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Abstract
We study the indefinite Kac–Moody algebras AEn, arising in the reduction of
Einstein’s theory from (n + 1) spacetime dimensions to one (time) dimension,
and their distinguished maximal regular subalgebras An−1 ≡ sln and A

(1)
n−2.

The interplay between these two subalgebras is used, for n = 3, to determine
the commutation relations of the ‘gradient generators’ within AE3. The low-
level truncation of the geodesic σ -model over the coset space AEn/K(AEn)

is shown to map to a suitably truncated version of the SL(n)/SO(n) nonlinear
σ -model resulting from the reduction Einstein’s equations in (n+1) dimensions
to (1 + 1) dimensions. A further truncation to diagonal solutions can be
exploited to define a one-to-one correspondence between such solutions, and
null geodesic trajectories on the infinite-dimensional coset space H/K(H),
where H is the (extended) Heisenberg group, and K(H) its maximal compact
subgroup. We clarify the relation between H and the corresponding subgroup
of the Geroch group.

PACS numbers: 02.20.Tw, 11.30.Na, 04.20.Jb

1. Introduction

Infinite-dimensional symmetries in gravity were first discovered by Geroch [1] in the context
of (3 + 1)-dimensional general relativity after dimensional reduction to (1 + 1) dimensions
(see [2, 3] for an introduction and further references). The group structure was later shown
to be associated with the affine extension of Ehlers’s SL(2, R) symmetry [4, 5], and similar
affinizations of hidden symmetries were discovered for other (super-)gravity theories [4–6].
Evidence for the emergence of an even larger symmetry corresponding to the Kac–Moody
theoretic over-extension AE3 of the original SL(2, R) was presented in [7], following earlier
suggestions of [4, 8]. For gravity in (n + 1) spacetime dimensions, the conjectured symmetry
is AEn, while for 11-dimensional supergravity it is E10, which contains AE10 as a subalgebra
governing the gravitational sector of this theory.
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In [9], this conjecture was re-examined using the insights from the study of cosmological
billiards (reviewed in [10]). Besides a remarkable dynamical match of a certain ‘geodesic’
one-dimensional σ -model with the gravity theory, the conjecture was made that the Kac–
Moody algebra1 allows for a re-emergence of the dependence on the coordinates along which
the theory had been reduced. This would entail a ‘dimensional transmutation’, in the sense that
the evolution of the geometrical data of a higher-dimensional theory, usually governed by a
set of partial differential equations, can be mapped to a one-dimensional null-geodesic motion
on some infinite-dimensional coset space. This conjecture was based on the observation that
the hyperbolic algebra E10 contains a set of generators possessing the correct structure for
higher order gradients in the suppressed directions. These, and their analogues in AEn, will
be called ‘gradient generators’ in the present paper. Further progress in the study of the
one-dimensional σ -model is partly (but not only) hindered by the lack of known commutation
relations. Although the irreducible representations appearing in level expansions of these
algebras w.r.t. to their sln subalgebras can be determined rather efficiently on the computer
[11], the commutators are much harder to obtain2. Some progress on this front was reported
recently in [12] where an algorithm for computing commutation relations in a Borel subalgebra
was outlined. Different aspects of the one-dimensional model were studied in [13–15].

In this paper we study the σ -model based on AEn, extending previous results of [10], in
order to examine aspects of the general picture explained above. Our focus is on AEn rather
than E10, since the core difficulties which one encounters in matching the one-dimensional
σ -model and the higher-dimensional field equations appear right away at levels ±1 in a graded
decomposition of AEn under its sln subalgebra. In other words, the key problem of elevating
the linear duality of free spin-2 theories to the nonlinear level must be faced already in the first
step, whereas for E10, the difficulties only become visible at � = 3 and beyond, because the
duality relating the 3- and 6-form fields is still a linear one, modulo metric factors, just like in
Maxwell theory.

As we will show, the ‘gradient representations’ are intimately linked to the affine
subalgebra A

(1)
n−2 of AEn. Exploiting the interplay of this affine subalgebra with the finite-

dimensional An−1 ≡ sln subalgebra, we are able to derive an infinite new set of structure
constants for AE3. After the restriction of the AEn σ -model to the affine A

(1)
n−2 subsector, we

exhibit a map between special solutions of the σ -model and solutions of the gravitational field
equations with (n − 1) commuting spacelike Killing vectors, corresponding to a reduction
from (n + 1) dimensions to (1 + 1) dimensions, but with a restricted space dependence. These
results are analogous to previous ones in [9, 10, 13–15], but permit us to expose the remaining
discrepancies in the simplest possible context. In order to focus on these difficulties, we
truncate the affine σ -model further to a ‘Heisenberg coset model’ H/K(H), which can be
solved exactly, and whose gravitational counterpart corresponds to diagonal metric solutions
with two commuting (spacelike) Killing vectors (known as ‘polarized Gowdy cosmologies’
[16, 17]). We will then exhibit an explicit one-to-one correspondence between these two
models, by showing how the general initial data of the Heisenberg σ -model and the null
geodesic trajectories on H/K(H) which they generate can be mapped to a general space- and
time-dependent diagonal metric configuration satisfying Einstein’s equation. In this way, we
are able to validate the ‘gradient hypothesis’, and thereby the main conjecture of [9], at least
in this simplified context.

We also elucidate the relation between the standard action of the (restricted) Geroch
group on diagonal solutions, and the action of the Heisenberg group H on the null geodesics.

1 We often use the acronyms ‘KMA’ for ‘Kac–Moody algebra’ and ‘CSA’ for ‘Cartan subalgebra’.
2 See also remarks after (2.18) to appreciate the challenge.
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More specifically, we will show that the action of these two groups coincides on the domain
where the Geroch group acts non-trivially. Let us recall that only ‘half’ of the Geroch group
acts non-trivially in the standard realization [2, 5], whereas the other half merely shifts the
integration constants arising in the definition of the higher order ‘dual potentials’, and has
no effect on the physical metric. For this reason, the standard Geroch group affects only
part of the initial data (the full initial data of the off-diagonal degrees of freedom, but only
the ‘initial coordinates’ of the scale factors). By contrast, the realization proposed here
is such that the Heisenberg subgroup of the Geroch group acts non-trivially on all initial
data.

Other attempts to generate spacetime dependence through algebraic constructions based
on E11 [18] and similar ‘very-extended’ algebras [19] have been developed and discussed
in [20–22]. In [20], this was achieved by including a certain irreducible representation of
the relevant very-extended algebra containing translation generators and (infinitely many)
other generalized central charges, whereas in [21] spacetime is thought to occur through
an auxiliary parameter and gradient representation in restricted models. A key difference
between the present approach and [18] is that the correspondence exhibited here works
only after the gauge degrees of freedom on both sides have been eliminated by suitable
gauge choices: on the σ -model side this implies the complete elimination of the degrees of
freedom associated with the maximal compact subgroups, whereas on the gravitational side,
it involves not only gauge fixing the vielbein (as discussed in section 5.1), but also solving
the canonical constraints. As a consequence, the global symmetry relates solutions which are
physically distinct. By contrast, the proposal of [18, 20] seeks a ‘covariant formulation’. This
means that the symmetry is actually much larger than the relevant very-extended Kac–Moody
group, as it must contain general coordinate transformations (for instance, via the closure
with the conformal group [23]) and other gauge transformations; hence, one must disentangle
transformations relating gauge equivalent configurations from those which generate physically
inequivalent solutions. While it is not possible to really discriminate between the different
proposals by analysing low-level degrees of freedom, the issue will be decided by whether and
how the higher level fields can be fitted into the scheme. The present paper is a first step in this
direction.

This paper is structured as follows. First we define and analyse the KMA AEn and
its two distinguished maximal regular subalgebras A

(1)
n−2 and An−1 and define the gradient

representations in this context in section 2. In section 3, we compute infinitely many new
structure constants involving the gradient generators in the special case of AE3 by combining
these two subalgebras. The σ -model based on AEn is defined in section 4 where we study
its restriction to A

(1)
n−2. (The restriction to An−1 is studied in appendix B where we also study

gravity coupled to p-forms.) The map from (parts of) the affine model to the two-dimensional
reduction of gravity is deduced in section 5. Finally, by using the Heisenberg model we
examine the relation of the σ -model to the Geroch group in section 6. Appendix A contains a
proof of the fact that the compact subalgebra of a (split) KMA is not a KMA.

2. Distinguished maximal regular subalgebras of AEn

2.1. Definition of AEn

The indefinite Kac–Moody algebras AEn
3 (for n � 3) are defined in the usual way via the

Chevalley–Serre presentation [24] associated with the Dynkin diagram displayed in figure 1.
The simple positive and negative generators are denoted by ea and fa respectively, and the

3 We will designate by AEn both the group and the Lie algebra, as it should be clear from the context which is meant.
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α1 α2 α3 αn 1

αn

Figure 1. The Dynkin diagram of AEn with labelling of the simple roots shown. Solid nodes
(black and grey) belong to An−1 ≡ sln which gets enhanced to gln. Grey nodes mark the common
‘horizontal’ An−2 ≡ sln−1 subalgebra.

Cartan subalgebra (CSA) generators by ha , where a = 1, 2, . . . , n. We consider the algebra
over R in split real form. AEn is hyperbolic for n � 9; this means that all Dynkin subdiagrams
obtained by removing one or more nodes are either affine or finite. We will also need to make
use of the Chevalley involution ω, defined on the simple generators by

ω(ea) = −fa, ω(fa) = −ea, ω(ha) = −ha, (2.1)

and the generalized transposition

xT := −ω(x). (2.2)

The ‘maximal compact’ subalgebra K(AEn) of AEn is then defined as the invariant algebra
w.r.t. the involution ω, namely

K(AEn) := {x ∈ AEn|x = ω(x)} (2.3)

and consists of the ‘antisymmetric’ Lie algebra elements in view of (2.2).
In this section we shall consider two distinguished maximal regular subalgebras of AEn,

namely sln and the affine A
(1)
n−2, obtained by removing the nodes labelled n and 1, respectively.

The first generates the group of special linear transformations acting on the spatial n-bein of
gravity in (n + 1) spacetime dimensions, and can be enlarged to gln by inclusion of the CSA
generator associated with the white node in figure 1. The second subalgebra corresponds to
the generalization of the Geroch group that is obtained after the reduction of pure gravity from
(n + 1) dimensions to (1 + 1) dimensions.

