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We propose a generalization of the condition for harmonic spatial coordinates analogous to the
generalization of the harmonic time slices introduced by Bona et al., and closely related to dynamic
shift conditions recently proposed by Lindblom and Scheel, and Bona and Palenzuela. These generalized
harmonic spatial coordinates imply a condition for the shift vector that has the form of an evolution
equation for the shift components. We find that in order to decouple the slicing condition from the
evolution equation for the shift it is necessary to use a rescaled shift vector. The initial form of the
generalized harmonic shift condition is not spatially covariant, but we propose a simple way to make it
fully covariant so that it can be used in coordinate systems other than Cartesian. We also analyze the effect
of the shift condition proposed here on the hyperbolicity of the evolution equations of general relativity in
1� 1 dimensions and 3� 1 spherical symmetry, and study the possible development of blowups. Finally,
we perform a series of numerical experiments to illustrate the behavior of this shift condition.
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I. INTRODUCTION

When one studies the time evolution of the gravitational
field in general relativity, a good choice of coordinates (a
‘‘gauge’’ choice) can make the difference between finding
a well behaved solution for a large portion of the space-
time, or running into a coordinate (or physical) singularity
in a finite coordinate time, which would not allow a nu-
merical evolution to continue any further. In the 3� 1
formulation, the choice of the time coordinate is related
with the lapse function, while the choice of the spatial
coordinates is related to the shift vector. Many different
ways to choose the lapse and the shift have been proposed
and used in numerical simulations in the past (see, for
example, the pioneering papers of Smarr and York [1,2]).
Some gauge choices involve solving elliptic equations,
while others involve solving evolution type equations,
which may or may not be hyperbolic in character.
Recently, hyperbolic coordinate conditions have become
a focus of attention, as they in principle allow one to write
the full set of dynamical equations as a well-posed system
[3–8], while at the same time being both easier to imple-
ment and considerably less computationally expensive
than elliptic conditions.

The classic example of hyperbolic coordinate conditions
are the so-called harmonic coordinates, which are defined
by asking for the wave operator acting on the coordinate
functions x� to vanish. Harmonic coordinate conditions
have the important property of allowing the Einstein field
equations to be written as a series of wave equations (with
nonlinear source terms) for the metric coefficients g��.
Because of this, these conditions were used to prove the
first theorems on the existence of solutions to the Einstein
equations [9]. This property of transforming the Einstein
equations into wave equations could in principle also be
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seen as an important advantage in the numerical integra-
tion of these equations. Still, with few exceptions (see for
example [10–12]), full harmonic coordinates have tradi-
tionally not been used in numerical relativity, though har-
monic time slices have been advocated and used in some
cases [13–16]. The reason for this is twofold: In the first
place, harmonic coordinates are rather restrictive, and for-
mulations of the Einstein equations for numerical relativity
are usually written in a way that allows the gauge freedom
to remain explicit so it can be used to control certain
aspects of the evolution (avoid singularities, enforce sym-
metries, reduce shear, etc.). Also, in the particular case of a
harmonic time coordinate, it has been shown that the
spacelike foliation avoids focusing singularities only mar-
ginally, and is therefore not a good choice in many cases
[5,13,17,18]. Of course, it can be argued that any coordi-
nate choice is harmonic if one does not ask for the wave
operator acting on the coordinate functions to be zero, but
instead to be equal to a known function of spacetime (a
‘‘gauge source function’’). This is certainly true, but of
little use in real life numerical simulations where there is
no way to know a priori what is a convenient choice for
these gauge source functions (but see [12] for some sug-
gestions that seem to work well in practice).

Nevertheless, the fact that the use of harmonic coordi-
nates allows the field equations to be written in strongly
hyperbolic form makes one immediately ask if there might
be simple generalizations of the harmonic conditions that
will still allow the field equations to be written in strongly
hyperbolic form, while at the same time retaining a useful
degree of gauge freedom. That this is indeed the case was
first shown for the particular case of a harmonic time
coordinate by Bona et al. in [19], where a strongly hyper-
bolic reformulation of the Einstein evolution equations was
constructed using a generalized harmonic slicing condition
-1 © 2005 The American Physical Society
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which is usually referred to as the Bona-Masso slicing
condition. It includes as particular cases several gauge
choices that had been used in numerical simulations from
the early 90’s with good results, such as, for example, the
‘‘1� log’’ slicing [20,21]. In fact, the Bona-Masso slicing
condition was motivated precisely to include such empiri-
cally tested conditions in a strongly hyperbolic formulation
of the Einstein equations.

In this paper we want to follow a similar approach and
propose a generalization of the harmonic spatial coordinate
condition. We will show how this allows us to obtain a
hyperbolic shift condition that is very closely related to
conditions already proposed in the literature, most notably
the shift conditions recently introduced by Lindblom and
Scheel [8], and by Bona and Palenzuela [22] (in fact, under
some specific circumstances, one finds that the shift con-
dition proposed here becomes a particular case of those of
Refs. [8,22]).

This paper is organized as follows. In Sec. II we discuss
the standard harmonic coordinates and write them as evo-
lution equations for the lapse and shift. We also introduce a
rescaled shift vector that allows one to decouple the lapse
and shift equations. Section III generalizes the condition
for spatial harmonic coordinates, and Sec. IV discusses the
interpretation of this condition in curvilinear coordinate
systems. In Sec. V we describe the concept of hyperbol-
icity and the source criteria for avoiding blowups.
Section VI studies the generalized harmonic shift condition
in the case of 1� 1 dimensions, analyzing its hyperbolicity
properties, the possible appearance of blowups (‘‘gauge
shocks’’), and also the behavior of this shift condition in
numerical simulations. In Sec. VII we repeat the same type
of analysis for spherical symmetry and again present re-
sults from numerical simulations. We conclude in
Sec. VIII. Finally, the appendix shows a formal derivation
of the generalized harmonic lapse and shift conditions.

