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Relativisti numerial models for stationary super�uid Neutron StarsReinhard PrixMax-Plank-Institut für Gravitationsphysik, Albert-Einstein-Institut, Am Mühlenberg 1, D-14476 Golm, GermanyJér�me NovakLaboratoire de l'Univers et de ses Théories, Observatoire de Paris, F-92195 Meudon Cedex, FraneG. L. ComerDepartment of Physis, Saint Louis University, St. Louis, MO, 63156-0907, USA(Dated: Jan 24, 2005)We have developed a theoretial model and a numerial ode for stationary rotating super�uidneutron stars in full general relativity. The underlying two-�uid model is based on Carter's ovariantmulti-�uid hydrodynami formalism. The two �uids, representing the super�uid neutrons on onehand, and the protons and eletrons on the other, are restrited to uniform rotation around aommon axis, but are allowed to have di�erent rotation rates. We have performed extensive tests ofthe numerial ode, inluding quantitative omparisons to previous approximative results for thesemodels. The results presented here are the �rst �exat� alulations of suh models in the sensethat no approximations (other than that inherent in a disretized numerial treatment) are used.Using this ode we reon�rm the existene of prolate-oblate shaped on�gurations. We studied thedependeny of the Kepler rotation limit and of the mass-density relation on the relative rotationrate. We further demonstrate how one an simulate a (albeit �uid) neutron-star �rust� by lettingone �uid extend further outwards than the other, whih results in interesting ases where the Keplerlimit is atually determined by the outermost but slower �uid.I. INTRODUCTIONThe aim of this work is to alulate fully relativististationary models of super�uid neutron stars inludingall non-dissipative ouplings between the two �uids in-dued by the equation of state (EOS), in partiular theentrainment e�et. In addition to studying the stationaryproperties of relativisti super�uid neutron stars, thesemodels an serve as the unperturbed initial state in a dy-namial study of neutron star osillations, neutron starollapse to a blak hole, or as a starting point in studyingpulsar glith-models.Neutron stars are fasinating astrophysial objets: onone hand they represent a formidable �laboratory� of fun-damental physis, as the omposition and equation ofstate of their inner ore still lies beyond the reah of ex-perimental and theoretial physis. On the other hand,the advent of inreasingly sensitive gravitational wavedetetors promises to open a new observational windowon neutron stars, whih will allow us to gain new in-sights into these still rather poorly understood objets.Gravitational wave astronomy ould represent the �rstopportunity to observe neutron star osillations, provid-ing a new view on their inner dynamis. Consideringthe suess of lassial terrestrial seismology and astero-seismology of the sun and of main-sequene stars, oneould expet this to result in substantial progress in ourunderstanding of the dynamis and omposition of neu-tron stars.Additionally, observing quasi-permanent quadrupolardeformations (�mountains�) on neutron stars via gravita-

tional waves1 will give valuable omplementary informa-tion about their rotational behavior, whih is urrentlyonly observable via their eletromagneti pulses.Most theoretial studies of neutron star dynamis haverelied on rather simplisti single-�uid models. In thiswork we attempt a more realisti desription of neutronstars by taking their super�uidity into aount via theuse of a two-�uid model. Neutrons and protons in neu-tron stars are predited to be super�uid (e.g. see [2, 3℄),and this feature forms a fundamental ingredient in theurrent (albeit rudimentary) understanding of the glithphenomenon observed in pulsars (e.g. see [4�6℄). Due tothe super�uidity and therefore lak of visosity of theneutrons in the rust and in the outer ore, they an �owfreely through the other omponents. The remaining on-stituents (i.e. rust-nulei, eletrons, muons and protons)are assumed to be �loked� together on short timesalesby visosity and the magneti �eld. Thereby they formanother �uid, whih in the following will be referred to as�protons� for simpliity. These assumptions haraterizethe so-alled two-�uid model of neutron stars. These two�uids are strongly oupled by the strong nulear foreating between protons and neutrons, and therefore ahydrodynami two-�uid framework inorporating theseouplings is required for their desription. This frame-work will be presented in the next setion. Reently itwas pointed out that suh a two-�uid system an be sub-jet to a two-stream instability if the relative veloity1 Note that this searh has already begun, see [1℄ for a disussionand �rst results



2of the two �uids exeeds a ritial veloity [7℄. Thisould therefore be relevant in neutron stars and mightbe related to the glith phenomenon[6℄, whih providesanother motivation for studying the properties of suhtwo-�uid systems.In this paper we study the stationary struture of suhtwo-�uid models, in whih the two �uids are restritedto uniform rotation around a ommon axis, but allow-ing for two di�erent rotation rates. This neutron starmodel was �rst studied quantitatively by Prix [8℄ in theNewtonian ontext using a generalized Chandrasekhar-Milne slow-rotation approximation, and negleting thediret interations between the two �uids. Anderssonand Comer [9℄ used Hartle's variant of the slow-rotationapproximation to study this model in general relativity.Prix et al. [10℄ further extended the Newtonian study tofully inlude all (non-dissipative) ouplings via entrain-ment and the nulear �symmetry-energy�, and they foundan analyti solution for a sublass of two-�uid equationsof state (whih generalizes the P ∝ ρ2-type polytropes).More reently, Yoshida and Eriguhi [11℄ have devisedan alternative approah in the Newtonian ase, by treat-ing only the relative rotation between the two �uids assmall, while allowing for fast rotation of the neutron staras a whole. Furthermore, Comer [12℄ has reently usedthe relativisti slow-rotation approximation to study theproperties of the �rst available fully relativisti two-�uidEOS inorporating entrainment, whih was derived byComer and Joynt [13℄.Here we present a generally relativisti numerial odefor solving the full two-�uid model without approxima-tions. A preliminary progress-report on the developmentof this ode, and some early results were presented in[14℄.While our model and ode allow in priniple for anygiven two-�uid equation of state (EOS), for the sake ofsimpliity and a better numerial onvergene we restritourselves in this paper to the use of a (rather general)lass of two-�uid �polytropes�. This hoie is also moti-vated by the lak of a useful two-�uid neutron star equa-tion of state in the literature, espeially onerning theaspet of entrainment. Even though Comer and Joynt[13℄ have a fully relativisti model that inludes entrain-ment, it has not yet been developed to the point thatit will produe a tabular equation of state that ould beused in our ode. We expet the qualitative features ofour model to be well represented by the analyti EOSused in this work.The plan of this paper is as follows: In setion II we in-trodue the formalism and notation of ovariant two-�uidhydrodynamis. In setion III we disuss the speializa-tion to an axisymmetri and stationary system, and weintrodue the 3 + 1 framework for Einstein's equations.In setion IV we desribe the numerial proedure forsolving the resulting elliptial system of equations. Thetests performed on the numerial ode are disussed insetion V, and our numerial results are presented in se-tion VI. A disussion of this work is given in setion VII.

In appendix A we derive a new analyti Newtonian slow-rotation solution, whih is used for omparison to ournumerial results.II. CANONICAL TWO�FLUIDHYDRODYNAMICSThe general relativisti framework for desribing a ou-pled two-�uid system has been developed by Carter, Lan-glois and oworkers [15�18℄, based on an elegant varia-tional priniple. The same relativisti two-�uid modelwas used by Andersson and Comer [9℄ in their slow-rotation desription of super�uid neutron stars.We onsider a system onsisting of two �uids, namelyneutrons and �protons�, whih we label by n and p re-spetively. The kinematis of the two �uids is desribedby the two onserved partile 4-urrents nα
n and nα

p , i.e.
∇αnα

n = 0 , and ∇αnα
p = 0 . (1)The dynamis of the system is governed by a Lagrangiandensity of the form Λ(nα

n , nα
p ). Due to the requirementof ovariane, the salar density Λ an only depend onsalars, and we an form exatly three independent salarombinations out of nα

n and nα
p , for example

n2
n ≡ − 1

c2
gαβnα

nnβ
n ,

n2
p ≡ − 1

c2
gαβnα

pnβ
p , (2)

x2 ≡ − 1

c2
gαβnα

nnβ
p ,where gαβ is the spaetime metri, so the Lagrangiandensity an be written as