2.2. An−1 ≡ sln subalgebra and level decomposition of AEn

The regular subalgebra of type An−1 ≡ sln is generated by considering only commutators of
the simple generators associated with nodes 1 up to (n − 1) in figure 1. By including the
Cartan subalgebra element hn one can extend sln to gln. Its generators are denoted by Ka

b

(a, b = 1, 2, . . . , n) and obey the standard commutation relations[
Ka

b,K
c
d

] = δc
bK

a
d − δa

dK
c
b. (2.4)

For these generators, the transposition (2.2) reduces to (KT )ab = Kb
a . Equation (2.4) entails

the following identification of the gln elements with the Chevalley–Serre generators of AEn

for i = 1, 2, . . . , n − 1

ei = Ki
i+1, fi = Ki+1

i , hi = Ki
i − Ki+1

i+1. (2.5)

Regularity of the gln subalgebra means that the standard invariant bilinear form on AEn, which
is defined by

〈ei |fj 〉 = δij ; 〈hi |hj 〉 = Aij (2.6)
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coincides with the usual Cartan–Killing form on gln when restricted to the latter subalgebra
(Aij is the Cartan matrix of AEn, which is simply laced). Explicitly, the scalar product on gln
is given by 〈

Ka
b

∣∣Kc
d

〉 = δc
bδ

a
d − δa

b δ
c
d . (2.7)

It is straightforward to check that this is indeed consistent with (2.6). Let us also express the
trace K =∑n

a=1 Ka
a in gln in terms of the CSA generators ha; we have

K = −(n − 1)h1 − (2n − 2)h2 − (2n − 3)h3 − · · · − nhn. (2.8)

Solving for hn gives

hn = −K1
1 − K2

2 + Kn
n = −K + K3

3 + K4
4 + · · · + Kn−1

n−1 + 2Kn
n. (2.9)

The adjoint representation of AEn can be decomposed under the (adjoint) action of gln
into an infinite tower of sln representations. The sln level �, or simply the level, of a given
representation counts the number of occurrences of the simple root αn in the corresponding
AEn root α, i.e.

α = �αn +
n−1∑
j=1

mjαj . (2.10)

This level is left invariant by the action of sln and provides an elliptic slicing of the forward
lightcone in the AEn root lattice. Level � = 0 contains the adjoint of gln. At level � = 1 we
have the representation

[0, 1, 0, 0, . . . , 0, 1] ←→ Ea1...an−2,an−1 (2.11)

associated with the Young tableau

a1 an−1

a2

.

.

.

an−2
.

This tensor is therefore antisymmetric in its first (n − 2) indices [a1 . . . an−2], and obeys

E[a1...an−2,an−1] = 0. (2.12)

Under Chevalley transposition we obtain

Fa1...an−2,an−1 ≡ −ω(Ea1...an−2,an−1). (2.13)

Under gln the tensors Ea1...an−2,an−1 and Fa1...an−2,an−1 transform contravariantly or covariantly,
as indicated by the position of indices, for instance[

Ka
b,E

c1...cn−2,cn−1
] = δ

c1
b Eac2...cn−2,cn−1 + · · · + δ

cn−1
b Ec1...cn−2,a. (2.14)

Hence the level is counted by the operator 1
n−1K .

The identification of the AEn Chevalley–Serre basis is completed by relating the
generators en and fn to the level � = ±1 generators via

en = E3 4...n,n, fn = F3 4...n,n. (2.15)
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The commutator [(� = 1), (� = −1)] is best written using an auxiliary (dummy) tensor
Xa1,...an−2,an−1 (with the same Young symmetries as F) in the form[
Xa1...an−2,an−1E

a1...an−2,an−1 , Fb1...bn−2,bn−1

] = −(n − 2)!
(
Xb1...bn−2,bn−1K

−Xb1...bn−2,eK
e
bn−1 − (n − 2)Ke

[bn−2Xb1...bn−3]e,bn−1

)
. (2.16)

This is consistent with the normalization4〈
Ea1...an−2,n−1

∣∣Fb1...bn−2,bn−1

〉 = −n − 2

n − 1
(n − 2)!

(
δ

a1...an−2
b1...bn−2

δ
an−1
bn−1

+ δ
[a1
bn−1

δ
a2...an−2]
[b2...bn−2

δ
an−1
b1]

)
, (2.17)

corresponding to the standard normalization for the Chevalley generators

〈en|fn〉 = 1. (2.18)

All higher levels in the sln decomposition can be obtained by taking multiple commutators
of the level � = 1 generator Ea1...an−2,an−1 . For AE3, the decomposition into irreducible
representations of sl3 is known up to level � = 56 [11]. Counting outer multiplicities, the total
number of sl3 representations up to that level is [25]

#(representations for � � 56) = 20 994 472 770 550 672 476 591 949 725 720. (2.19)

Consequently, the complete table of structure constants up to that level will already contain
more than 1062 entries! Hence, the ‘gradient representations’ that we will consider below
constitute only a tiny subsector (but not a subalgebra) of the full Lie algebra.

2.3. Affine A
(1)
n−2 subalgebra

Figure 1 also shows that AEn has a regular affine subalgebra A
(1)
n−2 ≡ ŝln−1 ⊕ Rĉ ⊕ Rd̂

generated by nodes 2 up to n (the circular subdiagram in figure 1)5. We write the corresponding
traceless generators as K̄

α

mβ with m ∈ Z, and Greek indices α, β, . . . ∈ {2, . . . , n}. The
generators which belong to both this affine subalgebra and the sln−1 constitute what we call
the horizontal algebra sln−1 corresponding to the nodes 2 up to n − 1, with generators

K̄
α

0 β = Kα
β − 1

n − 1
δα
βKγ

γ (2.20)

in the gln from above. The relevant nodes in figure 1 are marked in grey.
The affine commutation relations are[

K̄
α

mβ, K̄
γ

n δ

] = δ
γ

β K̄
α

m+nδ − δα
δ K̄

γ

m+nβ + mδm,−n

(
δα
δ δ

γ

β − 1

n − 1
δα
βδ

γ

δ

)
ĉ. (2.21)

The central element ĉ and the derivation d̂ required for the n-dimensional CSA of A
(1)
n−2 can be

identified in the CSA of the rank n KMA AEn. Requiring the affine level counting operator d̂

to obey

[d̂, en] = −en, [d̂, ei] = 0 (i = 2, . . . , n − 1), 〈d̂|d̂〉 = 0, (2.22)

4 Symmetrization and antisymmetrization are defined with ‘strength one’ throughout this paper, such as for instance
in

δ
a1a2
b1b2

:= 1
2 δ

a1
b1

δ
a2
b2

− 1
2 δ

a1
b2

δ
a2
b1

, δ̄
a1a2
b1b2

:= 1
2 δ

a1
b1

δ
a2
b2

+ 1
2 δ

a1
b2

δ
a2
b1

.

where a bar over δ denotes symmetrization, and no bar means antisymmetrization.
5 We follow the convention that ŝln−1 denotes the loop algebra based on An−2 ≡ sln−1. The non-twisted affine
algebra A

(1)
n−2 is obtained by adjoining the central element ĉ and the derivation d̂ to the Cartan subalgebra, which then

has dimension n [24]. (The rank of A
(1)
n−2 is n − 1.)
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results in the following expressions for ĉ and d̂ in terms of the gln elements:

ĉ =
n∑

i=2

hi = −K1
1, (2.23)

d̂ = n − 2

2(n − 1)
K1

1 − 1

n − 1
Kα

α, (2.24)

such that

K = Ka
a = K1

1 + Kα
α = −(n − 1)d̂ − n

2
ĉ,

�⇒ Kα
α = −(n − 1)d̂ − n − 2

2
ĉ. (2.25)

The CSA elements ĉ and d̂ are normalized according to

〈ĉ|d̂〉 = −1, 〈d̂|d̂〉 = 〈ĉ|ĉ〉 = 0, (2.26)

and the other non-vanishing inner product is〈
K̄

α

mβ

∣∣K̄γ

n δ

〉 = δm,−n

(
δα
δ δ

γ

β − 1

n − 1
δα
βδ

γ

δ

)
, (2.27)

which is compatible with (2.6).
Alternatively, the adjoint of AEn can be decomposed under the action of A

(1)
n−2. In this

case, the grading is labelled by the affine level, which is equal to the coefficient of the root
α1 (now providing a parabolic slicing of the forward lightcone in the root lattice). This
decomposition was introduced and studied in [26] for AE3, but we will not require these
results here6.

2.4. Horizontal sln−1 and gradient representations

Writing the Kac–Moody algebra AEn as a graded representation of its sln subalgebra is not
independent of making use of the affine A

(1)
n−2 subalgebra. This is due to the identification of

common generators in the horizontal algebra sln−1 ≡ An−2 = An−1∩A
(1)
n−2. We repeat that this

is the An−2 subalgebra of AEn generated by the n− 2 (grey) nodes 2 up to n− 1 in diagram 1,
with the generators given in equation (2.20). In particular, the affine generator K̄

α

mβ on affine
level m, transforming in the adjoint of the horizontal sln−1, also transforms under sln ⊃ sln−1,
and it is natural to ask to which sln representation it belongs. This is most easily determined
by considering the lowest weight vector and its Dynkin labels with respect to sln. The lowest
weight vector lies in the root space of the level-m AEn root (assuming m � 1 from now on)

α = mαn + (m − 1)

n−1∑
j=2

αj (2.28)

corresponding to sln Dynkin labels [m − 1, 1, 0, . . . , 0, 1]. We see that this is consistent with
the common horizontal sln−1: in terms of the Dynkin labels restricting to the horizontal An−2 of
A

(1)
n−2 means dropping the first entry of [m−1, 1, 0, . . . , 0, 1] and the resulting representation is

indeed simply the adjoint [1, 0, . . . , 0, 1] of the horizontal sln−1 as anticipated. The generator

6 Beyond the so-called basic representation on level one there are already infinitely many A
(1)
n−2 representations on

affine level two, which can be calculated from modularity and an appropriate implementation of the Serre relations
[26]. This is true not only for AE3 but also for AEn.
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corresponding to the [m − 1, 1, 0, . . . , 0, 1] representation of sln is therefore associated with
the following Young tableau:

.

.

.

· · ·
· · ·

· · ·
· · ·

.

.

.

c1 cn−1

c2

.

.

.

cn−2

.

This level-m element of AEn thus has (m − 1) symmetric sets of (n − 1) antisymmetric
indices and then (n − 1) indices with the structure of the representation on sln level � = 1,
cf (2.11)–(2.12). Because this is rather cumbersome to write, it is convenient to treat this
tensor as a representation of sln, and to dualize the sets of antisymmetric indices by means of
the sln ε-symbol. The result is an sln tensor with (m − 1) lower indices

Eb1...bm−1
c1...cn−2,cn−1 (2.29)

which is symmetric in these indices, while the upper indices belong to the level-one
representation (2.11). There is a similar expression for the transposed F generator. We
stress that (2.4) and (2.29) are equivalent only as representations of sln, but not gln, as they
carry different gl1 charges. The commutation relations must therefore be amended by a
correction term for the transformation under the trace K in order to account for this charge.
We will come back to this point below for AE3.

As noted in [9], the infinite tower of representations (2.29) has precisely the right structure
corresponding to the spatial gradients of the low-level fields, such that each index bi becomes
associated with a gradient operator ∂/∂xbi , and the irreducibility condition of the above Young
tableau translates to vanishing divergence. More specifically, for AEn, the relevant degree
of freedom is the dual graviton, corresponding to the above tableau with only the right two
columns as in (2.11), and appears already at level � = 1 (for E10 it appears only at level
� = 3).7 For this reason, we will refer to these representations as gradient representations. Let
us emphasize that, except for the lowest levels, this is so far only a kinematical correspondence8.

