Φ]) ∈ LΦ (72)

Hence this holds for Φω. Since Φω ∈ C0
Z

there holds

(Zi[Φω], 0) ∈ LΦω
(73)

by construction of C0
Z

. Hence we obtain

(Ei[Φω] + ω2Zi[Φω], σi[Φω]) ∈ LΦω (74)
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Our candidate solution Φω satisfies P ◦(Ei[Φω]+ω2Zi[Φω]) = 0 and P ◦σi[Φω] = 0.
Consequently

Ei[Φω] + ω2Zi[Φω] = 0, σi[Φω] = 0. (75)

Hence Φω is a solution, and we have proved the

Theorem 1: Let the domain Ω and the map Φ̄ be such that all three moments of
inertia are different and that one of the principal axes concide with the rotation
axis. Let the stored-energy function w be uniformly pointwise stable, i.e. satisfy
the inequality (36). Then there is, in a neighbourhood of (Φ̄, ω = 0) ∈ C0

Z
× R, a

unique element Φω in C0
Z
, solving the equation (52) together with the boundary

condition (53).
We remark that the condition on the natural configuration, in Theorem 1, of
having three different moments of inertia I1, I2, I3, is not necessary for the theorem
to go through. In Sect.7 we consider a natural configuration which, by virtue of
its axisymmetry with respect to the rotation axis, has I1 = I2 6= I3, with the
eigenvectors for I1 and I2 orthogonal to the rotation axis. Then Theorem 1
remains true, with the proviso that the rotation axis is chosen to coincide with
the I3- axis, since the only additional freedom of performing continuous motions
is that under ∂φ and ∂3, and that has already been frozen out in C0

Z
.

Consider finally the case of a spherical top, i.e. where all eigenvalues of the
tensor of inertia coincide. An example is given by taking Ω to have the geometry
of a cube (w.r. to the the metric H̄AB). Our above proof works also in this
case: We now have a 2–dimensional intersection of the kernel of the linearized
elasticity operator with the tangent space of C0

Z
at Φ̄. We can solve by the implicit

function theorem if we fix an element of the kernel. The cube is equilibrated for
the centrifugal force for any rotation axis which goes through its center of mass.
Hence there is a 2-paramter family of possibilities for Φ̄. For the cube these Φ̄’s
will determine physically distinct non-linear solutions. On the other hand, for a
sphere, the trivial spherical top, different choices of Φ̄ lead to nonlinear solutions
which are just rotations of each other. In general, the interplay between the
symmetry of the tensor of inertia and the symmetry of the domain Ω determines
which of the solutions we obtain by selecting an element of the kernel are different
Remark: If the stored-energy function is analytic, we obtain maps between the
function spaces which are also analytic. The analytic implicit function theorem
implies that the family Φω is analytic in ω2, i.e. we have a converging Signorini
expansion. Furthermore elliptic regularity in that case implies analyticity of the
solutions in Ω.

5 Non relativistic, self gravitating, rotating

Combining the result of the last section with our paper on a static self gravi-
tating body [3], it is straightforward to obtain an existence theorem for a slowly
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rotating, weakly gravitating body. Namely, if we add the gravitational force to
the centrifugal force, the equation to be solved takes the form

Ei + ω2Zi −Gρ0

∫

Ω

Φi(X) − Φi(X
′)

|Φ(X) − Φ(X ′)|3
d3X ′ = 0 (76)

The important point, then, about self-gravity is that the last term in Eq.(76) is
automatically equilibrated for all configurations. One can then basically proceed
as in the last section 7.

