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A black hole mass threshold from non-singular quantum gravitational collapse
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Quantum gravity is expected to remove the classical singularity that arises as the end-state of
gravitational collapse. To investigate this, we work with a simple toy model of a collapsing ho-
mogeneous scalar field. We show that non-perturbative semi-classical effects of Loop Quantum
Gravity cause a bounce and remove the classical black hole singularity. Furthermore, we find a
critical threshold scale, below which no horizon forms – quantum gravity may exclude very small
astrophysical black holes.

PACS numbers: 04.60.Pp, 04.70.Dy, 97.60.Lf

Singularity formation during gravitational collapse sig-
nals the breakdown of classical general relativity. In a
more complete theory of quantum gravity the singular-
ity should be removed. However, a satisfactory quantum
gravity theory has yet to be developed. In addition, the
dynamics of general collapse is very complicated. Thus
we can only expect to make partial progress in tackling
the problem. We need a candidate quantum gravity the-
ory and a collapse model that is simple enough to be
tractable.

A non-perturbative approach to quantizing gravity is
loop quantum gravity or quantum geometry [1], whose
successes include prediction of the Bekenstein-Hawking
entropy formula [2]. When applied to the early universe,
loop quantum effects can remove the big bang singular-
ity [3]. A natural question is: do these effects also re-
move the black hole singularity as the end-state of col-
lapse? Answering this question in full generality is not
currently feasible, since techniques to handle inhomoge-
neous dynamical systems are still under development –
and quantum gravity corrections are further expected to
introduce some non-static effects. We thus consider a
simple toy model of a collapsing homogeneous massless
scalar field. Classically, this model always produces a
black hole, but we show that loop quantum effects change
this situation dramatically.

Since we do not yet know the semi-classical non-
perturbative effects in the inhomogeneous case, we are
unable to extend our analysis fully from the interior to
the exterior. However, constraints are imposed through
the matching conditions, so that quantum effects can be
carried into the exterior partially and indirectly. The col-
lapsing homogeneous scalar field cannot be matched to
a Schwarzschild exterior because the pressure does not
vanish at the boundary. But in any case, we expect that
quantum effects will include non-stationary corrections
(which should be negligible for large black holes). So it
is reasonable to match the interior to a non-stationary
spherically symmetric exterior. The generalized Vaidya

metric provides a reasonable starting point. It is suffi-
ciently general to allow for a broad range of behavior,
including non-stationary radiative effects.

We first review the classical collapse, and show the
inevitable existence of a black hole singularity covered
by a horizon, for any initial mass. The interior metric is

ds2 = −dt2 + a(t)2(1 + r2/4)−2
[

dr2 + r2dΩ2
]

, (1)

and the massless scalar field φ(t) has pressure and energy
density p = ρ = 1

2 φ̇2. The Friedmann equation is

ȧ2/a2 = 4πℓ2
p φ̇2/3 − 1/a2 . (2)

The Klein-Gordon equation, aφ̈ +3ȧ φ̇ = 0, has solution

φ̇ = L/a3 , (3)

where L is a length scale associated with the maximal size
of the collapse region, since the Friedmann equation (2)
implies

a ≤ am ≡ (4π/3)
1/4 √

ℓpL . (4)

At the singularity a → 0, we have φ̇, ρ → ∞. The solu-
tion of the Friedmann equation is

t − t0 = am

∫ a0/am

a/am

b2db√
1 − b4

, (5)

where a0(≤ am) gives the initial size of the collapse region
at the initial time t0. The singularity a = 0 is covered by
a horizon (see below), and is reached in a finite proper
time for any a0:

1

am
(ts − t0) <

∫ 1

0

db√
1 − b4

=
1√
2
F

(

π

2
,

1√
2

)

, (6)

where F is an elliptic integral of the first kind.
We now consider the non-perturbative modifications to

the dynamics introduced by loop quantum gravity. The
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quantization scheme introduces a fundamental length
scale

ℓ∗ = 0.28
√

j ℓp , (7)

where j(> 1) is a half-integer that is freely specifiable.
For a < ℓ∗, the dynamics is increasingly different from
general relativity. For a . ℓp, the continuum approxima-
tion to the spacetime geometry begins to break down,
and the fully quantum gravity regime is reached. In
the intermediate regime ℓp . a . ℓ∗, loop quantum ef-
fects may be treated semi-classically, i.e., the spacetime
metric behaves classically, while the dynamics acquires
non-perturbative modifications to general relativity [4].
The non-perturbative semi-classical regime exists pro-
vided ℓ∗ ≫ ℓp, i.e., for j ≫ 1.