Λ(nα
n , nα

p ) = −E(n2
n, n2

p, x2) , (3)where E is a thermodynami potential representing thetotal energy density of the two��uid system, or �equationof state�. Introduing the 4�veloities uα
n , uα

p of the two�uids, whih satisfy the normalization onditions
gαβ uα

n uβ
n = −c2 , and gαβ uα

p uβ
p = −c2 , (4)the partile 4�urrents an be written as

nα
n = nn uα

n , and nα
p = np uα

p , (5)in terms of the neutron- and proton densities nn and
np respetively. Variation of the Lagrangian density (3)with respet to the partile urrents nα

n and nα
p de�nesthe onjugate momenta pn

α and pp
α, namely

dΛ = pn
α dnα

n + pp
α dnα

p . (6)Due to the ovariane onstraint (3) we an further ex-press the onjugate momenta in terms of the urrentsas
pn

α = Knn nnα + Knp npα ,

pp
α = Kpn nnα + Kpp npα , (7)



3where the symmetri �entrainment matrix� KXY is givenby the partial derivatives of E(n2
n, n2

p, x2), namely2
Knn =

2

c2

∂E
∂n2

n

, Kpp =
2

c2

∂E
∂n2

p

, Knp =
1

c2

∂E
∂x2

. (8)The equations of motion for the two �uids an be ob-tained from the variational priniple developed by Carter[19℄. In the absene of diret dissipative fores ating be-tween the two �uids (e.g. see Langlois et al. [18℄), theequations of motion will then be found as3
nα

n∇[αpn
β] = 0 , and nα

p∇[αpp
β] = 0 . (9)The energy�momentum tensor T αβ, whih is derivedfrom the variational priniple too, has the form

T α
β = nα

n pn
β + nα

p pp
β + Ψgα

β . (10)If the equations of motion (1) and (9) are satis�ed, thestress-energy tensor automatially satis�es ∇αT αβ = 0,whih is a Noether-type identity of the variational prin-iple. The generalised pressure Ψ of the two��uid systemis de�ned by the thermodynamial identity
E + Ψ = −nα

n pn
α − nα

p pp
α , (11)so Ψ an be onsidered the Legendre-transform of theLagrangian density Λ. Using the entrainment relation(7), we an rewrite this as

E + Ψ

c2
= Knn n2

n + 2Knp x2 + Kpp n2
p . (12)Instead of x2 de�ned in (2), we will use a physially moreintuitive quantity as the third independent salar, namelythe �relative speed� ∆. We de�ne the relative speed ∆as the norm of the neutron veloity uα

n as seen in theframe of the protons uα
p , or vie versa. The orrespondingrelative Lorentz fator Γ∆ is therefore given by

Γ∆ = − 1

c2
uα

nuβ
p gαβ =

x2

nnnp
=

(
1 − ∆2

c2

)−1/2

, (13)and the relative speed ∆ is expressible in terms of x as
∆2 = c2

[
1 −

(nnnp

x2

)2
]

. (14)In the ase of o-moving �uids (i.e. uα
n = uα

p ), we seefrom (2) that x2 = nn np, and so ∆ = 0 as expeted.2 The orresponding notation in Andersson and Comer [9℄ is nα
n →

nα, nα
p → pα, uα

n → uα, uα
p → vα, Knp → A, Knn → B, and

Kpp → C.3 the square brakets denote averaged index anti-symmetrization,i.e. 2 v[a,b] = vab − vba.

We an now equivalently onsider the equation of state
E as a funtion of the form E(nn, np, ∆2), for whih the�rst law of thermodynamis reads as

dE = µndnn + µpdnp + α d∆2 , (15)losely analogous to the Newtonian formulation [10℄. Theonjugate quantities de�ned in this equation are the en-trainment α and the neutron- and proton hemial po-tentials µn and µp (sometimes also referred to as spei�enthalpies, whih is equivalent in the zero-temperaturease). It is often useful to haraterize the entrainmentby the dimensionless entrainment numbers εX , whih wede�ne as
εX ≡ 2α

mXnX

, (16)where mX is the partile rest-mass of the respetive �uid,and the �uid-index isX = n, p (no summation overX ).The onjugate variables of (15) an be expressed interms of the kinemati salars and the entrainment ma-trix KXY as
µn =

c2

nn

(
Knnn2

n + Knpx2
)

= −uα
npn

α ,

µp =
c2

np

(
Kppn2

p + Knpx2
)

= −uα
ppp

α , (17)
α =

1

2
KnpnnnpΓ3

∆ .Using (14), the inverse relations an be obtained as
Knn =

µn

nnc2
− 2α

n2
nΓ2

∆

Kpp =
µp

npc2
− 2α

n2
pΓ2

∆

(18)
Knp =

2α

nnnpΓ3
∆

,whih redues exatly to the orresponding relations inthe Newtonian limit [10℄, where Γ∆ → 1 and µX →
mX c2 + µ̂X . In terms of these quantities, the generalisedpressure Ψ (11) an also be written as

Ψ = −E + nn µn + np µp , (19)whih is the generalization of the thermodynami Gibbs-Duhem relation to a two-�uid system.III. STATIONARY AXISYMMETRICCONFIGURATIONSA. The metriHere and in the following we hoose units suh that
G = c = 1 for simpliity. We onsider spaetimes that arestationary, axisymmetri, and asymptotially �at. The



4symmetries of stationarity and axisymmetry are assoi-ated with the existene of two Killing vetor �elds, onetimelike at spatial in�nity, tα, and one spaelike every-where and with losed orbits, ϕα.It was shown by Carter [20℄ that under these assump-tions the Killing vetors ommute, and one an hoosean adapted oordinate system (t, x1, x2, ϕ), suh that
tα∂α = ∂/∂t and ϕα∂a = ∂/∂ϕ, i.e.

tα = (1, 0, 0, 0) , and ϕα = (0, 0, 0, 1) . (20)We hoose the remaining two oordinates to be of spher-ial type, i.e. x1 = r, x2 = θ, and following Gourgoulhonet al. [21℄, we �x the gauge to be of maximal-sliing quasi-isotropi type (MSQI), for whih the line element readsas
ds2 = gαβ dxαdxβ = −(N2 − NϕNϕ) dt2 − 2Nϕ dϕdt

+A2
(
dr2 + r2dθ2

)
+ B2r2 sin2θ dϕ2 , (21)where the funtions N , Nϕ, A and B depend on r and θonly, and Nϕ ≡ gϕϕNϕ.B. Fluid dynamisWe assume the �ow of the two �uids to be purely axial(i.e. no onvetive meridional urrents), so we an writethe unit 4�veloities of the two �uids as

uα
n = ut

n ζα
n and uα

p = ut
p ζα

p , (22)where the helial vetors ζα
n and ζα

p are expressible interms of the Killing vetors tα and ϕα as
ζα
n = tα + Ωnϕα , and ζα

p = tα + Ωpϕα , (23)where the two rotation rates Ωn and Ωp are salar fun-tions, whih an only depend on r and θ.Using Cartan's formula for the Lie derivative of a 1�form pβ with respet to a vetor��eld ξα, namely
Lξ pα = 2ξβ∇[βpα] + ∇α

(
ξβpβ

)
, (24)we an rewrite the equations of motion (9) as

LζX pXα −∇α

(
ζβ
X

pXβ

)
= 0 . (25)Linearity of the Lie derivative together with (23) and (24)allows us to rewrite this as

Lt pXα +ΩXLϕ pXα +ϕβpXβ ∇αΩX −∇α

(
ζβ
X

pXβ

)
= 0 . (26)Stationarity and axisymmetry imply that the �rst twoterms vanish, and so the equations of motion for neutronsand protons are redued to

pn
ϕ∇αΩn = ∇α

(
ζβ
n pn

β

)
, pp

ϕ∇αΩp = ∇α

(
ζβ
p pp

β

)
.(27)

In the general ase of di�erential rotation, the integrabil-ity ondition of these equations are therefore
pn

ϕ = pn
ϕ(Ωn) , and pp

ϕ = pp
ϕ(Ωp) , (28)and the �rst integrals of motion are obtained as

pn
t + Ωnp

n
ϕ −

∫ Ωn

pn
ϕ(Ω′)dΩ′ = constn , (29)

pp
t + Ωpp

p
ϕ −

∫ Ωp

pp
ϕ(Ω′)dΩ′ = constp . (30)In the speial ase of uniform rotation, i.e. ∇αΩX = 0,these �rst integrals redue to

pn
t + Ωnpn

ϕ = constn , and pp
t + Ωpp

p
ϕ = constp , (31)whih are equivalent to the expressions obtained by An-dersson and Comer [9℄. We an further express these�rst integrals in terms of the hemial potentials µn, µpof (17), namely

pn
t + Ωnpn

ϕ = ζα
n pn

α = − 1

ut
n

µn = onstn , (32)
pp

t + Ωppp
ϕ = ζα

p pp
α = − 1

ut
p

µp = onstp . (33)C. The 3 + 1 deompositionWe introdue the vetor n
α as the unit normal to thespaelike hypersurfaes Σt de�ned by t = const., namely

nα ≡ −N∇αt , (34)whih de�nes the so�alled Eulerian observers O0 follow-ing Smarr and York [22℄. The indued metri hαβ on thespaelike hypersurfaes Σt is given by the projetion
hαβ ≡ gαβ + nαnβ . (35)The orresponding 3 + 1 deomposition of the energy�momentum tensor T αβ reads as4

T αβ = Sαβ + 2n
(αJβ) + En

α
n

β , (36)where
E = n

αTαβn
β , Jα = −hγ

αTγβn
β , Sαβ = hγ

αTγνhν
β ,(37)whih an be interpreted as the energy, momentum andstress tensor as measured by the Eulerian observers. Inthe MSQI gauge (21), we an expliitly express thesequantities as

E = N2T tt , Ji = NT t
i , Si

j = T i
j − N iT t

j , (38)4 Round brakets denote averaged symmetrization, i.e. 2 v(a,b) =
vab + vba.