6 Relativistic case

A specific model is again characterized by a choice of stored energy w = w(HAB, X).
The main complication is that HAB now refers to a curved spatial metric which
depends on ω. In moving back and forth between the relativistic and the non-
relativistic theory, it is natural to require that the stored-energy functions, for a
given material, be the same. It follows that

(
∂w(HCD, X)

∂HAB

)
|(Φ=Φ̄(X);ω=0) = 0 (77)

and that

L̄ABCD =

(
∂2w(HEF , X)

∂HAB∂HCD

)
|(Φ=Φ̄(X);ω=0) (78)

be pointwise stable in the sense of Eq.(36). As opposed to the nonrelativistic case
the equations are not invariant under adding a constant to w. We thus assume
that

w(HAB, X)|(Φ=Φ̄(X);ω=0) = 0 (79)

As in the previous section we assume coordinates XA to be chosen such that Φ̄
is the identity map. In the relativistic case this requires that (X1)2 +(X2)2 < c2

ω2

for all (X1, X2, X3) ∈ Ω̄.
We will treat the relativistic case by splitting off the nonrelativistic elasticity
operator in Eq.(47) and putting all remaining terms into the load. This we do as
follows: We can write

e
U

c2 σi
A =

◦
σi

A + ω2σ̃i
A, (80)

where σ̃i
A = σ̃i

A(Φ, ∂Φ;ω) and
◦
σi

A =
◦
σi

A|ω=0, and analogously

(e
U

c2 σi
AnA)|∂Ω =

◦
σi +ω2σ̃i (81)

7We take this opportunity to point that, on p.111 of [3], we required the stored-energy
function to satify the so-called Legendre-Hadamard condition, whereas we should have required
the stronger condition (36) employed here, in order for the theorem stated there to be true.
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for the surface traction. The boundary conditions now take the form

◦
σi= −ω2σ̃i (82)

By virtue of Eq.(77) we have that

◦
σi

A[Φ̄] = 0. (83)

The field equations (47) can be written as

∂A
◦
σi

A + ω2(Yi + Zi) = 0, (84)

where

Yi = ∂Aσ̃i
A −

1

ω2

(
1 −

ω2r2

c2

) 1

2

(∂AΦj)Γk
ji σk

A (85)

and

Zi =

(
1 −

ω2r2

c2

)− 1

2 (
1 +

w

c2

)
∂i

(
r2

2

)
(86)

where it is understood that the functions r and Γk
ij are evaluated at the points

Φ(X) ∈ N . Note that the second term in Eq.(85) is regular also at ω = 0, due
to Eq.(51). Furthermore, using (83) and (79), there holds

Zi[Φ;ω]|(Φ̄,0) = (X1, X2, 0). (87)

We want to solve Eq.(84) by viewing the first term as the (unperturbed) elasticity

operator
◦
Ei. (Note that the flat-space operator

◦
Ei, though ”unperturbed”, is still

nonlinear.) The remaining terms in Eq.(84) form the load, i.e.

Fi = ω2(Zi + Yi) (88)

together with
τi = ω2σ̃i. (89)

Thus the equilibration conditions Eq.(26), dividing by ω2 and turning the surface
integral to a volume integral, take the form

0 = −

∫

Ω

∂A(ξi ◦ Φ)σ̃i
Ad3X +

−

∫

Ω

(ξi ◦ Φ)

(
1 −

ω2r2

c2

) 1

2 1

ω2
Γk

ji σk
A(∂AΦj) +

+

∫

Ω

(ξi ◦ Φ) Zi[Φ;ω] d3X. (90)

The vectors ξi in Eq.(90) run through the Euclidean Killing vectors on N . We
now claim that, as in the nonrelativistic case, 2 of these 6 conditions are identities,
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namely, if ξi is either ∂3 or ∂φ. To see this, recall that the conditions (90) are
equivalent to the relations

∫

Ω

ξi [
1

ω2
DAσi

A + Zi] d
3X = 0 (91)

By virtue of the axial symmetry of r2, the second term on the right in (91) gives
zero when ξ is ∂3 or ∂φ. The first term, using the boundary conditions and that
∂3 and ∂φ are Killing vectors also of the ω-dependent curved metric hij , gives also
zero for ω 6= 0, whence for ω = 0, by continuity. This proves the above claim.
We next have to look at the different terms in the integrand of Eq.(90) at ω = 0.
We have that