The key feature of the loop quantization scheme is the
prediction that the geometrical density, 1/a3, does not
diverge as a → 0, but remains finite. The expectation
values of the density operator are approximated by

dj(a) = D(a) a−3 , (8)

where the loop quantum correction factor is [5]

D(a) = (8/77)6 q3/2
{

7
[

(q + 1)11/4 − |q − 1|11/4
]

− 11q
[

(q + 1)7/4 − sgn (q − 1)|q − 1|7/4
]}6

, (9)

with q ≡ a2/ℓ2
∗
. In the classical limit we recover the ex-

pected behavior of the density, while the quantum regime
shows a radical departure from classical behavior:

a ≫ ℓ∗ ⇒ D ≈ 1 , a ≪ ℓ∗ ⇒ D ≈ (12/7)
6
(a/ℓ∗)

15
.(10)

Then dj remains finite as a → 0, unlike in conventional
quantum cosmology, thus evading the problem of the big-
bang singularity in a closed model [6]. Intuitively, one can
think of the modified behavior as meaning that gravity,
which is classically always attractive, becomes repulsive
at small scales when quantized. This effect can produce
a bounce where classically there would be a singularity,
and can also provide a new mechanism for high-energy
inflationary acceleration [7]. In the semi-classical regime
(where the spectrum can be treated as continuous), dj

has a smooth transition from classical to quantum be-
havior, varying from a−3 to a12.

In loop quantum gravity the Hamiltonian of a scalar
field in a closed universe is

H = a3V (φ) + dj P 2
φ/2 , Pφ = d−1

j φ̇ , (11)

where Pφ is the momentum canonically conjugate to φ.
This leads to a modified Friedmann equation [7, 8],

ȧ2

a2
=

8πℓ2
p

3

[

V (φ) +
1

2D
φ̇2

]

− 1

a2
, (12)
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FIG. 1: The scale factor a(t) of the collapsing interior,
for classical (dashed) and semi-classical quantum dynamics
(solid).

and a modified Klein-Gordon equation [9]

φ̈ + 3
ȧ

a
(1 − α) φ̇ + DV (φ) = 0 , α ≡ aḊ

3ȧD
. (13)

For a ≪ ℓ∗, we have α → 5, whereas classically D = 1
and hence α = 0. Thus in the semi-classical regime,
0 < α ≤ 5.

For a massless scalar field, V = 0, the solution of
Eq. (13), generalizing Eq. (3), is

φ̇ = Ldj(a) , (14)

so that Pφ = L = const. Then the Friedmann equation
becomes

ȧ2 + 1 = D(a)(am/a)4 . (15)

The energy density and pressure are modified as ρ =
φ̇2/2D , p = φ̇2 (1 − α) /2D , so that

w ≡ p/ρ = 1 − α . (16)

(The modified ρ and p satisfy the usual conservation
equation if φ satisfies the modified Klein-Gordon equa-
tion.) Since α varies from 0 to 5 as a decreases, the
φ̇ term in Eq. (13), which classically behaves as anti-

frictional during collapse, starts to behave as frictional

when α > 1. Thus, contrary to classical behavior, where
φ̇ increases as a decreases, in the semi-classical regime
the scalar field starts slowing down with collapse. In
fact at α = 2 the magnitude of the frictional term be-
comes exactly equal to the classical anti-frictional term.
Thereafter at smaller values of the scale factor the term
becomes increasingly frictional and the collapse further
slows down, and may turn around.

The point where α = 2 is also the point beyond
which the null energy condition is violated: w < −1,
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by Eq. (16). Violations of the null energy condition by
quantum gravity effects are to be expected, and in loop
quantum gravity this occurs for α > 2, when the scalar
field effectively behaves as a “phantom” field.

In order to see qualitatively how the non-perturbative
frictional quantum effects remove the classical singular-
ity, we assume that, over a small interval of scale factor,
we can take α ≈ constant, so that D ≈ D∗ (a/ℓ∗)

3α ,
where D∗ is a dimensionless constant. By Eq. (14),

φ̇ ≈ LD∗ℓ
−3α
∗

a3(α−1) , (17)

which shows how the kinetic energy decreases with de-
creasing a when α > 1, contrary to the classical case.
The modified Friedmann equation (15) gives

ȧ2 ≈
(

a4
mℓ−3α

∗
D∗

)

a3α−4 − 1 . (18)

In general relativity, where α = 0 and D∗ = 1, this shows
that for a < am, there is no turning point in a, i.e., ȧ 6= 0.
With loop quantum effects, for α > 4

3 , the equation

ȧ(tc) = 0 has a solution, ac ≈
(

ℓ3α
∗

/D∗a
4
m

)1/(3α−4) ≪
am . Thus the collapse leads to a bounce and singular-
ity avoidance. The numerical integration of the mod-
ified Friedmann and Klein-Gordon equations confirms
the qualitative analysis, and the results are illustrated
in Fig. 1. As is clear from the figure, the classical curve
(dashed line) hits the singularity in finite time, whereas
the quantum-corrected curve bounces and avoids the sin-
gularity. The key question is whether a horizon forms in
the quantum-corrected collapse.

