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Abstract
It has been conjectured that the classical dynamics of M-theory is equivalent
to a null geodesic motion in the infinite-dimensional coset space E10/K(E10),
where K(E10) is the maximal compact subgroup of the hyperbolic Kac–Moody
group E10. We here provide further evidence for this conjecture by showing
that the leading higher-order corrections, quartic in the curvature and related
3-form-dependent terms, correspond to negative imaginary roots of E10. The
conjecture entails certain predictions for which higher-order corrections are
allowed: in particular corrections of type RM(DF)N are compatible with E10

only for M+N = 3k+1. Furthermore, the leading parts of the R4, R7, . . . terms
are predicted to be associated with singlets under the sl10 decomposition of E10.
Although singlets are extremely rare among the 4400 752 653 representations
of sl10 appearing in E10 up to level � � 28, there are indeed singlets at levels
� = 10 and � = 20 which do match with the R4 and the expected R7 corrections.
Our analysis indicates a far more complicated behaviour of the theory near the
cosmological singularity than suggested by the standard homogeneous ansätze.

PACS number: 11.25.Yb

1. Introduction

The analysis, à la Belinskii, Khalatnikov, Lifshitz (BKL) [1], of generic cosmological solutions
of D = 11 supergravity [2] in the vicinity of a spacelike singularity has revealed a connection
with billiard motion in the fundamental Weyl chamber of E10 (implying chaotic oscillations
of the metric near the singularity) [3–5]. We recall that E10 is a rank-10 infinite-dimensional
hyperbolic Kac–Moody algebra [6]3 whose root lattice is the canonical hyperbolic extension
of the root lattice of the largest exceptional finite-dimensional Lie algebra E8, and the unique

3 For simplicity of notation, E10 denotes both the group, and its associated Lie algebra.
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even self-dual Lorentzian lattice II1,9 [7]. The cosmological billiard describing the asymptotic
behaviour near a spacelike singularity is based on the identification of the ten diagonal metric
degrees of freedom of D = 11 supergravity with the ten non-compact directions of a Cartan
subalgebra (CSA) of E10. This intriguing link between D = 11 supergravity and E10 was
deepened in [8, 9] where it was shown that the bosonic equations of motion of D = 11
supergravity at some given spatial point, when restricted to zeroth- and first-order spatial
gradients in the metric and the 3-form, can be matched with the equations of motion of a
one-dimensional E10/K(E10) σ -model restricted to levels � � 3. In terms of the heights of
the roots of E10 involved in these correspondences, the Weyl-chamber billiard retains only
roots of height 1 (i.e. simple roots), while the work of [8, 9] has established the correspondence
with (null) geodesic motion on the coset space E10/K(E10) up to height 29 included. These
results underline the potential importance of E10, whose appearance in the reduction of D = 11
supergravity to one dimension had been conjectured already long ago in [10, 11], as a candidate
symmetry underlying M-theory. A similar, but conceptually different, proposal was made in
[12], where E11 (or some even larger symmetry containing E11 [13]) has been suggested
as a fundamental symmetry of M-theory. Let us also note that links between the dynamics
of gravitational theories and geodesic motions on certain Lorentzian signature spaces were
noticed already in [14, 15]. For recent work in this vein in the context of homogeneous
cosmologies (but not related to E10), see [16, 17].

The substantial increase in the height of the roots entering the correspondence between the
two dynamics led to the key conjecture of [8], according to which the one-dimensional bosonic
E10/K(E10) σ -model is equivalent (or ‘dual’) to the bosonic sector of D = 11 supergravity,
possibly augmented by further M-theoretic degrees of freedom. To establish this conjecture,
one faces two challenges, namely to understand

• how the higher-order spatial gradients are realized in the σ -model, and how the full
(untruncated) bosonic sector of D = 11 supergravity is thereby embedded into the
E10/K(E10) coset space dynamics; and

• the meaning and significance of the imaginary (lightlike and timelike) roots of E10 and
their relation to M-theory degrees of freedom and M-theory corrections of the ‘low energy’
D = 11 supergravity action.

Concerning the first challenge, it was shown in [8] that E10 contains three infinite towers
of Lie algebra elements, which possess the correct structure for representing the higher spatial
gradients of the metric, and of the ‘electric’ and ‘magnetic’ components of the 4-form field
strength. However, it is still unknown how this identification could work in detail. The
progress reported in the present paper concerns the second challenge. Namely, we shall
show that certain (partially) known higher-order M-theory corrections to the two-derivative,
‘effective’ D = 11 supergravity Lagrangian can be related, in an approximation which we
shall explain, to special imaginary roots of E10. Our ‘botanical’ approach in searching for new
connections between M-theory and the hyperbolic Kac–Moody algebra E10 is based on the
working hypothesis that the E10/K(E10) σ -model of [8] not only describes M-theory degrees
of freedom beyond those of D = 11 supergravity, but in addition contains hidden information
about M-theory corrections to the low energy effective theory (i.e. D = 11 supergravity)
at arbitrarily high orders. More specifically, we shall consider the leading (eighth order in
derivatives) corrections to the usual supergravity Lagrangian and exhibit their connection with
certain imaginary roots of E10. Different routes for interpreting the imaginary roots of E10

in terms of brane dynamics have been suggested in [18], and, in the framework of the E11

proposal of [12], in [19, 20].
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In [5] it was shown that the gravitational Hamiltonian, or more precisely the Hamiltonian
constraint at a given spatial point, can be written in the form

H(βa, πa,Q, P ) = Ñ

[
1

2
Gabπaπb +

∑
A

cA(Q,P, ∂β, ∂Q) exp(−2wA(β))

]
(1)

with the rescaled lapse Ñ ≡ N/
√

g, where g is the determinant of the spatial metric. Here
βa, πa are the canonical variables corresponding to the diagonal (spatial) metric degrees of
freedom, and Gab the (Lorentzian) ‘superspace’ metric induced by the Einstein–Hilbert action.
(Q, P ) denote the remaining canonical degrees of freedom associated with off-diagonal metric
and various matter degrees of freedom, and ∂β, ∂Q denote their spatial gradients. The sum
runs over various exponential potential ‘walls’, which are indexed by A. The above form of
the Hamiltonian is in particular valid for the bosonic sector of D = 11 supergravity, in which
case a, b = 1, . . . , 10.

On the other hand, for the one-dimensional ‘geodesic’ σ -model over the infinite-
dimensional coset space E10/K(E10), an analogous expression for the Hamiltonian constraint
was also derived in [5], namely

H(βa, πa, ν, p) = n

[
1

2
Gabπaπb +

∑
α∈�+

mult(α)∑
s=1

(	α,s(ν, p))2 exp(−2α(β))

]
(2)

where (βa, πa) now denote the ten diagonal CSA degrees of freedom of E10, and (ν, p) stand
for infinitely many off-diagonal (Iwasawa-type) canonical variables, on which the quantities
	α,s depend. The metric Gab now denotes the restriction of the unique invariant bilinear form
on E10 to the CSA [6]. This metric happens to be identical with the metric appearing in (1)
for the bosonic sector of D = 11 supergravity; its explicit form is given in (26). The sum on
the rhs of (2) ranges over all positive roots α of E10 with their multiplicities [= mult(α)], and
the number α(β) is the result of applying the linear form (= root) α to the CSA element β.
Formula (2) is actually valid for any G/K(G) σ -model over an indefinite Kac–Moody group
G with ‘maximal compact subgroup’ K(G). Varying (2) w.r.t. the (new) lapse n implies that
the resulting solution is a null geodesic on this infinite-dimensional coset manifold.

The similarity of (1) and (2) is obvious, but the coincidence of the two expressions and
of the associated bosonic equations of motion has so far only been established for a limited
number of terms. The first check consists in matching those terms in (1) and (2) which
dominate the dynamics near a cosmological singularity. In this leading BKL approximation,
one can prove [5] that both the ‘off-diagonal’ degrees of freedom (Q, P ) in (1) and (ν, p) in
(2) ‘freeze’ as one approaches the singular initial hypersurface T = 0. (Here T denotes the
proper time. We shall reserve the letter t to denote the coordinate time in the gauge Ñ = 1, i.e.
N = √

g. This coordinate time goes to +∞ as T → 0.) The precise form of the coefficient
functions cA(Q,P, ∂β, ∂Q), which is very complicated, does not matter in this BKL limit.
What matters is that the coefficients of the leading contributions are all non-negative. That is,
we have cA′ � 0, where the primed index A′ labels the leading terms. This implies that, for
large β, the Hamiltonian (1) takes the limiting form

H∞(βa, πa) = 1

2
Gabπaπb +

∑
A′

cA′ exp(−2wA′(β)) (3)

where the sum is only over the ‘dominant walls’. It was also shown that in this limit the
exponential (Toda) walls appearing in (3) can be replaced by infinitely high (‘sharp’) walls.
Technically, this means that one can replace the exponential functions in (3) by an infinite step
function 
 [5]. The billiard then takes place in the chamber defined by 
(−2wA′(β)) = 0,



2852 T Damour and H Nicolai

or equivalently, wA′(β) � 0. An analogous argument applies to the coset dynamics (2).
The freezing of all the off-diagonal degrees of freedom ν, p implies that the combinations
	α,s(ν, p) also freeze near the singularity, so that the Hamiltonian (2) takes the limiting form
(in the gauge n = 1)

H∞(βa, πa) = 1

2
Gabπaπb +

∑
αi

	2
αi

exp(−2αi(β)) (4)

where the sum over the positive roots of E10 can be asymptotically restricted to the subset of
leading positive roots αi . It is easily seen that these ‘leading’ positive roots are nothing but
the simple roots of E10.

The equivalence between the two limiting dynamics (3) and (4) is now a consequence of
the fact that the set of dominant supergravity walls wA′(β) coincides with the set of simple
roots αi(β) of E10 [3]. The validity of this equivalence was extended in [8, 9] from the height 1
simple roots to height 29 in E10 roots4. At this order, one keeps more exponential terms in both
(1) and (2). Now, the precise form of the supergravity coefficient functions cA(Q,P, ∂β, ∂Q)

does matter, and was shown in [8, 9] to correspond precisely to the form of the coset functions
	α,s(ν, p), with a ‘dictionary’ relating the variables of both dynamics. This matching between
the two Hamiltonians was checked at the level of the equations of motion. It is still unclear
whether (and how) one can extend the dictionary relating the dynamical variables in both
models so as to prove the equivalence between the two Hamiltonians (1) and (2) beyond
height 29. It is quite possible that this dictionary becomes spatially non-local in the gravity
variables, and that the simple identification assumed above between the diagonal gravitational
degrees of freedom βa, πa and the E10 CSA variables entering (2) must be modified beyond
height 29. Such non-trivial changes of variables may be needed, for instance, in order to
reconcile the fact that the only negative contribution in (2) comes from the CSA (the first term
on the rhs), whereas in the expansion of the gravity Hamiltonian (1) there may arise negative
contributions also from (subleading) terms with cA < 0—as follows from considering, for
instance, homogeneous spatial geometries with curvature of arbitrary sign.

Our aim here is to investigate what types of wall forms can be formally associated with
higher-order terms (linked to quantum corrections in M-theory), notably the leading ones of
the type R4, R2(DF)2, R(DF)3 and (DF)4, as well as the topological Chern–Simons term
A3 ∧ R ∧ R ∧ R ∧ R. Remarkably, we shall find that these terms correspond, in leading
approximation, to time-like imaginary roots of E10. Recall that the ‘length’ of a root is
calculated by means of a quadratic form Gab, which is the same as the one appearing in (2)
(and (1)), and which, for indefinite Kac–Moody algebras, is Lorentzian. Spacelike roots,
for which Gabαaαb ≡ α2 > 0, are called ‘real roots’ in the mathematical literature, while
light-like or time-like ones, for which α2 � 0, are called ‘imaginary roots’ [6]. All the roots
up to height 29 that have been explicitly checked to match between the two Hamiltonians
(1) and (2) turned out to be real and positive. By contrast, we will find here that the leading
roots associated with eighth-order derivative corrections are, at once, imaginary (α2 � 0) and
negative (i.e. of the form α = −∑

niαi with ni � 0). For the leading R4 corrections, they
lie deep inside the root-space lightcone, with α2 = −10, at height ht(α) = −115, and at level
� = −10.