The other main feature of the gradient representations is that they contain the affine
generators. More specifically, the latter are obtained by performing a ‘dimensional reduction’,
restricting the gradient indices (i.e. the lower indices in (2.29)) to the single value b1 = · · · =
bm−1 = 1, and the upper indices to the remaining values α, β, . . . = 2, . . . , n. This truncation
corresponds precisely to a dimensional reduction of Einstein’s theory from (n + 1) to (1 + 1)

spacetime dimensions, with spacelike Killing vectors ∂/∂x2, . . . , ∂/∂xn, and x ≡ x1 as the
surviving spatial coordinate. The precise identification of K̄

α

mβ (for m > 0) as part of the sln

tensor (2.29) is

K̄
α

mβ = 1

(n − 2)!
εβγ1...γn−2E 1 . . . 1︸ ︷︷ ︸

(m−1)

γ1...γn−2,α, (2.30)

7 The dual graviton representation has been discussed previously in [9, 27–33].
8 We note that there are generators resembling a kth spatial derivative (on level � + k) of any given generator
(on level �). These will generally occur with exponentially increasing outer multiplicity as they belong to a standard
lowest weight representation of the affine algebra. The gradient representations (2.29) are distinguished by being
generated from the adjoint representation of the affine algebra and hence have constant outer multiplicity, equal to 1.
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α1 α2 α3

Figure 2. The Dynkin diagram of AE3 with labelling of the simple roots. Solid nodes belong to
sl3 which gets enhanced to gl3. The grey node marks the horizontal A1 ≡ sl2.

where the indices α, β, . . . = 2, . . . , n have been restricted to sln−1. For affine level m < 0
the identification is

K̄
α

mβ = 1

(n − 2)!
εαγ1...γn−2F

(m−1)︷ ︸︸ ︷
1 . . . 1

γ1...γn−2,β . (2.31)

The correctness of these identifications is easy to check at levels |m| � 1.
One can now exploit the interplay between sln and A

(1)
n−2 to determine the complete

commutators of the ‘gradient generators’ modulo non-gradient representations. This is
achieved by writing the general ansatz for a commutator in sln covariant form, and then
restricting to the horizontal sln−1 and using the affine relations (2.21). In the following
section, we exemplify this procedure for AE3.

3. AE3 and its gradient commutators via sl3 and A(1)
1

3.1. AE3 in sl3 form

The Dynkin diagram of AE3 is displayed in figure 2. Before computing the contribution
of the gradient generators to commutators for AE3 we give the explicit formulæ for the sl3

generators and the appropriate low sl3 level commutators of AE3.
In this case, the general identifications (2.8) and (2.9) read

h3 = −K + 2K3
3, K = −2h1 − 4h2 − 3h3. (3.1)

The gl3 commutation relations and inner products are identical in form to (2.4) but with index
ranges now restricted to a = 1, 2, 3. The decomposition of AE3 under its sl3 subalgebra
results in table 1, containing levels � = 1, . . . , 5.

Generators belonging to the class of gradient generators have been marked with an
asterisk. Our notation for representations of gl3 is the one inherited from sl3. The general
� = 1 generator (2.11) reduces to a generator of the type

Eb1b2 , (3.2)

where we have dropped the separating comma. The Young irreducibility constraint (2.12)
now implies that this tensor is symmetric,

Eb1b2 = Eb2b1 . (3.3)

For sl3 one can write any representation with Dynkin labels [p, q] as a tensor with p lower
and q upper indices, after lowering the p pairs of antisymmetric indices with ε of sl3.
The irreducibility constraints are then symmetric in lower and upper indices separately and
vanishing of any contraction. The totally antisymmetric tensor εabc used for lowering the
indices, however, is not invariant under gl3 as can be checked easily. This means that while
the � = 2 tensor with natural indices Ec1c2,b1b2 transforms under gl3 as the indices suggest, i.e.[
Ka

b,E
c1c2,b1b2

] = δ
c1
b Eac2,b1b2 + δ

c2
b Ec1a,b1b2 + δ

b1
b Ec1c2,ab2 + δ

b2
b Ec1c2,b1a, (3.4)

the corresponding tensor with lowered indices does not transform in the obvious way. Rather
one has to add a compensating term for the transformation under the trace K = Ka

a . Generally,[
Kc

d,Ea1...ak

b1b2
] = −kδc

(a1
Ea2...ak)d

b1b2 + 2δ
(b1
d Ea1...ak

b2)c + kδc
dEa1...ak

b1b2 . (3.5)
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Table 1. Adjoint of AE3 decomposed under regular sl3 subalgebra. The charge of an element X
on level � under the trace K = Ka

a of gl3 is [K,X] = 2�X as explained in the text.

� [p1, p2] α α2 mult α µ Gradient

1 [0, 2] (0, 0, 1) 2 1 1 *

2 [1, 2] (0, 1, 2) 2 1 1 *

3 [2, 2] (0, 2, 3) 2 1 1 *
[1, 1] (1, 3, 3) −4 3 1

4 [3, 2] (0, 3, 4) 2 1 1 *
[2, 1] (1, 4, 4) −6 5 2
[1, 0] (2, 5, 4) −10 11 1
[0, 2] (2, 4, 4) −8 7 1
[1, 3] (1, 3, 4) −2 2 1

5 [4, 2] (0, 4, 5) 2 1 1 *
[3, 1] (1, 5, 5) −8 7 3
[2, 0] (2, 6, 5) −14 22 3
[0, 1] (3, 6, 5) −16 30 2
[0, 4] (2, 4, 5) −6 5 2
[1, 2] (2, 5, 5) −12 15 4
[2, 3] (1, 4, 5) −4 3 2

The last term is the necessary correction: the charge of the original tensor on level k + 1 with
2k + 2 upper indices under the trace K is 2k + 2, and this charge has to be maintained. Similar
remarks apply to the Chevalley transposed generators

Fa1...ap
b1...bq

= (Ea1...ap

b1...bq
)T

. (3.6)

We now present the commutation of the AE3 generators for levels |�| � 2 in sl3 form.
These can be deduced from table 1 after the generators have been normalized in the standard
bilinear form9. For � = 1, 2 we demand〈

Eb1b2
∣∣Fd1d2

〉 = δ̄
b1b2
d1d2

:= δ
(b1
d1

δ
b2)
d2

, (3.7)〈
Ea

b1b2
∣∣Fc

d1d2

〉 = Pa
b1b2
∣∣c

d1d2 := δc
aδ̄

b1b2
d1d2

− 1
2δ(b1

a δ
b2)

(d1
δc
d2)

. (3.8)

The commutation relations are then[
Eb1b2 , Fd1d2

] = −δ̄
b1b2
d1d2

K + 2δ
(b1
(d1

K
b2)

d2)
, (3.9)

[Eb1b2 , Ec1c2 ] = 2εb1c1aEa
b2c2 , (3.10)[

Fd1d2 , Fc1c2

] = −2εd1c1aF
a
d2c2 , (3.11)[

Ea
b1b2 , Fd1d2

] = 2εae(d1δ
(b1
d2)

Eb2)e, (3.12)[
Fc

d1d2 , E
b1b2
] = 2εce(b1δ

b2)

(d1
Fd2)e, (3.13)[

Ea
b1b2 , F c

d1d2

] = −Pa
b1b2
∣∣c

d1d2K + 2δc
aδ

(b1
(d2

K
b2)

d2)
− δ̄

b1b2
d1d2

Kc
a − 1

2δ(b1
a Kb2)

(d1δ
c
d2)

. (3.14)

Here, symmetrization over lower or upper non-contracted indices is implicit.

9 In general, there remain signs ±1 which need to be fixed consistently. Up to |�| � 2 our choice is consistent.
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3.2. A
(1)
1 and gradient commutators

The identification of the affine A
(1)
1 ⊂ AE3 subalgebra is achieved through (cf (2.23))

ĉ = h2 + h3 = −K1
1, d̂ = h1 + 5

4h2 + 3
4h3 = 1

4K1
1 − 1

2

(
K2

2 + K3
3
)

K = Ka
a = K1

1 + Kγ
γ = −2d̂ − 3

2 ĉ, �⇒ Kγ
γ = −2d̂ − 1

2 ĉ.
(3.15)

The conventional choice for AE3 would be to take node 3 to be the horizontal node instead of
2 as we did, since this is more natural from the extension point of view. This choice would
correspond to the Ehlers SL(2, R), and it is also the choice taken by [26]. However, it does not
reduce to the desired horizontal sl2 ⊂ sl3 subalgebra, and for this reason we here make another
choice, corresponding to the ‘Matzner–Misner’ SL(2, R) in the physical interpretation. The
gradient generators (2.29) on level � have Dynkin labels [� − 1, 2] and after lowering the sets
of antisymmetric indices take the form

Ea1...a�−1
b1b2 . (3.16)

We now determine the contribution of the gradient generators to AE3 commutators by
writing for each commutator the most general sl3 covariant ansatz compatible with the level
decomposition, and then matching this ansatz with the affine commutation relations (2.21).
Let us first note the projector onto a representation with Dynkin labels [�, 2]:

Pa1...a�

b1b2
∣∣c1...c�

d1d2 = δ̄c1...c�

a1...a�
δ̄

b1b2
d1d2

− 2�

3 + �
δ̄c1...c�−1
a1...a�−1

δ(b1
a�

δ
b2)

(d1
δ

c�

d2)

+
�(� − 1)

(3 + �)(2 + �)
δ̄c1...c�−2
a1...a�−2

δ̄b1b2
a�−1a�

δ̄
c�−1c�

d1d2
, (3.17)

where the right-hand side also has to be symmetrized over the a and c indices. Here, δ̄ denotes
the strength one symmetrizing projector. The second and third terms are only present when
� � 1 or � � 2, respectively. The projector has the unusual property that it also serves as a
projector on the representation [2, �] when acting from the right10.

The restriction to those elements in Ea1...a�−1
b1b2 belonging strictly to the affine subalgebra

gives an identification of K̄
α

� β as explained above. Here, the identification of the affine
subalgebra within AE3 for all levels � > 0 reads

K̄
α

� β = εβγ E1 . . . 1︸ ︷︷ ︸
(�−1)

γ α (3.18)

and for −� < 0

K̄
α

−�β = εαγ F

(�−1)︷ ︸︸ ︷
1 . . . 1

γβ . (3.19)

These formulae specialize (2.30) and (2.31) to the case n = 3. Note that we use Euclidean
conventions resulting in ε23 = ε23 = 1. It is easy to check that indeed (� � 1)[

d̂, E1 . . . 1︸ ︷︷ ︸
(�−1)

αβ
] = −�E1 . . . 1︸ ︷︷ ︸

(�−1)

αβ (3.20)

and [
ĉ, E1 . . . 1︸ ︷︷ ︸

(�−1)

αβ
] = 0. (3.21)

Here the correction term in (3.5) is essential in order to obtain a vanishing result.

10 That this is not naturally so can be seen, for instance, from considering the projector on the Riemann tensor
symmetries.
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Upon restriction to the affine subalgebra the projectors (3.17) simplify to

P1 . . . 1︸ ︷︷ ︸
�

β1β2
∣∣c1...c�−1

d1d2 = δ̄
c1...c�

1...1 δ̄
β1β2
d1d2

(3.22)

for positive � and for negative � accordingly. The identification (3.18) together with the affine
relations (2.21) then determines the commutators of the gradient representations. Note that
the identification also fixes the normalization of the gradient tensor in the AE3 invariant form
to be 〈

Ea1...a�

b1b2
∣∣Fc1...ck

d1d2

〉 = {Pa1...a�

b1b2
∣∣c1...c�

d1d2 for � = k

0 for � 
= k
, (3.23)

by using equation (2.27).
The commutator of two E generators on levels � and k is then[

Ea1...a�−1
b1b2 , Ec1...ck−1

d1d2
] = −Ea1...a�−1c1...ck−1e

d1(b1εb2)d2e − Ea1...a�−1c1...ck−1e
d2(b1εb2)d1e + · · · .

