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Computational Relativistic Astrophysics With Adaptive Mesh Refinement: Testbeds

Edwin Evans(1), Sai Iyer(1), Erik Schnetter(2), Wai-Mo Suen(1,3),

Jian Tao(1), Randy Wolfmeyer(1), and Hui-Min Zhang(1)

(1)McDonnell Center for the Space Sciences, Department of Physics,

Washington University, St. Louis, Missouri 63130
(2)Albert-Einstein-Institut, Am Mühlenberg 1, D-14467, Potsdam, Germany and

(3)Physics Department, Chinese University of Hong Kong, Hong Kong

(Dated: January 20, 2005)

We have carried out numerical simulations of strongly gravitating systems based on the Einstein
equations coupled to the relativistic hydrodynamic equations using adaptive mesh refinement (AMR)
techniques. AMR coalescences of neutron stars can now be simulated with sufficient resolution
covering the neutron stars while having the computational domain extend to the local wave zone.
We show an AMR simulation carried out with a workstation having an accuracy equivalent to
that of a 10253 regular unigrid simulation, which is, to the best of our knowledge, larger than all
previous simulations of similar NS systems on supercomputers. We believe the capability opens new
possibilities in general relativistic simulations.

PACS numbers: 95.30.Sf, 04.40.Dg, 04.30.Db, 97.60.Jd

a. Introduction Numerical study of compact sys-
tems has received much attention due to observations
in high-energy astronomy and the promise of gravita-
tional wave astronomy. Most effort focuses on solving
the Einstein equations with finite differencing methods.
The main difficulty of this approach is that many general
relativistic astrophysical processes of interest, e.g., pro-
cesses involving black holes and neutron stars, require
computational resources that are beyond what present
day computers allow. The reasons that they are com-
putationally demanding are 1. the lack of symmetry in
realistic astrophysical situations, requiring the solving of
the full set of Einstein equations coupled to the general
relativistic hydrodynamic (GRHydro) equations in full
3+1 dimensional spacetime; and 2. the involvement of
many length scales.

The difficulty of multiple length scales can be illus-
trated with the neutron star (NS) coalescence problem,
one of our main systems of study. The length scales
involved are: (i) A short length scale coming from the
internal dynamics of a neutron star as a self gravitat-
ing object. One needs to be able to resolve the density
variation to a reasonable accuracy before one can main-
tain a stable configuration in the Einstein theory. (ii) A
longer length scale coming from dynamics of two neutron
stars moving under the influence of one another, i.e., the
length scale of the orbital separation between the two
stars. (iii) The dynamical time scale of the system (the
orbital period T ) turns into a long length scale due to the
dynamical nature of Einstein gravity (no such difficulty
exists in Newtonian gravity, where one can evolve orbit-
ing system more easily). The space surrounding the NSs
within the corresponding length scale (the wavelength of
the gravitational wave due to the orbital motion) needs
to be covered in the computational domain as part of the
system, both for the extraction of the waveform and for
an accurate dynamical evolution (the problem manifests
itself in the dynamical evolution being affected by the

position of the outer boundary if put too close). (iv) The
secular evolution time scale of the orbital motion turns
into a resolution requirement for the numerical simula-
tion as computational error accumulates. Our study in a
previous paper [1] indicates that

1. To simulate a single isolated NS in a stable fashion
with the Einstein equations requires a resolution on the
order of 0.1M0, where M0 is the baryonic mass of the
neutron star, for a typical equation of state (EOS).

2. To set initial data in a fashion (e.g., using the con-
formally flat quasi-equilibrium (CFQE) approach) that
we can have some confidence of its being astrophysically
relevant, the initial separation of the two NSs would have
to be on the order of 50M0 (depending on the initial spin
states of the two NSs).

3. To get inspiral dynamics without much artificial in-
fluence from the boundary of the computational domain,
the outer boundary has to be put at at least 0.5λ away,
where λ is the gravitational wavelength of the system
(assuming the present state of the art in setting outer
boundary conditions for the constrained system of the
Einstein equations).

4. To be able to accurately extract a gravitational
waveform from the simulation, the computational do-
main should include up to 1λ.

5. To be able to evolve the spiraling NSs within the
convergence regime to the point of coalescence: This
depends on the choice of initial configuration and the
numerical method used. With all existing methods we
know of, the longer in time one needs to stay within the
convergence regime (i.e., the constraint violations con-
verging with respect to increasing resolution throughout
that time period), the finer the resolution has to be. In
our simulation reported in [1], a 6433 simulation with
∆x = 0.2M0, covering up to 0.28λ for orbiting NSs at
an initial separation of 28M0 (with an angular frequency
of Ω = 0.012M0

−1), the system remains in the conver-
gence regime for only about half an orbit. Being so far off
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from our target of evolving to the coalescence point, an
estimate of what might be needed would be meaningless.