Zi|ω=0 = (1 +

◦
w

c2
) ∂i

(
r2

2

)
. (92)

Furthermore we find that

1

ω2
Γk

ijσk
A|ω=0 =

1

c2
λk

ij

◦
σk

A, (93)

where the quantities λk
ij are linear functions of Φ(X) with constant coefficients

and, using Eq.’s (50,51,80) and Eq.(22),

σ̃i
A|ω=0 = −

r2

2c2
◦
σi

A −
2

c2
◦
K

AC ◦
σi

B
◦
HBC −

2

c2
◦
H

ACΨB
i

◦
K

DE
◦
LBCDE , (94)

where
◦
K AB = d

dω2 H
AB|ω=0 = ΨA

iΨ
B

jκ
ij and κij are quadratic functions of Φ(X)

with constant coefficients,
◦
HAB= HAB|ω=0 and

◦
LABCD= LABCD|ω=0. Note that

all quantities with superscript ◦ depend on ∂Φ(X), but not on Φ(X). We next
evaluate the equilibration conditions in the reference configuration. The first
term in Eq.(90) gives no contribution at Φ = Φ̄, since the first two terms in (94)
vanish and the third term contributes zero, due to the symmetries of LABCD and
the Killing equation for ξ. The second term in (90) is also zero in the reference
configuration. The third term, finally, is identical with its nonrelativistic value, by
Eq.(79). It follows that the requirements in the previous section on the reference
configuration can remain unchanged. It remains to compute the derivative at
Φ = Φ̄ of the function H [φ] given by the four functions resulting by inserting
into the r.h. side of (90) the Killing vectors ξ = ∂1, ξ = ∂2, ξ = x3∂1 − x1∂3, ξ =
x3∂2 − x2∂3 on N . The derivative at Φ = Φ̄ of the last term in (90), using (92),
the stressfreeness of Φ̄ and (79), is the same as that in the nonrelativistic case.
The explicit form of the remaining terms does not matter except that they are
linear, with coefficients some given functions of X, in the quantities 1

c2
L̄ABCD(X).

The quantities 1
c2
L̄ABCDEF (X), where

L̄ABCDEF =

(
∂3w

∂HAB ∂HCD ∂HEF

)
|[Φ=Φ̄(X); ω=0]. (95)
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appear in the derivative of Eq.(94), but do not contribute to DH at Φ = Φ̄, again
using the symmetry and the flat-space Killing equation for ξ. Now recall the
discussion of Sect.4. Evaluating the nonrelativistic DH|Φ̄ on some test functions
δΦ, we arrived at certain positive expressions. These can bounded from below
by a (dimensionful) quantity, say β, which solely depends on the geometry of
the domain Ω. Similarly, the contribution to DH|Φ̄ of the relativistic terms just
discussed can be bounded from above by a geometrical quantity, say γ times
1
c2
|L̄|, where |L̄| is some upper bound for the components of L̄ABCD. It follows

that there is a dimensionless number α, which depends only on the geometry of
Ω, so that DH|[Φ=Φ̄; ω=0] is nonzero provided that

|L̄|

c2
< α =

β

γ
(96)

We now follow the pattern of the discussion in Sect.4 as much as possible. We
assume the domain Ω to lie strictly inside the cylinder (X1)2 + (X2)2 = c2