(3.24)

The dots on the right-hand side indicate other possible AE3 generators appearing in this
commutators which will, however, vanish upon restriction to the affine subalgebra A

(1)
1 . The

term on the right is fixed up to normalization from the tensor symmetries and the normalization
is fixed from the affine subalgebra. A similar expression holds for [F,F ].

For � > k we obtain[
Ea1...a�

b1b2 , F c1...ck
d1d2

] = −2Pa1...a�

b1b2
∣∣e1...e�

f1f2Pg1...gk

h1h2
∣∣c1...ck

d1d2

· εe�h1iδ
f1
h2

δ̄g1...gk

e1...ek
Eek+1...e�−1

f2i + · · · . (3.25)

Finally, level � + 1 > 0 commutes with level −� − 1 into the adjoint of gl3[
Ea1...a�

b1b2 , F c1...c�
d1d2

] = Pa1...a�

b1b2
∣∣e1...e�

f1f2Pg1...g�

h1h2
∣∣c1...c�

d1d2

· (δg1
e1

· · · δg�

e�
δ

f1
h1

δ
f2
h2

K − 2δg1
e1

· · · δg�

e�
δ

f1
h1

Kf2
h2 + �δ

f1
h1

δ
f2
h2

δg1
e1

· · · δg�−1
e�−1

Kg�
e�

)
.

(3.26)

This commutator is exact since there are no other Lie algebra elements besides those of gl3
at level � = 0. The omitted terms (= dots) in the other AE3 commutators are necessary for
the Jacobi identities. This phenomenon first occurs at level � = 3, since this is the first time a
non-gradient representation is present (cf table 1). Checking the Jacobi identities using solely
the gradient generators shows a violation which is resolved when one also takes into account
the � = 3 representation with Dynkin labels [1, 1].

4. Affine truncation of the AEn/K(AEn) σ-model

Having clarified the embeddings of the subgroups and having determined the gradient
commutators, we next turn to the one-dimensional ‘geodesic’ σ -model over the coset space
AEn/K(AEn). This model is governed by the Lagrangian [10]

L = 1

2n
〈P|P〉, (4.1)

where all quantities depend only on the affine parameter (‘time’) t, and n(t) is the lapse function
required for reparametrization invariance t → t̃ (t). The quantity P(t) and the K(AEn) gauge
connection Q(t) are determined from the Cartan form

∂tVV−1 = Q + P (4.2)
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with V(t) ∈ AEn/K(AEn). By construction, Q belongs to the compact subalgebra K(AEn)

(fixed by the Chevalley involution, cf equation (2.3)), and P to its complement in AEn. With
these definitions and notation, the equations of motion assume the simple looking form [14]

n∂t (n
−1P) = [Q,P]. (4.3)

To get these equations into the standard second-order form, we would have to choose
coordinates on the AEn/K(AEn) coset manifold and to substitute them into (4.2), but we
will skip this step here. Although these objects are highly formal constructs at this point,
readers need not worry about our lack of knowledge of what the ‘group’ AE3 really is,
because the truncated level expansion provides an algorithm which is such that all operations
take place in the Lie algebra, and involve only a finite number of steps if one truncates at finite
level. As we will show these steps remain well defined for the affine truncation where one
retains an infinite number of Lie algebra elements.

Varying the lapse n, we get the (Hamiltonian) constraint

〈P|P〉 = 0. (4.4)

Consequently, the ‘trajectory’ described by (4.3) on the coset manifold is a null geodesic.
The system described by this model is formally integrable [9]. For every solution V giving

rise to Q and P satisfying (4.3) we can define a conserved (Noether) charge

J = n−1V−1PV, ∂tJ = 0 (4.5)

taking values in the Lie algebra and obeying a null condition

〈J |J 〉 = 0. (4.6)

Similarly, we can define a (symmetric) ‘metric’ M associated with the ∞-bein V by
M = VT V , which is related to J via

J = 1
2n−1M−1∂tM. (4.7)

Equation (4.5) implies the following constraint on J , and hence on the initial data,

J T = MJM−1. (4.8)

The general solution for M can be (formally) written as

M(t) = exp(ν(t)J T )M(0) exp(ν(t)J ). (4.9)

where

ν(t) :=
∫ t

t0

n(t ′) dt ′, (4.10)

with t0 being some arbitrary initial time. Translated back to V(t), the general solution is

V(t) = k(t)V(0) exp(ν(t)J ). (4.11)

Here, k(t) belongs to the compact subgroup K(AEn) and is not determined by the equations
of motion. This indeterminacy corresponds to the freedom of choosing a gauge for V(t). We
can now work out the above equations of motion (4.3) level by level, following the low-level
results of [10].
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4.1. Restriction to A
(1)
n−2

We will now restrict the one-dimensional geodesic σ -model (4.1) to its affine subsector; this
is a consistent truncation. As we explained, the affine sector originates from the zeroth level
in the A

(1)
n−2 analysis. To this end we define

Sαβ
m = 1

2

(
K̄

α

mβ + K̄
β

−mα

)
,

J αβ
m = 1

2

(
K̄

α

mβ − K̄
β

−mα

)
,

(4.12)

which obey the symmetry relations

Sαβ
m = S

βα
−m, J αβ

m = −J
βα
−m. (4.13)

The generators S
αβ
m , J

αβ
m for m � 0, together with ĉ and d̂, define a basis of A

(1)
n−2. The

commutation relations of A
(1)
n−2 in this basis are[

d̂, Sαβ
m

] = −mJαβ
m ,

[
d̂, J αβ

m

] = −mSαβ
m (4.14)

and, for m, n � 0,[
J αβ

m , Sγ δ
n

] = 1
2δβγ Sαδ

m+n + 1
2δβδS

αγ
m−n − 1

2δαγ S
δβ
m−n − 1

2δαδS
γβ
m+n + 1

2mĉδm,nδ
αγ δβγ , (4.15)[

J αβ
m , J γ δ

n

] = 1
2δβγ J αδ

m+n − 1
2δβδJ

αγ
m−n + 1

2δαγ J
δβ
m−n − 1

2δαδJ
γβ
m+n, (4.16)[

Sαβ
m , Sγ δ

n

] = 1
2δβγ J αδ

m+n + 1
2δβδJ

αγ
m−n − 1

2δαγ J
δβ
m−n − 1

2δαδJ
γβ
m+n. (4.17)

Observe that the central charge drops out in the [J, J ] and [S, S] commutators, but is present
in the ‘mixed’ commutators [J, S]. The elements Jm (with m � 0) generate the (centreless)
‘maximal compact’ subalgebra K

(
A

(1)
n−2

) ≡ K(ŝln−1).11

Next, we expand the Cartan form in this basis as in (4.2), with

Q(t) = Q
(0)
αβ J

αβ

0 +
∑
m�1

Q
(m)
αβ J αβ

m ,

P(t) = P
(0)
αβ S

αβ

0 +
∑
m�1

P
(m)
αβ Sαβ

m + ∂t ρ̂ρ̂−1d̂ + ∂tσ ĉ.
(4.18)

The quantity ρ̂ will be seen to be directly related to the ‘dilaton’ field (= volume density for
the internal manifold), while eσ is related to the conformal factor in the dimensional reduction
of Einstein’s theory to two dimensions. Observe that the position of indices no longer matters,
as the tensors appearing on the rhs are to be regarded as SO(n − 1) tensors only. Also,

Q
(0)
αβ = −Q

(0)
βα, P

(0)
αβ = +P

(0)
βα (4.19)

whereas the higher modes are not subject to any such symmetry restrictions.
In this general, non-gauge-fixed form, the equations of motion (4.3) read

n∂t (n
−1ρ̂−1∂t ρ̂) = 0, n∂t (n

−1∂tσ ) = 1

2

∞∑
m=1

mQ
(m)
αβ P

(m)
αβ ,

n∂t

(
n−1P

(0)
αβ

) = 2Q
(0)

(α|γ P
(0)

γ |β) +
1

2

∞∑
m=1

(
Q

(m)

(α|γ |P
(m)

β)γ − Q
(m)

γ (βP
(m)

|γ |α)

) (4.20)

11 That the latter is not a Kac–Moody algebra is demonstrated in appendix A. Also note that the additional CSA
elements ĉ and d̂ do not survive the projection to the compact subalgebra and hence K(A

(1)
n−2) equals the compact

subalgebra of the loop algebra ŝln−1.
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for the level-zero degrees of freedom, where the vertical bars on the rhs of the third equation
indicate that symmetrization should be performed only over the indices α and β. At levels
� � 1, we obtain (recall that there is no symmetry under the exchange of α and β)

n∂t

(
n−1P

(�)
αβ

) = �ρ̂−1∂t ρ̂Q
(�)
αβ +

1

2

�∑
m=0

(
Q(m)

αγ P
(�−m)
γβ − Q

(m)
γβ P (�−m)

αγ

)
+

1

2

∞∑
m=0

(
Q(�+m)

αγ P
(m)
βγ − Q

(�+m)
γβ P (m)

γα + Q
(m)
βγ P (�+m)

αγ − Q(m)
γα P

(�+m)
γβ

)
. (4.21)

Finally, the Hamiltonian constraint in a general gauge is

〈P|P〉 = −2ρ̂−1∂t ρ̂∂tσ + P
(0)
αβ P

(0)
αβ +

1

2

∑
m�1

P
(m)
αβ P

(m)
αβ = 0. (4.22)

The first equation in (4.20) can be integrated straightforwardly, with the result

n(t) = ∂t ln ρ̂(t) ⇒ ν(t) = ln ρ̂(t), (4.23)

where integration constants have been chosen conveniently. Hence, the choice of the function
ρ̂(t) can be viewed as a choice of gauge for the lapse n(t); this function is only subject to
the requirement that it be a monotonic function of the affine parameter t. This result can be
plugged into the general solution (4.11) to give

V(t) = k(t)V(0) exp(ln ρ̂(t)J ). (4.24)

Although the above equations of motion constitute a consistent truncation of the full
AEn/K(AEn) σ -model, one may ask how they embed into the latter. Within AEn/K(AEn),
the above equations of motion may receive new contributions from those ‘non-gradient fields’
whose associated Lie algebra elements ‘commute back’ into the affine subalgebra. The role
and significance of these extra contributions is not clear.

We emphasize that expression (4.18) is the most general, because we have not chosen a
gauge for the local subgroup K

(
A

(1)
n−2

)
. In other words, no matter which gauge is chosen, the

equations of motion can always be cast into the forms (4.20), (4.21) and (4.22).