5where Latin indies i, j denote the spae-omponents
1, 2, 3. The Einstein equations in this formulation resultin a set of four ellipti equations for the metri potentials(see [23℄ and [21℄ for details), namely

∆3ν = 4πA2(E + Si
i) + A2KijK

ij − ∂ν ∂(ν + β), (39)
∆̃3Ñ

ϕ = −16πNA2J̃ϕ − r sin θ ∂Nϕ∂(3β − ν) , (40)
∆2[(NB − 1)r sin θ] = 8πNA2Br sin θ

(
Sr

r + Sθ
θ

)
, (41)

∆2 (ν + ᾱ) = 8πA2Sϕ
ϕ +

3

2
A2KijK

ij − (∂ν)
2

, (42)where we de�ned Ñϕ ≡ r sin θ Nϕ and J̃ϕ ≡ r sin θ Jϕ.
∆3 and ∆2 are the �at three- and two-dimensionalLaplae operators, whereas ∆̃3 = ∆3 − (r2 sin2 θ)−1. Wefurther used the notation

ν ≡ lnN , ᾱ ≡ lnA , β ≡ lnB , (43)and we de�ne ∂ᾱ∂β as the �at-spae salar produt oftwo gradients, i.e.
∂ᾱ∂β ≡ ∂rᾱ∂rβ +

1

r2
∂θᾱ∂θβ . (44)The only non-zero omponents of the extrinsi urvature

Kij in our spherial oordinate basis are given by
Krϕ = −gϕϕ

2N
∂rN

ϕ , and Kθϕ = −gϕϕ

2N
∂θN

ϕ . (45)We note that the gravitational mass M, whih is de�nedas the (negative) oe�ient of the term 1/r in an asymp-toti expansion of the �gravitational potential� log N , anbe expressed expliitly (see [23℄) as
M =

∫
A2B

[
N(E + Si

i) + 2B2ÑϕJ̃ϕ
]

r2 sin θ dr dθ dϕ .(46)Here and in the following we will use M to denote thegravitational mass, while M will stand for the baryonmass. The total angular momentum J is given by
J =

∫ [
A2B3 r sin θJ̃ϕ

]
r2 sin θ dr dθ dϕ . (47)The 2D- and 3D virial identities, whih have been derivedby Bonazzola and Gourgoulhon [24, 25℄, an serve as auseful hek of onsisteny and preision of the numerialresults. The 2D virial identity (referred to as GRV2),whih derives from the Poisson-equation (42), has theform

∫ [
8πA2Sϕ

ϕ +
3

2
A2KijK

ij − (∂ν)2
]

r dr dθ = 0 , (48)while the 3D virial identity (GRV3), whih redues tothe usual virial theorem in the Newtonian limit, an bewritten as
∫

4πA2BSi
i dV +

∫
B

[
3

4
A2KijK

ij − (∂ν)2

+
1

2
∂ᾱ∂β

]
dV +

∫
1

2r

(
B − A2

B

)

×
[
∂r (ᾱ − β/2) +

1

r tan θ
∂θ (ᾱ − β/2)

]
= 0 . (49)Both of these virial theorems (48) and (49) an be writtenas the sum of an integral over a �material� term Imat (the�rst term in (48) and (49) respetively), and an integralover pure �eld-quantities Ifields (the remaining terms).Therefore it will be onvenient to onsider the followingdimensionless quantity to numerially haraterize therespetive virial violations:

GRV ≡ Imat + Ifields

Imat
. (50)D. The matter souresLet us write Γn and Γp for the two Lorentz fatorslinking the Eulerian observers O0 to the o-moving �uidobservers On (de�ned by uα

n ) and Op (de�ned by uα
p ),namely

Γn ≡ −nαuα
n = Nut

n , and Γp ≡ −nαuα
p = Nut

p .(51)The �physial� �uid veloities Un and Up of the two �u-ids5 in the ϕ diretion, as measured by O0, are givenby
Un =

1

Γn
ϕ̂αuα

n , and Up =
1

Γp
ϕ̂αuα

p , (52)where ϕ̂α is the spatial unit vetor in the ϕ diretion, i.e.
ϕ̂α =

1
√

gϕϕ
ϕα , such that hαβ ϕ̂αϕ̂β = 1 . (53)Using (22) and (51), we obtain

Un =

√
gϕϕ

N
(Ωn − Nϕ) , Up =

√
gϕϕ

N
(Ωp − Nϕ) , (54)and the Lorentz fators an be expressed equivalently as

Γn =
(
1 − U2

n

)−1/2
, and Γp =

(
1 − U2

p

)−1/2
. (55)The �rossed� salar x2, de�ned in (2), an be expressedin terms of the respetive salar partile densities nn, npand the 3�veloities Un and Up, as

x2 = nnnp
1 − UnUp√

(1 − U2
n)(1 − U2

p)
, (56)5 In Andersson and Comer [9℄ these were denoted −ωn and −ωprespetively.



6and using (14), we an write the relative veloity ∆ as
∆2 =

(Un − Up)2

(1 − UnUp)2
. (57)Using expressions (32),(33) and (51), the �rst integralsan be ast into the form

N

Γn
µn = constn , and

N

Γp
µp = constp . (58)In loser analogy with [21, 23℄, we an alternatively writethese �rst integrals as

Hn + ν − ln Γn = Cn , (59)
Hp + ν − ln Γp = Cp , (60)where we introdued the abbreviations

Hn ≡ ln
( µn

mn

)
, and Hp ≡ ln

( µp

mp

)
. (61)The omponents of the 3 + 1 deomposition (36) of theenergy�momentum tensor (10) are expliitly found as

E = −Ψ + (Γ2
nKnnn2

n + Γ2
pKppn2

p

+2ΓnΓpKnpnnnp) , (62)
√

gϕϕ Jϕ = Γ2
nKnnn2

nUn + Γ2
pKppn2

pUp

+ΓnΓpKnpnnnp(Un + Up) , (63)
Sr

r = Sθ
θ = Ψ , (64)

Sϕ
ϕ = Ψ +

(
Γ2

nKnnn2
nU2

n + Γ2
pKppn2

pU2
p

+2ΓnΓpKnpnnnpUnUp) , (65)One an hek the onsisteny of this result with thesingle �uid ase of [23℄, by onsidering the speial ase ofboth �uids moving together.IV. NUMERICAL PROCEDUREA. Iteration shemeThe numerial solution of the stationary axisymmetrion�gurations desribed in the previous setions pro-eeds in a very similar manner to the single-�uid ase,whih is desribed in more detail in [21, 23℄. The entraliteration sheme is nearly idential:Initialization: Start from a simple �guess� for a spher-ially symmetri matter distribution n
(0)
n and n

(0)
pof the two �uids, and use a �at metri.Step 1: Calulate the matter soure-terms E, Jϕ and Si

jfrom (62)� (65).Step 2: Solve the equations (39)�(42) for the orre-sponding metri using the pseudo-spetral elliptisolver in LORENE, the numerial relativity pak-age used here[26℄.