II. HARMONIC COORDINATES

Let us consider four scalar coordinate functions ��

defined on a given background spacetime. The condition
for these coordinates to be harmonic is simply

��� :� g��r�r��� � 0; (2.1)

with g�� the spacetime metric tensor.
Let us further assume that �0 is such that its level

surfaces are spacelike. In that case, �0 can be identified
with a global time function. If we define the lapse function
� as the interval of proper time when going from the
hypersurface �0 � t to the hypersurface �0 � t� dt
along the normal direction, then it is easy to show that �
will be given in terms of �0 as

� � ��r�0 � r�0��1=2: (2.2)

The definition of the shift vector is somewhat more
involved. We start by defining three scalar functions �a
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such that when we move from a given level surface of�0 to
the next following the normal direction, the change in the
spatial coordinate functions �a is given by

�a
t�dt � �a

t � �
ad�0; (2.3)

from which one can easily find

�a � ��� ~n � r�a�; (2.4)

with ~n the unit normal vector to the hypersurface �0 � t,

~n � ��r�0; (2.5)

and where the minus sign is there to guarantee that ~n is
future pointing. Thus defined, the �a are scalars, but we
can use them to define a vector ~� by asking for its compo-
nents in the coordinate system f��g to be given by �0; �a�.
The vector constructed in this way is clearly orthogonal to
~n. In an arbitrary coordinate system fx�g, the shift compo-
nents will then be given by

�� � ��� ~n � r�a�
@x�

@�a : (2.6)

Notice that with this definition, the shift vector is pro-
portional to the lapse function, so that a simple rescaling of
�0 changes the shift. This suggests that it is perhaps more
natural to define a rescaled shift vector ~� in the following
way

�� :�
��

�
� �� ~n � r�a�

@x�

@�a : (2.7)

We will see below that this rescaled shift vector will be
important when expressing the harmonic condition in
3� 1 language.

The harmonic coordinate conditions can be simplified
by expanding them in the coordinate system fx� � ��g, in
which case they reduce to

�� :� g������ � 0; (2.8)

where ���� are the Christoffel symbols associated with the
4-metric g��. If we now relate the coordinates fx� � ��g

to the standard 3� 1 coordinates, then these four equations
can be shown to become (see the appendix)

@t� � �a@a�� �2K; (2.9)

@t�i � �a@a�i � �@i�� �2 �3��i

�
�i

�
�@t�� �

a@a�� �
2K�: (2.10)

Here K is the trace of the extrinsic curvature, and �3��i is
defined in terms of the three-dimensional Christoffel sym-
bols �3��ijk, the spatial metric �ij and its determinant � :�

det�ij by �3��i :� �jk�3��ijk � �@j�
����
�
p

�ij�=
����
�
p

. Notice
that in Eq. (2.10) we have an explicit dependency on the
time derivative of the lapse function. This dependency is
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usually not written down, as the whole last term of the
second equation vanishes if the first equation is assumed to
hold, but we prefer to leave the dependency explicit (see
for example [11,23]; incidentally, Eq. (2.10) fixes a sign
error in [23], and includes a term missing in [11]).

The fact that the evolution equation for the shift depends
on the time derivative of the lapse is inconvenient if one
wants to use harmonic spatial coordinates with a different
slicing condition, say maximal slicing. It is also an indica-
tion that the shift itself might not be the most convenient
function to evolve. Remarkably, it turns out that if we
rewrite the evolution equation for the shift in terms of the
rescaled shift �i � �i=� introduced above, then the spa-
tial harmonic condition decouples completely from the
evolution of the lapse. We find

@t�
i � ��a@a�

i � @i�� ���iK � �3��i�: (2.11)

Therefore, if one works with �i instead of �i, one can use
harmonic spatial coordinates with an arbitrary slicing con-
dition in a straightforward way.

A final comment about Eqs. (2.9) and (2.10) is in order.
Equation (2.9) is clearly a scalar equation as seen in the
spatial hypersurfaces. Equation (2.10), on the other hand, is
not 3-covariant, i.e. starting from exactly the same 3-
geometry but in different coordinates, it will produce a
different evolution for the shift vector. This might seem
surprising since this equation is just the 3� 1 version of
the condition for spatial harmonic coordinates which is 4-
covariant. However, there is no real contradiction, since
changing the coordinates on the spatial hypersurfaces
means changing the scalar functions �i themselves, so it
should not be surprising that we get a different shift. We
will come back to this point in Sec. IV, where we will
propose a way to make the shift evolution equation fully 3-
covariant.
III. GENERALIZED HARMONIC COORDINATES

In [19], Bona et al. generalize the harmonic slicing
condition (2.9) in the following way

@t�� �a@a� � ��2f���K; (3.1)

with f��� a positive but otherwise arbitrary function of the
lapse. This slicing condition was originally motivated by
the Bona-Masso hyperbolic reformulation of the Einstein
equations [14,15,18,19,24], but it can in fact be used with
any form of the 3+1 evolution equations. As discussed in
[5], the Bona-Masso slicing condition above can be shown
to avoid both focusing singularities [18] and gauge shocks
[25] for particular choices of f. Reference [5] also shows
that condition (3.1) can be written in 4-covariant form in
terms of a global time function �0 as