4.2. Triangular gauge

The equations of motion derived above can now be considered in various gauges, thereby
fixing the factor k(t) in (4.11). A convenient choice, and one that has been used almost
exclusively in the previous work, is the triangular gauge, for which the ∞-bein V(t) depends
only on the level � � 0 fields. In this gauge, one obtains

∂tVV−1 = Q
(0)
αβ J

αβ

0 + P
(0)
αβ S

αβ

0 +
∑
m�1

P
(m)
αβ K̄

α

mβ + ∂t ρ̂ρ̂−1d̂ + ∂tσ ĉ. (4.25)

Consequently,

Q
(m)
αβ = P

(m)
αβ for m � 1. (4.26)

Note that the second term on the rhs of (4.21) vanishes for this choice of gauge, in agreement
with previous calculations [14]. While P

(0)
αβ is symmetric, P

(m)
αβ contains both symmetric and

antisymmetric parts for m > 0, and we can therefore decompose it into irreducible son−1

representations:

P
(m)
αβ = P̄

(m)

αβ + Q̄
(m)

αβ (4.27)
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with

P̄
(m)

αβ = P̄
(m)

βα , Q̄
(m)

αβ = −Q̄
(m)

βα , (4.28)

remembering that P̄
(m)

αβ is traceless. With these definitions the dynamical equations (4.20) and
(4.21) become

n∂t (n
−1ρ̂−1∂t ρ̂) = 0, (4.29)

n∂t (n
−1∂tσ ) = 1

2

∑
m�1

m
(
Q̄

(m)

αβ Q̄
(m)

αβ + P̄
(m)

αβ P̄
(m)

αβ

)
, (4.30)

n∂t

(
n−1P̄

(0)

αβ

) = 2
∑
m�0

Q̄
(m)

(α|γ P̄
(m)

γ |β), (4.31)

nρ̂�∂t

(
n−1ρ̂−�P̄

(�)

αβ

) = 2
∑
m�0

(
Q̄

(�+m)

(α|γ P̄
(m)

γ |β) + Q̄
(m)

(α|γ P̄
(�+m)

γ |β)

)
, (4.32)

nρ̂�∂t

(
n−1ρ̂−�Q̄

(�)

αβ

) = 2
∑
m�0

(−Q̄
(�+m)

γ [α Q̄
(m)

β]γ + P̄
(�+m)

γ [α P̄
(m)

β]γ

)
, (4.33)

where the last two equations hold for � � 1. The Hamiltonian constraint (4.22) now reads

〈P|P〉 = −2ρ̂−1∂t ρ̂∂tσ + P̄
(0)

αβ P̄
(0)

αβ +
1

2

∑
m�1

(
Q̄

(m)

αβ Q̄
(m)

αβ + P̄
(m)

αβ P̄
(m)

αβ

) = 0. (4.34)

Are there other viable gauge choices? While the triangular or Borel parametrization is by
no means the only possibility for finite-dimensional matrices, the situation is more subtle for
infinite-dimensional groups. In fact, it appears that so far the triangular parametrization is the
only manageable one for indefinite KMAs. Nevertheless, indications were found recently [34]
that the triangular parametrization must be relaxed if one is to include M theoretic corrections,
and to extend the ‘dictionary’ beyond the very first few levels. Here we simply emphasize
again that independently of the gauge, the equations of motion can always be written in the
forms (4.20), (4.21) and (4.22). The only difference is that the equality (4.26) will fail to hold
in a non-triangular gauge.

5. Comparison with two-dimensional reduction

5.1. Relation to higher-dimensional vielbein

The infinite ‘matrix’ V(t) ∈ AEn/K(AEn) can be thought of as an ∞-bein analogous to the
vielbein of general relativity. Indeed, it contains the (spatial) vielbein as a finite-dimensional
‘submatrix’, if one restricts attention to the level zero sector, i.e. upon restriction of the full
coset to the finite-dimensional coset space GL(n)/SO(n) (note that we keep the GL(1) factor
here as a remnant of the full algebra). As is well known, pure gravity in (n + 1) spacetime
dimensions exhibits a hidden SL(n − 1) symmetry after reduction to three dimensions. This
symmetry is obtained through an enlargement of the manifest SL(n − 2) symmetry upon
dualization of (n− 2) Kaluza–Klein vectors to (n− 2) scalar fields. After further reduction to
two dimensions the system becomes integrable with a Lax pair, and admits an A

(1)
n−2 symmetry

as a ‘solution generating group’ [4–6]; for n = 3 this group is known as the Geroch group
[1, 2]. Together with the GL(n) acting on the spatial n-bein, we thus recover precisely the
subgroups of AEn discussed in the foregoing section.
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Let us therefore spell out this correspondence in a little more detail, in order to facilitate
the comparison between the one-dimensional geodesic σ -model introduced in the foregoing
section, and the D = 2 theory to be discussed in the following subsection. For this purpose,
we need to fix gauges such that

EM
A =

(
N 0
0 em

a

)
. (5.1)

This equation displays the decomposition of the (n+1)-bein into a lapse factor N, and a spatial
n-bein em

a; the shift variables (which enforce the spatial diffeomorphism constraint) have been
set to zero, as required for the comparison with the Kac–Moody σ -model. As we said already,
the spatial n-bein can be viewed as the level-0 sector of the ∞-bein V , and thereby of the coset
AE3/K(AE3). As is well known [10], the restriction of the σ -model Lagrangian (4.1) to the
� = 0 sector coincides precisely with the dimensional reduction of Einstein’s theory to one
time dimension.

In section 5.2, we will compare the one-dimensional σ -model equations of motion with
those obtained in the reduction of Einstein’s theory to (1+1) dimension (which depend on time
and one extra spatial coordinate). For this comparison, one further step is required, namely
the split of the spatial n-bein in (5.1) according to

EM
A =

λ 0 0
0 λ 0
0 0 ρ1/(n−1)ēm̄

ā

 . (5.2)

Here we have singled out one (the first) spatial direction, and decomposed the remaining
(n − 1)-bein into a unimodular part, and its determinant. So det

(
ēm̄

ā
) = 1, and ρ measures

the volume of the (n − 1)-dimensional internal space (‘internal’ from the (1 + 1)-dimensional
perspective, of course). In addition, we have adopted the conformal gauge for the zweibein,
with the conformal factor λ, thus tying the lapse to the (11) component of the spatial metric.
Finally, setting the remaining elements of the first column and the first row of em

a to zero
is related to the hypersurface orthogonality of the Killing vectors usually assumed in the
reduction to (1 + 1) dimensions [2, 5].

The special parametrization (5.2) results in the following non-vanishing components of
the coefficients of anholonomicity 
ABC ≡ 2EA

MEB
N∂[MEN]C (with ∂x ≡ ∂/∂x1)


0b̄ c̄ = 1

n − 1
λ−1δb̄c̄∂tρρ−1 + λ−1ēb̄

m̄∂t ēm̄c̄, (5.3)


1b̄ c̄ = 1

n − 1
λ−1δb̄c̄∂xρρ−1 + λ−1ēb̄

m̄∂x ēm̄c̄, (5.4)


01 1 = λ−2∂tλ, (5.5)


01 0 = −λ−2∂xλ. (5.6)

The spatial components 
ab c of the anholonomicity are related by duality to the first gradient
representation (2.11), which we called dual graviton in 2.4. The irreducibility constraint (2.12)
on this representation is equivalent to the tracelessness condition 
ab b = 0 [9, 14]. In the
present two-dimensional context this condition reduces to


1b b = 
1b̄ b̄ = λ−1∂xρρ−1 = 0. (5.7)

Therefore, the irreducibility condition 
ab b = 0 holds if and only if ρ = ρ(t). In the following
section, we will arrive at the same conclusion by a somewhat different route.
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The parametrization (5.2) also yields the determinant of the original (n + 1)-bein to be

det(E) = N
√

g = λ2ρ (5.8)

where
√

g ≡ det em
a . Using the identification between the original lapse N and the σ -model

lapse n derived in [13, 14], we can relate the σ -model lapse to the internal volume density ρ

via

n = Ng−1/2 = ρ−1. (5.9)

This result will be useful below.
To deduce the relation between the field σ and the conformal factor λ, we compute the

contribution from (5.2) to the diagonal part of ∂tea
mem

b, namely

∂tea
mem

b = −λ−1∂tλK1
1 − 1

n − 1
ρ−1∂tρKα

α + · · · (5.10)

where the dots stand for the contributions from the off-diagonal degrees of freedom. Rewriting
this in terms of the CSA elements ĉ and d̂, cf (2.23), we obtain

∂t [ρ
(n−2)/2(n−1)λ][ρ(n−2)/2(n−1)λ]−1ĉ + ∂tρρ−1d̂. (5.11)

Comparing (5.11) and (4.18) we conclude that the conformal factor should be identified as12

eσ ≡ λρ
n−2

2(n−1) (5.12)

while ρ̂ indeed agrees with the internal volume density ρ. This is consistent with the result
from the irreducibility constraint (5.7) that ρ is a function of time only.

5.2. σ -model equations of motion in (1 + 1) dimensions

Next we write the equations of motion for the D = 2 theory as obtained from an
SL(n − 1)/SO(n − 1) σ -model coupled to gravity in two dimensions, and then compare
them to the equations of motion of the one-dimensional σ -model derived in the foregoing
section. This will not only allow us to extend previous results on the matching, but also, more
importantly, to exhibit those terms which do not match, and where the dictionary needs to
be modified if one is to include higher order spatial gradients. The main advantage of the
(1 + 1) theory is that the mismatch assumes the simplest possible form, and can therefore be
scrutinized in full detail.

The basic object of the (1 + 1)-dimensional theory is a matrix V(t, x), which is an element
of the coset space SL(n − 1)/SO(n − 1), and which is the analogue of V(t) of the previous
section. The corresponding sector of the theory is governed by the standard σ -model
Lagrangian on the worldsheet in a gravitational background. The corresponding Cartan
form belongs to the horizontal sln−1

∂µVV
−1 = Qµ + Pµ ≡ QµαβJ

αβ

0 + PµαβS
αβ

0 (5.13)

with the gauge field Qµ ∈ son−1 and Pµ ∈ sln−1 � son−1, and µ, ν, . . . = t, x. The equations
of motion read

Dµ(ρ
√−γ γ µνPν) = 0, (5.14)

where DµPν ≡ ∂µPν − [Qµ, Pν] is the son−1 covariant derivative, and γµν is the worldsheet
metric, with inverse γ µν and determinant γ . The additional dependence on the ‘dilaton’ ρ in

12 The same correction to the conformal factor is also obtained (for n = 3) in the Matzner–Misner coset formulation
of gravity reduced to two spacetime dimensions [5], see also [35].
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this equation is a remnant of the reduction from higher dimensions. In the conformal gauge
γµν = λ2ηµν (cf (5.2)), this equation simplifies to

Dµ(ρPµ) = 0, (5.15)

where indices are now to be raised and lowered with the Minkowski metric ηµν . Writing these
equations in terms of t and x components, we get

ρ−1∂t (ρPt ) − ρ−1∂x(ρPx) = [Qt , Pt ] − [Qx, Px]. (5.16)

In addition, from (5.13), we have the integrability conditions

∂tPx − ∂xPt = [Qt , Px] − [Qx, Pt ], ∂tQx − ∂xQt = [Qt , Qx] + [Pt , Px]. (5.17)

with the gauge connection Qt , Qx ∈ son−1. Here we have written explicitly all covariantizations
in order to facilitate the comparison with the equations of motion (4.29) following from the
one-dimensional σ -model.