The appearance of exponential walls exp(−2w(β)) associated with negative roots in a
version of the gravitational Hamiltonian (1) with higher-order corrections included might seem
to be in plain contradiction with the structure (2) of the coset Hamiltonian, which contains a
sum restricted to positive roots α ∈ �+. However, one must remember that the explicit form

4 The height of a positive root α = ∑
niαi (ni � 0) is defined as ht(αi) = ∑

ni [21, 6]. Correspondingly, the
height of a negative root α = −∑

niαi (ni � 0) is defined as −∑
ni .
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of the coset Hamiltonian strongly depends on the parametrization used for a general coset
element V ∈ E10/K(E10). The form (2) results from an Iwasawa parametrization V = DB,
where D is ‘diagonal’ (i.e. in the Cartan torus of E10) and B of Borel, or ‘upper triangular’
type, i.e. obtained by exponentiating a sum of positive-root generators. If instead we were
to employ a more complicated parametrization of a generic coset element V ∈ E10/K(E10),
namely involving, besides the exponentiation of infinitely many positive-root generators, the
exponentiation of some5 negative-root generators, one would end up with an Hamiltonian of
a more general form than (2). The latter would involve some mixture between positive-root
walls exp(−2αA(β)) (with αA ∈ �+), and negative-root ones exp(+2αB(β)) (with αB ∈ �+).
Actually, the mixtures of positive-root walls and negative-root ones arising in such non-Borel
parametrizations are rather complicated, and do not reduce to a decoupled sum of normal
exponentials exp(−2αA(β)), and inverse ones exp(+2αB(β)). A non-Borel parametrization
for the root αB tends to generate superpositions of effects proportional to both exp(+2αB(β))

and exp(−2αB(β)). Therefore, the wrong-sign walls ∼ exp(+2αB(β)) can be expected to
dominate over the usual-sign ones only in some special corner of the dynamical space. Such
an approximate dominance is enough for our purposes here, because we shall see below that
the negative-root walls associated with R4 terms can only be meaningfully considered in some
intermediate domain of the dynamical evolution.

No doubt there is still a long way towards the ultimate goal of proving the equivalence
between the (essentially unique) E10 coset dynamics (2) and the full effective (bosonic)
supergravity action (involving the quantum effect of further M-theoretic degrees of freedom),
but we hope that the results reported here will allow one to make new and stringent tests of our
basic conjecture, and to make new predictions concerning both the structure of higher-order
corrections in supergravity and M-theory, which are completely inaccessible by conventional
methods, and the existence of special sl10-representations in the level decomposition of E10.

2. Asymptotics of frames and scale factors

When working with D = 11 supergravity fields, we use Lorentz (tangent space) tensors
throughout, with the ‘mostly plus’ metric ηAB = (− + · · · +), and the following index
conventions:

Flat spacetime indices : A,B,C, . . . ∈ {0, 1, . . . , 10}
Flat spatial indices : a, b, c, . . . ∈ {1, . . . , 10}. (5)

When needed, the coordinate spacetime indices will be denoted as M,N,P,Q and the
coordinate space ones as m, n, p, q.

The Lorentz covariant derivative is defined in the usual manner on any Lorentz vector VA

via

DAVB := ∂AVB + ωAB
CVC (6)

where ∂A is a (non-commuting) frame derivative linked to the usual (commuting) spacetime
derivative ∂M through ∂A ≡ EA

M∂M , where EA
M is the elfbein. The spin connection is given

by the standard formula

ωABC = 1
2 (
ABC − 
BCA + 
CAB) = −ωACB (7)

5 We note that such ‘mixed’ non-triangular parametrizations of infinite-dimensional Kac–Moody coset spaces have
so far not been considered in the literature. It seems likely that, for the exponentiation to be well defined for hyperbolic
Kac–Moody groups, one can only have a sparse number of negative-root generators mixed with an infinite number of
positive-root ones.



2854 T Damour and H Nicolai

in terms of the coefficients of anholonomicity


AB
C := EA

MEB
N
(
∂MEN

C − ∂NEM
C
) = −
BA

C (8)

where EM
A is the co-frame, i.e. the inverse of the elfbein EA

M . Expressed in flat indices, the
Riemann tensor is

RABCD = ∂AωBCD − ∂BωACD + 
AB
EωECD + ωAC

EωBED − ωBC
EωAED. (9)

Likewise, for the 4-form field strength we will also use flat indices such that FABCD =
EA

MEB
NEC

P ED
QFMNPQ , etc.

For the further analysis, we will rely on the following (zero-shift) 1+10 split of the elfbein

EM
A =

(
N 0
0 em

a

)
(10)

with the spatial (inverse) zehnbein em
a , and adopt the gauge

N = √
g ≡ det em

a. (11)

As explained in [5], and as is also obvious from the definition of Ñ in (1), one consequence
of this choice is that the leading kinetic term in (1) simplifies to ∝Gabπaπb. Splitting indices
into A = 0 and A = a, where 0 denotes a ‘flat’ (proper) time index and a a flat spatial index,
the coefficients of anholonomicity become


abc = 2e[a
meb]

n∂menc,


0bc = N−1eb
n∂tenc, (12)


a00 = ω00a = −ea
mN−1∂mN = −ea

me−1∂me

with all other coefficients of anholonomicity vanishing. From the above formulae we obtain
in particular

ω0bc = N−1e[b
n∂t enc], ωab0 = N−1e(a

n∂t enb) (13)

where (· · ·) and [· · ·] denote symmmetrization and antisymmetrization with strength 1,
respectively.

In what follows, we will analyse the leading asymptotic behaviour of various fields near
T = 0 as functions of the logarithmic scale factors β. To this aim we introduce, as an
intermediate object, the Iwasawa co-frame θm

a ≡ N a
m, where N a

m is the upper triangular
matrix entering the Iwasawa decomposition of the metric gmn that was introduced in [5]. (This
triangular matrix has ones on the diagonal, so det θ = 1.) In terms of this intermediate frame,
the ten-dimensional spatial Cartan moving frame (zehnbein) is given by (no summation on a)

em
a = e−βa

θm
a (14)

in each spatial section t = const. (recall that we use a zero-shift gauge). The line element then
reads

ds2 = −(N dt)2 +
∑

a

(e−βa

θa)2. (15)

The decomposition (14) of the zehnbein is most useful in analysing the small T behaviour
of the gravity model. More specifically, the dynamical variables βa and θm

a behave very
differently as T → 0. While the frame θm

a was shown to ‘freeze’ (i.e. to have a well-defined
limit) as T → 0, the logarithmic scale factors βa (whose time derivatives are proportional to
the Kasner exponents) generically diverge towards +∞ near the singular initial (‘big bang’)
spatial hypersurface T = 0, while exhibiting chaotic oscillations of BKL type. (Note, in
passing, that we never assume the βs to be only functions of time t. All our supergravity
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dynamical variables are functions of all 11 coordinates (t, xm)). With this notation, the gauge
condition (11) implies

N = exp

(
−

10∑
a=1

βa

)
det θ = e−σ . (16)

while the D = 11 volume density behaves as

E = N
√

g = e−2σ . (17)

Here σ denotes the sum of all logarithmic scale factors,

σ :=
10∑

a=1

βa. (18)

This combination will play an important role in the remainder. As T → 0, the volume factor√
g = e−σ tends towards zero, and σ tends to plus infinity. Similarly, one can exhibit the

behaviour of various other fields near the singular initial hypersurface by factoring them into
a part that ‘freezes’ as T → 0 and is independent of the scale factors, and another, dependent
on the βs, which diverges and may oscillate near T = 0.

Making use of (14), we can compute the asymptotic behaviour of the coefficients of
anholonomicity and the spin connection. Suppressing inessential prefactors, we find for the
connection components with one (proper) time index

ω0bc ∼ 0

ωab0 = −N−1δab∂tβ
a + · · · = −δab e+σ ∂tβ

a + · · · (19)

where the symbol ∼ indicates that we keep only the leading contributions (from (12) it is
easily seen that that the components with two time indices are subdominant). For the purely
spatial components, we get for the anholonomicity coefficients


abc = eβa+βb−βc


̄abc + δac eβb

∂̄bβ
c − δbc eβa

∂̄aβ
c (20)

where ∂̄a ≡ θa
m∂m, and


̄abc := 2θ[a
mθb]

n∂mθnc. (21)

Hence the spatial components of the spin connection are given by a sum of terms:

ωabc = 1
2

(
eβa+βb−βc


̄abc − eβb+βc−βa


̄bca + eβc+βa−βb


̄cab

)
+ δac eβb

∂̄bβ
c − δab eβa

∂̄cβ
c. (22)

The spatial indices in these and other formulae below always refer to the basic orthonormal
frame em

a , whereas the barred quantities associated with the intermediate (non-orthonormal)
frame θm

a are only used as auxiliary objects.
It is important that the barred quantities 
̄abc and the frame derivatives ∂̄a all possess finite

limits as T → 0; they correspond to the ‘frozen’ components in the language of [8]. Hence,
for T ∼ 0

ωabc ∝ eβa+βb−βc

+ permutations of the indices a, b, c (23)

where we may have a = b or a = c (but b 
= c as ωabc = −ωacb). We will make use of these
formulae in section 5, when determining the asymptotic behaviour of the curvature and other
‘composite’ quantities of interest.
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3. Dominant walls and E10 roots

In this section, we recall some basic facts and useful formulae concerning the Lie algebra E10

and its roots. A crucial fact here is the identification of the logarithmic scale factors appearing
in (14) with the CSA degrees of freedom of E10. This will enable us to re-interpret the
exponential walls exp[−2w(β)] in the gravitational Hamiltonian in terms of the exponential
(Toda) walls exp[−2α(β)] entering the E10 σ -model (2). As mentioned already, the scalar
product on the space of scale factors induced by the Einstein–Hilbert action for D = 11
coincides with the restriction of the invariant bilinear form on E10 to its CSA [5]. This scalar
product is given by

(β|β) ≡ Gabβ
aβb =

10∑
a=1

(βa)2 −
(

10∑
a=1

βa

)2

. (24)

It is indefinite (Lorentzian) due to the lower unboundedness of the Einstein–Hilbert action
under variations of the conformal factor. As generally shown in [5], in the limit T → 0 the
dynamics of the scale factors is well approximated by a billiard. The region defining this
billiard is contained in the forward lightcone in β-space, and bounded by ‘sharp walls’; the
latter are hyperplanes defined as the zeros of certain linear forms (‘wall forms’)

w(β) =
10∑

a=1

paβ
a. (25)

The metric on the dual space of wall forms is the contravariant form of (24)

(p|p) ≡ Gabpapb =
10∑

a=1

p2
a − 1

9

(
10∑

a=1

pa

)2

(26)

and this is also the metric appearing in (1) and (2). Below, we will also use the notation

w ≡ (p1, . . . , p10) (27)

to designate a particular wall form (25). In [5], we have explained how to determine these wall
forms from the matter coupled Einstein–Hilbert action in a canonical formulation (see also the
following section). A main result was that for D = 11 supergravity, each wall form w can be
associated with a particular real root of E10, in accordance with the fact that the root space is
dual to the CSA, which itself is identified with the space of scale factors β. In particular, the
dominant walls are associated with the simple roots. In the above basis (27), the simple roots
of E10 are