�g�� � afn�n��r�r��0 � 0; (3.2)

with af :� 1=f��� � 1 and n� the unit normal vector to
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the spatial hypersurfaces defined in (2.5). Here we will
introduce an analogous generalization of the spatial har-
monic coordinates f�lg. That is, we propose the following
spatial gauge condition

�g�� � ahn�n��r�r��l � 0; (3.3)

where n� is still the unit normal to the spatial hypersurfa-
ces, but now ah: � 1=h� 1, with h��;�i� a scalar func-
tion that can in principle depend on both the lapse and shift
(we will see below that the shift dependence is in fact not
convenient). In the coordinate system fx� � ��g, condi-
tion (3.3) becomes

�g�� � ahn
�n���l�� � 0: (3.4)

Expressing the 4-metric and normal vector in terms of 3+1
variables, the last equation becomes

�l00 � 2�m�lm0 � �
m�n�lmn � �2h�mn�lmn: (3.5)

Notice that on the right-hand side of this equation appears
the contraction �mn�lmn which should not be confused with
�l :� g���l��. Inserting now the expressions for the �lmn in
terms of 3� 1 quantities we obtain (see also the appendix)

@t�
l � �m@m�

l � �@l��
�l

�
�@t�� �

m@m��

� �2h
�
�l

�
K � �3��l

�
: (3.6)

This is to be compared with Eq. (2.10) of the previous
section. Notice that again we find that the evolution equa-
tion for the shift is coupled to that of the lapse. In the same
way as before, we can decouple the shift evolution equa-
tion by writing it in terms of the rescaled shift �i � �i=�.
We find

@t�
l � ��m@m�

l � @l�� �h��lK � �3��l�; (3.7)

which is to be compared with (2.11). This is the final form
of the condition for generalized harmonic spatial coordi-
nates, and we will refer to this condition simply as the
‘‘generalized harmonic shift’’ (but see Sec. IV below
where the condition is somewhat modified to make it fully
3-covariant).

At this point it is important to discuss the relation that
the shift condition (3.6) has with the conditions recently
proposed by Lindblom and Scheel [8], and by Bona and
Palenzuela [22]. It is not difficult to see that by choosing
the free parameters in these references appropriately, one
can in fact recover condition (3.6), but only provided one
also takes the lapse to evolve via the Bona-Masso slicing
condition (3.1) and takes f � h. If, on the other hand, one
uses a different slicing condition (say maximal slicing), or
uses the Bona-Masso slicing condition with f � h, then
this is no longer the case and the shift condition proposed
here will differ from those of Refs. [8,22]. This is a crucial
point, and shows the importance of rescaling the shift in
-3
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order to decouple its evolution equation from the time
derivative of the lapse.

In the following sections we will study this shift condi-
tion. We will first discuss the issue of the interpretation of
the generalized harmonic shift condition for curvilinear
coordinates in Sec. IV. Later, in Sec. V we will introduce
the concept of hyperbolicity, and a criteria for avoiding
blowups in the solutions of strongly hyperbolic systems of
equations. Finally, in Secs. VI and VII we will consider the
special cases of 1+1 dimensional relativity and spherical
symmetry. In each case we will analyze the hyperbolicity
properties of the full system of equations including the
generalized harmonic shift condition, study the possible
development of blowups, and present a series of numerical
examples.

IV. CURVILINEAR VERSUS CARTESIAN
COORDINATES

We have already mentioned that the harmonic shift
condition (2.11), and its generalization (3.7), are in fact
not covariant with respect to changes in the spatial coor-
dinates. That is, starting from exactly the same 3-geometry
but with different spatial coordinates we will get a different
evolution of the shift vector. In particular, for curvilinear
systems of coordinates one could find that even starting
from a flat slice of Minkowski spacetime we would still
have nontrivial shift evolution driven by the fact that the
initial �3��i do not vanish (i.e. the spatial curvilinear coor-
dinates are not 3-harmonic). Worse still, in many cases it
can happen that the �3��i of flat space are not only nonzero
but are also singular, as is the case with spherical coordi-
nates for which �3��r is of order 1=r. One may also find that
in physical systems that have a specific symmetry the shift
evolution will break the symmetry because of the proper-
ties of some of the �3��i. An example of this are again
spherical coordinates for which one finds that �3��� � 0, so
�� will evolve away from zero even for a spherically
symmetric system.

The question then arises how to interpret the harmonic
shift condition in a general coordinate system, and, in
particular, how to make sure that we do not run into
pathological situations like those described above. Our
proposal for resolving this issue is to always apply the
generalized harmonic shift condition in a coordinate sys-
tem that is topologically Cartesian. Of course, if one has a
situation that has a specific symmetry, one would like to
work with a coordinate system that is adapted to that
symmetry. We therefore need to transform condition (3.7)
from Cartesian coordinates to our curvilinear coordinates,
but taking into account the fact that the condition is not
covariant.

Let us denote by fx �ag our reference topologically
Cartesian coordinates, and by fxig the general curvilinear
coordinates. If we assume that condition (3.7) is satisfied
for the original coordinates fx �ag we will have
124018
@t�
�a � �� �b@ �b�

�a � @ �a�� �h�� �aK � �3�� �a�: (4.1)

In order to transform this expression we will use the fact
that with respect to the 3-geometry �i behaves like a
vector, while � and K behave as scalars. Remembering
now that the Christoffel symbols transform as

�3��ijk � �@ �axi@jx
�b@kx

�c��3�� �a
�b �c
� Fijk; (4.2)

with Fijk :� @ �ax
i@j@kx

�a, we find that in the curvilinear
coordinate system Eq. (4.1) becomes

@t�
l � ��m@m�

l � ��m�nFlmn � @
l�

� �h��lK � �3��l � �mnFlmn�: (4.3)

By rearranging some terms, the shift condition can finally
be written in the more convenient form

@t�
l � ��mrm�

l �rl�� �h�lK

� ��h�mn � �m�n��l
mn; (4.4)

with �l
mn :� �3��lmn � Flmn. The last expression is in fact 3-

covariant, as one can readily verify that the �l
mn transform

as the components of a 3-tensor. But the price we have paid
is that we have chosen a privileged coordinate system to be
used as a reference in order to define Flmn. It is clear that for
the original coordinates fx �ag the condition above reduces to
what we had before since Flmn vanishes. We will consider
the case of spherical coordinates in Sec. VII below.