ǫ2
. We

choose a neighbourhood ǫD of the identity in C, small enough so that Φ(Ω) ⊂ Nω

for all 0 ≤ ω < ǫ. Here Nω is the subset in R
3 with r < c

ω
. We then restrict

ǫD to ǫD0, by imposing the conditions Eq.(59). The elasticity operator E is still

the nonrelativistic one, namely Φ 7→ (Ei =
◦
Ei= −∂A

◦
σi

A,
◦
σi). The load map F ,

consisting previously of Fi = ω2(Φ1,Φ2, 0) together with τi = 0, is replaced by
Fi = ω2Z′

i = ω2(Yi + Zi), with Z,Y according to Eq.’s (85,86), together with
τi = ω2σ̃i. The important difference is that Z′

i depends on ω and on (∂Φ, ∂∂Φ)
with ∂∂Φ appearing only linearly as required by the second result in Appendix
A. Let us denote by ǫD0

Z′ × (−ǫ, ǫ) the set of configurations in ǫD0 and values
ω ∈ (−ǫ, ǫ) satisfying the 4 relativistic equilibration conditions (i.e. the zero-level
set of the function H described above, which involves Z′

i). Our above discussion,
together with the inverse function theorem, shows the following

Lemma 2: Suppose the inequality (96) is valid. Then the set ǫD0
Z′ × (−ǫ, ǫ),

for Φ sufficiently close to the identity and ω sufficiently close to zero, is a C1-
submanifold of codimension 4 in the Banach space ǫD0 × R.

We now consider the equation P ◦(E+F ) = 0 on ǫD0
Z′×(−ǫ, ǫ) with the projection

map P defined exactly as before. The remainder of the argument is completely
analogous to Sect.4, and we obtain the

Theorem 2: Let the stored-energy function w satisfy Eq.(79) and Eq.(77), and
let the constants L̄ABCD defined by (78) satisfy the inequalities (36) and (96).
Suppose, finally, (Ω, Φ̄) to be such that the three principal axes are different and
that one of them coincides with the rotation axis. Then there is, in a neigh-
bourhood of (Φ̄, 0) ∈ ǫD

0
Z′ × (−ǫ, ǫ), a unique element (Φω, ω) which solves the

equations (84) together with the boundary condition (82).
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7 Linearized solutions

In this section we want to present an explicit solution which is linearized in ω2.
We take as the background solution a stress free ellipsoid of the form

X2 + Y 2 + ǫ2Z2 = R2 (97)

The material is assumed to be isotropic in its natural state. Thus we have that
L̄ABCD defined by Eq.(78) satisfies (see Eq. (37))

4ρ0 L̄ABCD = λδABδCD + 2µδC(AδB)D, (98)

and the inequalities (38), namely

µ > 0, 3λ+ 2µ > 0. (99)

Consider the family of solution of (82) determined by the implicit function theo-
rem and parametrized by ω2. The linearization in ω2 satisfies the equation

∂A δ
0
σi

A + Ȳi + Z̄i = 0, (100)

where, again, the bar means evaluation at Φ = Φ̄ and ω = 0.
We write

δΦi =
d

dω2
Φi|(ω=0 (101)

and δ
0
σi

A is determined from (32,33,34). We obtain, using (98),(77)and (34), that

δ
0
σiA=

1

ρ0
[µ(∂AδΦi + ∂iδΦA + λδiA∂kδΦ

k]. (102)

Note that, by the convention to view Φ̄ as the identity map, ∂AΦ̄i = δi
A and

H̄AB = δAB. Eq.(102) leads to the standard nonrelativistic operator of linearized
elasticity, i.e.

∂A δ
0
σi

A =
1

ρ0

[µ∆δΦi + (µ+ λ)∂i∂kδΦ
k]. (103)

For the remaining terms in the equation we obtain from (85,86)

Ȳi =
1

ρ0c2
(λ− µ)(X1, X2, 0) (104)

Z̄i = (X1, X2, 0) (105)

The boundary conditions at (X1)2 + (X2)2 + ǫ2(X3)2 = R2 are

(δ
0
σi

A + σ̃i
A)nA|∂Ω = 0 (106)
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where we can take nAdX
A = X1dX1 + X2dX2 + ǫ2X3dX3 and σ̃i has to be

evaluated at Φ = Φ̄ and ω = 0 using Eq.(94).
We can replace λ by the Poisson number σ of elasticity defined by