Step 3: Use the �rst integrals (58) to obtain the hemi-al potentials µn and µp.Step 4: Calulate the new density �elds nn and np byinverting the relations (17) for the given equationof state.Step 5: Continue at Step 1 until the desired onvergeneis ahieved.In general we are using three spherial-type numerialdomains to over the hypersurfae Σt: the innermost do-main overs the whole star. An intermediate domain isused for the viinity of the star to about twie the stellarradius, and an outer domain overs the spae out to in�n-ity, using a ompati�ation of the type u = 1/r (see [23℄for details). For the inner domain we have the hoie ofeither using a simple spherial grid ontaining the wholestar, or we an use an adaptive-grid algorithm, in or-der to adapt the domain-boundary to the stellar surfae.Contrary to the single-�uid ase (e.g. see [21℄), however,the adaptive-grid approah is muh less e�etive in in-reasing preision and onvergene. The reason for thisis simply that only one of the two �uid-surfaes an bemathed up with a domain boundary, and therefore the(weak) Gibbs phenomenon due to the inner �uid surfae(representing at least a disontinuity in the derivative) isnot ompletely avoidable.Another important di�erene in the ase of two-�uidsompared to single-�uid stars is the way we determinethe loation of the �uid surfaes. In a single �uid star,the surfae an always be found by the vanishing of thepressure, whih usually translates into a simple onditionin terms of the vanishing of the hemial potential µ. Inthe two-�uid ase, however, this is not generally possible(espeially for the �inner� �uid), due to the oupling ofthe �uids. Therefore we need to de�ne the �uid surfaesdiretly in terms of the vanishing of the respetive density�elds. Contrary to the hemial potential, the densityan have a vanishing or diverging gradient at the surfae,and a preise determination of the surfae an thereforebe numerially di�ult.6A related numerial problem spei� to two-�uid on-�gurations appears when the surfaes of the two �uids arevery lose to eah other. In this ase, the 1-�uid region inbetween the two surfaes will be poorly resolved by thegrid overing the star, and therefore the determinationof the outer surfae will have a poor numerial preision.As will be seen later, this problem an be ured to someextent by adding another domain, whih overs just athin shell below and up to the outer �uid surfae. In thisase one observes a drasti improvement in the preision6 We note that Yoshida and Eriguhi [11℄ hose to avoid this dif-�ulty by de�ning the ��uid surfaes� by the vanishing of therespetive hemial potentials. These �surfaes�, however, dogenerally not oinide with the surfaes of vanishing density (on-trary to the single-�uid ase), as an be seen from (17).



7of �nding the outer surfae, whih an be quanti�ed byomparison with the analyti slow-rotation solution.We note that this numerial ode an be used equallywell for Newtonian on�gurations, simply by replaingthe matter-soures by their Newtonian limits, and for-ing the spatial metri to be �at. The entral iterationsheme remains unhanged, and we an relate the lapse
N to the Newtonian gravitational potential, namely bythe relation ν = lnN = Φ/c2, where Φ is the Newto-nian gravitational potential. The Newtonian limit of thematter soure-term in Eq. (39) is

E + Si
i

c2
= ρ + O(c−2) , (66)where ρ is the total (rest-)mass-density, so that this om-ponent of the Einstein equations redues to the New-tonian Poisson equation, while the remaining Einsteinequations (40)�(42) beome trivial in this limit. In a sim-ilar manner, the �rst integrals are seen to redue exatlyto their Newtonian ounterparts [10℄.The parameters of the numerial sheme that will beused for the rest of the paper are the following: the re-quired onvergene of the iteration sheme is 10−10, andwe use 17 points in the θ diretion, and 33 grid-pointsin the radial diretion in the innermost domain (ontain-ing the star), 33 radial points in the intermediate domainand 17 radial points in the ompati�ed outer domain.B. The polytropi 2-�uid equation of stateThe numerial sheme desribed in the previous setionan be used for any invertible 2-�uid equation of state(EOS). The urrent implementation of our ode, however,only overs a �polytropi� sublass of 2-�uid EOS, whihgeneralizes the types of EOS used in previous studies,e.g. [9�11, 27℄, and whih has the general form

E = ρ c2 +
1

2
κnnγ1 +

1

2
κpnγ2

p + κnpn
γ3
n nγ4

p

+κ
∆
nγ5

n nγ6
p ∆2 , (67)where ρ ≡ mnnn + mpnp. As disussed in the intro-dution, we expet this polytropi EOS-lass to be quitegeneral, and to allow one to study the qualitative fea-tures of a broad range of di�erent super�uid neutron starmodels. For example, general features of the Kepler limit(f. Fig. 5) are seen to be in qualitative agreement withthe mean �eld results of Comer [12℄.The two �uids in (67) are oupled via a �symmetryenergy�-type term proportional to κnp and an entrain-ment term proportional to κ

∆
∆2. The resulting expres-sions for the hemial potentials and the entrainment αare diretly obtainable from (15).In general this lass of 2-�uid EOS requires a numer-ial inversion in the iteration sheme desribed in se-tion IVA, in order to obtain the densities nn, np fromthe hemial potentials µn, µp at a given relative speed

∆. For testing purposes and for omparison to the New-tonian and relativisti slow-rotation results, we will inthe following be mostly interested in a further sublassof the above EOS, namely the speial 2-�uid polytropesdesribed by
E = ρ c2+

1

2
κnn

2
n+

1

2
κpn

2
p+κnpnnnp+κ

∆
nnnp∆2 , (68)whih are a 2-�uid generalization of the 1-�uid polytrope

P ∝ n2. This speial EOS lass still exhibits all theoupling-types (entrainment + symmetry energy) of thegeneral EOS, but allows an analyti inversion, namely
µn − mnc2 = κnnn + (κnp + κ

∆
∆2)np , (69)

µp − mpc2 = κpnp + (κnp + κ
∆
∆2)nn , (70)and the entrainment is found as

α = κ
∆
nnnp . (71)The generalized pressure Ψ in (19) is expressible as

Ψ =
1

2
κnn2 +

1

2
κpn2

p + κnpnnnp + κ
∆
nnnp∆2 . (72)Contrary to the two-�uid EOS used in the Newtonianslow-rotation study [10℄, whih exhibits the somewhatunphysial feature of onstant entrainment numbers, asdisussed in appendix A, this EOS results in a muhmore physial behavior of the entrainment. Namely, us-ing (16), we �nd

εn =
2κ

∆

mn
np , and εp =

2κ
∆

mp
nn , (73)whih ensures that the entrainment e�et automatiallyvanishes when one of the two �uid-densities goes to zero.Suh a linear behavior of entrainment also happens to bein quite good qualitative agreement with the theoretialpreditions of nulear physis, e.g. see7 [2, 3, 28℄Using the method developed in [10℄ for the EOS (68),we an �nd an analyti solution in the Newtonian slow-rotation approah, whih is presented in appendix A.This allows us to run extensive tests by omparing ournumerial ode to the analyti solution in the Newtonianase. The results of this omparison are presented insetion VC.V. TESTS OF THE NUMERICAL CODEA. Comparison to 1-�uid resultsAs a �rst onsisteny hek we use the two-�uid odefor stritly o-rotating on�gurations with a ommon7 These referenes give the neutron and proton e�etive masses

mX∗, whih are related to the entrainment via εX = (mX −

mX∗)/mX , see [10℄ for details.



8outer surfae, and ompare the results to those of thewell-tested single-�uid ode [21, 23℄. For this purpose westudy a stellar sequene of �xed entral density and varythe rotation rate. We de�ne the �natural sale� of therotation-rate as
Ω0 ≡

√
4πGρ(0) , (74)where ρ(0) is the entral rest-mass density, i.e. ρ(0) =

mnnn(0)+mpnp(0). The Kepler rotation rate ΩK is typ-ially found at about ΩK ∼ 0.1 Ω0 for the on�gurationsonsidered here. The results of the omparison with thesingle-�uid ase are shown in Fig. 1. Here we plot therelative di�erenes, de�ned as
∆Q ≡ |Q2f − Q1f |

Q1f
, (75)of a global quantity Q in the two-�uid ase (Q2f) and inthe single-�uid ase (Q1f). The �rst olumn, �gures 1 (a)and (), shows the omparison of 1-�uid and 2-�uid re-sults using a �xed spherial grid for the inner domainin the two-�uid ase. The single-�uid ode on the otherhand always uses an adaptive grid for the stellar surfae.We notie that towards higher rotation rates the relativeerrors inrease. These errors an be entirely asribed tothe lak of grid adaption in the two-�uid ase: by usingan adaptive grid for the stellar domain also in the two-�uid ase, we �nd a onsistent agreement of better than

10−9, as an be seen in the seond olumn in �gure 1 (b)and (d). We note, however, that this improvement ofusing an adaptive grid is restrited to ases where thetwo-�uids share a ommon outer surfae, while it is ofmuh less use in the general two-�uid ase as mentionedearlier. We an therefore onlude that the two-�uid odereprodues results onsistent with the single-�uid ode inases where the two �uids o-rotate.B. Virial theorem violationIn the next step we onsider the more general asewhere the two �uids have di�erent rotation rates. We �xthe relative rotation rate, de�ned as
R ≡ Ωn − Ωp