In practice, one can use the fact that for flat space in
Cartesian coordinates the Christoffel symbols vanish,
which implies

Flmn � �3��lmnjflat; (4.5)

so that

�l
mn �

�3��lmn �
�3��lmnjflat: (4.6)
V. HYPERBOLICITY AND SHOCKS

A. Hyperbolic systems

The concept of hyperbolicity is of fundamental impor-
tance in the study of the evolution equations associated
with a Cauchy problem as the initial value problem for
strongly or symmetric hyperbolic systems can be shown to
be well-posed (though the well-posedness of strongly hy-
perbolic systems requires that some additional smoothness
conditions are verified). In the following we will concen-
trate on one-dimensional systems, for which the distinction
between strongly and symmetric hyperbolic systems does
not arise.

Following [26], we will consider quasilinear systems of
evolution equations that can be split into two subsystems of
the form

@tu �M�u�v; (5.1)
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@tv�A�u�@xv � qv�u; v�: (5.2)

Here u and v are n and m dimensional vector-valued
functions, and M and A are n� n and m�m matrices,
respectively. In addition we demand that the v’s are related
to either time or space derivatives of the u’s. This implies
that derivatives of the u’s can always be substituted for v’s
and hence treated as source terms.

The system of equations above will be hyperbolic if the
matrix A has m real eigenvalues 	i. Furthermore, it will be
strongly hyperbolic if it has a complete set of eigenvectors
~
i. If we denote the matrix of column eigenvectors by R �
� ~
1 � � � ~
m�, then the matrix A can be diagonalized as

R�1AR � diag�	1; � � � ; 	m	 � �: (5.3)

For a strongly hyperbolic system we then define the eigen-
fields as

w � R�1v: (5.4)

By analyzing the time evolution of the eigenfields, one
can identify mechanisms that lead to blowups in the solu-
tion, which in [27] have been referred to as ‘‘geometric
blowup’’ (leading to ‘‘gradient catastrophes’’ [28]) and
the ‘‘ODE-mechanism’’ (causing ‘‘blowups within finite
time’’). In [26] some of us presented blowup avoiding
conditions for both these mechanisms, which we called
‘‘indirect linear degeneracy’’ [25] and the ‘‘source crite-
ria.’’ In that reference it was also shown, using numerical
examples, that the source criteria for avoiding blowups is
generally the more important of the two conditions.
Because of this, and also because of the fact that the true
relevance of indirect linear degeneracy is not as yet com-
pletely clear, in this paper we will concentrate only on the
source criteria.

B. Source criteria for avoiding blowups

An evolution variable can become infinite at a given
point by a process of ‘‘self-increase’’ in the causal past of
this point. A criteria to avoid such blowups for systems of
partial differential equations of the form (5.1) and (5.2) was
proposed by some of us in [26]: When diagonalizing the
evolution system for the v’s, making use of (5.3) and (5.4),
one finds

@tw��@xw � qw; (5.5)

where

qw :� R�1qv � �@tR�1 ��@xR�1	v: (5.6)

This yields an evolution system where on the left-hand side
of (5.5) the different eigenfields wi are decoupled. How-
ever, in general the equations are still coupled through the
source terms qwi . In particular, if the original sources were
quadratic in the v’s, one obtains
124018
dwi
dt
� @twi � 	i@xwi �

Xm
j;k�1

cijkwjwk �O�w�; (5.7)

where d=dt :� @t � 	i@x denotes the derivative along the
corresponding characteristic. As pointed out in [26], the
ciiiw

2
i component of the source term can be expected to

dominate and to cause blowups in the solution within a
finite time. In order to avoid these blowups we therefore
demand that the coefficients ciii should vanish, and we
refer to this condition as the ‘‘source criteria.’’

It is not difficult to convince oneself that the source
criteria is in fact not a sufficient condition for avoiding
blowups, as already discussed in [26]. However, one can
still expect the source criteria to be a necessary condition
for avoiding blowups at least for small perturbations prop-
agating with different eigenspeeds, as mixed terms will be
suppressed when pulses moving at different speeds sepa-
rate from each other, while the effect of the term w2

i will
remain as each pulse moves. If, however, some eigenfields
wi and wj travel with identical or similar eigenspeeds, then
one should also expect important contributions coming
from the mixed terms wiwj. We will show an example
later on where eliminating such mixed terms (in addition to
the quadratic terms) indeed leads to further improvements.

VI. EINSTEIN EQUATIONS IN 1� 1 DIMENSIONS

We first consider standard general relativity in one spa-
tial dimension (and in vacuum). Since in this paper we
are interested precisely in studying a new shift condition,
1� 1 dimensional relativity is an ideal testing ground for
the ‘‘gauge dynamics’’ which one can expect in the higher
dimensional case.

In the following sections we will introduce the evolution
equations and gauge conditions, and consider the possible
formation of blowups associated with our gauge condi-
tions. We will also present numerical simulations that
show how the generalized harmonic shift condition be-
haves in practice.