λ =
2µσ

1 − 2σ
(107)

which satisfies

− 1 < σ <
1

2
(108)

Then µ drops out from the boundary conditions and in the linearized equations
µ appears only as ρ0

µ
. As the ”force is equilibrated”, the linearization of the

boundary value problem has a unique solution. For the non relativistic case a
solution of the above equations can be found in [8] going back to [4]. We make
to following ansatz for δΦi:

δΦ1 = X1[a1 + a2((X
1)2 + (X2)2) + a3(X

3)2] (109)

δΦ2 = X2[a1 + a2((X
1)2 + (X2)2) + a3(X

3)2] (110)

δΦ3 = X3[a4 + a5((X
1)2 + (X2)2) + a6(X

3)2] (111)

The rational behind this ansatz is that we have a linear PDE-problem with con-
stant coefficients, a polynomial (in fact:linear) right-hand side and boundary
conditions on an algebraic surface. Thus the solution should also be polynomial.
In fact, inserting the ansatz Eq.(109,110,111) into the equations and the bound-
ary conditions we obtain by a lengthy calculation a linear inhomogeneous system
Qa = C for a = (a1, ..a6) (note that 2 of these equations come from the field
equation and 4 conditions come from the boundary conditions). Using Maple we
find

Q =




2 λ ε2 , 4 λR2 ε2 , 2µR2 , (2µ+ λ) ε2 , (4µ+ λ)R2 ε2 , 0
0 , −4 λ ε4 , (−2µ+ 2 λ) ε2 , 0 , (−2µ− λ) ε4 − 2µ ε2 , (6µ+ 3 λ) ε2

0 , 0 , 4 λ+ 4µ , 0 , 4µ , 12µ+ 6 λ
0 , 16µ+ 8 λ , 2µ , 0 , 2 λ+ 2µ , 0

2 λ+ 2µ , 4 λR2 + 6µR2 , 0 , λ , λR2 , 0
0 , (−6µ− 4 λ) ε2 , 4µ+ 2 λ , 0 , (−λ+ 2µ) ε2 , 3 λ




with determinant

det(Q) = −48 ε4 µ3 (2µ+ 3 λ) (2µ+ λ) (6 ε4 µ+ 64µ+ 11 λ ε4 + 64 λ+ 20 λ ε2)

and

C := [−
λR2

2c2
,
λǫ2

2c2
, 0,−ρ0 +

(µ− λ)

c2
,
−λR2

2c2
,
λǫ2

c2
]

Here are some observations concerning this linear system:
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1.) For positive µ, λ obeying (99), we can solve the linear system.
2.) The velocity of light, c, appears only on the right-hand side of the linear
system and we can write the solution as the non–relativistic solution plus a rel-
ativistic correction term proportional to 1

c2
. For c → ∞ the vector C greatly

simplifies.
3.) The case λ = 0, i.e. σ = λ

2λ+2µ
, is also much simpler. In particular, the only

relativistic correction is a change of the ”effective density”, −ρ0 → −ρ0 +c−2(µ−
λ).
The solution can be given in closed form. We begin with the simplest case, i.e.
ǫ = 1: the deformation of a sphere. We find that

a1 =
2

5

(−3 + 2 σ + 3 σ2)R2

(σ − 1) (5 σ + 7) (σ + 1)

ρ0

µ
(112)

a2 = −
1

10

(−4 + 3 σ + 5 σ2)

(5 σ + 7) (σ − 1)

ρ0

µ
(113)

a3 = −
1

10

(−9 + 8 σ + 5 σ2)

(5 σ + 7) (σ − 1)

ρ0

µ
(114)

a4 = −
1

10

(−3 − 18 σ + 3 σ2 + 10 σ3)R2

(σ − 1) (5 σ + 7) (σ + 1)