Ωp
, (76)to be R = 1.51 and vary Ωn. As mentioned before, inthese general situations an adaptive grid does not sub-stantially improve the preision and has therefore notbeen used. We onsider the internal onsisteny hekprovided by the virial identities GRV2 and GRV3 de-�ned in (50), for whih the result is shown in Fig. 2. Wenote that in the ase (a), where one inner domain is usedto over the star, even at low rotation rates the resultfalls somewhat short of the onvergene-goal of 10−10 inthe iteration sheme. This lak of preision at small ro-tation rates an be understood as follows: due to the

di�erene in rotation rates, the two �uids do not sharea ommon outer surfae, and there will neessarily be a1-�uid region lose to the outer surfae. However, this 1-�uid region will be very thin ompared to the dimensionsof the star, and will therefore be poorly resolved in termsof the numerial grid. We an improve this by hoos-ing a seond domain to over just a thin layer (of about
1% of the radius) below the outer surfae, resolved byanother 33 radial grid-points. The e�et of this �trik�is rather impressive and an be seen in Fig. 2, for thease (b). While this gain in preision is not very impor-tant by itself, it underlines the onsisteny of the resultsand shows that the soure of these errors is understood.The derease in preision when approahing the Keplerrotation an be asribed to the appearane of usps atthe equator (see Fig. 6) and therefore the presene of theGibbs phenomenon. Nevertheless, one should note thatthis phenomenon happens also in the one-�uid ase, thepreision of the ode at the Kepler limit being of the sameorder as here [21℄.C. Comparison to Newtonian slow-rotation resultsWe an use the analyti Newtonian solution in theslow-rotation approximation (derived in appendix A) fora systemati omparison with the numerial ode run in�Newtonian mode� as desribed in setion IVA.We denote the numerial solution of a quantity as
QL(ΩX ), and the analyti slow-rotation solution as
Qsr(ΩX), and we de�ne the relative di�erene as

⋄Q ≡ QL − Qsr

Q(0)
, (77)where Q(0) orresponds to the stati solution. At �xedrelative rotation rate R, the slow-rotation solution anbe written as

Qsr(Ωn) = Q(0) + Q(2) Ω2
n . (78)Ideally we would like to ompare only up to the Ω2 om-ponent of the numerial solution, but obviously we do notknow its Taylor-expansion in orders of Ω. Neverthelessthe numerial solution an formally be written as

QL(Ωn) = Q
(0)
L + Q

(2)
L Ω2

n + Q
(4)
L Ω4

n + ... , (79)so that the relative di�erene (77) an be expanded as
⋄Q =

Q
(0)
L − Q(0)

Q(0)
+

Q
(2)
L − Q(2)

Q(0)
Ω2

n+
Q

(4)
L

Q(0)
Ω4

n+... . (80)If the numerial solution agreed perfetly with the ana-lyti solution (up to order Ω2), the �rst two terms wouldbe zero, and the leading order of the di�erene would be
Ω4

n. In pratie, however, there will be ontributions onall orders, and we will try to quantify these respetive
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FIG. 1: Relative di�erenes ∆Q in the total baryon mass M , and the equatorial and polar radii Req and Rpol. The �rstrow is the Newtonian ase, while the seond row shows the relativisti results. In the �rst olumn, we used a �xed spherialinner domain, while in the seond olumn the inner domain-grid is adapted to the stellar surfae (whih is the default in thesingle-�uid ase).
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FIG. 2: Virial violations GRV2 and GRV3 for (a) 1 domainand (b) 2 domains overing the star. Only the Newtonianase is shown, as the relativisti results are very similar. ΩKdenotes the Kepler rotation rate.errors. If in some interval of Ωn one of these terms dom-inates in the series, then a log-log plot of ⋄Q(Ωn) in this

region would look like
y = log(a Ωm

n ) = log a + m log Ωn , (81)i.e. a straight line with steepness m and an o�set log a.Conversely, if the log-log plot of ⋄Q ontains setions ofstraight lines, we an infer the leading power in Ωn andits oe�ient.The neutron-star model used here is haraterized bythe following hoie of EOS-parameters:
κn = 0.02 , κp = 0.12 , κnp = 0.01 , κ

∆
= 0.02 , (82)and the (�xed) entral hemial potentials

µn(0) = µp(0) = 0.2 mb c2 , (83)where mb = 1.66 × 10−27 kg is the baryon mass and c isthe speed of light. The resulting neutron-star model inthe stati ase has a total mass of M = 1.50 M⊙ (where
M⊙ is the solar mass), a radius of R = 11.1 km, a entralbaryon number density n(0) = 1.04 fm−3, proton fration
xp ≡ np/n = 0.083 and an entrainment value of εp(0) =
0.38. We note that in the Newtonian ase there is nodistintion between the gravitational mass M and thebaryon mass M .In Fig. 3 we show the relative di�erenes ⋄Q for theradii Rn and Rp at the equator. We also plotted the



10straight lines orresponding to a pure Ω4 and Ω2 behav-ior, in order to failitate the interpretation of these re-sults.In Fig. 3 (a) we see that for small rotation rates(Ωn/Ω0 < 10−3) the error in the equatorial proton radius
Rp(eq) reahes a �plateau� at about ∼ 10−9, whih or-responds to numerial errors and the �nite onvergene-ondition of the iteration sheme, while for higher rota-tion rates, the quarti error starts to dominate. The samebehavior is observed for other global quantities, e.g. Mnand Mp and R(pol)), whih are not inluded in this plot.However, the neutron equatorial radius Rn(eq) (whih isthe outer radius) displays a onsistent quadrati error oforder unity! The reason for this apparent disrepanyis rather subtle, and stems from the somewhat di�erentnature of the slow-rotation approah and the fully nu-merial solution. In the numerial ode, when one ofthe two �uid-densities vanishes, we swith from the 2-�uid EOS (67) to the orresponding 1-�uid EOS beforewe do the inversion µX → nY in the numerial proe-dure (f. setion IVA), whih is the orret physial wayto do this. In the slow-rotation approah, however, therotation rates are treated as in�nitesimal, and there isatually no �nite 1-�uid region. Therefore the EOS isalways used in the form (67), whih will be seen in thefollowing to aount for the di�erene in Rn(eq). In or-der to test this explanation, we have also implemented a�slow-rotation style� EOS-inversion in the ode, in whihwe do not swith to a 1-�uid EOS when one of the two�uids vanishes. The result of this is shown in Fig. 3 (b).We see that the disrepany of the outer radius has om-pletely disappeared. While this serves as an interestingtest of onsisteny, this rather unphysial EOS-inversionwill obviously not be used in the following.D. Comparison to relativisti slow-rotation resultsFinally, we ompare our results in the fully relativistiase to the results obtained by using a ode developedby Andersson and Comer [9℄, whih is based on the rela-tivisti slow-rotation approximation.In the relativisti ase the physial �radius� will gener-ally be di�erent from the oordinate-radius, and an bede�ned in various non-equivalent ways (e.g. irumfer-ential radius, proper radius). For an unambiguous om-parison we de�ne the �radius� R as the proper distaneof the surfae from the enter of the star, along a lineof onstant θ and ϕ (the de�nition of whih is onsistentwith [9℄), i.e.