In conformal gauge, the ‘dilaton’ ρ obeys a free field equation, namely(
∂2
t − ∂2

x

)
ρ(t, x) = 0. (5.18)

This equation is satisfied in particular if ρ equals one of the two-dimensional coordinates
or a linear combination thereof (Weyl canonical coordinates). Since we are interested in
cosmological applications, for which ρ is a timelike coordinate, we choose13

ρ(t, x) = t. (5.19)

To see that this choice matches with the one-dimensional σ -model, we substitute (5.9) into
the first equation of (4.29), which gives

ρ−1∂2
t ρ = 0 (5.20)

and indeed agrees with (5.18) if ρ is independent of x. Furthermore, independence of ρ of x is
consistent with the Young irreducibility constraint in the σ -model as explained above in (5.7).

The first-order equations for the conformal factor λ are just the Hamiltonian and
diffeomorphism constraints, respectively, and read

∂tρλ−1∂tλ + ∂xρλ−1∂xλ = 1
2ρ Tr

(
P2

t + P2
x

)
, (5.21)

∂tρλ−1∂xλ + ∂xρλ−1∂tλ = ρ Tr PtPx. (5.22)

With (5.19) they simplify to

λ−1∂tλ = t

2
Tr
(
P2

t + P2
x

)
, λ−1∂xλ = t Tr PtPx. (5.23)

There is also a second-order equation for the conformal factor, which reads, for ρ = t ,

t−1∂t (tλ
−1∂tλ) − ∂x(λ

−1∂xλ) = Tr PxPx. (5.24)

In order to compare the equations (5.16)–(5.24) with the equations of the one-dimensional
affine σ -model (4.29)–(4.33), we must truncate both models appropriately. On the side of the
one-dimensional model we do this by restricting the expansion to levels |�| � 1. Making use
of the equality (5.9) and the triangular gauge (4.28), the equations of motion (4.29)–(4.33) are
thus truncated to

ρ−1∂t

(
ρP

(0)
αβ

) = 2Q̄
(0)

γ [αP
(0)
β]γ + 2Q̄

(1)

γ [αP̄
(1)

β]γ

∂t P̄
(1)

αβ = 2Q̄
(0)

γ [αP̄
(1)

β]γ + 2Q̄
(1)

γ [αP̄
(0)

β]γ

∂t Q̄
(1)

αβ = −2Q̄
(1)

γ [αQ̄
(0)

β]γ + 2P̄
(1)

γ [αP̄
(0)

β]γ

(5.25)

13 For spacelike ρ, we would obtain a variant of the so-called Einstein–Rosen waves, see e.g. [3].



4476 A Kleinschmidt and H Nicolai

ρ−1∂t (ρ∂tσ ) = 1
2

(
Q̄

(1)

αβ Q̄
(1)

αβ + P̄
(1)

αβ P̄
(1)

αβ

)
(5.26)

which must now be matched to (5.16) and (5.17). On the side of the (1 + 1) theory, we
must restrict the x-dependence of the two-dimensional quantities such that Pt and Px become
independent of x (which is tantamount to keeping only first-order spatial gradients). Then the
σ -model equations of motion match upon the identification

P̄
(0)

(t) ≡ Pt (t, x0), P̄
(1)

(t) ≡ Px(t, x0), (5.27)

Q̄
(0)

(t) ≡ Qt (t, x0), Q̄
(1)

(t) ≡ −Qx(t, x0), (5.28)

where x0 is some fixed, but arbitrarily chosen spatial point. The ‘dictionary’ (5.27) must be
supplemented by the relations (5.9) and (5.12), already derived before.

While many terms thus do match, there remain several discrepancies between these
equations and those of the geodesic σ -model. First of all, there is a mismatch in the equation
of motion for the conformal factor, which is similar to that encountered in the previous
work, and which in particular involves a contribution ∝Q(1)Q(1), which has no analogue
involving the gauge-variant expression QxQx in (5.23). We interpret this mismatch as another
indication of the impossibility to reconcile the higher-dimensional gauge invariance with
the desired correspondence. Likewise, (5.24) has a term ∂2

xσ which has no analogue in
(4.30). Furthermore, the spatial gradients ∂xPt , ∂xPx and ∂xQt in (5.16) are absent in the
one-dimensional model. In view of these mismatches, we will now simplify the affine model
yet further to an exactly solvable model.

6. Restriction to the ‘Heisenberg coset’ H/K(H)

6.1. The H/K(H) σ -model

We consider the (prototype) affine coset A
(1)
1

/
K
(
A

(1)
1

)
restricted to its ‘Heisenberg subspace’

H/K(H). In this way, we are able to define a one-to-one correspondence between a very
limited, albeit non-trivial, class of solutions of Einstein’s equations (diagonal metrics with
two commuting Killing vectors), and the null geodesic motion on the infinite-dimensional
manifold H/K(H). To this end we restrict the affine algebra A

(1)
1 to its Heisenberg subalgebra

Lie(H) := ĝl1 ⊕ Rĉ ⊕ Rd̂. (6.1)

Note that our terminology is slightly unusual in that the last summand is usually not considered
to be part of the Heisenberg algebra, but required here in order to obtain a non-degenerate
(indefinite) metric on Lie(H). Define

Hm = 1√
2

(
K̄

2
m2 − K̄

3
m3
)

(6.2)

for all m ∈ Z. Then the non-vanishing commutators of the Heisenberg algebra are

[Hm,Hn] = mδm,−nĉ, [d̂, Hm] = −mHm. (6.3)

The symmetric and antisymmetric combinations are

Sm := 1
2 (Hm + H−m) for m � 0,

Jm := 1
2 (Hm − H−m) for m � 1.

(6.4)

The Jm generate the maximal compact subgroup K(H) of the extended Heisenberg group H.
The commutation relations (6.3) in this basis are (recall that m, n � 0)

[Sm, Sn] = 0, [Jm, Jn] = 0,

[Jm, Sn] = 1
2mδm,nĉ,

[d̂, Sm] = −mJm, [d̂, Jm] = −mSm.

(6.5)
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Parametrizing the coset space H/K(H) in triangular gauge by

V(t) = exp[ln ρ̂(t)d̂] · exp[σ(t)ĉ] · exp

∑
m�0

φm(t)Hm

 , (6.6)

we find

∂tVV−1 =
∑
m�0

ρ̂−m∂tφmHm + ρ̂−1∂t ρ̂d̂ + ∂tσ ĉ. (6.7)

Defining Pm(t) ≡ ρ̂−m∂tφm, we have

P(t) =
∑
m�0

Pm(t)Sm + ρ̂−1∂t ρ̂(t)d̂ + ∂tσ (t)ĉ

Q(t) =
∑
m�1

Pm(t)Jm.
(6.8)

Using the commutation relations (6.5) we get

[Q,P] =
∑
m�0

mPmρ̂−1∂t ρ̂Sm +
1

2

∑
m�1

mP 2
mĉ. (6.9)

Therefore, the equations of motion of our model read

n∂t (n
−1ρ̂−1∂t ρ̂) = 0,

n∂t (n
−1∂tσ ) = 1

2

∑
m�1

mρ̂−2m(∂tφm)2,

n∂t (n
−1ρ̂−m∂tφm) = mρ̂−(m+1)∂t ρ̂∂tφm.

(6.10)

The Hamiltonian constraint takes the form

−2ρ̂−1∂t ρ̂∂tσ + P 2
0 +

1

2

∑
m�1

P 2
m = 0. (6.11)

Using the insights from the preceding section we solve the first equation of (6.10) by
setting n−1 = ρ̂ = t . Then the null geodesic trajectory in H/K(H) is explicitly parametrized
by

φ0(t) = p0 ln t + q0

φm(t) = 1
2m

pmt2m + qm (m > 0)

}
⇒ Pm(t) = pmtm−1 (m � 0),

(6.12)

σ(t) = 1

2
p2

0 ln t +
∑
m�1

1

8m
p2

mt2m + σ0,

where the coefficient of ln t in the last line is determined by imposing the Hamiltonian
constraint (6.11), which, however, does not fix σ0. Because the model is explicitly solvable,
we see in particular how the solution V(t) depends on the most general initial data, i.e. the
initial ‘coordinates’ qm and ‘momenta’ pm for m � 0.

The conserved current is, from (4.5),

J = n−1V−1PV = n−1

∂tσ − 1

2

∑
m�1

mρ̂−mφmPm

 ĉ + ρ̂−1∂t ρ̂d̂

+ P0H0 +
1

2

∑
m�1

(−2mρ̂−1∂t ρ̂φm + ρ̂mPm

)
Hm +

1

2

∑
m�1

ρ̂−mPmH−m

 . (6.13)
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Plugging the solution (6.12), as well as n−1(t) = t , into this expression yields

J =
1

2
p2

0 − 1

2

∑
m�1

mpmqm

 ĉ + d̂ +
1

2

∑
m�1

pmH−m + p0H0 −
∑
m�1

mqmHm, (6.14)

which is evidently conserved since it depends only on the initial data. Observe that neither q0

nor σ0 appear in J . In agreement with the general analysis of [10], the initial momenta appear
in the lower, and the initial coordinates in the upper triangular half of Lie (H).

Under global H transformations g,J changes as J → gJ g−1. Let

g(α, β, ω) := exp(ln αĉ) · exp(ln βd̂) · exp

(∑
n∈Z

ωnHn

)
, (6.15)

then

gJ g−1 =
1

2
p2

0 − 1

2

∑
m�1

m(pm − 2mω−m)(qm − ωm)

 ĉ + d̂

−
∑
m�1

mβ−m(qm − ωm)Hm + p0H0 +
1

2

∑
m�1

βm(pm − 2mω−m)H−m. (6.16)

From this we immediately read the transformation of the initial coordinates qm and momenta
pm (for m � 1) under the action of H:

qm → β−m(qm − ωm)

pm → βm(pm − 2mω−m)

}
(m � 1). (6.17)

On V the corresponding transformation is V → kVg−1 where k(t) is the (local) compensator
required to restore the triangular gauge, which does not contribute to the transformation of J .
By considering V transformations we find constant shifts (which drop out in gJ g−1)

σ0 → σ0 − α, q0 → q0 − ω0. (6.18)

Hence, all the constants are shifted except the (Kasner) coefficient p0. All fields except σ are
inert under a transformation associated with the central term. This is no longer the case for
the full AEn model where ĉ ceases to be central.

