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Input–output relations for a three-port grating
coupled Fabry–Perot cavity
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We analyze an optical three-port reflection grating by means of a scattering matrix formalism. Amplitude
and phase relations among the three ports, i.e., the three orders of diffraction, are derived. Such a grating
can be used as an all-reflective, low-loss coupler to Fabry–Perot cavities. We derive the input–output rela-
tions of a three-port grating coupled cavity and find distinct properties that are not present in two-port
coupled cavities. The cavity relations further reveal that the three-port coupler can be designed such that
the additional cavity port interferes destructively. In this case the all-reflective, low-loss, single-end Fabry–
Perot cavity becomes equivalent to a standard transmissive, two-port coupled cavity. © 2005 Optical Society
of America
OCIS codes: 050.1950, 120.3180, 230.1360.
In a recent experiment a three-port reflection grating
coupled Fabry–Perot cavity with high finesse was
demonstrated.1 The experiment was motivated by
the idea that a three-port reflection grating should be
able to provide two important features for advanced
interferometry: low overall optical loss and no light
transmission through optical substrates.2 In ad-
vanced interferometers, such as in gravitational-
wave detectors, these couplers might be crucial for
achieving the optimal combination of extremely high-
power laser fields, materials with a high mechanical
quality factor for suspended optics, and cryogenic
temperatures to reduce optics and suspension ther-
mal noise.3 Previously, a different concept for all-
reflective linear Fabry–Perot cavities based on a two-
port reflection grating was experimentally
demonstrated.4 In this approach the reflection grat-
ing was used in a first-order Littrow mount where
the input–output relations of the cavity are analo-
gous to those of a conventional cavity with transmis-
sive mirrors. The major disadvantage of this concept
is, however, that it relies on high first-order diffrac-
tion efficiency requiring deep grating structures that
are associated with high scattering losses. Contrary
to this, the concept demonstrated in Ref. 1 used a
second-order Littrow mount and relies on low first-
order diffraction efficiency that can be achieved by
very shallow grating structures with smaller scatter-
ing losses. The latter approach is therefore better
suited for low-loss couplers to high-finesse cavities, a
stringent requirement in high-power laser interfer-
ometry. A grating used in a second-order Littrow
mount, however, has three coupled ports in contrast
with mirrors in which one input port is only coupled
to two output ports. Knowledge of the phase relations
of the three ports is essential for derivation of the
input–output relations of the cavity.

In this Letter we derive the amplitude and phase
relations of an optical three-port device by means of
the scattering matrix formalism. We restrict our-
selves to symmetric coupling between port 2 and the
other two ports 1 and 3 described by h1 (see Fig. 1).
Generally, optical devices such as mirrors and beam

splitters can be described by a complex-valued n3n
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scattering matrix S,5 where n input ports are repre-
sented by a vector a with components ai that are the
complex amplitudes of the incoming waves at the ith
port. The outgoing amplitudes bi are represented by
vector b. The coupling of input and output ports is
given by

b = S 3 a. s1d

For a lossless device S must be unitary. Reciprocity of
the device demands that uSiju;uSjiu, where Sij denotes
an element of matrix S. The magnitudes of the scat-
tering coefficients are unique for a given device. The
phase angles of the matrix elements, however, can be
changed by choosing different reference planes in the
various input and output arms. One can therefore de-
rive different scattering matrices for the same device.
Nevertheless, certain phase relationships between
the different coefficients must be maintained. Trans-
missive mirrors are commonly used to couple light
into Fabry–Perot cavities. The input–output rela-
tions of such cavities are well understood. Essential
for their derivation is the knowledge of the phase re-
lations at the mirrors for the reflected and transmit-
ted beams. A conventional two-coupled-port mirror
with amplitude reflectance r and transmittance t, for
example, is generally described by

Fig. 1. Three-port reflection grating: (a) labeling of the in-
put and output ports, (b) amplitudes of reflection coeffi-
cients for normal incidence, (c) amplitudes of reflection co-

efficients for second-order Littrow incidence.
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S2p = Fr t

t − r
G, S2p = Fr it

it r
G . s2d

Using either one of these matrices, one can derive the
amplitude reflectance rFP and transmittance tFP of a
cavity consisting of two partially transmitting mir-
rors with reflectivities r0 ,r1. The length of the cavity
is expressed by tuning parameter f=vL /c, where v
is the angular frequency of the light and c is the
speed of light, thus one obtains

rFP = fr0 − r1 exps2ifdgd, s3d

tFP = − t0t1 exps− ifdd, s4d

where r0,1 and t0,1 denote the reflectance and trans-
mittance of the two cavity mirrors, respectively, and
we introduce the resonance factor

d = f1 − r0r1 exps2ifdg−1. s5d

The power gain gFP inside the cavity is given by

gFP = ut0du2. s6d

The three-port coupler used in Ref. 1 can be repre-
sented by the following scattering matrix:

S3p = 3h2 expsif2d h1 expsif1d h0 expsif0d

h1 expsif1d r0 expsif0d h1 expsif1d

h0 expsif0d h1 expsif1d h2 expsif2d
4 . s7d

As stated above, the grating is assumed to be sym-
metrical with respect to the grating normal. The
grating period and the wavelength of light are chosen
such that for normal incidence only the zeroth- and
first-order diffraction are present. The magnitudes of
their amplitude reflection coefficients are denoted r0
and h1, respectively. For incidence at the second-
order Littrow angle the zeroth, first, and second dif-
fraction orders are present with the magnitudes of
reflection coefficients h0 ,h1, and h2, as depicted in
Fig. 1. From the unitarity condition of S we find the
energy-conservation law:

r0
2 + 2h1

2 = 1, s8d

h0
2 + h1

2 + h2
2 = 1. s9d

We denote the phase shift associated with the zeroth,
first, and second diffraction orders as f0 ,f1, and f2,
respectively. As for the mirrors, the values of the
phases are not unique. Reflection from a mirror is
equivalent to zeroth-order diffraction of a grating. In
analogy to the right-hand matrix of Eqs. (2) we de-
mand no phase shift for zeroth-order diffraction and
therefore set f0=0. From the unitarity requirement
of S the remaining phases can be calculated, yielding
the following possible set of phases:

f0 = 0, s10d

f1 = − s1/2darccosfsh2 − 2h2d/s2r0h0dg, s11d
1 0
f2 = arccosf− h1
2/s2h2h0dg. s12d

We emphasize that phases f1 and f2 are functions of
the diffraction efficiencies and therefore vary depend-
ing on the properties of the grating. This contrasts
with the properties of mirrors, where the phase shift
between transmitted and reflected beams is indepen-
dent of the transmittance and reflectance coefficients.
Since phase f2 is a real number, the modulus of the
argument of the arccos in Eq. (12) must be smaller
than or equal to 1 and the following upper and lower
limits for h0 and h2 for a given reflectivity r0 can be
derived:

h0,min
max = h2,min

max = s1 ± r0d/2. s13d

Note that these limits are fundamental in that a re-
flection grating can only be designed and manufac-
tured with diffraction efficiencies within these
boundaries. Equations (8)–(13) provide a full set of
three-port coupling relations.

Knowledge of scattering matrix S in Eq. (7) per-
mits the calculation of input–output relations of in-
terferometric topologies. Here we consider a three-
port grating coupled Fabry–Perot cavity. The grating
cavity is formed by placing a mirror with amplitude
reflectivity r1 at a distance L parallel to the grating
surface as is illustrated in Fig. 2. To characterize the
cavity, amplitudes c1 ,c3 for the two waves reflected
from the cavity and intracavity amplitude c2 are cal-
culated as a function of the cavity length. Assuming
unity input and no input at port 3, the cavity is de-
scribed by

1c1

c2

c3
2 = S3p 3 1 1

r1c2 exps2ifd

0
2 . s14d

Solving for the amplitudes yields

c1 = h2 expsif2d + h1
2 expf2isf1 + fdgd, s15d

c2 = h1 expsif1dd, s16d

c3 = h0 + h2 expf2isf1 + fdgd, s17d

Fig. 2. Fabry–Perot cavity with a three-port grating cou-
pler and a conventional end mirror. The amplitudes of the
fields of interest sc1 ,c2 ,c3 , td are indicated by arrows.
1
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t = it1c2 expsifd. s18d

where f=vL /c is the tuning parameter, d is given ac-
cording to Eq. (5), and t is the amplitude of the light
transmitted through the cavity. The light power at
the different ports is proportional to the squared
moduli of the amplitudes. The power gain inside the
cavity is given by uc2u2= uh1du2, analogous to Eq. (6) for
a conventional cavity. In contrast with the power
gain, the power in the two reflecting ports uc1u2 and
uc3u2 depends on h2 and h0. Figure 3 illustrates how
the power out of the backreflecting port varies as a
function of h2 and the tuning f of the cavity. For sim-
plicity a cavity with a perfect end mirror r1=1 is as-
sumed. For a coupler with h2=h2,max, the cavity does
not reflect any light back to the laser for a tuning of
f=0. This corresponds to an impedance-matched cav-
ity that transmits all the light on resonance. For a
coupler with h2,min, the situation is reversed and all
the light is reflected back to the laser. For all other
values of h2 the backreflected intensity has interme-
diate values and is significantly different from con-
ventional cavities: the intensity as a function of cav-
ity tuning is no longer symmetric to the f=0 axis.

Finally, we investigate the influence of loss in the
cavity for a coupler with h2,min. Figure 4 illustrates
the effect of an end mirror with transmittance t1.0
on the power of the two reflecting ports of the cavity
on resonance. As a result, apart from the intracavity
field, losses affect mainly the backreflecting port
(dotted–dashed curve). The effect on the dark port
(solid curve) is minor, as it stays essentially dark as
long as the loss t1

2 is small compared with the cou-
pling h1

2.
In conclusion, we have investigated a three-port re-

flection grating and derived its coupling relations. A

Fig. 3. Power uc1u2 of cavity backreflecting port for gratings
of different values of h2. Left, power as a function of f and
h2, right, power as a function of f for (a) h2=h2,max, (b) h2
= fsh2,max

2 +h2,min
2 d /2g1/2, (c) h2=h2,min. Cavity parameters:

2
r0=0.5, r1=1.
three-port device can be used to couple light into a
Fabry–Perot cavity. The input–output relations of
such a three-port coupled cavity have revealed sub-
stantial differences from a conventional cavity. A
grating with minimal h2 is suitable for a coupler to
an arm cavity (single-ended cavity) of a gravitational-
wave Michelson interferometer. On resonance all
power is reflected back to the beam splitter of the in-
terferometer. Hence no power is lost to the additional
port. This makes possible power recycling that is
used in all first- and probably also in second- and
third-generation detectors. Furthermore we can cal-
culate the phase signals carried by the fields in Eqs.
(15) and (17) when cavity length L is changed and
find that the additional port splits a cavity strain sig-
nal. However, the complete strain signal is still acces-
sible to detection.
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