R ≡
∫ R0

0

d l =

∫ R0

0

A(r) d r , (84)where R0 is the oordinate-radius of the surfae. Anotherquantity spei� to the relativisti ase is the shift-vetor
N i = (0, 0, Nϕ), and we will onsider its 3-norm, i.e.

||N i|| ≡
√

gijN iN j = Nϕ √
gϕϕ , (85)

whih is independent of the oordinate-system hosen onthe spaelike hypersurfae.The stellar model used in this omparison is de�nedby the EOS parameters
κn = 0.04 , κp = 0.24 , κnp = 0.02 , κ

∆
= 0.02 , (86)and the entral hemial potentials are µn(0) = µp(0) =

0.2 mb c2. The on�gurations obtained have the follow-ing (�xed) entral values: the entral baryon density is
n(0) = 0.5776 fm−3, whih orresponds to 3.61 times nu-lear density (nnucl = 0.16 fm−3). The entral protonentrainment is εp(0) = 0.212, and the proton fration isfound as xp(0) = 0.083. We �x the relative rotation to
R = 0.5, i.e. the neutron super�uid is rotating 50% fasterthan the proton-eletron �uid. In Table I we show the

Ωn/2π 0 Hz 100 Hz 500 Hz
Mn [M⊙] 1.0978 (-0.02%) 1.0998 (-0.1%) 1.1509 (-2%)
Mp [M⊙] 0.0998 (-0.02%) 0.0997 (-0.1%) 0.0959 (-2%)
M [M⊙] 1.1194 (-0.02%) 1.1210 (-0.04%) 1.1644 (0.04%)
Req

n [km] 13.545 (-0.01%) 13.570 (0.2%) 14.260 (5%)
Rpol

n [km] 13.545 (-0.01%) 13.527 (-0.1%) 13.103 (-3%)
Req

p [km] 13.545 (-0.01%) 13.534 (-0.1%) 13.302 (-2%)
Rpol

p [km] 13.545 (-0.01%) 13.527 (-0.1%) 13.103 (-3%)
N(0) 0.700102 (1e-4%) 0.69983 (2e-3%) 0.69267(-0.04%)

||N i||(eq) 0 0.00206 (0.1%) 0.01072 (3%)TABLE I: Numerial results QL and (in parentheses) relativedi�erenes (QL − Qsr)/QL × 100% to the relativisti slow-rotation results Qsr.results of the omparison to the relativisti slow-rotationode. We observe that generally the agreement is quitegood, and (as expeted) gets worse with higher rotationrates. However, we note that this slow-rotation ode im-poses an additional onstraint on the radii, namely thetwo �uids are fored to share a ommon outer surfae.Therefore part of the disagreement observed here doesnot atually stem from the slow-rotation approximationor numerial di�erenes, but from the somewhat di�erentassumptions in the model. Given these di�erenes, theagreement seems very good.VI. NUMERICAL RESULTSThe existene of on�gurations with one �uid-surfaehaving a prolate shape was initially found using the New-tonian analyti solution[10℄ in the slow-rotation approx-imation. While this might not be very realisti astro-physially, it is still interesting to study this partiu-larity of an interating two-�uid system. We on�rmthe existene of suh on�gurations in the fully relativis-ti treatment, as reported earlier by us[14℄. In orderto show this, we hoose the polytropi EOS parameters
κn = 0.016, κp = 0.16, κnp = 0.008, and κ

∆
= 0.03,
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FIG. 3: Relative di�erene ⋄Q(Ωn) between the numerial ode in �Newtonian mode� and the slow-rotation analyti solutionof appendix A, for the equatorial radii Rn and Rp. In (a) we used the normal �physial� EOS-inversion, while (b) shows theresults when using a �slow-rotation style� EOS inversion.with the entral hemial potentials µn(0) = 0.2mbc
2 and

µp(0) = 0.198mbc
2. This orresponds to a entral protonfration of xp(0) = 0.05 and a entral proton-entrainmentnumber of εp(0) = 0.80. In Fig. 4 we show the result-
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FIG. 4: Meridional ross-setion of an oblate-prolate two-�uidon�guration. The dotted lines represent lines of onstant�gravitational potential� N , while the thik lines are the re-spetive surfaes of the neutron- and proton �uids.ing on�guration with the two �uids ounter-rotating at
Ωn/2π = 1000 Hz and Ωp/2π = −100 Hz. We de�ne the

elliptiity of �uidX as
ǫX ≡ RX (eq) − RX (pol)

RX (eq)
, (87)in terms of the proper radii R of (84). Using this de�ni-tion, this on�guration is found to have ǫn = 0.137, and

ǫp = −0.037, so the proton �uid has a prolate shape de-spite the fat that it is rotating around the z-axis. This ismade possible by the e�etive interation potential re-ated by the neutron-�uid, whih �squeezes� the proton-�uid, in this ase to the point of even overoming theentrifugal potential.EOS κn κp κnp κ
∆I 0.05 0.5 0.025 0.02II 0.05 0.5 0.0 0.0III 0.05 0.5 −0.025 0.02TABLE II: Polytropi parameters de�ning EOS-models I, II,and IIITo simplify the presentation of results, we fous in thefollowing on three EOS-models, de�ned in table II, whihdi�er only by their interation-terms. The EOS-models Iand III di�er by the sign of the �symmetry-interation�term κnp, whih orresponds to a value of the anon-ial �symmetry-energy term� (introdued in Prix et al.[10℄) of σ = −0.5 for EOS I and σ = 0.5 for EOS III.EOS II represents two �uids without EOS-interations.If not otherwise stated, we hoose the entral hemialpotentials as µn = µp = 0.3 mb c2. In the stati ase we
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nc [fm−3] 0.7177 0.7697 0.8612
εp(0) 0.273 0.0 0.301
xp(0) 0.05 0.09 0.125

M [M⊙] 1.586 1.532 1.448
M [M⊙] 1.460 1.409 1.332
R [km] 14.37 13.88 13.12TABLE III: Results for the entral baryon number density

nc, entrainment εp, proton fration xp, total baryon mass
M , gravitational mass M and the proper radius R for EOS-models I, II and III in the stati ase.when onsidering rotation, the individual �uid radii willobviously hange, but also the masses, beause we onlyonsider stellar sequenes of �xed entral density.Next we onsider these stellar models rotating at theirmaximum rotation rate ΩK (alled Kepler limit) for dif-ferent relative rotation rates R, as shown in Fig. 5. Wede�ne the Kepler-rate ΩK as the rotation rate of theouter �uid (whih in this ase also happens to be thefaster rotating one), i.e. the protons for R < 0 and theneutrons for R > 0. The rotation rate of the (slower)inner �uid is trivially determined by ΩK and R. Thedashed line shows the result from the Newtonian slow-rotation solution (A42). This is seen to overestimatesthe Kepler rate typially by about 15 %, exept for thease of EOS I, where it an even underestimate the Ke-pler limit for R < 0. We see that in the �xed entral-density sequenes onsidered here, the loal maximumof the Kepler rate is always attained for the o-rotating

on�guration (i.e. R = 0), whih ontrasts with the aseof �xed-mass sequenes as onsidered in the Newtonianstudy [10℄. A similar feature of the Kepler-rate dereasingasR dereases through zero an be seen in the mean-�eldresults of Comer [12℄.In the Fig. 6, we show the �uid surfaes of the two�uids rotating at the Kepler-rate for two di�erent rela-tive rotation rates, R = 0.1 and R = 0.01 respetively.We see the harateristi �usp� appearing at the equa-tor of the outer �uid, whih indiates the onset of mass-shedding if the rotation rate were to be inreased anyfurther. Beause we �xed the entral densities of theseon�gurations to those of the stati ase, it an be seenfrom Fig. 7 that both of these on�gurations belong tothe so-alled �supramassive� lass, i.e. they do not have aorresponding stable non-rotating on�guration of equalbaryon-mass.Fig. 7 shows the mass-density diagram for the station�guration of EOS I and for three Kepler on�gura-tions with di�erent relative rotation-rates. The on�gu-rations to the right of the maximum are on the so-alled�unstable branh�, beause they will be subjet to un-stable modes under small perturbations. The on�gura-tions above the dotted line orrespond to stars on theunstable-branh of the stati urve. They have no sta-ble non-rotating ounter-part, even if they are on thestable branh of the mass-urve of the rotating ase, andthey are therefore alled �supramassive stars�. These on-�gurations are stabilized by rotation and would beomeunstable if slowed down below a ritial rotation rate.So far we have onsidered stars hemial equilibrium atthe enter, i.e. µn = µp. Inidentally, for the EOS-lassonsidered here, the resulting stati on�gurations sharea ommon outer surfae in this ase. However, globalhemial equilibrium is generally not possible for on�g-urations with the two �uids rotating at di�erent rates,whih was shown by Andersson and Comer [9℄ and Prix
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FIG. 6: Kepler on�gurations for EOS I. In �gure (a) the relative rotation rate is R = 0.1, while in (b) it is R = 0.01.
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FIG. 7: Gravitational mass M as a funtion of entral baryonnumber density nc for EOS I with �xed entral proton fra-tion of xp = 0.05. The four urves orrespond to the non-rotating ase, the o-rotating Kepler-on�guration (R = 0),and two Kepler-on�gurations with relative rotation ratesof R = 0.5 and R = −0.5 respetively. The irle indi-ates a stati on�guration with entral hemial potentials of
µn = µp = 0.3 mbc

2. The box indiates the maximum-masson�guration in the stati ase. The dotted line representsthe sequene of onstant baryon mass onneting to the statimaximum-mass on�guration. Con�gurations above this linehave no stable non-rotating ounterpart and are alled �supra-massive� stars.et al. [10℄. In order to model more �realisti� on�gu-rations, in whih the proton-�uid mimis a neutron-star�rust� (albeit without any solidity) by extending furtheroutside than the neutrons, we an easily ahieve this byhoosing di�erent entral hemial potentials. For ex-

ample, using EOS II and setting µn = 0.228 mbc
2 and

µp = 0.220 mbc
2, we obtain the on�guration shown inFig. 8. For this �gure we have hosen the rotation rate ofthe fastest known milliseond pulsar, whih has a periodof P ∼ 1.56 ms.