The wavelength of a gravitational wave with orbital
separation of 50M0 (cf., (2) above) is about 1, 000M0.
For a unigrid at 0.2M0 (cf., (1) above), the requirements
(3) and (4) imply a grid of 5, 0003. A computer with a
memory size capable of doing such a simulation will not
be available in the near future.

Due to this the biggest obstacle we encounter in NS
coalescence simulation based on finite differencing of the
Einstein equations is the need for a large number of grid
points, which translates into large computer memory and
long execution time. We need the adaptive mesh re-
finement (AMR) treatment: Use fine grid patches co-
moving with the compact objects to satisfy the resolu-
tion required by (1), and a coarse grid extending to the
local wave zone for (3) and (4). Similar considerations
have motivated much effort in this direction, see e.g.,
[2, 3, 4, 5, 6, 7] for recent progress.

Unfortunately, application of AMR techniques in gen-
eral relativistic astrophysics is more difficult than one
might naively think. Although the theory and algorithms
of mesh refinement are well established in computational
science, and the numerical treatments of the Einstein
equations and relativistic hydrodynamic equations have
also been extensively investigated by relativists and as-
trophysicists, after many years of intense effort by many
research groups it has not been possible to put the two to-
gether for a fully general relativistic 3D AMR simulation.
The main difficulty is that it involves a huge infrastruc-
ture on both the computer science side and the physics
side: it is difficult for computer scientists to dive into the
complexity of the physics, and vise versa. As a rough
representation of the complexity, in our code construc-
tion process, we have to integrate a 100,000 line mesh
refinement code (GrACE [8]), a 85,000 line general rel-
ativistic astrophysics code (GR-Astro [9]) and a 500,000
line parallel computational library (Cactus Toolkit [10])
that GRAstro makes use of.

In this paper we demonstrate for the first time that
a full 3+1 dimensional simulation based on the Einstein
equations can be carried out with AMR. Three sample
systems are studied:

1. A NS moving at a speed of 0.5c described by the
general relativistic hydrodynamic equations coupled to
the Einstein equations. The validity of our AMR treat-
ment is examined with convergence tests. Convergence
tests are more complicated with AMR; three different
kinds of convergence tests are presented: (i) simulations
with increasing resolutions on all grid levels, (ii) simula-
tions with added levels of refinement, and (iii) compar-
ison to unigrid results. The investigation of a boosted
star, which invokes all terms in the evolution equations,
played an important role in our code construction pro-
cess.

2. Two NSs coalescing with angular momentum (L =
8M⊙

2). The focus is on demonstrating that the AMR
simulation can handle NS coalescences with an accuracy

comparable to that of an unigrid run with resolution
same as the finest resolution of the AMR run.

3. An inspiraling neutron star binary. The two NSs are
covered by co-moving fine grid patches, with the coarse
grid covering a fraction of a wavelength of the system.
We demonstrate an AMR simulation which is equivalent
to a regular 10253 unigrid simulation, larger than any
simulation of NS binary systems performed so far.

In the next 3 sections we discuss these three simula-
tions. The last section summarizes and discuss the next
steps.

b. Boosted Neutron Star. We begin with a study of a
NS moving across an otherwise empty space at a constant
speed. Although the physical system is not changing in
time beyond a uniform boost, the metric has complicated
spacetime dependences due to the frame dragging effect.
Accordingly, all coordinate quantities including those of
the spacetime and matter are changing in a non-trivial
manner (not just a uniform translation). In the simula-
tion, we start with a configuration satisfying the Hamil-
tonian and momentum constraint equations representing
a NS boosted to 0.5c, and evolve it with the full set of
dynamical Einstein equations coupled to the GRHydro
equations. The system of equations as well as the conven-
tions we use in this paper are given in [1]. The simulation
provides a good test for our code as it invokes all terms in
the equations, and is numerically a fully dynamical test.