ρ0

µ
(115)

a5 =
1

5

(σ − 3)

(5 σ + 7) (σ − 1)

ρ0

µ
(116)

a6 = −
1

10

(1 + 3 σ)

(5 σ + 7) (σ − 1)

ρ0

µ
(117)

The change of a point X is given by ω2δΦi(X). On the equator and north pole
one finds:

δΦ1(0, R, 0) = R(a1 + a2R
2) = −

1

10

(5 σ2 + σ − 8)R2

(σ + 1) (5 σ + 7)

ρ0

µ
(118)

δΦ3(0, 0, R) = R(a4 + a6R
2) = −

1

5

(5 σ2 + 8 σ + 1)R2

(σ + 1) (5 σ + 7)

ρ0

µ
. (119)

Note that the north pole can move outward when −1 < σ < −4−
√

15
5

, but for
physical materials σ will be positive. Next we give the relativistic corrections
which we denote by bi . They are independent of µ:

b1 = −
3

10

R2 (5 σ2 + 3 σ − 4)

(5 σ + 7) (σ − 1) c2

b2 =
1

10

5 σ2 + 11 σ − 4

(5 σ + 7) (σ − 1) c2
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b3 =
3

10

10 σ2 − 3 σ − 3

(5 σ + 7) (σ − 1) c2

b4 = −
3

10

R2 (3 σ + 1)

(5 σ + 7) (σ − 1) c2

b5 = −
3

10

5 σ2 − 7 σ − 2

(5 σ + 7) (σ − 1) c2

b6 =
1

10

1 + σ + 10 σ2

(5 σ + 7) (σ − 1) c2

The change of a point on the equator and the north pole are:

δΦ1 = −
2

5

(15 σ3 + 6 σ2 − 17 σ + 2)R3

(−1 + 2 σ) (σ + 1) (5 σ + 7)c2

δΦ3 = −
1

5

(30 σ3 + 47 σ2 − 4 σ − 1)R3

(−1 + 2 σ) (σ + 1) (5 σ + 7)c2

To show the effect of the ellipticity, we give just a1 :

a1 :=
ρ0R

2

2

(6 + 3 ε2 + 3 ε4 + 30 σ2 + ε4 σ2 + ε4 σ3 − 27 σ2 ε2 + 23 σ3 ε2 − 5 ε4 σ − 28 σ + σ ε2)

µ (σ − 1) (σ + 1) (10 ε4 σ2 + 40 σ2 ε2 − 8 σ ε2 + 48 σ + 5 ε4 σ − 16 − 11 ε4 − 8 ε2)

The limits ǫ = ∞ exist. They approximate a very flat ellipsoid. The formulas
are comparable to the nonrelativistic case.
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A Some Functional Analysis

We collect some differentiability statements which can be easily extracted from
Ref. [11]. First consider maps f̂ of the form

f̂ : R
3 × R

9 → R
3 (1)

Let Φ ∈ W 2,p(Ω,R3), p > 3. Define the ”Nemitsky” operator f : W 2,p(Ω,R3) →
W 1,p(Ω,R3) given by

fi(Φ)(X) := f̂i(Φ(X), ∂Φ(X)) (2)
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Then f is C1 if f̂ is C1 and f is Cω if f̂ is Cω.

Secondly, consider maps g of the form

ĝ : R
3 × R

9 → R
6 × R

9. (3)

Then the quasilinear operator g

gi(Φ)(X) := ĝkl
ij (Φ(X), ∂Φ(X))∂k∂lΦ

j , (4)

viewed as a map g : W 2,p(Ω,R3) → W 0,p(Ω,R3), is C1 if f̂ is C1 and Cω if f̂ is
Cω.
An elementary statement used in the body of the paper is the following: If Φ is in
Lp with p ≥ 1, then the map µ : Lp −→ R sending Φ into

∫
Ω

Φ d3X is continuous,
thus analytic by linearity.
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