FIG. 8: Con�guration with protons rotating at the speedof the fastest known milliseond pulsar, Ωp/2π = 641 Hz,and Ωn/2π = 645 Hz. The protons are extending furtheroutside than the neutrons. The physial parameters are
µn = 0.228 mbc

2 and µp = 0.220 mbc
2, resulting in en-tral baryon number density nc = 0.561 fm−3, proton fration

xp = 0.09 and a gravitational mass of M = 1.39 M⊙.A similar on�guration with µn = 0.28 mbc
2 and

µp = 0.3 mbc
2 rotating at the Kepler-limit for a rela-tive rotation rate of R = 0.01 is displayed in Fig. 9. Asan be seen by the usp-formation, the Kepler-limit is



14determined by the outer �uid, i.e. the protons in thisase, despite the fat that they are rotating more slowlythan the neutrons. This ontrasts with the ase depitedin Fig. 5, in whih the faster �uid also happens to be theouter �uid, whih is a partiularity of this EOS-lass andthe hoie of entral hemial equilibrium µn = µp (f.[10℄).

FIG. 9: Kepler on�guration with R = 0.01, µn = 0.28 mbc
2and µp = 0.3 mbc

2, orresponding to a entral baryon numberdensity of nc = 0.716 fm−3, proton fration xp = 0.09 and agravitational mass of M = 1.57 M⊙. The protons extend tothe outer surfae. The maximal rotation rates are found as
Ωn/2π = 924.5 Hz and Ωp/2π = 915.3 Hz.VII. CONCLUSIONSWe have developed a theoretial framework and a nu-merial ode for omputing stationary, fully relativistisuper�uid neutron star models.Using this ode we have reon�rmed the existeneof oblate-prolate shaped two-�uid on�gurations, previ-ously shown in [10, 14℄. We have studied the dependenyof the Kepler rate of a two-�uid star on the relative rota-tion rate R. We have ompared this to the Kepler-ratepredited by a Newtonian slow-rotation approximation,whih is found to typially overestimate the Kepler-rateby about 15%, but whih an also sometimes underesti-mate it, as seen in the ase of EOS I and R <∼ −0.25 (f.Fig. 5).The relative rotation rate an also have a large in�u-ene (at �xed entral density) on the mass-density rela-tion, as shown in Fig. 7.Another interesting aspet of this model is that we arenot restrited to on�gurations in hemial equilibriumat the enter. Choosing the entral hemial potentials tobe di�erent allows one to emulate a neutron star �rust�(albeit a �uid one), as one �uid will now extend further

outwards than the other, as seen in Fig. 8 and Fig. 9.One interesting observation from suh on�gurations isthat the Kepler-limit will be determined by the outer�uid (forming a usp), while this an atually be rotatingslower then the inner �uid.We urrently use a (quite general) EOS lass of two-�uid polytropes, but this an be extended straightfor-wardly to more �realisti� nulear-physis equations ofstate. In partiular it might be interesting in the nextstep to use the �rst relativisti two-�uid EOS inorporat-ing entrainment by Comer and Joynt [13℄. Furthermoreit would be important to add the presene of a solid rustand to allow for di�erential rotation in the super�uid neu-trons (di�erential rotation in single-�uid stars has beenimplemented and used in LORENE already, f. [29, 30℄).The astrophysially most interesting future extensionof this work would probably onsist in studying the osil-lation modes of suh models, whih would be diretly re-lated to the emission of gravitational waves. In these non-stationary situations, however, dissipative mehanismslike visosity and mutual frition would also start to playa role and should be inluded in the model.APPENDIX A: THE NEWTONIAN ANALYTICSLOW-ROTATION SOLUTIONA method for solving the stationary 2-�uid on�gura-tion in the Newtonian slow-rotation approximation wasinitially developed in [8℄, and was ompleted to inludeall EOS-interations in [10℄ (in the following referred toas Paper I). Using this method, an analyti solutionwas found in Paper I for equations of state of the form
E = 1

2κnn
2
n + 1

2κpn2
p +κnpnnnp +βpnp∆2. While this so-lution was very useful for studying the qualitative prop-erties of an interating 2-�uid system, it is unfortunatelynot very suitable for omparison to the numerial solu-tion presented in this paper. The reason for this lies inthe somewhat unphysial behavior of entrainment in thismodel. Namely, the entrainment numbers (16) are foundas εp = 2βp/m, and εn = 2xpβp/(m(1 − xp)), where

xp ≡ np/n is the proton fration, whih is onstant forthis EOS (f. Paper I). Therefore the entrainment num-bers are onstant, independently of the densities, and sothe entrainment e�et would still be present in a 1-�uidregion. This unphysial behavior does not pose a prob-lem in the slow-rotation approximation, whih onsists ofan expansion around a stati hemial-equilibrium on-�guration: the two �uids share a ommon surfae in theunperturbed state, and the rotation will only indue in-�nitesimal displaements of the �uids. In this frameworkthere are therefore no �nite 1-�uid regions. However, ina numerial ode allowing for arbitrary rotations and de-viations from hemial equilibrium, suh an entrainmentmodel would be problemati. The EOS-lass (68) usedin this work is therefore preferable on both physial andnumerial grounds.Fortunately, an analyti solution an also be found for



15this physially preferable EOS using the slow-rotation ap-proah developed in Paper I. This solution is very valu-able for quantitative omparisons with our numerial re-sults presented in setion VC. Here we derive this newanalyti solution, skipping some of the more tehnialsteps, whih have been explained in more detail alreadyin Paper I.Beause of axisymmetry, the rotating solution only de-pends on the spherial oordinates r and θ, while thestati on�guration is assumed to be spherially symmet-ri. The 2-�uid slow-rotation approximation proeeds byexpanding any loal stellar quantity Q as follows:
Q(r, θ; ΩX ) = Q(0)(r)+ΩX QXY (r, θ)ΩY +O(Ω4) , (A1)where here and in the following we automatially sumover repeated onstituent indiesX = n, p. We an sep-arate the variables r and θ by expanding in LegendrePolynomials, i.e. QXY (r, θ) =

∑
l Q

XY

l (r)Pl(cos θ), andit an be shown that only the omponents l = 0, 2 will benonzero in the solution. The solution is therefore fullydetermined by two ordinary di�erential equations for theomponents ΦXY
0 (r) and ΦXY

2 (r) of the perturbation ofthe gravitational potential. The information about theEOS enters via the following two �struture funtions�,de�ned as
SXY ≡

(
∂2E

∂nX∂nY

∣∣∣∣
0

)−1

, βX ≡ ∂2E
∂nX∂∆2

∣∣∣∣
0

, (A2)where |0 denotes the derivatives to be evaluated at thestati on�guration. For the EOS (68), we �nd
SXY =

1

K

(
κp −κnp

−κnp κn

)
, (A3)where K ≡ κpκn − κ2

np, and
βX (r) = κ

∆
MXY n

(0)
Y

(r) , (A4)with the onstant matrix MXY de�ned as
MXY ≡

(
0 1

1 0

)
. (A5)We further introdue the �derived� struture funtions,

kA ≡ SABmB , and k ≡ mAkA , (A6)whih are onstant for this EOS. The matries EXY

A
, de-�ned as

EXY

A
(r) ≡ 1

3
SAB

(
δB,XY − 2βB(r)∆XY

)
, (A7)are now funtions of r, ontrary to the EOS treated inPaper I, in whih they were onstant. The onstant aux-iliary matries δA,XY and ∆XY are de�ned as

δn,XY ≡
(

mn 0

0 0

)
, δp,XY ≡

(
0 0

0 mp

)
, (A8)

∆XY ≡
(

1 −1

−1 1

)
. (A9)