α0 = (1, 1, 1, 0, 0, 0, 0, 0, 0, 0)

α1 = (−1, 1, 0, 0, 0, 0, 0, 0, 0, 0)

α2 = (0,−1, 1, 0, 0, 0, 0, 0, 0, 0)

α3 = (0, 0,−1, 1, 0, 0, 0, 0, 0, 0)

α4 = (0, 0, 0,−1, 1, 0, 0, 0, 0, 0)
(28)

α5 = (0, 0, 0, 0,−1, 1, 0, 0, 0, 0)

α6 = (0, 0, 0, 0, 0,−1, 1, 0, 0, 0)

α7 = (0, 0, 0, 0, 0, 0,−1, 1, 0, 0)

α8 = (0, 0, 0, 0, 0, 0, 0,−1, 1, 0)

α9 = (0, 0, 0, 0, 0, 0, 0, 0,−1, 1)
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and one easily checks that they generate the E10 Dynkin diagram via the scalar product (26).
In the billiard picture, the dominant wall forms are therefore

wα0(β) ≡ α0(β) = β1 + β2 + β3

wα1(β) ≡ α1(β) = β2 − β1

:

:

wα9(β) ≡ α9(β) = β10 − β9. (29)

The first simple root corresponds to a leading ‘electric wall’, while the remaining nine simple
roots correspond to the leading ‘symmetry walls’. All other walls (electric and symmetry, as
well as the magnetic and gravitational walls) are subdominant and can be written as positive
linear combinations of these leading walls. Consequently, the billiard takes place in the
fundamental Weyl chamber, namely the ‘wedge’ defined by the conditions αi(β) � 0, or

β1 + β2 + β3 � 0, β1 � β2 � · · · � β10. (30)

Every positive root of E10 can be expressed as a linear combination of simple roots:

α = �α0 +
9∑

j=1

mjαj ≡ [l;m1,m2,m3,m4,m5,m6,m7,m8,m9] (31)

where, of course, �,mj � 0, and the height of α is ht(α) = � +
∑

j mj . The brackets ([· · ·])
denote the components of a root in the basis of simple roots, and are to be distinguished from
the use of round parentheses used to denote the components of a root in the ‘coordinate basis’
of the βs. The integer � is referred to as the ‘A9 level’, or simply the ‘level’ of the root α.
(Different ‘levels’ can be defined w.r.t. other subalgebras of E10 such as D9 [22] or E9 [23]).
This level provides a grading of the Kac–Moody algebra E10, allowing a decomposition of the
E10 Lie algebra into an infinite tower of sl10 representations, which has been worked out up
to level � � 28 in [24]. The two bases (27) and (31) are related by

p1 = � − m1

p2 = � + m1 − m2

p3 = � + m2 − m3

p4 = m3 − m4, . . . , p9 = m8 − m9, p10 = m9.

(32)

Roots corresponding to wall forms associated with particular higher-order terms will
appear at a fixed level �. For the associated roots we will usually give the one corresponding
to the root of lowest height within a given sl10 multiplet, for which the integers pa are ordered
according to

p1 � p2 � · · · � p10. (33)

Because this is also the lowest weight of the corresponding sl10 representation, we can read off
the associated Dynkin labels directly from the tables of [24], as well as the outer multiplicity
µ, i.e. the number of times this representation occurs in the decomposition of E10. Starting
from the lowest weight, other weights in the representation can be reached by successive
addition of the ‘symmetry roots’ α1, . . . , α9. From (28) it is evident that this operation simply
amounts to a permutation of the pis, and in terms of the scale factors βa , to a replacement of
the spatial indices a by other spatial indices. The highest weight, which corresponds to a root
of maximal height, is reached when the above order has been inverted to p1 � · · · � p10.

As an example let us briefly recall how the gravitational billiard walls arise by expanding
out the Hamiltonian constraint following from the Einstein–Hilbert action, as described in
detail in [5], and how they can be identified with particular E10 roots. Using (20), they are
obtained by considering the following contribution (no summation on repeated indices):
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E
abc
abc = exp(−2σ + 2βa + 2βb − 2βc)
̄abc
̄abc + subleading terms. (34)

Because the walls always appear via exponentials e−2w(β), the relevant linear form is

w
grav
abc = σ − βa − βb + βc, with a 
= b. (35)

Choosing the indices (a, b, c) = (9, 10, 1) so as to obtain the root of lowest height in this
multiplet (with Dynkin label (100000010)) we get

w
grav
9101 = (2, 1, 1, 1, 1, 1, 1, 1, 0, 0) ⇐⇒ α = [3; 1, 3, 5, 4, 3, 2, 1, 0, 0]. (36)

In particular, the associated root is real (α2 = +2) and positive in our conventions.
Consequently, for D = 11 supergravity, the above gravitational walls arise at level � = 3
and are thus ‘behind’ the level � = 1 electric walls defined by the simple root α0. This
contrasts with pure gravity, where the leading gravitational wall always corresponds to a
simple root of the algebra AEn [4].

4. Higher-order corrections: what is known

Still as a preparation, we here summarize briefly what is known about the eighth-order
derivative corrections to the 11-dimensional supergravity action, which are of the type
R4, R2(DF)2, R(DF)3, (DF)4, . . . , F 8, where R stands for the curvature (Riemann) tensor,
and F = dA is the 4-form field strength (there are no R3DF terms because any possible
contraction of the indices will involve an ε-tensor, and vanish by the Bianchi identity for either
R or DF ). In addition, there are separate eighth-order derivative terms of Chern–Simons type
proportional to A3R

4 required for the cancellation of anomalies [25]. The supersymmetric
completion of these eighth-order terms was studied in [26] and, in a superspace formulation,
in [27, 28] (see also the review [29]). The presence of such corrections can be inferred (i)
from (string) one-loop corrections to D = 10 type IIA string amplitudes [30, 31], which
are similar in form to (α′)3 corrections at string tree level [32–35]; (ii) from considering
M-theory corrections at one loop [36–39], (iii) from the computation of 4-graviton amplitudes
in supermembrane theory by use of supermembrane vertices [40–42] or (iv) from the structure
of divergences in D = 11 supergravity [43]. However, none of these approaches gives
the complete ‘reduced’ (i.e. maximally simplified) kinematical structure of all the (bosonic)
eighth-order derivative corrections. The paper [43] does contain explicit expressions for all
terms ∝ RM(DF)N (M + N = 4), but in an ‘unreduced’ form involving the Bel–Robinson
tensor, which for our present purposes is rather cumbersome6. Moreover, none of these papers
gives expressions for the terms involving the undifferentiated 4-form F, such as F 8.

We note that the D = 11 results should be compatible with those of the IIA theory,
whenever the D = 10 results can be ‘lifted’ to D = 11. In this case one must worry about the
possible existence of terms that algebraically vanish in D = 10, but not in D = 11. As the
number of independent invariants made out of the Weyl tensor is = 7 when D � 8 [44], this is
not a concern for the curvature terms. However, the situation is more subtle for invariants built
from the covariant derivative DF of the 4-form field strength, whose number does depend on
the dimension. For instance, the number of (DF)4 invariants is found to be = 23 for D = 9,
and = 24 for D = 11, as can be conveniently checked by use of the computer algebra package
LiE [45]. For D = 10, we would have 29 invariants with a 4-form field strength; however,
there are only 15 invariants that can be built from the NSNS 3-form field strength in IIA
supergravity (which means that we cannot simply lift the results of [35] to 11 dimensions).

6 Beware of a missing factor 12 in the third term, ∝P 2, on the rhs of equation (5a) of the first reference in [43]
(J Plefka, private communication).
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Yet another subtlety one must keep in mind is that the lightcone results do not necessarily
agree with results of a ‘covariant’ calculation. A case in point is the ‘Euler–Lovelock’ term
which we will encounter below: this term does not show up in the lightcone calculation of
the 4-graviton amplitude, hence is not determined, whereas it does appear in the covariant
approach of [39, 26]. However, this term should start to contribute to on-shell amplitudes from
5-point amplitudes onwards, whence it should become visible in a lightcone computation of
the 5-graviton amplitude.

We are here only interested in on-shell counterterms. That is, we shall ignore all terms
proportional to the equations of motion because they can be absorbed into redefinitions of the
basic fields. For this reason, the Riemann tensor RABCD can be replaced by the Weyl tensor
CABCD , since all terms containing the Ricci tensor or Ricci scalar can be absorbed (modulo
F-dependent terms) into a redefinition of the metric by use of the equations of motion. For the
DF type terms, we can similarly discard the trace and the fully antisymmetric combinations
because

DAFABCD ∼ 0, D[AFBCDE] = 0 (37)

by the equations of motion and the Bianchi identity (we neglect terms ∝ F 2 on the rhs of the
equation of motion; we shall see later that they are indeed subdominant). Thus, we must only
deal with the irreducible representations of the rotation group represented by the following
Young tableaux:

CABCD ∼ , DAFBCDE ∼ . (38)

We first focus on the terms quartic in R (or C), because, as we shall see, they are the
dominant ones within our analysis. From [39, 26], these terms are given by the expression
(modulo a positive coefficient)

L(4)tot = E(J0 − 2I2) (39)

where E = det EM
A = N

√
g,

J0 := t8t8R
4 + 1

4E8 ≡ X − 1
8Z (40)

and

I2 = 1
4E8 + 2ε11A3

[
tr R4 − 1

4 (tr R2)2
] ≡ − 1

8Z + 2ε11A3
[
tr R4 − 1

4 (tr R2)2
]
. (41)

Here, we use the same condensed, index-free notation as in [39], while the notation X ≡ t8t8R
4

and Z ≡ −2E8 is used in [26].7

In particular, t8 denotes the 8-index tensor that enters the kinematic factor of both tree-
level and one-loop 4-particle string amplitudes [30, 46]8. The normalization of t8 is such that
the contraction of t8 with four times the same antisymmetric matrix M yields

t8MMMM := 24 tr M4 − 6(tr M2)2 (42)

E8 ≡ 1
3!ε11ε11RRRR is shorthand for the so-called Euler–Lovelock density; more explicitly,

7 Note a misprint in the definition of Z given in appendix B of [26]: in equation (B.14) ε10ε10 should be replaced by
−ε10ε10. The sign which appears in the hep-th version of that paper is correct. We are grateful to P Vanhove for a
discussion on this point.
8 As usual we mean by t8 the D = 11, 8-index tensor obtained from equation (4.A.21) of this physics report by
dropping the first 8-index ε tensor contribution on the right-hand side, and by extending the values of the lightcone
indices on the remaining δ4 tensor contributions to D = 11.
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writing all indices for once, we have

E8 = 1

3!
εABCD1···D8εABCE1···E8RD1D2

E1E2 · · · RD7D8
E7E8

= −δ
D1···D8
E1···E8

RD1D2
E1E2 · · ·RD7D8

E7E8 (43)

where δ8
8 = +1,−1, 0 is (when non-zero) the signature of the permutation between D1 . . . D8

and E1 . . . E8. Observe that in Minkowskian signature, the product ε11ε11 contains a minus
sign with respect to the usual lightcone term entering string-theory amplitudes ε8ε8 = +δ8

8.
There are many subtle issues related to the relative sign between the t8t8R

4 = X and
the 1

4E8 = − 1
8Z contributions. In particular the usual lightcone calculation of 4-graviton

amplitudes [30] yields the same combination X − Z/8 for the IIA theory at tree level and at
the one-string-loop level. However, according to [39, 26], the correct one-string-loop term
(which lifts to the M-theory result) differs from the lightcone calculation by a Euler–Lovelock
term (and the Chern–Simons term), and should read X − Z/8 + 2(Z/8) = X + Z/8 instead
(this is precisely the opposite sign from the one obtained in the lightcone computation of [30]).
To recover (or check) this result in the lightcone gauge, one would have to calculate 5-graviton
amplitudes in IIA string theory at one loop, but we are not aware of such computations. This
issue is important because, as we shall see below, our cosmological billiards are a priori
sensitive to the Euler–Lovelock term, and hence to the flip of sign between the lightcone result
X − Z/8, and the complete result X − Z/8 + 2(Z/8) = X + Z/8.

