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Abstract. The inspirals of stellar-mass compact objects into supermassive black

holes are some of the most important sources for LISA. Detection techniques based on

fully coherent matched filtering have been shown to be computationally intractable.

We describe an efficient and robust detection method that utilizes the time-frequency

evolution of such systems. We show that a typical extreme mass ratio inspiral (EMRI)

source could possibly be detected at distances of up to ∼ 2 Gpc, which would mean ∼
tens of EMRI sources can be detected per year using this technique. We discuss the

feasibility of using this method as a first step in a hierarchical search.
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1. Introduction

Astronomical observations indicate that many galaxies host a supermassive black hole

(SMBH) in their centre. The inspirals of stellar-mass compact objects into such SMBHs

with mass M ∼ few×105M⊙–107M⊙ constitute one of the most important gravitational

wave (GW) sources for the planned space-based GW observatory LISA. Preliminary

results [1] indicate that the LISA EMRI detection rate will most likely be dominated

by inspirals of ∼ 10 M⊙ BHs into ∼ 106M⊙ SMBHs. The EMRI detection rate could

be as many as ∼ 1000 in 3–5 years within ∼ 3.5 Gpc.

The strain amplitude of GWs from EMRIs can be estimated using the Newtonian

quadrupole approximation to the Einstein field equations,

h ∼ 6 × 10−22

(

d

Gpc

)−1 (

M

106M⊙

)2/3
µ

10M⊙

(

f

5mHz

)2/3

, (1)

where f is the orbital frequency, d is the distance of the source from the Earth and

µ = mM/(m + M) is the reduced mass. This can be compared with the characteristic

noise strain of ∼ 5 × 10−21 at the floor of the LISA noise curve near 5 mHz [2, 3]. For

a 10 + 106M⊙ EMRI system at 1 Gpc, the instantaneous signal-to-noise ratio (SNR)

ρt is at best around 0.1. Detection of GWs from EMRIs therefore depends on (semi-)

coherent accumulation of the signal with time.

The optimal method to detect a known time series signal h(t) embedded in

stationary Gaussian noise n(t) is matched filtering. In that technique, we search for

the maximum correlation of the Fourier components of the data with that of the known

waveforms, weighted by the noise variance. The optimal SNR, ρM , can be written as

ρ2

M =

N
∑

k=1

2h2

k

σ2
nk

, (2)

where hk is the Fourier amplitude of the signal, σ2

nk
= 0.5Sh(f)/(dt2df) is the expected

variance of the noise component nk at frequency bin k, characterized by Sh(f), the

strain spectral density of the noise, N is the number of Fourier frequency bins and

df is the bin width. The SNR squared is therefore effectively proportional to the

product of the number of wave cycles with the instantaneous SNR squared. During an

integration over the lifetime of LISA (∼ 3–5 yrs), the number of GW cycles observed,

NGW ∼ Tf ∼ 5 × 105, so the optimal SNR can be as high as ρM ∼ 100 at 1 Gpc.

2. Computational challenges of EMRI detection

EMRI waveforms are complex and are characterized by many frequency components,

which arise from several effects. First, typical EMRI orbits are expected to be still

moderately eccentric, e ∼ 0–0.5, during the last several years of inspiral when LISA

can detect them [3]–[6]. At such moderate eccentricities, there can be as many as five

harmonics of the orbital frequency contributing significantly (> 10%) to the observed

SNR [7]. In addition, EMRI signals exhibit many modulations, caused by periastron
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precession, spin induced precession of the orbital plane and yearly amplitude and

Doppler modulation due to the motion of LISA around the sun. Finally, the frequency

components in an EMRI signal exhibit significant evolution over a LISA observation.

For a 3 year observation of a signal with central frequency ∼ 5 mHz, the signal power

can be spread over as many as 105 frequency bins [3]. This hinders the detection of the

signals using simple Fourier spectrum analysis.

The complexity of the EMRI waveforms makes a fully coherent matched filtering

search computationally impossible. Rough estimates would suggest that ∼ 1040

templates are needed for a fully coherent search [1]. Extrapolating to the time of the

LISA mission, it is reasonable to assume ∼ 50 Tflops of available computing power for

the search, but this allows only ∼ 1012 templates to be searched in real time. Alternative

methods are therefore required to detect EMRIs, such as semi-coherent hierarchical

searches [1].