The stati bakground solution only depends on SXY ,and is idential to the one found in Paper I. Namely,in �natural units� de�ned by ρ(0)(0) = 1 and R = 1, thisstati solution an be written as
ρ(0)(r) =

sin(r
√

k)

r
√

k
. (A10)In these units it must be true that ρ(0)(1) = 0, whihleads to the ondition k = mAkA = π2. This relation anbe used to resale the EOS parameters κn, κp and κnp tonatural units. The respetive partile number densities

n
(0)
A

(r) are expressible as
n

(0)
A

(r) =
kA
π2

ρ(0)(r) . (A11)Substituting this into (A7), we an write
EXY

A
(r) = ẼXY

A
− ÊXY

A
ρ(0)(r) , (A12)in terms of the two onstant matries

ẼXY

A ≡ 1

3
SABδB,XY ,

ÊXY

A ≡ 2

3ρ(0)
SABβB ∆XY , (A13)and for EXY ≡ mAEXY

A
, we write in an analogous manner

EXY = ẼXY − ÊXY ρ(0)(r) , (A14)with
ẼXY =

1

3
kBδB ,XY ,

ÊXY =
4κ

∆

3π2
knkp ∆XY . (A15)We an now write the di�erential equations determiningthe solution for the given EOS, namely

D0Φ
XY

0 + π2 ΦXY

0 = CXY + r2ẼXY − r2ρ(0)ÊXY, (A16)
D2Φ

XY

2 + π2 ΦXY

2 = −r2ẼXY + r2ρ(0)ÊXY , (A17)where the di�erential operator Dl is de�ned as
Dl ≡

d2

dr2
+

2

r

d

dr
− l(l + 1)

r2
. (A18)We note that the only di�erene of this EOS to the onestudied in Paper I onerns the entrainment βX (r). Wean therefore formally reover the results from Paper Iin the limit κ

∆
→ 0, whih orresponds to ÊXY → 0 and

ÊXY

A
→ 0. The onstant matrix CXY is determined bythe hoie of stellar sequene, e.g. either haraterizedby �xed entral densities (FCD) or �xed masses (FM).The solution to the above equations also determines thedensity distribution of the two-�uid star, namely via therelations
nXY

A,0 (r) = SAB CB,XY + r2EXY

A
− kAΦXY

0 , (A19)
nXY

A,2 (r) = −r2EXY

A
− kAΦXY

2 , (A20)



16where the onstants CA,XY are also determined by thehoie of stellar sequene, and they satisfy the relation
CXY = kACA,XY . The omplete slow-rotation solution forthe density distribution of the two �uids an be writtenas

nA(r, θ) = n
(0)
A

(r) + ΩX

(
nXY

A,0 + nXY

A,2P2(cos θ)
)
ΩY .(A21)The general (regular) solution of equations (A16) and(A17) an be found expliitly as

ΦXY

0 (r) = AXY

0

J1/2(rπ)√
r

+
ẼXY

π2

(
r2 − 6

π2

)
+

CXY

π2

− ÊXY

12π4

{
3rπ sin rπ + (3 − 2π2r2) cos rπ

}
, (A22)

ΦXY

2 (r) = AXY

2

J5/2(rπ)√
r

− ẼXY

π2
r2

− ÊXY

12π7r3

{
(45 + 2π4r4) rπ cos rπ

+15(r2π2 − 3) sin rπ
}

,(A23)where AXY
0 and AXY

2 are onstants of integration, and
Jn(x) are the standard Bessel funtions. One an ver-ify the asymptoti behavior ΦXY

2 ∼ r2 as r → 0, whihis required for regularity. In addition to the regularityrequirements at the enter, the solution must satisfy thefollowing boundary ondition at the surfae (r = 1):
ΦXY

′

l (1) + l(l + 1)ΦXY

l (1) = 0 . (A24)These boundary onditions result in the following rela-tions for the integration onstants AXY
0 and AXY

2 :
4π4

√
2AXY

0 = 12(π2 − 2)ẼXY + (1 − π2)ÊXY

+4π2CXY , (A25)
√

2AXY

2 =
5

π2
ẼXY − 5

12π4
(3 + 2π2)ÊXY. (A26)Fixed entral density (FCD) sequeneThe FCD-sequene is the most diretly omparable tothe numerial results disussed in this paper. This se-quene is de�ned by the ondition nXY

A,0 (0) = 0, and inthis ase the remaining onstant of integration an bedetermined as
CXY

FCD = −3

(
1 − 4

π2

)
ẼXY +

1

4
ÊXY , (A27)and we also have the relation

SABCB,XY

FCD =
kA
π2

CXY

FCD . (A28)Putting all the piees together, we arrive at the followingexpliit solution for the density perturbations of the FCD

sequene:
nXY

A,0,FCD = −6kAẼXY

π4

(
sin rπ

rπ
+

r2π2

6
− 1

)
+ ẼXY

A r2

−kAÊXY

4π4

(
(1 − r2π2)

sin rπ

rπ
− (1 − 2

3
r2π2) cos rπ

)

− ÊXY

A

π2
rπ sin rπ , (A29)

nXY

A,2 (r) =
kAẼXY

π2

(
r2 − 5√

2

J5/2(rπ)√
r

)
− ẼXY

A
r2

+
5

6

kAÊXY

π5r3

{(
π2

5
r4 − 3

)
rπ cos rπ − (r2π2 − 3) sin rπ

}

+
ÊXY

A

π2
rπ sin rπ , (A30)in terms of the onstant �struture matries� Ẽ and Êde�ned in Eqs. (A13) and (A15).Fixed-mass (FM) stellar sequeneFor ompleteness we also give the solution orrespond-ing to a �xed-mass sequene, whih might even be phys-ially more interesting. The di�erene to the FCD-solution only onerns the l = 0 omponent, while nXY

A,2is the same in both ases. As disussed in Paper I, theFM-sequene is haraterized by the onditions
∫ 1

0

r2 nXY

A,0,FM(r) dr = 0 , (A31)whih lead to the following ondition for the potential
ΦXY

0,FM(1) = 0 . (A32)This results in the integration onstant
CXY

FM =

(
6

π2
− 1

)
ẼXY +

(
1

6
− 1

4π2

)
ẼXY , (A33)while we an similarly determine SABCB,XY from (A31).Inserting this into (A22) we get

ΦXY

0,FM(r) =
ẼXY

π2

(
r2 − 1 +

√
2
J1/2(rπ)√

r

)

+
ÊXY

12π4

(
2π2 − 3 + (2π2r2 − 3) cos rπ

−(1 + 3r2)
π2

√
2

J1/2(rπ)√
r

)
. (A34)The l = 0 density oe�ient is therefore found by using(A19):

nXY

A,0,FM =
kAẼXY

5π4

(
30 + 3π2 − 5r2π2 − 10π

r
sin rπ

)
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+ẼXY

A

(
r2 − 3

5

)
+

ÊXY

A

π2

(
3(1 − 6

π2
) − rπ sin rπ

)

−kAÊXY

12π4

(
36(1 − 6

π2
) − (3 − 2r2π2) cos rπ

−(1 + 3r2)
π

r
sin rπ

)
, (A35)whih ompletes the analyti solution in the FM ase.Calulating the Kepler-limitWe brie�y review the method of alulating the Kepler-limit using the slow-rotation solution presented above.The result of this alulation was used for the Newtonianslow-rotation Kepler-limit presented in Fig. 5. As derivedin Paper I, the Kepler-rate to order Ω2 for eah of the two�uids an be expressed as the solution of the equation

Ω2
A

= Ω2
(0) + ΩX δqXY

A
ΩY + O(Ω4) , (A36)where the zeroth-order expression is

Ω2
(0) = Φ(0)′(1) , (A37)and the seond-order orretion terms reads as

δqXY

A =

[
− 3

kA

(
nXY

A,0 − 1

2
nXY

A,2

)
+ ΦXY

′

0 − 1

2
ΦXY

′

2

]

r=1

.(A38)For the EOS-lass onsidered here, we �nd
Ω2

(0) =
4

π
Gρ(0) , (A39)

δqXY

A,FCD = −9ẼXY

A

2kA
+

ÊXY

12π4

(
6 − 7π2

)

+
ÊXY

π4

(
5π2 − 24

)
, (A40)

δqXY

A,FM =
6

π2

(
1

5
− 3

π2

)
ẼXY − 9ÊXY

A

kAπ4
(π2 − 6)

− ÊXY

4π6

(
216 − 39π2 + 2π4

)
− 27

10kA
ẼXY

A
. (A41)For eah �uid A, we �nd the Kepler-limit ΩK,A(ΩB )(whereB 6=A) by solving the quadrati equation (A36).The Kepler-limit is then interpreted as the orrespond-ing solution for the faster �uid, whih in this ase orre-sponds to the outer �uid, i.e. we have

ΩK =

{
ΩK,n(R) , for R > 0 ,

ΩK,p(R) , for R < 0 .
(A42)
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