6.2. Relation to polarized Gowdy cosmologies

Remarkably, there is a one-to-one correspondence between our model, and the ‘polarized’
Gowdy type cosmological model with diagonal metrics depending on two coordinates (t, x).14

Apart from possible reparametrizations of the time parameter t, this correspondence works
only after complete elimination of the gauge degrees of freedom on both sides. In particular,
the conformal factor must be treated as a dependent degree of freedom via the constraints
(6.21). The relevant line elements can be written in the form (see e.g. [3])

ds2 = λ2 e−Z(−dt2 + dx2) + t2 e−Z dy2 + eZ dz2, (6.19)

where the function Z = Z(t, x) is subject to the two-dimensional wave equation

∂t [t∂tZ(t, x)] = t∂2
xZ(t, x). (6.20)

The conformal factor can be determined by straightforward integration from the first-order
equations

λ−1∂tλ = t

4
[(∂tZ)2 + (∂xZ)2], λ−1∂xλ = t

2
∂tZ∂xZ (6.21)

14 See also [36] for a discussion of such solutions in the framework of gravitational solitons.
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which are compatible if (6.20) is satisfied. They give rise to the second-order evolution
equation for λ

∂t (tλ
−1∂tλ) − t∂x(λ

−1∂xλ) = t

2
(∂xZ)2. (6.22)

The general solution of (6.20) can be written as15

Z(t, x) =
∫ ∞

−∞
G(t, x − w)q̃(w) dw +

∫ ∞

−∞
H(t, x − w)p(w) dw (6.23)

with the Green’s functions

G(t, x) := 1

π

∫ ∞

0
cos(kx)J0(kt) dk, H(t, x) := 1

π

∫ ∞

0
cos(kx)Y0(kt) dk, (6.24)

where J0(z) and Y0(z) = J0(z) ln(z) + · · · are the standard Bessel functions (see e.g. [38]).
Note that the second integral in (6.24) is well defined (as a distribution) for all t > 0 despite
the logarithmic singularity of the integrand. Near the singular hypersurface t = 0, the general
solution admits the expansion [16, 17]

Z(t, x) = q(x) + p(x) ln t + F(t, x) (6.25)

where q(x) 
= q̃(x) unless p(x) = 0, and limt→0 F(t, x) = 0. The conformal factor expands
as

ln λ(t, x) = 1
4p2(x) ln t + · · · . (6.26)

The functions

q(x) = q0 + q1x + q2x
2 + · · · , p(x) = p0 + p1x + p2x

2 + · · · (6.27)

can be viewed as the initial values of the coordinates and momenta on the ‘big bang’
hypersurface t = 0. p(x) correspond to the canonical momenta (rather than the velocities)
since we know from section 5.2 that the Lagrange density contains the kinetic term L = ρPtPt .
With ρ(t) = t the conjugate momenta are therefore

�(t, x) = t∂tZ(t, x)
t→0−→ p(x). (6.28)

We emphasize that we are here working locally in a fixed coordinate chart—the Taylor
expansion could be equivalently performed about any other spatial point x0.

Evidently, the Kasner solution corresponds to constant q(x) = q0 and p(x) = p0 in
(6.25) and (6.26). In this case we have a direct correspondence between this particular
solution of Einstein’s equations, and the corresponding solution (6.12) of the H/K(H) model
with pm = qm = 0 for m � 1. In view of (6.17) and (6.18), different orbits under H are thus
labelled by p0. If p(x) ≡ 0, the solution is no longer of Kasner type; instead of a singularity, it
may exhibit other features such as Cauchy horizons [16]. In the following we will not consider
this case.

When the higher modes (and the higher order terms in (6.25)) are switched on, the
relation is less transparent. We now define an explicit one-to-one map between the null
geodesic trajectories V(t) on H/K(H) characterized by (6.12), and the solutions of (6.20)
characterized by the initial values (6.27), by associating the solutions with the same initial

15 For regular initial data, i.e. p(x) = 0, this formula can be written in the completely explicit (and manifestly causal)
form [37]

Z(t, x) = 1

π

∫ x+t

x−t

q(w) dw√
t2 − (x − w)2

.

which also follows directly from (6.24) (we thank V Moncrief for a discussion on this point).
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data q0, q1, . . . and p0, p1, . . . and σ0. We emphasize again that such an association makes
sense only after gauges have been fixed; in particular, all possible coordinate transformations
in (t, x) are ‘used up’ when the four-dimensional line element is cast into the form (6.19),
and the diffeomorphism constraint is imposed on the initial data by solving (6.21). The
action of the ‘solution generating group’ H on the solutions of (6.20) is likewise defined by
the corresponding action on the solution V(t) in (6.16). We next examine how this action
compares to the standard realization of the Geroch group on such solutions.

6.3. Geroch versus Heisenberg

To elucidate the relation between the transformations (6.17) on the initial data (6.27) on the
one hand, and the action of the corresponding subgroup of the Geroch group on solutions of
(6.20) on the other, we briefly recall how the latter is usually realized. The integrability of
general relativity reduced to (1 + 1) dimensions [39, 40] is usually expressed by means of a
linear system (or Lax pair) whose integrability condition is equivalent to the reduced Einstein
equations [5]. In the standard formulation this is achieved by promoting the matrix V(t, x)

appearing in (5.13) of section 5 to an element of the associated loop group by introducing an
extra dependence on a spectral parameter γ , namely

V(t, x) → V̂(t, x; γ ). (6.29)

This matrix satisfies the linear system (Lax pair) equations [5, 6]

∂µV̂V̂
−1 = Qµ +

1 + γ 2

1 − γ 2
Pµ +

2γ

1 − γ 2
εµνP

ν . (6.30)

The parameter γ is to be interpreted as the spectral parameter of the loop algebra over sln−2.
The integrability of (6.30) implies the equations of motion (5.16) if

γ = γ (t, x;w) = (x − w) ±
√

(x − w)2 − t2

t
⇔ w = − t

2

(
γ +

1

γ

)
+ x, (6.31)

where w is sometimes called the ‘constant spectral parameter’. The appearance of two spectral
parameters γ and w, one of which depends on the spacetime coordinates, is a consequence
of the coupling of the σ -model to gravity, and the characteristic feature which distinguishes
this model from flat space σ -models. It is precisely the coordinate dependence of the spectral
parameter γ which allows the Geroch group to generate space-dependent solutions, as we will
now explain for the polarized Gowdy cosmologies.

Diagonal solutions can be obtained by starting from the following w-dependent matrix16

considered as an element of the loop group ĜL(1) ⊂ A
(1)
1

V̂(w) =
(

exp(G(w)) 0
0 exp(−G(w))

)
. (6.32)

To generate spacetime-dependent solutions from this matrix, one follows the general procedure
of [5] by first expressing w as a function of t, x and γ by virtue of (6.31), and then removing
the singularity at γ = 0 by a compensating transformation. The corresponding solution of
the field equations is then obtained from V̂ by setting γ = 0, as V̂ is holomorphic at γ = 0
after removal of the poles. In infinitesimal form, these steps are summarized in the combined
transformation

δV̂(t, x; γ ) = δh(t, x; γ )V̂(t, x; γ ) − V̂(t, x; γ )δg(w), (6.33)

16 The following considerations are based on unpublished work with Damour [41].
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where δg(w) ∈ ĝl1, and δh is the compensating transformation in K(ĝl1) which removes the
poles at γ = 0. Equation (6.33) shows that only half of ĝl1 has an actual effect on the solution
V(t, x), namely those δg(w) ∝ wn with n > 0. The other half (n < 0) yields expressions
in δV̂ for which δV = limγ→0 δV̂(γ ) = 0. Hence, the latter transformations merely shift the
integration constants arising in the definition of the higher order dual potentials, and have no
effect on the physical solution.

All solutions of the type (6.25) can be generated from [41]

G(w) = f (w) + g(w) ln w (6.34)

with regular functions f (w) and g(w) (which are directly related to, but not identical with, the
functions q(w) and p(w) in (6.27)). The presence of a ln w term in (6.34), which is necessary
to obtain a non-trivial Kasner coefficient p(x) in (6.25), signals that we are not dealing with
the standard loop group in w. The necessity of the ln w term is another manifestation of the
fact that the standard realization of the Geroch group affects only one-half of the initial data,
and must therefore be ‘amended’.

From (6.31) and (6.34), we can deduce the leading contributions to δZ(t, x) for t ∼ 0
from a given δg(w), following the steps described above, with the result

δg(w) = wn ⇒ δZ(t, x) ∝ xn,

δg(w) = wn ln w ⇒ δZ(t, x) ∝ xn ln t,
(6.35)

for n � 0. This shows that a regular (non-logarithmic) affine level n element of the Geroch
group induces a spatial dependence ∝xn in the regular initial data in a Taylor expansion around
x = 0, but that a logarithmic dependence on the loop parameter w is required to change the
singular initial data (the Kasner coefficient function p(x)). The action of the Witt–Virasoro
algebra, and hence that of infinitesimal variations along d̂, were discussed in [42]. The central
charge acts on the conformal factor λ by scaling transformations [4–6], in agreement with the
results derived at the end of section 6.1.

Equations (6.35) illustrate the main advantage of the affine coset model and our new
realization of (a subgroup of) the Geroch group in comparison with the linear system approach:
in the Heisenberg model, the full algebra generates non-trivial transformations on the initial
data—the positive half shifts the initial coordinates qm, and the negative half shifts the initial
momenta pm, see (6.17). By contrast, for the standard realization of the Geroch group only half
the transformations ∝wn for n > 0 act non-trivially and change the initial coordinates encoded
in q(x); in this sector, the action of the Geroch group agrees with the action of the upper half
of H. On the other hand, in the standard approach, we must extend the Geroch transformations
by allowing wn ln w terms in order to shift the initial momenta p(x). Moreover, this rather
ad hoc extension of the loop group fails at the nonlinear level, i.e. for non-diagonal metrics,
because it would force us to admit arbitrary positive powers of ln w [41]. This difficulty is
avoided altogether in our new coset approach, where the ‘solution generating group’ acts on
all initial data, except p0, and which furthermore does not require modifying the loop group
by logarithmic terms to generate the most general solution.

The difference between the two realizations of the affine symmetry is also evident from
the way the (dynamical) fields are encoded in V̂ and V , respectively. Since the Chevalley
involution acts by [5]

ω(V̂(t, x; γ )) = (V̂
T
)−1

(
t, x; 1

γ

)
(6.36)
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the rhs of (6.30) is invariant, whence

∂µV̂V̂
−1 ∈ K

(
A

(1)
n−2

)
. (6.37)

By contrast, for the geodesic σ -model of section 4, all the dynamics is contained in the
coset components, see (4.18). Hence, we conclude again that the linear system (6.30) is not
immediately suitable for the comparison with the results of the foregoing sections.

7. Discussion

There is an alternative formulation of the Lax pair for two-dimensional gravity [43], which is
somewhat more similar to (4.25), in that its rhs belongs to a coset subalgebra, and involves the
CSA generators ĉ and d̂ explicitly. In that formulation the Cartan form reads (using light-cone
coordinates)

∂±VV−1(t, x) = ±ρ−1∂±ρ(L0 − L±1) + 1
2Q±αβJ αβ + 1

2P±αβKα
±1β ∓ ∂±σ ĉ. (7.1)

Here, L0 and L±1 belong to the Möbius subalgebra of the Virasoro algebra (which can be
embedded in the enveloping algebra of the affine algebra with L0 = d̂). In contradistinction to
the linear system (6.30), the expansion of (7.1) is truncated at affine level one, but involves the
Möbius generators. (This has an effect on the set of allowed dressing transformations [43].)

In the above linear system, the generator L−1 acts like a derivative operator on a vertex
representation, and belongs to a Witt–Virasoro algebra acting on the affine algebra via a
semi-direct product. This suggests that there might exist a similar, but larger, subalgebra
inside the enveloping algebra of AEn, which would contain derivative operators in all spatial
directions, and contain the standard Witt–Virasoro algebra as a subalgebra. In addition, the
affine algebra might be embedded in a toric algebra (see e.g. [44] and references therein).
Such an algebra is spanned by generators T A

�m (where �m designates a vector in some vector
space), with commutation relations of the form[

T A
�m , T B

�n
] = f AB

CT C
�m+�n + central terms. (7.2)

However, looking at the relation for the gradient fields derived for AE3 in section 3, we see
that the naive identification of �m with the 3-vector of the multiplicities of the indices 1, 2, 3
among the ‘gradient indices’ a1, . . . , a�−1 of the generator Ea1,...,a�−1

b1b2 will fail since the
commutator (3.24) will always add one index and so destroy the vector space structure on
such �m. Moreover, we have seen in section 3 that the gradient representations by themselves
do not close into a subalgebra of AE3. We thus conclude that there is no toric algebra inside
AEn or its enveloping algebra.