3. A time-frequency detection method

We describe an efficient and robust strategy to detect GWs from EMRIs by accumulating

the signal power in the time-frequency (t-f) domain. The t-f power spectrum is produced

by dividing the data into 2 week long segments and carrying out a Fast Fourier Transform

(FFT) on each. In the semi-coherent matched filtering search [1], the waveform is also

divided into sections, of ∼ 3 weeks. In that case, this is the longest segment length

that computational constraints will allow. In the time-frequency analysis, there are no

such computational limits, but we choose a 2-week duration to ensure enough time and

frequency resolution to trace the frequency evolution of EMRIs with time. The power

spectrum is defined for each segment i and frequency bin k as,

P (i, k) =
2|(hi

k + ni
k)|2

σ2
nk

=
2(hi

k)
2

σ2
nk

+ 4
Re[hi

k(n
i
k)

∗]

σ2
nk

+
2(ni

k)
2

σ2
nk

. (3)

We then calculate the power “density”, ρ(i, k), by computing the average power within

a rectangular box centered at each point (i, k),

ρ(i, k) =

n/2
∑

a=−n/2

l/2
∑

b=−l/2

P (i + a, k + b)/m, (4)

where n, l are the lengths of the box in the time and frequency dimension respectively

and m = n × l is the number of data points in the box. The SNR at each point (i, j)

is then ρs = (ρ − ρ̄)/σρ, where ρ̄ is the mean of ρ calculated in the entire t-f plane

and σ2

ρ is the expected variance of ρ for pure noise. In practice, we use the variance of

the calculated ρ in the entire t-f plane. The detection process involves finding the local

maximum ρs or tracks of “excess” ρs.

If the data consist of only stationary Gaussian noise, mρ will follow a χ2

2m

distribution, with expected σρ = 2/
√

m, i.e., the larger the box, the smoother the
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noise power density in the t-f plane. For a given box size, the false alarm probability

(FAP) for finding at least one point with ρs above a certain threshold ρ0 is

FAPm ∼ NfQχ2

2m
(
√

4mρ0 + 2m), (5)

where Qχ2

2m
(P ) is the cumulative distribution function for the χ2

2m distribution. We

estimate Nf ∼ N/(m/4) for the number of independent data points searched.

To search for a possible signal, we vary the box lengths n and l until the maximum

(or a significant) ρs is found. The optimal box size should be large enough to contain

most of the signal power but small enough to exclude most of the noise contribution. The

overall probability of finding a FAPm below some threshold FAP0 depends on the number

of independent trials of different box sizes. A Monte Carlo simulation is in progress to

determine the statistics of this method and to compute appropriate thresholds. In the

present work, the FAP of the search is based on a simple case where we increase the

box dimensions by factors of two, one side at a time, and the overall FAP is estimated

as FAPm multiplied by the number of boxsizes searched. In this paper, significant

detections are defined as those such that the overall FAP of the search is < 10−2.

Like many other time-frequency signal processing methods, this method examines

the statistics of the presence of a lot of high power in a region. Our method is in

particular similar to the “excess power” method [8], as both use the summation of

powers within a certain time and frequency interval. The excess power method was

designed to detect bursting waveforms. Our approach applies to the detection of both

burst-like and continuous waves since it helps to map out the structure of the excess

power density. This structure can then be detected by finding the local maximum or

using pattern-recognition methods.

4. Simulated EMRI waveform

To test this approach, we tried to detect an EMRI signal in simulated data. Accurate

inspiral waveforms are not yet available, so we made use of approximate numerical

waveforms, as described in [1, 9, 10]. We considered a “typical” EMRI event — the

inspiral of a 10M⊙ BH into a 106M⊙ SMBH, with eccentricity e = 0.4 and pericentre

rp ≈ 11M at the start of the observation, SMBH spin of a = 0.8M , orbital inclination

angle of 45o (using the definition of inclination in [9]) and placed at distances of 0.5–2

Gpc. We used data of total duration three years, sampled at a cadence of 8s. With

these choices, the total number of data points analyzed was N = 1.2 × 107. The

simulated data consist of two independent LISA data streams (the low frequency ‘I’ and

‘II’ responses described in [2]). The combined matched filtering SNR at a distance of 1

Gpc is ρM ∼ 140 for the whole three years of data, and ∼ 90 for the last year. We used

the LISA noise response given in [3].
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5. Results and Discussion

In Figures 1 and 2 we show the normalized power density ρs in the time-frequency

domain calculated with the “optimal” box size when the EMRI was at a distance of 0.5,

1.0, 1.4, and 2 Gpc respectively. We also show the power distribution function and the

pure noise theoretical expectation for comparison.

At the distance of 0.5 and 1 Gpc, the evolution of the GW central frequency (and

harmonics) with time is apparent to the eye in the time-frequency plane. The amplitude

increases as the particle inspirals but the signal is also modulated by LISA’s motion.