A. Evolution equations

We will start from the ‘‘standard’’ Arnowitt-Deser-
Misner (ADM) equations for one spatial dimension [29]
as formulated in [23]. In this case the u quantities consist of
the lapse function �, the rescaled shift �: � �x, and the
spatial metric function g :� gxx. The v quantities, on the
other hand, are given by the spatial derivatives of the u’s
and, in addition, the unique component of the extrinsic
curvature. That is,

u � ��;�; g�; v � �D�; d�;Dg; ~K�; (6.1)

with ~K :�
���
g
p

trK �
���
g
p
Kx
x , and where we have defined

D� :� @x ln�; Dg :� @x lng; d� :� @x�: (6.2)

Notice first that we use a rescaled extrinsic curvature, as
-5
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this makes the evolution equations considerably simpler.
Also, we use logarithmic spatial derivatives of � and g, but
only the ordinary spatial derivative of the rescaled shift �,
as the shift is allowed to change sign.

For the evolution of the gauge variables we will use the
Bona-Masso slicing condition (3.1) and the generalized
harmonic shift condition (3.7). The equations for the u’s
are then

@t� � �2

�
�D� �

f ~K���
g
p

�
; (6.3)

@t� � �
�
�d� �

D�

g
� h

�Dg

2g
�
� ~K���
g
p

��
; (6.4)

@tg � �g
�
�Dg � 2

�
d� � �D� �

~K���
g
p

��
; (6.5)

where f � f��� and h � h��;��. The evolution equations
for fD�; d�;Dgg can be obtained directly from the above
equations, while the evolution equation for ~K comes from
the ADM equations and takes the following simple form

@t ~K � @x���� ~K �D�=
���
g
p
�	: (6.6)

The evolution equations for the v’s can then be written
in full conservative form @tv� @x�Av� � 0, with the
characteristic matrix A given by

A �

��� 0 0 �f=
���
g
p

�=g ��� ��h=2g ��h�=
���
g
p

�2�� �2� ��� 2�=
���
g
p

�=
���
g
p

0 0 ���

0
BBB@

1
CCCA:
(6.7)

This matrix has the following eigenvalues

	f
 � ��

���������
f=g

q
� ��; (6.8)

	h
 � ��

���������
h=g

q
� ��; (6.9)

with corresponding eigenfunctions (the normalization is
chosen for convenience)

wf
 � ~K 
D�=
���
f

p
; (6.10)

wh
 � ��1
 �
������
gh

p
� ~K �

���
g
p
d� �

���
h
p
Dg=2; (6.11)

which can be easily inverted to find

D� �

���
f
p

2
�wf� � w

f
��; (6.12)

d� �
1

2
���
g
p �w

f
� � w

f
� � w

h
� � w

h
��; (6.13)
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Dg �
1���
h
p �wh� � wh�� � �

���
g
p
�wf� � w

f
��; (6.14)

~K �
1

2
�wf� � w

f
��: (6.15)

The system is therefore strongly hyperbolic as long as
f > 0 and h > 0, with the lapse and shift eigenfields wf

and wh
 propagating with the corresponding gauge speeds
	f
 and 	h
.

B. Gauge shock analysis

By analyzing quadratic source terms in the evolution
equations of the eigenfields, we now want to study the
possible formation of blowups for the system of evolution
equations of the previous section. For the lapse and shift
eigenfields we find

dwf

dt
� cfff


w

f2

 � c

ffh



w

f

w

h

 �O�wf
w

f
�; w

f

w

h
��;

(6.16)

dwh

dt
� chhh


w

h2

 � c

hhf



w

h

w

f

 �O�wh
w

h
�; w

h

w

f
��:

(6.17)

In particular, we observe that in (6.16) no term proportional
to wh2


 is present, and in the same way in (6.17) there is no
term proportional to wf2


 . In order to apply the source
criteria we need to calculate those terms quadratic in wi
appearing in the sources of the evolution equation for wi
itself. It turns out that the ciii coefficients have the form

cfff


 / �1� f� �f
0=2�; (6.18)

chhh


 / @h=@�: (6.19)

According to the source criteria these coefficients have to
vanish in order to avoid blowups. The conditions on the
gauge functions f��� and h��;�� are then

1� f� �f0=2 � 0; (6.20)

@h=@� � 0: (6.21)

The condition (6.20) for f��� has been studied many times
before [5,25,26,30], and its general solution is

f��� � 1� const.=�2: (6.22)

For h��;��, on the other hand, we obtain the condition
that h can be an arbitrary function of�, but may not depend
on �, that is, h � h���.

One now might wonder about the case where h is equal
(or very close to) the function f. In that case the eigenfields
wf
 and wh
 travel with the same (or similar) eigenspeeds,
so mixed terms of the type wf
w

h

 in the sources can be

expected to contribute to a blowup. For this reason we have
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FIG. 1. For a simulation with harmonic slicing (f � 1) and
vanishing shift, we show the evolution in time of the variables �,
g and ~K, together with that of the eigenfield wf�. The values of
the different quantities are shown every �t � 20. In the plot on
the bottom we show three convergence factors when increasing
the resolution in the order ‘‘diamond, box and triangle.’’ In all
three cases the convergence factor is close to the expected value
of 4.
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also calculated the ciij coefficients associated to these
terms. Notice, however, that in general the coefficients of
such mixed terms are not invariant under rescalings of the
eigenfields of the form ~wi � �i��;�; g�wi, so we have in
fact done the calculation assuming an arbitrary rescaling.
We find

cffh


 /
�
1�

���
h
f

s �
; (6.23)

chhf


 /
��

2�
���
f

p @�h



@�



2���
g
p

@�h



@�

� 4�
���
g
p

�
�h

 � g

@�h



@g

���
1�

���
h
f

s �

�

� ���
f
p

2h

�
1�

���
h
f

s ��
�
@h
@�



1������
gf
p

@h
@�

�

�
1� 3h���

h
p �

3� h���
f
p

�
�h



�
: (6.24)

One can readily verify that these coefficients vanish for
f � h � 1� const:=�2, independently of the rescaling of
the eigenfields. This setting of f and h hence seems to be
an optimal choice for avoiding blowups.