The NS is described by a polytropic equation of state
(EOS): P = (Γ − 1)ρǫ = kρΓ, with Γ = 2 and k =
0.0445c2/ρn, where ρn is the nuclear density (approxi-

mately 2.3 x 1014 g/cm3). The NS has a proper radius of
R = 12M⊙, an ADM mass of 1.4M⊙ and a baryonic mass
M0 = 1

2

∫
d3x

√
γρW = 1.49M⊙. (For these values of pa-

rameters, the maximum stable NS configuration has an
ADM mass of 1.79M⊙ and a baryonic mass of 1.97M⊙).
The initial data is obtained by imposing a boost on the
TOV solution ([11]). The evolution is carried out with
the Γ freezing shift and the “1+ log” lapse (for details of
the shift and lapse conditions and method of implemen-
tations, see [1]).

The computational grid is set up as follows: 1. The
coarse grid has a resolution of dx = 2.88M⊙ (4 points
across the radius R of the star) covering a region of
58M⊙ × 58M⊙ × 58M⊙. 2. Two levels of adaptive fine
grid with dx = 1.44M⊙ and dx = 0.72M⊙ are set up.
The adaptive grid is allowed to change in size and loca-
tion as the refinement criteria dictate. 3. Two different
refinement criteria have been studied: (i) value of mat-
ter density ρ, and (ii) amount of Hamiltonian constraint
(HC) violation. Combinations of the two with “or” can
be used. It turns out that for the neutron star studies it
does not matter much which condition is used: the cen-
tral region of the NS is at the same time the region of
highest density, maximum HC violation and maximum
evolution error. All simulations shown in this paper are
obtained with (i).

In panel 1 of fig. 1 we show density profiles (represented
as a height field) on the equatorial plane of the NS at 3
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density
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t = 0

t = 28.8

t = 57.6

FIG. 1: Density, gxx, and lapse of a boosted star on 3 grid levels are shown with 1 to 2 downsampling (only every other
computational grid point shown), showing the motion of the star through the computational grid with distortion due to the
frame dragging effect.
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FIG. 2: HC violation scaled by (1/dx)
for runs with different resolutions.
Their overlapping with one another
implies first order convergence (as the
TVD hydro scheme dictates).
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FIG. 3: Effect of more levels: the addi-
tion of one refinement level lowers the
HC violation by a factor of 2 in the re-
gion of extra grid level where the HC
violation is significant.
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FIG. 4: The HC violation of the un-
igrid run (3213) with resolution the
same as that of the finest grid of the
AMR run is nearly exactly the same
as that of the AMR run. The unigrid
run (813) with resolution the same as
that of the coarse grid of the AMR run
has much larger HC violation.

different times: t = 0, 28.8, 57.6M⊙. The grid structure
is superimposed with a down sampling ratio of 2 (showing
only every other grid point). We see that the NS as well
as the fine grids are moving across the computational
domain. In panel 2 we show the corresponding metric
component gxx with x being the direction of the motion.
The frame dragging effect is readily seen. Panel 3 shows
the evolution of the lapse.

Fig. 2–4 examine the validity of the simulation with 3
kinds of convergence tests. Fig. 2 shows the violation of
the Hamiltonian constraint (HC) at t = 28.8M⊙ along
the x-axis for four different runs. The HC violation is
calculated on the finest grid available for regions covered
by more than one grid. (This applies to all HC plots in
this and the following sections.) The resolutions of the
runs are 413, 493, 653, and 813, corresponding to dx =
2.88M⊙, 2.4M⊙, 1.8M⊙, and1.44M⊙, respectively, on the
base grid. (The notation (41×2×2)3 indicates a 413 base
grid and two levels of refinement with a refinement ratio

of 2 each.) The results for the higher resolution runs have
been scaled linearly. The plot demonstrates that the code
is converging to first order, which is the expected rate of
convergence as we used a high resolution shock capturing
TVD scheme [1] in our hydrodynamic evolution which is
first order at extremal points.

In fig. 3, we compare the HC violations of two runs
at time t = 28.8M⊙: (i) the (81 × 2 × 2)3 run shown in
fig. 2, and (ii) an (81 × 2)3 run with only one level of
refinement covering the high density region. We see that
the addition of a refinement level lowers the HC violation
by a factor of 2 in the region of the extra grid level (where
the HC violation is significant).