The formation or avoidance of the singularity a = 0
is independent of the matching to the exterior. But
in order to understand horizon formation in the semi-
classical quantum case, we need to impose the match-
ing conditions. Since the pressure is nonzero at the
boundary, given in comoving coordinates by r = R =
constant, the interior cannot be directly matched to a
static Schwarzschild exterior. However we can match to
an intermediate non-stationary region – for example, a
generalized Vaidya region [10],

ds2 = − [1 − 2M(v, χ)/χ] dv2 + 2dvdχ + χ2dΩ2 . (19)

The usual Vaidya mass M/ℓ2
p is generalized so that

∂M/∂χ may be nonzero. The total mass as measured
by an observer at asymptotic infinity is m = mM + mφ,
where mM is the effective total mass in the generalized
Vaidya region, and mφ =

∫

ρdV is the interior mass. By
Eqs. (1), (4) and (14),

mφ

mp
=

3a

2ℓp

(am

a

)4

D(a)

[

tan−1 R

2
− R(1 − R2/4)

2(1 + R2/4)2

]

. (20)

Since we do not specify the matter content in the exterior,
and we do not know the quantum-corrected field equa-
tions there, we cannot determine M(v, χ) and thus mM .
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FIG. 2: The speed of collapse, |ȧ|, against the scale fac-
tor a, for the evolution shown in Fig. 1, up to the bounce.
The dashed curve is for classical dynamics and semi-classical
quantum dynamics gives the solid curve. The horizontal dot-
ted lines correspond to different values of R in Eq. (25): for
the upper line there is no horizon in the quantum-corrected
case, the middle line corresponds to the threshold for a hori-
zon, the lower line to the case of an inner and outer horizon.

However, as we discuss below, we can still draw qualita-
tive conclusions about the behavior of horizons close to
the matter shells.

Matching the first and second fundamental forms at
the boundary, we obtain

χ(v) = Ra(t)/(1 + R2/4) , (21)

dv/dt = (1 + R2/4)/(1 − R2/4 − Rȧ) , (22)

2M = aR3(ȧ2 + 1)/(1 + R2/4)3 , (23)

−M,v = χ,vv+(1 − 2M/χ − 3χ,v)(M/χ − M,χ).(24)

The exterior region can contain trapped surfaces when
the condition 2M(v, χ) = χ is satisfied. We evaluate this
condition at the matching surface, using Eqs. (21) and
(23), to obtain,

|ȧ| = R−1(1 − R2/4) . (25)

When this value is reached, a dynamical horizon [11] in-
tersects the matching surface. This always occurs clas-
sically since during the collapse |ȧ| varies from zero to
infinity. With the modified dynamics, however, |ȧ| is
bounded throughout the evolution, so that it depends on

initial conditions whether or not a horizon forms. This
is illustrated in Fig. 2. Moreover, after the bounce, ȧ
grows again, so that the condition can be satisfied a sec-
ond time. This results in a picture where the bounce,
replacing the classical singularity, may be shrouded by
an evaporating dynamical horizon outside, as shown in
Fig. 3. There will be a second point where the horizon
condition is satisfied since |ȧ| decreases between the peak
of dj(a) and the bounce.
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Σ

FIG. 3: Eddington-Finkelstein diagram of the collapse, with
boundary Σ. Dotted lines show constant v (outside) and con-
stant t (inside). Quantum modifications imply a bounce of
the collapsing field, which for large enough mass is covered
by an inner and outer evaporating horizon (dashed). A sin-
gle matching suffices only until the inner horizon disappears.
The dot-dash curves correspond to the subsequent evolution
which is not determined in our model.

When it intersects the matching surface, the horizon is
always null, as follows from Eq. (24). Its later behavior
depends on the details of the outer region, which can not
be determined here. Nevertheless, one can expect that
both horizons will become timelike and evaporate. Hori-
zon evaporation in this model does not only come from
Hawking radiation, which may be included effectively in
the outside matter content, but also from violations of
energy conditions around the bounce, which may lead to
effective outgoing negative energy.

The model is not able to specify the future of the sys-
tem after it re-emerges out of the horizon. Equation (22)
shows that dv/dt diverges if and only if ȧ > 0 and the
matching surface becomes trapped. Thus, we can de-
scribe the collapse with a single matching until a horizon
disappears, at which point the interior t ceases to be
a good coordinate. One has to continue with a second
matched region to analyze the future of the system, but
this is beyond the scope of our model.

The qualitative picture that emerges from our toy
model is thus the following:
• We do obtain black holes, i.e., dynamical horizons, for
large masses, but they contain a bounce of the infalling
matter rather than a singularity. For large mass, vio-
lations of energy conditions are initially small and the

evaporation takes a long time, so that there are only small
deviations from classical results.
• For small enough mass however, black holes do not
form; horizons do not develop during collapse and the
bounce is uncovered. The critical threshold scale for
horizon formation is given by the turning point in the
|ȧ| curve. By Eqs. (9) and (15), the critical scale is

acrit = 0.987ℓ∗ = 0.276
√

j ℓp . (26)

The corresponding threshold mass for the black hole is
mcrit = mM + mφ(acrit), but we are unable to compute
this mass because the exterior dynamics remains unde-
termined.

Our estimates may be strongly influenced by the sim-
plifications we are forced to impose on the problem. How-
ever, the qualitative features that we have found should
be robust. In particular, they mean that there could be
lower bounds on the masses of black holes that form by

gravitational collapse. In particular, this could rule out
primordial black holes below the threshold mass, and
thus modify estimates of the Hawking radiation effects
from very small black holes.
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