In the following, we shall decompose the total contribution (39) into three separate terms:
the term L(4)1 = J0 = t8t8R

4 + 1
4E8, the Euler–Lovelock term L(4)2 = − 1

2E8 = +2 · 1
8Z

contained in −2I2 and the Chern–Simons term LCS contained in −2I2. The first term (40)
(which coincides with the lightcone result X − Z/8) can be worked out more explicitly [39,
26, 41], modulo terms that either vanish on-shell, or are equivalent to sub-leading terms (e.g.
∼ R3F 2)

L(4)1 = EJ0 = E

(
X − 1

8
Z

)

= 192E
( − CABCDCAB

EF CCE
GHCDFGH + 4CABCDCA

E
C

F
CE

G
B

H
CFGDH

)
. (44)

The second term L(4)2 has a much more complicated form when expressed in this way [26,
43], and we will therefore leave it ‘in the ε-form’ (77). We shall discuss the effects of this
term in more detail in section 7, and of the Chern–Simons term in section 8.

The mixed terms containing (DF) factors have so far not been reduced to such a simple
form. Let us just note that, in the (11-dimensional) lightcone gauge, the determination of all
these terms can be reduced to an ε trace over SO(9)�-matrices, and, more specifically, can be
obtained by contracting any four factors from

Cαβγ δ := �
ij

αβ�kl
γ δCijkl, (DF)αβγ δ := �

ij

αβ�klm
γ δ DiFjklm (45)

with εα1···α16 , as follows by inspection of the relevant vertex operators in [38, 40]. Here the
indices i, j, . . . = 1, . . . , 9 label the nine transverse dimensions in 11 dimensions, and �ij

and �ijk are the standard SO(9)�-matrices with spinor indices α, β = 1, . . . , 16. However,
we would expect the caveats concerning the difference between lightcone and ‘covariant’
amplitudes, mentioned above for the C4 contributions, to also apply to the mixed terms.

5. Scaling behaviour of curvatures and field strengths

Next we exhibit the leading asymptotic behaviour of the various fields and their ‘composites’
corresponding to the higher-order corrections near T = 0, as functions of the logarithmic
scale factors β, making use of the decomposition (14) and other formulae derived in section 2.
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Exploiting the identification of the scale factors with the CSA degrees of freedom, we shall
then try to interpret the exponential walls exp[−2w(β)], as obtained from the higher-order
corrections, in terms of new exponential (Toda) walls exp[−2α(β)] in the E10 σ -model. To
this aim, let us first determine the leading asymptotic behaviour of the curvature, starting with
that of the spin connection ω and the anholonomicity coefficients 
. Because the Iwasawa
frame freezes in this limit, the ‘leading order’ amounts to neglecting the time derivatives of
the intermediate frame, i.e. terms proportional to ∂tθ

a . More precisely, the terms ∂tθ
a are

proportional to some exponential walls, starting with some simple root walls ∼ exp(−2αi(β)).
A consequence of this fact is that when discussing the subleading terms in the eighth-order
correction (which are smaller than the dominant term by a factor ∼ exp

(−2
∑

niαi(β)
)

with
ni � 0), one should, at some stage, take into account their ‘mixing’ with the terms proportional
to ∂tθ

a and coming from the leading curvature contribution.
To proceed we now substitute the results derived in section 2 into the expressions for the

Riemann tensor in order to see in more detail how its various components behave in the limit
T → 0. Retaining only the relevant terms containing time derivatives, we get

R0a0b = −∂0ωab0 − 
0acωcb0 + · · ·
= δab e2σ

[
∂2
t βa + ∂tσ∂tβ

a − (∂tβ
a)2

]
+ · · · (46)

for the components with two 0s, and

R0abc ∝ N−1 exp(βa + βb − βc) ≡ exp(σ + βa + βb − βc) + permutations of a, b, c. (47)

for the component with one 0. For the purely spatial components we have

Rabcd = R
(1)
abcd + R

(2)
abcd (48)

where the first term on the rhs contains the contributions with ωab0

R
(1)
abcd := ωac0ωbd0 − ωad0ωbc0 = 2δc[aδb]d e2σ ∂tβ

a∂tβ
b (49)

while the second term R
(2)
abcd involves all contributions from the purely spatial spin connection

(20) and is proportional to

R
(2)
abcd ∝ exp(βa + βb + βc − βd) (50)

or

∝ exp(βa + βb + βc + βd − 2βe)

or

∝ exp(βa + βb + 2βe − βc − βd)

together with all permutations of the indices a, b, c, d; note that some of these indices may
coincide. The index e is independent of a, b, c, d; it is the summation index in the terms
quadratic in the spin connection (but we here list each of the terms in the sum separately). For
later reference, we note that the combinations appearing in the exponentials on the rhs of (50)
differ from one another by linear combinations of ‘symmetry roots’ (βa − βb), corresponding
to the so-called symmetry walls [5].

As a check of our computation of the leading curvature components, let us work out the
Einstein–Hilbert action to leading order; we get

ER 
 e−2σ

(∑
a,b

R
(1)
abab − 2

∑
a

R0a0a

)

= −2∂2
t σ +

∑
a

(∂tβ
a)2 − (∂tσ )2 ≡ −2∂tσ +

∑
a,b

Gab∂tβ
a∂tβ

b. (51)

Therefore, modulo a total time derivative −2∂2
t σ , we recover the kinetic terms for the diagonal

metric components in (1), with the usual (Lorentzian) ‘superspace’ metric Gab from (24).
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It is the inverse (=Gab) of this metric which appears in both the Hamiltonians (1) and (2) in
the introduction, and was written in (26).

It is easily seen that the leading components of the curvature are Ra0a0 and R
(1)
abab (with

a 
= b, and no summation on repeated indices). These leading components are of order e2σ

and can be written as (recalling that, in our gauge, βa is approximately piecewise linear in the
coordinate time t)

Ra0a0 = e2σ vav̄a
(52)

R
(1)
abab = e2σ vavb for a 
= b

where, for shortness of notation, we have defined

va := ∂tβ
a, v̄a :=

∑
b 
=a

βb ≡ ∂tσ − ∂tβ
a. (53)

For the Kasner solution, the coordinate time can be taken to be t = − ln T , and the ‘velocities’
va are then just the Kasner exponents.

The remaining components of the curvature tensor are sub-leading in the sense that they
are suppressed in comparison with the leading term (of order ∼e2σ ) by exponentially small
factors. Before discussing in a unified way how one can define a relative ordering between
several contributions, let us collect various results for the ratios between subleading curvature
(and F-dependent) terms, and the leading curvature R ∼ e2σ . From (47) and (50) we see that

R0abc/e2σ ∼ exp(−σ + βa + βb − βc) + permutations. (54)

Note that the combination appearing in the exponential on the rhs is just (minus) the
gravitational wall form (35). Similar estimates hold for R

(2)
abcd ; a representative example

is

R
(2)
abcd

/
e2σ ∼ exp(−2σ + βa + βb + βc − βd) (55)

and all other such quotients differing only by symmetry walls.
The asymptotic behaviour of the 4-form and of its derivatives can be analysed in a similar

manner. For the electric field strength we have

F0abc = exp(σ − βa − βb − βc)F̄ tabc (56)

where

F̄ tabc := θmaθnbθpcFt
mnp (57)

and the overall factor eσ comes from the inverse lapse N−1. (We recall that the indices
0, a, b, c denote orthonormal-frame indices.) As shown in [5], it is precisely the barred field
strength F̄ tabc (in the gauge N = √

g; or, in any gauge, the conjugate momenta N
√

gF tmnp)
which possesses a limit as T → 0. Comparing the electric field strength with the square root
of the leading curvature R1/2 ∼ eσ , we obtain (no summation on (a, b, c))

F0abc/eσ ∼ e−(βa+βb+βc) (58)

where the combination (βa + βb + βc) appearing in the exponential on the rhs is related to an
‘electric wall’, see [5]. In particular, for (a, b, c) = (1, 2, 3) we just re-obtain the simple root
α0 in (28), which explains the term ‘electric root’. We thus conclude that the electric field
strength is ‘smaller’ than the square root of the dominant curvature by one electric wall.

For the magnetic field strength, we have similarly

Fabcd = exp(βa + βb + βc + βd)F̄ abcd (59)

with

F̄ abcd := θa
mθb

nθc
pθd

qFmnpq. (60)
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Again the barred field strength is the one that remains finite on the initial hypersurface. Note
the different positions of the world indices in these two definitions. (The correct index position
for the quantities that freeze is easy to remember as the quantities that freeze are the Qs and
the Ps: Amnp and their spatial derivatives, and their conjugate momenta πmnp.) Comparing
the magnetic field strength to the square root of the leading curvature, we obtain

Fabcd/eσ ∼ e− ∑
e 
=a,b,c,d βe

. (61)

The combination appearing in the exponential on the rhs is now a magnetic wall, which is also
equal to the sum of two (non-overlapping) electric walls. Consequently, the magnetic field
strength is ‘smaller’ than the electric field strength by one electric wall, and ‘smaller’ than
the square root of the leading curvature term by two electric walls. This shows that all the
higher-order terms which are algebraic in R and F are subdominant compared to the leading
R4 terms. For instance, F 8 is ‘smaller’ than the leading R4 term by eight electric walls.

Finally, the covariant derivative of the field strength is dominated by the time derivative
of an electric component:

D0F0abc = exp(2σ − βa − βb − βc)Dt F̄ tabc + · · · . (62)

Hence,

D0F0abc/e2σ ∼ e−(βa+βb+βc). (63)

In other words, DF is smaller than R by one electric wall.
We can conveniently summarize the relative ordering of the building blocks entering the

eighth-order correction by introducing the symbol � to denote the ordering of exponential
factors involving simple wall forms. As will be further discussed at the beginning of section 6,
we can treat the negative exponentials of the simple roots as small parameters: εi ∼
exp(−αi(β)) � 1. This defines an ordering such that ni � n′

i implies exp
(−∑

niαi(β)
) �

exp
(−∑

n′
iαi(β)

)
. Now, by looking more closely at the various exponential factors appearing

on the rhs’s of the comparison equations (54), (55), (58), (61), (63), one sees that they can
be rewritten as negative exponentials of sums of simple roots. For instance, the rhs of (54)
is e−(σ−βa−βb+βc), where the combination σ − βa − βb + βc is the gravitational wall form,
see (35), which can be written as a sum of simple roots, see equation (36). Actually, it is
convenient, for a quick perusal of the relative ordering of various contributions, to neglect the
ordering with respect to symmetry roots α1, . . . , α9, see (29) in the following section, and to
focus on the ordering defined by the number n0 of leading electric roots α0(β) = β1 +β2 +β3.
In other words, we shall simply write exp

(−∑
niαi(β)

) � exp(−n0α0(β)), and use the
ordering exp(−n0α0(β)) � exp(−n′

0α0(β)) when n′
0 � n0. For instance, in view of the fact

that the gravitational wall form which appears in (54) is at level � = 3 (see (36)), we can write
e−(σ−βa−βb+βc) � e−3α0 . Finally, with this notation, the above results simplify to