The interpretation of the affine coset proposed in section 6 provides a more favourable
realization of the Geroch group since it can incorporate transformations of both the initial
coordinates and the initial velocities in the general case without extending the set of allowed
transformations. We anticipate that similar results hold for the σ -model realization of the affine
group A

(1)
1 in comparison with the standard realization of the full Geroch group. However, the

more important challenge at this point is now to find out how the hyperbolic AE3 coset model
can generate the most general dependence on four-dimensional space and time coordinates,
and to understand the significance of the fact that, unlike the affine elements, the gradient
generators no longer form a closed subalgebra of AEn.

It is also interesting to consider higher levels of the affine coset model by including as a
next step the basic representation [26] of the affine algebra. This will show new aspects of the
correspondence characteristic for the KMA σ -model crucial for the programme of [9].
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Appendix A. The compact subalgebra is not a KMA

In this appendix we prove that the ‘maximal compact’ invariant subalgebra of an infinite-
dimensional KMA is not of Kac–Moody type. This applies in particular to the algebras AEn

and E10, and their invariant subalgebras.

Proposition 1. Let g be any infinite-dimensional split real Kac–Moody algebra g, which is not
the direct sum of (infinitely many) finite-dimensional algebras. Then the infinite-dimensional
subalgebra k ⊂ g fixed by the Chevalley involution ω is not a Kac–Moody algebra.

Proof. The main observation is that the contravariant Hermitian form on the Kac–Moody
algebra

(x|y) := −〈x|ω(y)〉 for x, y,∈ g (A.1)

is not positive definite everywhere on the split real KMA if the latter is infinite dimensional
[24]: in the CSA, and only in the CSA, there exist elements of both positive and negative
norm squared, because the Cartan matrix is not positive definite. However, since the CSA is
not invariant under ω, the compact subalgebra k does not contain any such elements, and the
contravariant form on k (inherited from g) is therefore positive definite on k [45]. Because k is
infinite dimensional, it can thus be a KMA if and only if it is the (orthogonal) sum of infinitely
many finite-dimensional algebras of KM type.

We will prove that this cannot happen by exhibiting a contradiction if the assumption were
true. Therefore, assume that k is the infinite direct sum of some finite-dimensional algebras.
Now consider some (regular) level decomposition g =⊕�∈Z g� of g such that 0 < dim g� < ∞
for all � ∈ Z. Then g is generated by taking multiple commutators of g−1, g0 and g1. Since
the Chevalley involution ω acts according to ω(g�) = g−�, the invariant subalgebra admits the
decomposition (not a grading!)

k =
⊕
��0

k� with k0 ⊂ g0, k� ⊂ g−� ⊕ g� ⇒ [k0, k�] ⊂ k�. (A.2)

Like g, the infinite-dimensional invariant subalgebra k is generated by taking multiple
commutators of k0 and k1. Since all g� are of finite dimension, it follows in particular
that k0 and k1 are also finite dimensional. According to our assumption they must therefore
belong to a finite sum of finite-dimensional subalgebras of k. Hence, the algebra they generate
is also finite dimensional, in contradiction with the fact that k is infinite dimensional. �

The proposition unfortunately does not give an answer to the important question what
kind of Lie algebra k is, and, more pressingly, what its representation theory is. It is expected
that the representation theory of k is associated with the supersymmetric extension of the
one-dimensional σ -model [13, 46].
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Appendix B. AEn σ-model in sln decomposition and p-forms

In this appendix, we analyse the σ -model based on AEn of section 4 from its sln subalgebra.
We will also add p-forms to the Einstein equation of the model to make contact with other
oxidized theories.

B.1. Pure gravity

We first study the σ -model and then compare it to the reduction of the Einstein equation.
The Cartan form in triangular gauge in sln form now is

∂tVV−1 = PabS
ab + QabJ

ab +
1

(n − 2)!
Pa1...an−2,an−1E

a1...an−2,an−1 + · · · (B.1)

with indices a, b taking values 1, . . . , n. The resulting σ -model equation on level � = 0, in
the truncation to |�| � 1, can be deduced from the results of section 2.2, with the result

n∂t (n
−1Pab) = 2Pc(aQb)c +

1

2(n − 2)!

(
δabPc1...cn−2,cn−1Pc1...cn−2,cn−1

−Pc1...cn−2,aPc1...cn−2,b − (n − 2)Pac1...cn−3,cn−2Pbc1...cn−3,cn−2

)
. (B.2)

In the corresponding gravity theory, the space–space components of reduced Einstein
equations in flat components are

Rab = R
temp
ab + R

spat
ab = 0, (B.3)

where we defined, following [14],

R
temp
ab = ∂0ωab0 + ωcc0ωab0 − 2ω0c(aωb)c0, (B.4)

R
spat
ab = 1

4 
̃cd a
̃cd b − 1
2 
̃ac d
̃bc d − 1

2 
̃ac d
̃bd c − 1
2∂c
̃c(a b). (B.5)

Here, 
̃ab c is the tracefree part of the anholonomy 
ab c = 2e[a
meb]

n∂menc and ωa bc =
(
ab c + 
ca b − 
bc a)/2 is the spin connection. We use the same decomposition (5.1) of the
vielbein as in section 5.1.

By comparing equation (B.2) with equation (B.3), we see that almost all terms match
upon identifying

n(t) ≡ N e−1(t, x0), (B.6)

Pab(t) ≡ ωa bt (t, x0), (B.7)

Qab(t) ≡ −ωt ab(t, x0), (B.8)

Pa1...an−2,an−1(t) ≡ N

2
εa1...an−2bc
̃bc an−1(t, x0) (B.9)

for some fixed spatial point x0. The terms which do not match are the second spatial derivatives
and the cross-term 
̃ac d
̃bd c in (B.5). However, the second spatial derivatives are not expected
to match in this approximation and the cross-term disappears upon using a conformal gauge
for the zweibein.
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B.2. Inclusion of p-forms

We now add a single p-form field to the Einstein action via their kinetic terms17

S =
∫

dn+1x det(E)

(
R − 1

2(p + 1)!
FM1...Mp+1F

M1...Mp+1

)
. (B.10)

The generalization to several p-forms is straightforward and we do not consider dilaton terms
here for simplicity.

The Einstein equation resulting from (B.10) can be written as

RMN = 1

2p!
FMP1...Pp

FN
P1...Pp − p

2(p + 1)!(n − 1)
GMNFP1...Pp+1F

P1...Pp+1 . (B.11)

Converting into flat indices and restricting to the spatial directions, we write

R
temp
ab + R

spat
ab = −N−2T el

ab + T
magn
ab , (B.12)

with the energy–momentum tensor split into ‘electric’ and ‘magnetic’ contributions according
to

T el
ab = p

2p!
Ftac1...cp−1Ftbc1...cp−1 − p

2p!(n − 1)
δabFtc1...cp

Ftc1...cp
, (B.13)

T
magn
ab = 1

2p!
Fac1...cp

Fbc1...cp
− p

2(p + 1)!(n − 1)
δabFc1...cp+1Fc1...cp+1 . (B.14)

The factor −N−2 in (B.12) stems from lowering the t index. Similarly, we split the Ricci
tensor into temporal and spatial derivatives as before.

On the algebra side, we need to include additional generators to account for the electric
and magnetic contributions to the Einstein equation. Consider the expansion of the Cartan
form to be

∂tVV−1 = PabS
ab + QabJ

ab +
1

(n − 2)!
Pa1...an−2,an−1E

a1...an−2,an−1

+
1

p!
P el

a1...ap
Ea1...ap +

1

(n − p − 1)!
P magn

a1...an−p−1
Ea1...an−p−1 + · · · . (B.15)

In the first line of (B.15), we have the contribution of the AEn fields as above. The second
line now belongs to additional generators we have introduced into the algebra. That such
generators are present in the relevant Kac–Moody algebra for the oxidized theory follows
from the results of [47]. Demanding the normalizations〈

Ea1...ap |Fb1...bp

〉 = p!δ
a1...ap

b1...bp
, (B.16)〈

Ea1...an−p−1 |Fb1...bn−p−1

〉 = (n − p − 1)!δ
a1...an−p−1

b1...bn−p−1
, (B.17)

leads to the commutators of the new generators[
Ka

b,E
c1...cp

] = (−1)ppδ
[c1
b Ec2...cp]a, (B.18)

[
Ea1...ap , Fb1...bp

] = − p

n − 1
p!δ

a1...ap

b1...bp
K + p · p!δ

[a1...ap−1

[b1...bp−1
Kap]

bp], (B.19)

17 We need not concern ourselves with possible Chern–Simons-like terms since these do not affect the Einstein
equation. However, they are crucial for the gauge field equation of motions and Bianchi identities.



4486 A Kleinschmidt and H Nicolai

and similar expressions for the magnetic generator with p replaced by (n − p − 1). From this,
together with the commutator (2.16), we can deduce the following � = 0 equation of motion
for the σ -model in this approximation

n∂t (n
−1Pab) = 2Pc(aQb)c +

1

2(n − 2)!

(
δabPc1...cn−2,cn−1Pc1...cn−2,cn−1

−Pc1...cn−2,aPc1...cn−2,b − (n − 2)Pac1...cn−3,cn−2Pbc1...cn−3,cn−2

)
+

p

2p!
P el

ac1...cp−1
P el

bc1...cp−1
− p

2p!(n − 1)
δabP

el
c1...cp

P el
c1...cp

+
n − p − 1

2(n − p − 1)!
P magn

ac1...cn−p−2
P

magn
bc1...cn−p−2

− p

2p!(n − 1)
δabP

magn
c1...cn−p−1

P magn
c1...cn−p−1

.

(B.20)

By comparing (B.12) and (B.20) we find agreement if we identify the new terms by

P el
a1...ap

(t) ≡ Fta1...ap
(t, x0), (B.21)

P magn
a1...an−p−1

(t) ≡ N

(p + 1)!
εa1...an−p−1b1...bp+1Fb1...bp+1(t, x0). (B.22)

in addition to (B.6). There are sign ambiguities here, since the fields appear quadratically in
(B.20). These will be fixed from the equations of motion and Bianchi identities for the p-form
fields.
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22 June–12 July 1980) ed S W Hawking and M Roček (Cambridge: Cambridge University Press) pp 331–50
(LPTENS 80/16)

Julia B 1985 Kac–Moody symmetry of gravitation and supergravity theories Applications of Group Theory
in Physics and Mathematical Physics (Lectures in Applied Mathematics vol 21) ed M Flato, P Sally and
G Zuckerman (Providence, RI: American Mathematical Society) pp 355–74 (LPTENS 82/22)

[5] Breitenlohner P and Maison D 1987 On the Geroch group Ann. Poincaré Phys. Theor. 46 215–46
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