In fig. 4, we show the HC violations of three runs at
t = 28.8M⊙. The AMR run is again the (81 × 2 × 2)3

one in fig. 2. The other two are unigrid runs, one at
the resolution of the coarsest AMR grid (dx = 1.44M⊙),
and the other at the resolution of the finest AMR grid
(dx = 0.36M⊙). We see that the AMR run has exactly
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(a) t = 0 (b) t = 56.6M⊙ (c) t = 96.4M⊙

FIG. 5: Density profiles for coalescing stars at 3 different times, with the grid structure superimposed, and with 1 to 2
downsampling.

the same accuracy as the unigrid fine resolution run (the
two lines coincide). This is an important point for our
study: For NS simulations in this and the following sec-
tions, finite difference error is most significant in the high
density region covered by the finest AMR grid; using
coarser grids elsewhere does not affect the accuracy of
the simulation. This enables us to speak of the “uni-
grid equivalent” of an AMR run: a unigrid run with the
resolution of the finest AMR grid.

The three kinds of convergence tests provide confidence
in the validity of our AMR treatment.

c. Coalescing Neutron Stars. In this section we
study the coalescence of two NS’s each having a bary-
onic mass and EOS as given above. The NSs have their
equatorial plane on the x-y plane and an initial cen-
ter to center (points of maximum mass) separation of
2.2R both in the x and y directions (∼ 3R separation
diagonally, R = 12M⊙). Initially one NS is moving
in the x direction and the other in the −x direction
with the total angular momentum of the system equal to
3.8M0

2 = 8.4M⊙
2, which is roughly the angular momen-

tum of a co-rotational conformally flat quasi-equilibrium
configuration on the inner-most-stable circular orbit [1].

To determine the metric we have to solve the Hamil-
tonian and momentum constraint equations. The elliptic
system was solved on a unigrid of 2563 at resolution of
dx = 0.3M⊙. The initial metric and hydrodynamic data
were then interpolated onto the AMR grids. The evolu-
tion obtained with the AMR treatment is then compared
with that of the unigrid. The Γ freezing shift and 1+ log
slicing condition are used in both runs.

In fig. 5 we show density profiles (represented as height
field) on the equatorial plane of the NSs at 3 different
times t = 0, 56.6, 94.4M⊙ in the AMR simulation, with
the grid structure superimposed (downsampled by a fac-
tor of 2). At t = 56.6M⊙, the two NSs start merging,
and at t = 94.4M⊙ the peaks of the density merged into
one (at even later time two peaks reappear, having large
angular momentum in the system).

In figs. 6a, 6b we compare the AMR results with the
2573 unigrid run that has a resolution the same as the
finest AMR grid. The lapse and gxx along the x-axis
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FIG. 6: Comparison of AMR (solid line) and unigrid (daggers)
for coalescing neutron stars: (a) the lapse, (b) gxx. Both agree
to high accuracy.

at t = 28M⊙ are given respectively in figs. 6a and 6b,
with the AMR results given by the solid lines and the
unigrid results by daggers. gxx is shown as it is the metric
function which shows the biggest difference between the
AMR and unigrid runs. We see that the two runs give
basically the same results. In fig. 7 we plot the values
of the (spatial) maximum of the HC violations (which is
one of the most sensitive measure of differences between
runs) over time for the unigrid and AMR simulations.
16π times the maximum of ρ is also shown for comparison
(16πρ is the source term in the HC equation). We see
that at earlier time the error of the AMR run is slightly
larger, while the error in the unigrid run picks up faster
at later time, becoming larger than 16πρ. (At that point
the simulation is no longer reliable as in some region the
dynamical evolution is driven more by the HC violation
than the matter density.)

d. Inspiraling Neutron Stars. In this section we
demonstrate that with AMR we can now carry out on
a workstation (Dell entry level server Poweredge 1850)
NS inspiral simulations that is beyond existing unigrid
simulations on supercomputers.

The NSs are taken to be initially in a conformally flat
quasi-equilibrium (CFQE) irrotational circular orbit with
an orbital separation of 3.3R. Each NS has a baryonic
mass of 1.625M⊙ with the same polytropic EOS as in the
previous section. The initial data is obtained by solving
the CFQE equations using the pseudo-spectral code de-
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AMR run compared to a 2573 unigrid run. The maximum of
16πρ (dotted line) is given for comparison.
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FIG. 8: Maximum HC violations for inspiraling NSs at two
different resolutions, showing first order convergence. The
maximum of 16πρ (dotted line) is given for comparison.

veloped by the Meudon group [12, 13], and imported onto
the Cartesian grid structure in GR-Astro-AMR for dy-
namical evolutions (again with Γ freezing shift and 1+log
lapse).