R0abc/e2σ � e−3α0 (64)

R
(2)
abcd

/
e2σ � e−6α0 (65)

F 2
0abc

/
e2σ � e−2α0 , F 2

abcd

/
e2σ � e−4α0 (66)

(in comparing with the curvature which is second order in derivatives, we must square the
4-form field strengths because they have only one derivative)

DF/e2σ � e−α0 . (67)

These estimates show that the dominant terms among the various eighth-order corrections
R4, R2(DF)2, R(DF)3, (DF)4, . . . , F 8 are the curvature terms R4. Among the R4 terms,
the leading contributions will come either from the time–time components R0a0a , or from the
purely spatial ones ∼ R

(1)
abab. Then, the next to leading contributions will come either from

R2(DF)2 or from R3F 2, and will be smaller than the leading one by a factor ∼e−2α0 .
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6. Leading behaviour at higher orders: curvature terms

Before proceeding with the analysis of the higher-order derivative contributions in the Lie
algebraic setting, let us clarify in which regime our analysis of their effects, and in particular
of the eighth-order derivative corrections, will be meaningful. This regime is one of an
‘intermediate asymptotics’ of the type TP � T � T0. Here, TP is the (11-dimensional)
Planck time, and T0 is some initial (or final) time away from the big crunch (or big bang)
singularity located at T = 0. We assume that the Cauchy data at T0 are such that spatial
derivatives of the metric and the 3-form are mildly smaller than their time derivatives, say
∂ag < 0.2∂T g. We also assume that the time derivatives correspond to curvatures much
smaller than the 11-dimensional Planck curvature T −2

P . Then, for a while, the BKL-type
analysis becomes better and better for times T � T0, in the sense that the potential walls
become sharper and sharper, and that the Weyl chamber of E10 appears as a dominant billiard
description of the dynamics of the diagonal components of the metric at any given spatial
point. Such a billiard description of the Einstein-3-form system remains accurate until the
higher-order corrections to the action, ∼ R + T 6

P R4 + · · · become important. This happens
for curvatures R ∼ T −2

P , i.e. for cosmological times T ∼ TP . As there are no small coupling
parameters in M-theory, when the leading correction ∼R4 becomes important, all higher-
order ones ∼ T

2(N−1)
P RN also become important as T ∼ TP . However, in the intermediate

regime TP � T � T0, it is meaningful to consider only the terms ∼R4 and to treat them
as a small correction to the usual supergravity billiard defined by S0 = R + F 2 + AFF . In
other words, in such a regime we can meaningfully combine two separate expansion schemes:
(i) a height expansion in which the negative exponentials of the simple roots are treated
as small parameters, say εi ∼ exp(−αi(β)), and (ii) a small curvature expansion in which
εc ∼ T 2

P R ∼ (TP /T )2 is treated as a separate small parameter. Note that the basic rule
behind the first expansion is to order the exponential terms by their height. Indeed, a generic
wall exp(−2α(β)), with a positive-root α = ∑

niαi is seen as the product of small numbers,∏
(εi)

2ni , which gets smaller and smaller as the ni increase. Another, and more heuristic, way
to think about the height expansion would be to replace the ten individual βas, or better their
simple-root combinations αi(β), by some ‘average scale factor’ β, or some ‘average simple
root’ αs ≡ αi . This is a legitimate approximation because the αi(β) increase towards +∞ and
remain positive during their chaotic motion within the Weyl chamber αi(β) � 0. In terms of
such averaged quantities, one can estimate the effect of a generic wall exp(−2

∑
niαi(β)) as

being on average equivalent to exp(−2(
∑

ni)αs) = exp(−2ht(α)αs).
As we have seen in section 4, the dominant terms, in the sense of the height

expansion just explained, among the eighth-order derivative corrections R4, R2(DF)2,

R(DF)3, (DF)4, . . . , F 8 are the curvature terms R4. Therefore, these are the terms that will
define the leading corrections to the dynamics in the intermediate asymptotics TP � T � T0.

Let us examine more carefully the contribution of the terms R4 in the Hamiltonian
constraint H. In any gauge an additional term J in the (invariant) Lagrangian density
contributes the term −EJ in the Hamiltonian constraint. We recall from (17) that the
11-dimensional volume density behaves as E = N

√
g = e−2σ . As we have seen above,

the leading frame components of the curvature blow up proportionally to e2σ . Hence, a term
J ∼ R4 contributes −EJ ∼ e−2σ (e2σ )4 ∼ e6σ . (Certain special quartic curvature invariants
R4 might only contribute terms � (R0a0a)

4, but we shall see below that both the t8t8R
4 and

E8 do contain terms ∼(e2σ )4.) For more generality, let us consider a correction containing an
arbitrary power of the curvature, say J ∼ RN (the precise kinematical structure of RN does
not matter at this point). This contributes to the Hamiltonian constraint a term

ERN ∝ e2(N−1)σ . (68)
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The important point for our analysis is that, in the Hamiltonian constraint (1) such a term
has the form of an exponential wall ∼e−2w(β), where w(β) is a linear form in the βs. The
associated ‘wall form’ wN ≡ w[RN ] is easily read off, namely

wN(β) = −(N − 1) σ ⇐⇒ wN = −(N − 1) · (1, 1, 1, 1, 1, 1, 1, 1, 1, 1). (69)

Let us now see for which values of N the wall form (69) happens to be a root of E10. A simple
necessary criterion for checking whether a wall form w might be a root of E10 consists in
computing the squared length of w with the scalar product of the CSA of E10 (26). Indeed, all
forms w on the CSA which belong to the E10 root lattice9, and which are such that w2 = −2j ,
for some integer j � 0, are (imaginary) roots of E10 and vice versa. For the wall form (69),
one easily finds

w2
N = − 10

9 (N − 1)2. (70)

This is negative, and is an even integer only when N = 3k + 1, with some positive integer k.
This includes the case of main interest here, namely N = 4, i.e. k = 1.

It is easily checked that when the necessary condition N = 3k+1 is met, the corresponding
w3k+1 = −3kσ does belong to the root lattice, and is therefore an (imaginary) root. For
instance, the quartic correction R4 corresponds to the E10 root

w4 = −(3, 3, 3, 3, 3, 3, 3, 3, 3, 3) ⇐⇒
α = −[10; 7, 14, 21, 18, 15, 12, 9, 6, 3]

(71)

which is of squared length α2 = −10 and height ht(α) = −115; its level is � = −10. We
see that this root lies rather deep inside the lightcone in root space. More generally, for
N = 3k + 1 (i.e. for corrections R4, R7, R10, . . .), one gets wall forms corresponding to E10

roots of squared length −10k2, height ht(α) = −115k, and level � = −10k for k = 1, 2, 3, . . . .

Looking back at the potential wall (69) associated with the correction RN we note
something special. Barring special cancellations, all terms in the correction RN lead to a
unique dominant potential wall e2(N−1)σ . This is quite different from what happens for the
usual walls that have appeared in the analysis of [5, 8]. Indeed, the walls associated with the
electric energy of the 3-form, or its magnetic energy, or to the ‘gravitational energy’ all came
in multiplets of the group of permutations of spatial indices. For instance, the electric walls
were of type exp(−2(βa + βb + βc)), where a, b, c are three different spatial indices. The
lowest-height electric root α0 = β1 + β2 + β3 is accompanied by other electric roots at the
same level � = 1, which are obtained by acting on α0 by the generators of sl10 (with roots
β2 −β1, . . .), which have the effect of permuting the SL(10) indices among a = 1, 2, . . . , 10.
This fact was associated with the fact that the basic electric root α0 = β1 + β2 + β3 was simply
the lowest weight associated with a generator of E10 which was given by an antisymmetric
3-tensor SL(10) representation, say Eabc. In other words, the walls which come in permutation
multiplets are associated with non-trivial tensor representations of sl10.

The ‘isotropy’ of the wall form (69), i.e. the fact that it does not depend on the choice
of a special permutation of SL(10) indices, suggests that wN , equation (69), should be
associated with a root of E10 whose associated generator is a sl10 singlet. We do find in
the tabulated results of [24] that there are indeed the requisite singlets matching the R4

terms at level � = 10, and the predicted R7 terms at level � = 20. Moreover, these are
the only singlets among the 4400 752 653 representations identified up to level � � 28 in
[24]. In view of the ‘contravariant’ character of the ‘raising generators’ of E10, namely,
E(3) ≡ Eabc, E(6) ≡ Ea1···a6 ∼ [E(3), E(3)], etc it is easy to see that SL(10) singlets can only

9 We recall that the root lattice, i.e. the set of integer combinations of simple roots, contains, but is strictly larger
than, the set of roots.
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occur at levels � = 10k (so that one can use 3k covariant ε tensors of SL(10) to soak up the 3�

contravariant indices of E(3�))10. It is, however, remarkable that: (i) singlets do occur at these
levels with non-zero outer multiplicities, and (ii) there exists such a nice compatibility between
the algebraic structure of E10 (built by ‘commuting’ 3-form level-1 generators Eabc), and the
wall structure entailed by curvature corrections. See the final section for further discussion of
this point.

Moreover, among the highest weights of the representations at levels � = 10 and � = 20
the associated root (71) and its integer multiples are the ones of largest root height. Therefore,
for any N, among the roots associated with the 2N th order derivative corrections, (71) is
always the root that lies deepest inside the past lightcone. For the moment, no data are
available beyond � > 28, but we confidently predict the requisite sl10 singlets to appear at
levels 10k with roots 3kσ and non-vanishing outer multiplicities.

We can summarize our findings in a little lemma.

Lemma. Corrections proportional to the Nth power of the Riemann (or Weyl) tensor are
compatible with E10 if and only if N = 3k + 1, i.e. for R4, R7, R10, . . .. Moreover, such
corrections must be associated with sl10-singlet generators of E10 at levels � = −10k.

For the special value k = 0, the ‘leading term’ is just the kinetic term (51), and there is no
‘leading wall’. For k = 1, 2, i.e. N = 4, 7, the outer multiplicities of the singlets are known:
µ = 3 for � = 10, and µ = 913 for � = 20 [24]. We have no physical interpretation for these
values in terms of the R4 and R7 corrections to the action. It might have been tempting to
associate the outer multiplicity µ = 3 with the three different contributions (t8t8R4, E8 and
the Chern–Simons term) entering (39). However, we shall see that the Chern–Simons one
is subdominant. Also note that for E11 the root corresponding to (71) is associated with the
SL(11) representation (0000000003), which is no longer a singlet.

Below, we will show that this result extends to corrections of mixed type RN−n(DF)n.
Remarkably, the very same constraint N = 3k + 1 on the allowed powers of curvature, which
we found here assuming compatibility with the E10 root lattice, was arrived at by a very
different argument in [47]11 (to wit, an expansion in integer powers of the inverse membrane
tension). Also note that, as far as we know, no detailed information is yet available about the
RN corrections for N > 4.

7. Positivity properties of leading curvature terms

Let us comment on two interesting aspects of the E10 root (71) associated with the leading R4

corrections. First, as announced in the introduction, the root (71), besides being imaginary (or
more precisely, time-like, α2 < 0), is also negative, α ∈ �−. Physically, this corresponds to
the fact that the R4 corrections grow faster than the leading Einstein terms near the singularity.
As we already explained, this fact limits the validity of our analysis to some intermediate
asymptotic TP � T � T0. Within such an intermediate asymptotic expansion, we see no a
priori conflict between the occurrence of negative E10 roots in the M-theory action, and the
form (2) of the coset action, involving only positive roots of E10. Indeed, as already pointed
out above, the positive-root form (2) is the result of using a special nilpotent (i.e. purely
upper triangular) parametrization of the coset E10/K(E10). The use of a more complicated
parametrization, involving a mixture of upper and lower triangular parametrization, would
entail the presence of negative roots in the coset action.