At 0.5 Gpc, GWs from the last year of inspiral can be detected at SNR ∼ 28, 19, and

8, respectively at each of the three dominating frequency components. At the distance

of 1.4 Gpc, the frequency evolution is visible over the last year and two frequency

components are apparent. At a distance of 2 Gpc, the signal can possibly be detected

with an SNR of ∼ 7, and an overall FAP of ∼ 2 × 10−6 when searching through all

independent trials.

To assess the efficiency of this method, we show in Figure 3 an approximate Receiver

Operator Characteristic (ROC) curve for this method. The ROC is shown for the sources

at 1 Gpc, 1.4 Gpc and 2 Gpc discussed in the text, and also distances of 1.75 Gpc, 2.25

Gpc, 2.5 Gpc and 3 Gpc for comparison. The ROC curves were computed by setting

thresholds on ρ for each bin size and performing a preliminary Monte Carlo of ∼ 20000

noise realisations. The false alarm probability was computed as the fraction of pure noise

realisations in which a threshold was exceeded for at least one bin size. The detection

rate was the fraction of realisations of signal plus noise in which the maximum SNR

exceeded the threshold for at least one bin size. The thresholds were set by fixing the

FAPm defined by equation (5) to be equal for all bin sizes, taking Nf = N/(m/4).

Different choices of thresholds amount to distributing the overall FAP of the search

between the various bins in different ways. The optimum threshold choice for a single

source will be source dependent. Monte Carlo simulations are underway in order to

optimise the threshold choice in the sense of giving the best performance. We see that

the detection performance is very good up to 1.75 Gpc. At 2 Gpc, the detection rate

is still in excess of 50% for an overall false alarm probability of a few percent. The

source at 3 Gpc represents the absolute limit of this particular search, since that is the

point at which this search ceases to do any better than a random one. This should be

contrasted with the performance of the semi-coherent matched filtering technique [1].

An ROC curve is not available for that algorithm, but based on the results of Gair et

al., at an overall false alarm probability of 1% the detection rate for this source at a

distance of 2 Gpc would likely be close to 100%. However, as emphasised before, this

improved performance comes at much higher computational cost.

In conclusion, we have presented a proof of principle that a simple time-frequency

method could be used to detect GWs from bright EMRIs. A typical EMRI source could

possibly be detected with SNR > 6 at a distance up to ∼ 2 Gpc using this method. The

method is computationally efficient in the sense that it takes only minutes to finish a
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search of EMRIs with one computer. Based on current estimates of the astrophysical

rates [1, 5], tens of EMRIs could be detected each year by this technique.

This method does not provide good parameter determination, but it could be used

to detect the brightest sources as the first stage of a hierarchical search. The method

provides some information about the frequency content and inspiral rate of an event

which can be used to refine a subsequent matched filtering search. In practice, the EMRI

detection problem will be made considerably more complicated by confusion with other

sources in the LISA data, in particular confusion from white dwarf binaries. The time-

frequency tracks of these other sources will look different to EMRIs. However, the tracks

will overlap and a simple excess power method might not be able to distinguish multiple

overlapping sources from one another. Further, in the current analysis, we have only

considered a single ‘typical’ EMRI signal, but the frequency and frequency evolution

of other EMRIs will be different, which will change the detection statistics. Finally,

the approximate quadrupole waveforms used in this analysis lack some of the multipole

structure that we expect from true inspirals, which will also change our conclusions.

More detailed discussion of these issues will be provided in a follow-up paper [11].
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Figure 1. Left – the t-f (normalised) power density for the optimal box size. Right

– the distribution of power (circles) plus expected distribution for pure noise (solid

line). The upper plots are for d = 0.5 Gpc (optimistically, we expect ∼< 3 such events

in three years). This could be detected at a FAP of < 10−16 and a maximal SNR of

∼ 28. The lower plots are for d = 1 Gpc (we expect ∼< 25 events in three years) and

have FAP< 10−16 and maximal SNR∼ 14.
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Figure 2. As Figure 1 but for d = 1.4 Gpc (upper plots, expect ∼< 60 events in three

years, FAP< 10−10 and SNRmax ∼ 8) and d = 2 Gpc (lower plots, expect ∼< 180 events

in three years, FAP∼ 2 × 10−6 and SNRmax ∼ 7).
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Figure 3. Approximate ROC curve for this method. The detection rate is shown as a

function of the overall false alarm probability of the search, when the source is placed

at distances of 1, 1.4, 1.75, 2, 2.25, 2.5 and 3 Gpc from the detector. The performance

of a random search, for which the false alarm rate equals the detection rate, is shown

for comparison.
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