C. Numerical examples

In order to test the generalized harmonic shift condition
we have performed a series of numerical experiments. We
evolve Minkowski initial data, but with a nontrivial initial
slice given in Minkowski coordinates �tM; xM� as tM �
p�xM�, with p a profile function that decays rapidly. If
we use x � xM as our spatial coordinate, the spatial metric
and extrinsic curvature turn out to be

g�t � 0� � 1� p02; ~K�t � 0� � �p00=g: (6.25)

In all the simulations shown below we have taken for the
function p�x� a Gaussian centered at the origin

p�x� � � exp
�
�

�
x
s

�
2
�
: (6.26)

For our simulations we have chosen for � and s the same
values used in [25], namely � � 5 and s � 10. Fur-
thermore, we start with unit lapse and vanishing shift.

All runs have been performed using a method of lines
with fourth order Runge-Kutta integration in time, and
standard second order centered differences in space.
Furthermore, we have used 64 000 grid points and a grid
spacing of �x � 0:0125 (which places the boundaries at

400), together with a time step of �t � �x=4. In the
simulations shown below, we will concentrate on two
different aspects: First, we want to know how the general-
ized harmonic shift condition works in practice, and what
are its effects on the evolution. Also, we want to see if
gauge shocks do form when they are expected.
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Furthermore, to study the overall growth in the evolution
variables, we introduce the quantity � defined through

�2 :� ��� 1�2 � �2 � �g� 1�2 �
X4

i�1

v2
i ; (6.27)

as a measure of how nontrivial the data is. For � we then
also calculate the convergence factor 
 which, using three
runs with high (�h), medium (�m) and low (�l) resolutions
differing in each case by a factor of 2, can be calculated by


 �
1
Ni

PNi
i�1 j�

m
i � �

l
ij

1
Nj

PNj
j�1 j�

h
j � �

m
j j
: (6.28)

In the plots we show three different convergence factors. In
particular, we denote with a triangle the convergence factor
obtained when comparing runs with 64 000, 32 000, and
16 000 grid points and a spatial resolution of 0.0125, 0.25,
and 0.5. We then use boxes and diamonds when gradually
lowering all three resolutions by a factor of 2. For second
order convergence we expect 
 ’ 4.

As a reference of what happens for the case of zero shift,
in Fig. 1 we show a run that corresponds to harmonic
slicing and vanishing shift (these plots should be compared
with Fig. 2 of [25]). In the figures, the initial data is shown
as a dashed line, and the final values at t � 200 as a solid
line (remember that the initial metric is nontrivial).
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Intermediate values at intervals of �t � 20 are shown in
light gray. As can be seen from the plots, all variables
behave in a wavelike fashion and the convergence plot
indicates that we have close to second order convergence
during the whole run for all resolutions considered. Here
the pulses are moving out symmetrically in both directions
away from the origin (we only show the x > 0 side). One
can see that the initial nontrivial distortion in g for small x
remains (so the dashed and solid lines lie on top of each
other there), indicating that even though in the end we
return to trivial Minkowski slices, we are left with non-
trivial spatial coordinates.

Our second example is shown in Fig. 2 and corresponds
to f � h � 1, that is, pure harmonic coordinates in both
space and time. The simulation is very similar to the
previous one and convergences again to second order.
The nontrivial shift, however, behaves in such a way that
at the end of the run no distortion remains in the metric
component g at the origin. One should also note that for
f � h � 1 both eigenfields propagate with the same speed.
However, since quadratic and mixed source terms in the
evolution equations of both wf
 and wh
 are not present,
simple wavelike behavior for all variables is again
observed.
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FIG. 2. For a simulation with harmonic slicing and harmonic
shift (f � h � 1), we show the evolution in time of �, �, g, and
~K, together with that of wf� and wh�. As in the previous figure,
the bottom plot shows the convergence factors for different
resolutions.
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This example allows us to understand the main effect
that the introduction of the generalized harmonic shift
condition has on the evolution: It drives the spatial coor-
dinates to a situation where no final distortion in the metric
is present. In fact, it is not difficult to understand why this is
so. From Eq. (4.4) we can see that the sources for the
evolution of the rescaled shift are the derivatives of the
lapse, the trace of the extrinsic curvature and the �l

mn. As
the shift condition does not feed back into the slicing
condition (apart from a trivial shifting of the time lines),
the lapse and the trace of the extrinsic curvature behave just
as before, with pulses that propagate away. However, the
�l
mn will continue to drive the evolution of the shift unless

they become zero. The behavior of the shift condition is
then to drive the system to a situation where the �l

mn
vanish. In the simple 1� 1 case this is equivalent to reach-
ing a state where the spatial metric itself becomes trivial.