10 We thank Axel Kleinschmidt for pointing out this algebraic fact.
11 This result has been contested in [48], which claims that only N = 6k + 4 is allowed.
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However, no matter how one parametrizes the solution, the trajectory that extremizes the
coset action is simply a null geodesic on E10/K(E10), and therefore geometrically the same
solution. In the case of finite-dimensional Lie algebras one can prove that a generic geodesic
curve is conjugate to one in the CSA. However, no proof of this result is known for hyperbolic
Kac–Moody algebras, nor is it known whether such a statement holds at all, see [49]. If
that were true for geodesics on E10/K(E10) one would immediately conclude that a generic
null geodesic is conjugate to a null geodesic in the CSA, i.e. to the curve βa(t) = vat + β(0)

a

(with v2 = 0) which runs straight from ‘past null infinity’ towards ‘future null infinity’ in
the CSA. Fortunately, we can qualitatively control the global behaviour of null geodesics
without having to assume the unproven equivalence with a CSA geodesic12. Indeed, we can
remark that, in the Borel parametrization of equation (2), the potential terms ∝ 	2 are all
non-negative, so that they define a non-negative ‘squared-mass term’, −π2 = M2 � 0 for
the motion projected in β-space. As β̇a ∝ πa this implies that the βa worldline is everywhere
timelike or null. Remembering that, in terms of the logarithmic scale factors βas, ‘future
infinity’ is σ ≡ ∑

βa → +∞, and corresponds to a ‘big crunch’ singularity where the volume√
g = e−σ → 0, we conclude that a generic null geodesic, which is initially future directed,

will never be able to turn back to become past directed. In other words, this proves that a
generic E10 null geodesic cannot correspond to a ‘bouncing’ cosmological solution, where the
volume of space reaches a minimum before it re-expands. In view of this argument, and if
there is any truth to the E10 conjecture, we expect that the sign of the higher-order corrections
to the supergravity action will be such as to allow no bouncing solutions.

We have studied the sign and magnitude of the various leading quartic corrections in
(39) to see if they might be compatible with our expectations. (Strictly speaking, the sign of
the leading correction is not logically related to the bounce/non-bounce behaviour. Indeed,
even if the leading correction indicates a bounce behaviour, the next order corrections may
prevent the completion of this bounce.) Actually, the analysis of the sign of the quartic-in-R
contribution to the gravity action is rather involved, because the precise kinematical structure
of the R4 now does matter. The first important fact is that the sign of the coefficient of the loop
correction (39) is positive13. Then there arises the issue of the actual sign of the two leading
contributions to the action, (40) and the E8 term in (41) (which, as we shall see below, is
dominant compared to the Chern–Simons one) when they are evaluated ‘on-shell’, i.e. along
a solution of the leading Einstein-3-form dynamics. If we can prove that the sum of the
on-shell actions (40) and the E8 term in (41) is numerically positive, this will prove that the
corresponding contribution to the correction of the gravity Hamiltonian is14 negative. In that
case, the wall associated with the R4 corrections (characterized by a negative, time-like root,
with negative coefficient) will no longer represent a ‘mountain’, which would obstruct the
motion of β towards infinity and thereby induce a bounce, but instead a ‘canyon’ or a ‘crevice’
precipitating the collapse of space towards zero volume (i.e. σ → +∞).

Let us therefore have a closer look at the various R4 contributions to the action. We
consider first the contributions coming from (40), which explicitly read as (44), and will later
consider the E8 one contained in (41). The first observation is that in leading order (in the sense
explained above), only terms with Ra0a0 and R

(1)
abab need to be considered in (44). Secondly,

12 See, in this respect, the appendix where we emphasize that null geodesics on E10/K(E10) are ‘strongly chaotic’ in
the sense of being extremely sensitive to small changes in their initial conditions. This result suggests that geodesics
which do not lie within the CSA might be somewhat different from the simpler (Kasner) CSA ones.
13 Due to a remnant Euclidean-type convention, one should reverse the overall sign of the actions in [39].
14 We use here the usual first-order result H1 = −L1 for the correction to the Hamiltonian corresponding to a
correction to the Lagrangian. This result applies to the case where one introduces no new degrees of freedom, but
only modifies the action for given degrees of freedom, possibly by higher derivative terms.
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it is straightforward to verify that all terms proportional to either (C0a0a)
4 or (Cabab)

4 (no
summation on indices!) cancel between the two contributions in (44). Substitution of (52)
into (44) and some further calculation then reveal for the leading part of the density (40) the
explicit expression

EJ0 = 768 e6σ V 4
2 (72)

where

V 4
2 ≡

∑
a,b

′
v2

av
2
b(vav̄a + vbv̄b − v̄a v̄b)

2 +
1

3

∑
a,b,c

′′
v2

av
2
bv

2
c (va + vb + vc)

2 � 0 (73)

and the sum
∑′ over a, b is restricted to a 
= b, while the sum

∑′′ ranges over the three
indices a, b, c with the restriction that a 
= b, b 
= c, and c 
= a. Note that each ordered pair
a < b contributes two equivalent terms to the sum

∑′, while each ordered triplet a < b < c

contributes six equivalent terms to the sum
∑′′. The explicit expression (73) as a sum of

squares proves that J0 � 0. If that were the only contribution to the action, this argument
would suffice to prove the negativity of the corresponding term in the Hamiltonian. However,
we still need to consider the term proportional to the Euler–Lovelock density in (41). Using
the explicit expression of the Euler–Lovelock densities in Kasner spacetimes [50],15 we get
the following explicit, leading expression for the relevant term in (41):

L(4)2 = − 1
2EE8 = + 1

4EZ = −46 080[∂t (e
6σ V7) + e6σ V8] (74)

where

V7 :=
∑

a1<···<a7

va1 · · · va7 (75)

and

V8 :=
∑

a1<···<a8

va1 · · · va8 . (76)

Note that, contrary to what happened for the sums
∑′ and

∑′′ above, the sums appearing in
V7 and V8 contain only one contribution per ordered multiplet of indices. In the following, we
shall discard the total time derivative appearing as the first term on the right-hand side of (43),
and evaluate

L(4)2′ = −46 080 e6σ V8. (77)

Note, however, in passing that if one were to evaluate L(4)2 on-shell before discarding this
term, it would yield a non-zero contribution (but a contribution which is equivalent to a
reparametrization of the basic degrees of freedom). In order to see whether the term (77) is
likely to modify the positivity of (73) we need to compare (46 080/768)V8 = 60V8 to the term
V 4

2 , i.e. to the expression defined by the restricted sums
∑′

,
∑′′ in (73). The latter quantity,

V 4
2 , was shown above to be a sum of squares, and therefore to be always � 0. We need to

study the sign and magnitude of the additional contribution −60V8.
We can obtain rather simply an approximate knowledge of the magnitude of V8 in the

following way16. We consider the tenth degree polynomial P(x) = ∏
a(x − va). Let us

consider on-shell values of the vas, i.e. such that v2 = −2
∑

a<b vavb = 0. Let us also
normalize the values of the vs by imposing

∑
a va = 1. (So that we have both

∑
a va = 1 =∑

a v2
a .) In the expansion of the polynomial P(x) = x10 − c9x

9 + c8x
8 + · · · + c2x

2 − c1x + c0,

15 After discussion with the author, it appears that the overall coefficient 22p−1 in equations (22a) and (22b) of [50]
should be replaced by the, alas, larger coefficient (2p)!/(2p − 1).
16 We thank Ofer Gabber for suggesting this method for bracketing the value of V8.
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we then know c9 = ∑
a va = 1, c8 = ∑

a<b vavb = 0 and we have c2 = V8, where V8 is the
quantity we wish to bracket. Because all the roots of P(x) are real, it is well known that all
the roots of its successive derivatives P ′(x), P ′′(x), . . . will also be real. By considering the
expansion in powers of x of the second derivative P ′′(x)/90 = x8 − 0.8x7 + 0x6 + · · · + V8/45,
and relating it to its real roots, say xi (for i = 1, . . . , 8), we get the following expression for
V8: V8 = 45

∏
i xi where the xis are constrained by

∑
i xi = 0.8 and

∑
i x

2
i = (0.8)2. It is

then easy to get both upper and lower limits to V8 by considering the various possible cases
where p values among the xis are negative. (It is easily seen that p must be p � 1.) Using
then the convexity inequality a2

1a
2
2 · · · a2

n �
[( ∑

i a
2
i

)/
n
]n

, with n = 8 − p and/or n = p,
and minimizing over the average value of the negative xis, we get the double-sided inequality

−45(0.8)8/84.5 � V8/(σv)
8 � +45(0.8)8/85 (78)

where we denote σv ≡ ∑
a va . Numerically, this yields for the quantity we are interested in:

−0.0391 � 60V8/(σv)
8 � +0.0138. (79)

These rather small allowed values for V8 are due to the fact that V8 is a sum of products of
eight different vs. By contrast, we expect the quantity V 4

2

/
(σv)

8 in (73) to typically take
significantly larger values because it contains products of only two or three different vs. This
suggestive (if not quite conclusive) argument makes it plausible that the difference V 4

2 − 60V8

will always be positive. Actually, the place where this difference is most likely to become
negative is in the vicinity of the points where (V2)

4 vanishes. This happens (normalizing again
by

∑
a va = 1) when one specific v is very close to 1, and the other ones are near zero. (Note

that the Kasner solution where (va) = (1, 0, 0, . . . , 0) is flat spacetime in disguise.) However,
it is easy to see that, near such a point, V 4

2 = O(v4) while V8 = O(v7). Therefore, near the
points where V 4

2 is the smallest, the difference V 4
2 − 60V8 remains positive. We performed

some partial numerical investigations of the sign of the difference V 4
2 −60V8 and always found

it to be positive.
We take all this as evidence that the total eighth-order action (39) is equivalent to a

negative contribution in the Hamiltonian, i.e. to an ‘inverted wall’, or a ‘crevice’. As we said
above, this is compatible with the E10 expectation that there should be no bounce.

8. Subleading terms: some examples

We now wish to rephrase the results derived in section 4 in a Lie algebraic setting, by giving
more details concerning the subleading eighth-order derivative corrections, and by illustrating
their asymptotic behaviour with some examples. More specifically, we will demonstrate
explicitly how all these terms can be associated either with (in general imaginary) roots of
E10, or, more generally, with elements of the E10 root lattice. Comparing the relevant highest
roots with the corresponding highest weights in the tables of [24] we can then read off to which
sl10 multiplets they belong when they do correspond to actual roots. Because the relevant roots
turn out to be negative, the order of the integer entries from section 3 has to be inverted for
this comparison: the Dynkin label is associated with the ordering p1 � p2 � · · · � p10 � 0,
while the reverse ordering 0 � p1 � p2 � · · · � p10 will give the root that lies ‘deepest’
within the past lightcone.

In section 4, we estimated the various tensor structures in comparison with the leading
curvature terms R ∼ e2σ . We have already remarked that the subleading terms are smaller
than the latter terms by exponential factors involving electric and symmetry wall forms, which
are linear combinations of the simple wall forms appearing in (29). Above, we discussed a
coarse ordering of the effects of these wall forms by focussing on the number of basic electric



2870 T Damour and H Nicolai

−3 σ

−6 σ

−9 σ

Figure 1. Schematic representation of the roots of E10 in the Lorentzian space of the Cartan
degrees of freedom β. Positive roots are in the upper part of the figure, while negative ones are
in the lower part. The real roots are on the outer (timelike) hyperboloid α2 = +2. The imaginary
roots are either null (α2 = 0) or timelike (α2 = −2j). The basic root associated with the leading
R4 correction to the supergravity action is the negative, timelike point −3σ indicated. From it
stems the solid half-hyperboloid of roots associated with subleading contributions contained in
R4 as well as in the other eighth-order derivative terms: R2(DF)2, R(DF)3, (DF)4, . . . , F 8, as
well as the Chern–Simons contribution AR4. Similar half-hyperboloids stem from the roots −3kσ

predicted to exist and to be associated with higher-order contributions ∼ R7, R10, . . .

roots α0 entering them. We shall now have a closer look at the various wall forms associated
with the different types of higher-order corrections, and their relation to the root lattice of E10.