We show results from two AMR simulations. In the
high resolution run, the finest level grid has 60 points
across the star, with 4 levels of refinement (refinement
ratio is 2), and a coarse grid that is 1293 covering a com-
putational domain of 34R. The low resolution run uses
3 levels of refinement and a coarse grid of 653, with the
finest level having 30 points across each star. The max-
imum HC violations for the two runs are compared in
fig. 8, where the maximum value of 16πρ is also shown.
We see that the error is converging to 1st order as ex-
pected. In fig. 9, the density on the equatorial plan in a
gray scale plot with the grid structure imposed is shown
at t = 0 and t = 288M⊙ for the high resolution 4 level
AMR run, with a downsampling factor of 4. We have
zoomed in to show the inner part of the computational
domain. At t = 0 the two finest grid patches are next to
one another separated by a few grid points of the next
level. The grid one further level down barely shows up
with the down sampling. By t = 288M⊙, the two NS has
evolved for about 135 degrees, and the fine grid patches
have merged to form something more complicated (in the

shape of 3 overlapping rectangles), while the two inter-
mediate level grids becomes roughly squares. To provide
another perspective of the grid structures, we show in
fig. 10 the lapse as a height field at the corresponding
times, with a downsampling factor of 2.

This study clearly shows the power of AMR. The
higher resolution AMR simulation was carried out on a
Dell desktop computer using 8 GB of memory. A regu-
lar unigrid simulation resolving the star and covering the
computational domain to the same level as the AMR sim-
ulation would have to have 10253 grid points and require
over 1.2TB of memory.

e. Discussions and Conclusions. We discussed the
necessity of having the AMR capability in general rela-
tivistic simulations of NS coalescences. We demonstrated
that the GR-Astro-AMR Code is capable of such AMR
simulations. The simulations presented in this paper are
the first steps towards what is needed in NS inspiral co-
alescence studies.

In sec. b of this paper we showed some of the vali-
dation studies we carried out for GR-Astro-AMR with a
boosted NS. The simulation invokes all terms in the cou-
pled Einstein-general relativistic hydro equations. Three
different kinds of convergence tests have been performed,
showing that the code has the convergence properties de-
signed.

In sec. c we demonstrated that GR-Astro can be used
to carry out NS coalescence simulations, and the accu-
racy is comparable to that of an unigrid simulation using
a resolution same as that of the finest grid in the AMR
run.

Sec. d showed an AMR simulation of an inspiraling
NS binary carried out on a workstation. The simula-
tion is equivalent in accuracy to a 10253 regular unigrid
run, to the best of our knowledge larger than all pre-
vious simulations of similar systems on supercomputers.
We also demonstrated that generation and merging of
grid patches could be handled effectively in our AMR
treatment.

In a future publication, we will extend the study in
Sec. c to analyze the amount of matter available for
accretion after the NS coalescence/BH formation, as a
function of the angular momentum of the system at the
plunge point of the inspiral. We will extend the study
in Sec. d to determine astrophysically realistic initial
data for inspiral, following the line initiated in [1]. These
investigations require more computational resources than
are available to us if they are to be carried out in unigrid.

There are many aspects in the GR-Astro-AMR code
that need improvement as a computational infrastruc-
ture for a general relativistic simulation. In the next
steps, we will (i) develop the parallel capacity of GR-
Astro-AMR, (ii) study the usage of different refinement
criteria for other NS/BH processes, (iii) develop a high
order flux-conserving interpolation scheme for our hydro
solver which uses a flux conservative treatment, and (iv)
enable the direct solving of elliptic equations on the grid
hierarchy.



6

-40 -30 -20 -10  0  10  20  30  40
-40

-30

-20

-10

 0

 10

 20

 30

 40

-40 -30 -20 -10  0  10  20  30  40
-40

-30

-20

-10

 0

 10

 20

 30

 40

(a) t = 0 (b) t = 288M⊙

FIG. 9: Density for inspiralling neutron stars is given in grayscale with 4 levels of grid structure (downsampled by a factor of
4) superimposed. Only the central part of the 34R computational domain is shown. (a) t = 0, (b) t = 288M⊙ with the NSs
rotated about 135◦ in their inspiral orbit.

(a) t = 0 (b) t = 288M⊙

FIG. 10: The lapse with the grid structure superimposed in a different perspective (downsampled by 2). (a) t = 0, (b)
t = 288M⊙. Only the central part is shown.

The code is developed with the intention of providing a
computational tool to the general relativistic astrophysics
community. The unigrid version of GR-Astro has been
released (available at http://www.wugrav.wustl.edu).
GR-Astro-AMR will be released as soon as ready. We

invite researchers to join us in making use of as well as
further developing this code.

http://www.wugrav.wustl.edu
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