A third example is presented in Fig. 3, which uses again
f � 1, but now we take h � 1� 3�2. Initially, the evolu-
tion behaves in a very similar way to the previous case. At
later times, however, we observe that a sharp gradient
g K~

w+
hw+

f
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FIG. 3. For f � 1 and h � 1� 3�2, the simulation fails
shortly before the time t � 200 due to a sharp gradient devel-
oping in the rescaled shift �, and a corresponding large spike
appearing in the eigenfield wh
. The bottom plot shows that
convergence starts to be lost at t ’ 150 (notice the change of
scale as compared to previous plots), indicating that a blowup
has happened at around this time. This type of behavior is
expected in this case since the source criteria is not satisfied.
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develops in the rescaled shift �, with a corresponding large
spike in the shift eigenfield wh
. Moreover, from the con-
vergence plot we see that there is a clear loss of conver-
gence, and as the resolution is increased, this loss of
convergence becomes more sharply centered around a
specific time t ’ 150, indicating that a blowup happens at
this time. Since in this case h is a function of �, the source
criteria is clearly not satisfied. The fact that a large spike
has developed in wh
 therefore strengthens the case for the
source criteria being a good indicator of when blowups can
be expected.

Our final example uses f � 1 and h � 2, and is shown
in Fig. 4. This example is interesting as the speeds for the
lapse and shift eigenfields are different. Concentrate first
on the evolution of the lapse, the extrinsic curvature and
wf�. Here the evolution is essentially identical to that of the
previous examples, converging again to second order: a
pulse travels with roughly unit speed and behind it every-
thing rapidly relaxes back to trivial values. The eigenfield
wh�, on the other hand, shows a pulse traveling faster, with
a speed �

���
2
p

. It also takes considerably longer for the
region behind this pulse to relax to trivial values. Finally,
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FIG. 4. For f � 1 and h � 2, the lapse and shift eigenfields
travel at different speeds. The lapse, extrinsic curvature and
eigenfield wf� show a pulse traveling with roughly unit speed,
while the eigenfield wh� shows a pulse moving with speed �

���
2
p

.
The metric g and rescaled shift �, on the other hand, separate
into two pulses traveling at the two different eigenspeeds.
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the metric g and rescaled shift � separate into two pulses
traveling at the two different eigenspeeds. This is to be
expected, as from (6.13) and (6.14) we see that metric and
shift have contributions from both types of eigenfields.

For the different runs we have also studied the behavior
of the logarithm of the root mean square (rms) of � over
time. Since the behavior of the evolution turns out to
depend to some extent on the initial data, and, in particular,
on the sign of the Gaussian in (6.26), we perform runs for
both � � 5 and � � �5, and then take the average of both
runs when calculating �. For the initial data we are using,
at time t � 0 this yields a value log��� 
 �1:583 for both
signs of �. In Fig. 5 we plot the rms of the quantity � for the
times t � f20; 40; 60; 80; 100g, when using either h � 1
and varying the (constant) value of f (top panel), or using
f � 1 together with different (again constant) values of h
(bottom panel). From the top panel we see that f � 1 is
clearly preferred. In addition we want to point out that runs
with f < 0:79 and f > 1:25 crashed before reaching the
time t � 100. This behavior is expected as we know that
constant values of f different from one produce blowups.
In the lower panel we observe that for f � 1 corresponding
to harmonic slicing, h � 1 performs best. In addition,
h

f

δ
h = 1

log[ ]|

20
40
60
80

100

t =

20
40
60
80

100

t =

δ
f = 1

log[ ]|

0 0.5 1 1.5 2
- 1.1

- 1.0

- 0.9

- 0.8

- 0.7

- 0.6

0 0.5 1 1.5 2
- 1.1

- 1.0

- 0.9

- 0.8

- 0.7

- 0.6

FIG. 5. Top: For evolutions with h � 1, the rms of � is shown
on a logarithmic scale as a function of f every �t � 20. The
value f � 1 is obviously preferred. Bottom: For runs with
harmonic slicing (f � 1), the same quantity is plotted as a
function of h. Here h � 1 is the optimal choice, but h� 0:5
or h� 1 is also preferred.
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values h� 0:5 and h� 1 also seem to be preferred. One
should note that mixed terms wf
w

h

 in the evolution

equations of both wf
 and wh
 for these choices of h play
a minor role since localized perturbations in these eigen-
fields separate quickly when traveling with different
speeds. We also want to mention that for h < 0:19 the
simulations again crashed before reaching the time t �
100. The observation that � grows rapidly and runs crash
early if f and/or h are very close to zero can be understood
by the fact that the system is not strongly hyperbolic if f �
0 and/or h � 0.

In the contour plot of Fig. 6 we show the rms of � at time
t � 100 as a function of the gauge parameters f and h,
using 64� 80 equidistant parameter choices. Cases that
have already crashed by that time correspond to the hashed
regions. Note that the darker regions in this plot denote
parameter choices where a significant growth in the evo-
lution variables is present, while brighter regions corre-
spond to runs with very little growth. We find small values
for the rms of � for f being close to its shock avoiding
value f � 1, and either h � 1 or h� 1. In addition, we
can also observe that f � h corresponds to a preferred
choice. This can be explained by the fact that for this gauge
choice the mixed terms wf
w

h

 are missing in the evolution

equations of both wf
 and wh
.
VII. EINSTEIN EQUATIONS IN SPHERICAL
SYMMETRY

As a second application of the generalized harmonic
shift condition we will consider vacuum general relativity
in spherical symmetry. This situation is considerably richer
124018
than the 1� 1 dimensional case, but it also presents some
special problems because of the singular nature of spheri-
cal coordinates at the origin.