From the results in section 4, and from the basic fact that in the final expression all
indices must be contracted in pairs, and thus appear an even number of times, we can see
that the subleading terms in the Hamiltonian constraint are all obtained by multiplying the
leading Hamiltonian contribution e6σ (corresponding to the leading root αleading = −3σ ) by
an exponential factor of the form exp

(−2
∑

niαi

)
, with ni being some non-negative integers.

Because of the presence of a factor 2 in the exponent (linked to the fact that all indices are
finally contracted), we see that all the wall forms associated with the corrections can be written
as exp(−2wsubleading), with subleading wall forms of the type

wsubleading = αleading +
∑

niαi ≡ −3σ +
∑

niαi. (80)

We see from (80) that the set of wall forms associated with higher-order corrections is a subset
of the root lattice of E10. To better understand this subset, it is convenient to introduce at this
point a geometric picture of this subset. This is done in figure 1.

The above reasoning shows only that the wall forms are of the form (80) for some non-
negative integers ni . The tools we used above are too coarse to determine whether all values
of the integers ni are realized, or whether there are restrictions of any kind on the values of the
ni . In view of the complicated structure of the higher-order corrections, which as we pointed
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out, is not known in an algebraically completely reduced form, especially for the crucial next-
to-leading terms R2(DF)2 and R3F 2), we have made no attempt at an exhaustive analysis
as to whether the integers ni are indeed subject to restrictions. Instead, we have proceeded
‘experimentally’ by studying in detail some specific, but typical, terms that we could check
to be indeed present among the available expressions for various higher-order corrections. In
all the cases we have checked, we did find a rather remarkable pattern: the vector in root
space joining the ‘leading’ R4 root αleading = −3σ to any subleading higher-order wall form
wsubleading, i.e. the quantity

ζ := wsubleading − αleading =
∑

niαi (81)

was ‘experimentally’ found to satisfy the restriction

ζ 2 ≡
(∑

niαi

)2
� 2 (82)

in all cases. Below, we will refer to ζ as the ‘relative vector’. This leads us to formulate the
following:

Conjecture. The relation (82) holds for all kinematically allowed combinations, and thereby
encodes information about the algebraic structure of the eighth-order corrections.

We shall illustrate below with some examples the interrelation between this conjecture
and the properties of the E10 root lattice on one hand, and certain ‘kinematical cancellations’,
as they follow from the kinematical structure of the known eighth order correction terms, on
the other hand. However, we will leave a systematic investigation of this aspect to future work.

Geometrically, the restriction (82) (together with ni � 0) means that the relative position
vector ζ , equation (81), belongs to the set of positive roots, �+. In other words, if we assume
that this restriction is indeed true for all terms, we can geometrically describe the set of wall
forms generated by higher-order corrections as a solid half-hyperboloid, which is congruent
to �+, and with the leading R4 root αleading = −3σ as its basis, see figure 1. From this
picture there seems to be no evident upper limit on the height

∑
ni of the relative vector

(81). We initially thought that the wall forms wsubleading might be constrained to lie inside the
root diagram stricto sensu (instead of lying anywhere in the root lattice), which would have
implied the further restriction (wsubleading)

2 � 2. However, as we shall see below, we found
wall forms lying high enough in the solid half-hyperboloid (82) to extend beyond the outer
hyperboloid w2 = 2 corresponding to real roots. More precisely, by adding simple roots of
A9 one generates sl10 weight diagrams starting at a certain highest weight inside this solid
half-hyperboloid. Many of the sl10 weight diagrams are such that only a subset of the weights
are actually roots of E10, while the weight diagram itself extends beyond the hyperboloid
w2 = 2. We emphasize that there is no a priori inconsistency or incompatibility in this
feature: indeed, starting from a Hamiltonian containing only roots as wall forms, any change
of parametrization can generate arbitrary combinations of the roots, and therefore arbitrary
elements of the root lattice.

Let us now substantiate our conjecture (82) by giving examples of wall forms associated
with various higher-order contributions. We first consider the Chern–Simons term in (41),
which is proportional to

εABCD1···D8AABCRD1D2
E1E2 · · · RD7D8

E7E8 t
(8)
E1···E8

≡ ε11A3[24 tr R4 − 6(tr R2)2]. (83)

Here the tensor t8 is, by virtue of (42), equivalent to the combination of traces appearing
in (41). Though the above contribution is also quartic in the curvature, and contains the
spatial components Aabc of the 3-form which simply freeze near the singularity, it is actually
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subleading wrt the leading curvature contribution ∼ER4 ∼ e6σ . The reason for this is the
interplay of the ε tensor, which constrains the first pairs of indices [D1D2] · · · [D7D8] on the
curvature tensors to be all different, with the effect of the t8 tensor, which contains Kronecker
deltas and thereby obliges the remaining indices on the curvature tensors to coincide pairwise.
As a consequence, it is not possible to have only leading curvature components of the type
R0a0a or Rabab. A typical contribution is17

EA8910R0101R0123R0145R0167 ∼ exp(3σ + 3β1 + β2 − β3 + β4 − β5

+ β6 − β7 − β8 − β9 − β10) (84)

where we used (47). After reshuffling some indices, we obtain the wall form

w = −(3, 2, 2, 2, 1, 1, 1, 1, 1, 1) ≡ −[5; 2, 5, 8, 6, 5, 4, 3, 2, 1]. (85)

Here, and below, we give the results both in the ‘coordinate basis’ (27) and the ‘root basis’
(31). The second form displays the wall form as an element of the E10 root lattice (w yields
a root whenever w2 � 2), with the level � as the first entry as in (31). (85) is a root because
w2 = 2, with � = −5, and Dynkin label (100 100 000). The corresponding relative vector

ζ = w − αleading ≡ w + 3σ = (0, 1, 1, 1, 2, 2, 2, 2, 2, 2) (86)

satisfies (w + 3σ)2 = +2, in agreement with (82). We thus see that this Chern–Simons wall
form is so much higher than the basic R4 root −3σ that the associated wall form lies even
beyond the interior of the past CSA lightcone and belongs to the timelike hyperboloid α2 = +2.

Next we consider the subleading curvature terms. Let us first recall that the kinematic
structure of the C4 terms in (44) eliminates certain combinations; for instance, from (73) it is
obvious that there are no contributions of the type C4

abab (no summation on indices a, b). As is
evident from (50), the curvature terms coming from R

(2)
abcd and the above estimates are strongly

suppressed. Furthermore, not all of them produce actual roots, as we shall see presently.
Obviously, from (50), there are many such terms, which we can group into certain

‘permutation multiplets’. A first set of terms corresponds to terms of type

ER
(2)
abcdR

(2)
abef R

(2)
ceghR

(2)
dfgh ∼ e−2σ exp(βa + βb + βc − βd) · exp(βa + βb + βe + βf − 2βi)

· exp(βc + βe + βg + βh − 2βj ) · exp(βd + βf + βg + βh − 2βk). (87)

We can write this result schematically as

E[R(2)]4 ∼ e−2σ · exp(2(βa + βb + βc + βe + βf + βg + βh − βi − βj − βk)). (88)

Taking all the indices different, and choosing (i, j, k) = (8, 9, 10), this gives

w = −(0, 0, 0, 0, 0, 0, 0, 2, 2, 2) ≡ −[2; 2, 4, 6, 6, 6, 6, 6, 4, 2] (89)

which is clearly not a root as w2 = +8. Nevertheless, the relative vector

ζ = w + 3σ = (3, 3, 3, 3, 3, 3, 3, 1, 1, 1) (90)

obeys ζ 2 = 2 and therefore lies on the boundary of the half-hyperboloid in agreement with
our conjecture. A second set of terms derives from

E[R(2)]4 ∼ e−2σ · exp(+2(βa + βb + βc + βd + βe + βf − βg − βh)) (91)

and differs from the one above by one symmetry wall. Again taking all indices different and
choosing them appropriately, we get

w = −(0, 0, 0, 0, 0, 0, 1, 1, 2, 2) ≡ −[2; 2, 4, 5, 6, 6, 6, 6, 4, 2] (92)

17 In the remainder, we will no longer distinguish between the Riemann and the Weyl tensors.
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which is again not a root as w2 = +6. The relative vector

ζ = w + 3σ = (3, 3, 3, 3, 3, 3, 2, 2, 1, 1) (93)

is lightlike, ζ 2 = 0, and lies within the half-hyperboloid. A third set of terms comes from

E[R(2)]4 ∼ e−2σ · exp(+2(βa + βb + βc + βe + βg − βh)) (94)

and gives rise to, choosing values for the indices conveniently,

w = −(0, 0, 0, 0, 0, 1, 1, 1, 1, 2) ≡ −[2; 2, 4, 6, 6, 6, 5, 4, 3, 2] (95)

with w2 = +4, and

ζ = (3, 3, 3, 3, 3, 2, 2, 2, 2, 1) (96)

with ζ 2 = −2. Finally, there is a fourth set with

w = −(0, 0, 0, 0, 1, 1, 1, 1, 1, 1) ≡ −[2; 2, 4, 6, 6, 5, 4, 3, 2, 1] (97)

which now is a root because w2 = 2, and

ζ = (3, 3, 3, 3, 2, 2, 2, 2, 2, 2) ⇒ ζ 2 = −4 (98)

again confirming the conjecture. The maximal height for any of these wall forms w is −44
for (89), well above the height −115 computed above for the leading term, see figure 1.
We observe that all the terms displayed above differ from one another either by simple
permutations of the wall form components, or by the addition of symmetry roots.

Similar comments apply to the curvature terms with one or more temporal indices. From
(44), we find, for instance, that terms ∝ (C0abc)

4 or (C0abc)
2(C0ade)

2, with the indices
a, b, c, d, e all different (and no summation on repeated indices!), cancel between the two
contributions in (44). Remarkably, these terms are precisely of a form which is disallowed by
our above conjecture: for instance, if the term

E(R01ab)
2(R01cd)

2 ∼ e−2σ · (eσ+β1+βa−βb

)2(eσ+β1+βc−βd

)2 (99)

with a, b, c, d all different, had contributed instead of cancelling, it would have yielded
(choosing indices conveniently)

w = −(3, 2, 2, 1, 1, 1, 1, 1, 0, 0) ⇒ ζ = (0, 1, 1, 2, 2, 2, 2, 2, 3, 3) (100)

whence ζ 2 = +4, in violation of (82).
A set of terms which does contribute, by inspection of (44), is

E(R01ab)
2(R0101)

2 ∼ e4σ−2β1+2βa+2βb

. (101)

Choosing (a, b) = (9, 10), we get the maximal height contribution

w = −(1, 2, 2, 2, 2, 2, 2, 2, 3, 3) ≡ −[7; 6, 11, 16, 14, 12, 10, 8, 6, 3] (102)

at level � = −7, of height −93 > −115, and obeying w2 = −2. The Dynkin label
is obtained from the wall form in reverse ordering w = −(3, 3, 2, 2, 2, 2, 2, 2, 2, 1) ≡
−[7; 4, 8, 13, 11, 9, 7, 5, 3, 1] and is (010 000 001). The corresponding relative vector is

ζ = (2, 1, 1, 1, 1, 1, 1, 1, 0, 0) ⇒ ζ 2 = 2 (103)

and therefore on the boundary of the half-hyperboloid. From the tables of [24] we deduce that
the set of roots corresponding to w belongs to the sl10 representation (010000001) with outer
multiplicity µ = 1.

There are numerous mixed terms involving the curvature and the 4-form field strength,
which we again illustrate with some examples (we have checked from [43] that the structures
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displayed below actually do appear). For instance, the term E(D0F0123)
2(D0F0456)

2 leads to
the � = 8 root

w = −(3, 3, 3, 3, 2, 2, 2, 2, 2, 2) ≡ −[8; 5, 10, 15, 12, 10, 8, 6, 4, 2] (104)

with w2 = −4, and relative vector

ζ = (0, 0, 0, 0, 1, 1, 1, 1, 1, 1) ⇒ ζ 2 = 2. (105)

At level � = −8, it corresponds to the sl10 representation (000100000) with µ = 2. The
highest root in the multiplet is

w = −(2, 2, 2, 2, 2, 2, 3, 3, 3, 3) ≡ −[8; 6, 12, 18, 16, 14, 12, 9, 6, 3] (106)

of height −106 > −115, well above the height of the leading R4 singlet.
From the C(DF)3 terms given in [43] we read off the leading term which is

ED0F3456D0F78910DaFa012C0b0b. The associated root is

w = −(2, 2, 2, 2, 2, 2, 2, 2, 1, 1) = −[6; 4, 8, 12, 10, 8, 6, 4, 2, 1] (107)

with w2 = −2, and

ζ = (1, 1, 1, 1, 1, 1, 1, 1, 2, 2) ⇒ ζ 2 = 0. (108)

The relevant sl10 representation at level � = 6 is (000000010) with µ = 1. The maximal
height in the representation is again above −115.

Our final example is the combination E(D0F0123)
2(C0a0a)

2. It is associated with the
� = 9 root

w = −(3, 3, 3, 3, 3, 3, 3, 2, 2, 2) = −[9; 6, 12, 18, 15, 12, 9, 6, 4, 2] (109)

with relative vector

ζ = (0, 0, 0, 0, 0, 0, 0, 1, 1, 1) ⇒ ζ 2 = 2. (110)

Indeed, in agreement with the result (63), we see that ζ is just an electric root. On the other
hand, w2 = −6, and w corresponds to the sl10 representation (000000100) with µ = 4. The
highest root in the multiplet is

w = −(2, 2, 2, 3, 3, 3, 3, 3, 3, 3) ≡ −[9; 7, 14, 21, 18, 15, 12, 9, 6, 3] (111)

of height −114 > −115, barely above the height of the leading singlet C4 contribution.

9. Discussion

Our analysis of higher-order corrections to M-theory provides further evidence for the validity
of the conjecture [8] that the classical (bosonic) dynamics of M-theory is ‘dual’ to a one-
dimensional σ -model on the infinite-dimensional coset space E10/K(E10). In particular,
we find it remarkable that the leading wall form associated with the known R4 corrections,
namely the permutation singlet w4 = −3σ , does match with a root of E10 whose corresponding
generator is a sl10 singlet. This compatibility between a gravity structure and a Kac–Moody
algebra one was not a priori guaranteed, and can be viewed as a deep confirmation of the
hidden role of E10 in M-theory. Indeed, as a foil, let us consider the simple case of pure gravity
in any spacetime dimension D ≡ d + 1. The study of the corresponding cosmological billiard
has found that one should associate with pure gravity the Kac–Moody algebra AEd [4]. Now,
for pure (bosonic) gravity, one generally expects that the first higher-order corrections will be
∼ (Rµνρσ )2. However, by using equation (69) such terms quadratic in curvature correspond to
the wall form w2 = −σ whose squared length is (w2)

2 = −d/(d − 1). As the latter squared
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length is never an integer18, we conclude that w2 never corresponds to a root of AEd . Let us
then consider the problem of determining which values, if any, of the nonlinearity order N, for
corrections ∼RN , might be compatible with the algebraic structure of AEd . For instance, let
us consider the case d = 3 corresponding to the usual (3 + 1)-dimensional Einstein gravity.
By using again equation (69), one gets the wall form wN = −(N − 1)σ whose squared length
in AEd is − d

d−1 (N − 1)2; i.e. − 3
2 (N − 1)2 when d = 3. One then concludes that one needs

N = 2k + 1 = 3, 5, 7, . . . . The lowest candidate for compatibility with AE3 is then ∼R3. The
corresponding wall form is w3 = −2σ = −2(β1 +β2 +β3). Its squared length is (w3)

2 = −6,
and w3 is easily seen to correspond to a root α of AE3 of level � = 3 wrt the SL(3) subalgebra
[5]. However, as for E10 above, the wall form w3 = −2(β1 + β2 + β3) is invariant under
permutations of the spatial indices. Therefore, for the conjectured correspondence between
(3 + 1)-dimensional Einstein gravity and AE3 to hold, the wall form w3 should correspond to
a root of AE3 which parametrizes a singlet of SL(3). However, by using the results given in
equation (8.30) of [5] one sees that there is no singlet representation of AE3 at level � = 3.
This negative result exemplifies that the compatibility found above between ∼R4 corrections
and the presence of ‘singlet roots’ of E10 is rather non-trivial, and could well have failed to
hold.

Our work has also provided evidence for the ‘no bounce’ behaviour of big crunches
in M-theory, as naively expected from the dual dynamics, i.e. the global structure of null
geodesics on E10/K(E10). If we admit the validity of this conjecture, what conclusions can
we draw for big crunches in M-theory? The ‘dual’ description is an infinite affine length
null geodesic going towards β → ∞. This suggests that the quantization of the E10/K(E10)

model will exhibit no information loss at the big crunch. On the other hand, the dictionary
of [8, 9] between the supergravity description and the coset description is defined only in the
quasi-classical regime T � TP . By contrast, the infinite future of the null geodesic motion
corresponds to the regime T � TP . The fact that the dictionary between the two descriptions
becomes ill-defined in this limit (and that we find no evidence for a bounce) suggests that
the infinite ‘affine life’ near the singularity can only be described in the coset variables. This
situation is somewhat reminiscent of the recent results of [51] based on an AdS/CFT analysis
of certain cosmological singularities in anti-deSitter solutions of supergravity—as is the fact
that the dual E10 coset picture emerges in full only in the ‘strongly coupled limit’ T � TP ,
while the gravity picture corresponds to the ‘weakly coupled limit’ T � TP . (For a contrasting
suggestion based, similarly to the E10 coset model, on geodesic motion in auxiliary Lorentz
spaces, see [16, 17]).

However, we feel that at this stage of development of the E10/K(E10) conjecture,
speculating on the ultimate quantum fate of big crunches is premature. Many technically
challenging tasks remain before one can seriously consider the eventual physical consequences
of the dual E10 picture. First, one should extend the dictionary to prove the heretofore
unseen roots between height 29 and height 115 do match in the two descriptions. Second, it
would be interesting to explore in more detail the validity of the conjecture (82), which was
‘experimentally’ observed to hold in quite a few specific cases. If our conjecture could be fully
verified for the known eighth-order corrections, this would open the tantalizing possibility that
it still holds for higher corrections ∼(R + DF + F 2)7, (R + DF + F 2)10, . . . . It would then
provide a strong constraint on the algebraic structure of these corrections. As these corrections
are very difficult to obtain by conventional methods, the hidden E10 structure might be of great
help in pinning down their structure.

18 For d � 3. Actually, we should restrict ourselves to d � 4 as all R2 terms are known to be on-shell trivial in d = 3
because of the topological nature of the R2 Euler–Gauss–Bonnet density.
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Finally, among other pressing issues let us also mention: the role of fermions, the
consequences of compactifying 11-dimensional spacetime (which is expected to reduce the
continuous symmetry E10(R) to the discrete symmetry E10(Z)) and the effect of quantizing
the coset model (see, in this respect, also the remarks in the appendix). It would furthermore be
interesting to explore the link, if any, between the non-compact T-duality symmetries of string
theories in the presence of Killing vectors (which have been shown to survive the addition of
higher-order terms [52]) and the conjectured E10 symmetry.
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Appendix

Geodesic deviation and sectional curvature on E10/K(E10)

As shown in [5, 8], geodesic motion on the coset space E10/K(E10) is formally integrable in
the sense that one can exhibit as many constants of motion as degrees of freedom (i.e. a doubly
infinite tower J ) and, moreover, that one can formally write a generic solution of the geodesic
equation in terms of the constants of motionJ . We wish, however, to emphasize here that, even
if formally integrable, geodesic motion on E10/K(E10) is at the same time strongly chaotic
in the sense that it is extremely sensitive to small deviations in the initial conditions. Let us,
indeed, consider the ‘geodesic deviation equation’ which governs the deviation ξ between two
neighbouring geodesics. For simplicity, we focus on the neighbourhood of a base geodesic
lying entirely in the CSA (corresponding to a simple Kasner solution), i.e. where only βa

and πa are excited. This solution is simply described by βa = vat + βa
0 where t is an affine

parameter, βa
0 some constants and where the ‘velocity’ va is null: Gabv

avb = 0. The other
(‘off-diagonal’) variables, ν, p, are all zero. The geodesic deviation equation governing the
affine-parameter evolution of the deviation vector ξ connecting this geodesic to a neighbouring
one can be obtained in two different ways: either by ‘moving’ the base geodesic βa = vat +βa

0
by a generic element in the Lie algebra of E10, or by computing the appropriate components
of the sectional curvature of the symmetric space E10/K(E10) and by writing the general
geodesic-deviation (Jacobi) equation. We have checked that both methods give the same
result. If we decompose the deviation vector ξ into its various components:

ξ = ξaha +
∑

α,s
ξα
(s)

(
E(s)

α + F (s)
α

)/√
2,

where ha, a = 1, . . . , 10, is a basis of the CSA, and where ξα
(s) denote the components

along the non-CSA coset directions. The Jacobi equation yields ξ̈ a = 0, corresponding to a
vanishing sectional curvature in the vv′ two-planes (where v = vaha is the vector tangent to
the base geodesic and v′ = v′aha a generic direction in the CSA), and ξ̈ α

(s) = +(α(v))2ξα
(s),

corresponding to a sectional curvature

R
(
v,E+

α, v, E+
α

) = −(α(v))2
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where E+
α ≡ (Eα + Fα)/

√
2 is a unit-norm vector in the ‘transverse’ coset direction associated

with the root α. (For simplicity, we suppressed the degeneracy index s on E(s)
α and F (s)

α .)
Here α(v) ≡ αav

a denotes the value of the linear form α acting on the vector v = vaha

tangent to the geodesic. The point we wish to emphasize here is twofold: (i) the sectional
curvature R

(
v,E+

α, v, E+
α

)
19 is negative (as for geodesics on hyperbolic space), and (ii) this

sectional curvature decreases without limit towards −∞ as the height of the root increases to
infinity. This result shows that small deviations from the geodesic exponentially increase with
affine length in a manner which becomes faster and faster as we consider components of the
deviation in transverse directions corresponding to higher and higher roots. This indicates that
geodesics on E10/K(E10) are more and more exponentially sensitive to initial conditions as
one examines them in directions of increasing height. This property might play an important
role for the quantization of the geodesic motion on E10/K(E10). Indeed, we recall that
quantum motion for a scalar particle on curved space involves an ambiguous coupling to the
scalar curvature, which appears to be given by a formally infinite series for E10/K(E10).
This suggests that it is important to include fermions in the E10 coset model before drawing
conclusions about the strong sensitivity of classical geodesic motion on initial conditions.
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