A. ADM evolution equations

We will consider the spherically symmetric line element
written in the form

ds2 � ��2�1� A�2�dt2 � 2�A�drdt

� Adr2 � Br2d�2; (7.1)

where all the metric coefficients are functions of both t and
r. We now introduce the following auxiliary variables

D� :� @r ln�; d� :� @r�; (7.2)

DA :� @r lnA; DB :� @r lnB: (7.3)

Notice again that we use logarithmic derivatives for the
lapse and the spatial metric, but only an ordinary derivative
for the shift. For the extrinsic curvature, we will use the
mixed components

KA :� Kr
r; KB :� K�

� � K�
�: (7.4)

Following [31], we will change our main evolution varia-
bles and make use of the ‘‘antitrace’’ of the metric spatial
derivatives D � DA � 2DB, and the trace of the extrinsic
curvature K � KA � 2KB, instead of DA and KA.

For the regularization of the evolution equations at the
origin we will follow the procedure described in [31],
which requires the introduction of an auxiliary variable

	 � �1� A=B�=r: (7.5)

Local flatness guarantees that 	 is regular and of order r
near the origin. By taking f�; A; B; d�;K;KBg as even
functions at r � 0, and f�;D�;D;DB; 	g as odd, one ob-
tains regular evolution equations at r � 0.

In terms of the variables introduced above, the
Hamiltonian and momentum constraints become (in vac-
uum)

0 � Ch � �@rDB �
DB

2

�
D�

DB

2

�

� AKB�2K � 3KB� �
1

r
�D�DB � 	�; (7.6)

0 � Cm � �@rKB � �K � 3KB�
�
DB

2
�

1

r

�
: (7.7)

Notice that the Hamiltonian constraint is regular, while the
momentum constraint still has the term �K � 3KB�=r �
�KA � KB�=r which has to be handled with care numeri-
cally. This is not a problem as the momentum constraint
does not feed back into the ADM evolution equations. On
the other hand, when one adds multiples of the momentum
constraint to the evolution equations in order to obtain
strongly hyperbolic reformulations (as in the following
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studying the effects of the generalized harmonic shift condition
here we prefer not to complicate the analysis any further.
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section), the regularization procedure requires some of the
dynamical variables to be redefined by adding to them a
term proportional to 	 (see [31] for details). This redefini-
tion, however, does not affect the characteristic structure of
the system. Because of this, in the following analysis we
will simply ignore this issue.

For the evolution of the lapse we will again take the
Bona-Masso slicing condition, which in spherical symme-
try takes the form

@t� � �2��D� � fK�: (7.8)

For the shift we will use the generalized harmonic shift
condition in the form (4.4). In this case one finds

�mn�3��rmn �
D
2A
�

2

rA
; (7.9)

�mn�3��rmnjflat � �
2

rB
: (7.10)

Notice that in the first of these expressions we have used
the Christoffel symbols for the full spatial metric dl2 �
Adr2 � Br2d�2, while in the second we used those of the
flat metric dl2 � dr2 � r2d�2. However, as is clear from
(4.4), in both cases we have to contract indices using the
full inverse metric which explains why there is a factor B in
the denominator of the second expression. Using these
expressions we then find

�r �
D
2A
�

2	
A
; (7.11)

with 	 defined in (7.5) above. Our final shift condition is
then regular at the origin and has the form

@t� � �
�
�d� �

D�

A
� h

�
D
2A
� �K �

2	
A

��
: (7.12)

It is important to mention that if we had used the original
condition (3.7) instead of (4.4), we would have found that
the shift evolution equation was singular. Moreover, one
also finds that taking �� and �� equal to zero is consistent
when using (4.4) in the sense that their respective evolution
equations guarantee that they remain zero, which would
not have been the case with (3.7).

Going back to the metric components A and B, we find
for their evolution equations

@tA � 2�A
�
�
�
D� �

D
2
�DB

�
� d� � K � 2KB

�
;

(7.13)

@tB � 2�B
�
�
�
DB

2
�

1

r

�
� KB

�
: (7.14)

The evolution equations for D�, d�, D, and DB again
follow trivially from the above equations. Finally, the
ADM evolution equations for the extrinsic curvature com-
ponents turn out to be
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@tK �
�
A

�
�@rD� � 2@rDB � �A@rK �D�

�
D
2
�D�

�

�DB

�
D�

DB

2

�
� AK2 �

2

r
�D� �D�DB � 	�

�
;

(7.15)

@tKB �
�
A

�
�
@rDB

2
� �A@rKB �

D�DB

2
�
DDB

4

� AKKB �
1

r

�
D� �

D
2
�DB � 	

��
: (7.16)

Notice that these are directly the standard ADM evolution
equations written in terms of fK;KBg, with no multiples of
the constraints added to them. In the next section we will
consider how such adjustments affect the hyperbolicity of
the full system.

B. Adjustments and hyperbolicity

In order to analyze the characteristic structure of the full
system of evolution equations including the gauge condi-
tions, we start by defining

u :� ��;�; A; B; 	�; (7.17)

v :� �D�; d�;D;DB;K;KB�: (7.18)

The system of equations can then be written in the form
(5.1) and (5.2). It turns out that by doing this, one finds that
the ADM evolution system introduced above is not
strongly hyperbolic when f � 1 and/or h � 1. This is
undesirable, as these cases correspond precisely to purely
harmonic coordinates.

Following [26], in order to obtain strongly hyperbolic
systems we will consider adjustments to the evolution
equations of the extrinsic curvature components K and
KB of the form

@tvi �
Xm
j�1

Aij@rvj � hi
�
A
Ch � qi: (7.19)

Note that we are considering only very restricted adjust-
ments here. In particular, we do not modify the evolution
equations for theD’s and for d�. As explained in Ref. [26],
this is important for the blowup analysis in the next section,
as otherwise the constraints that link the D’s to derivatives
of the u’s will fail to hold and the analysis breaks down1.
Furthermore, for simplicity we will not consider adjust-
ments that use the momentum constraint.

For the coefficients hK and hKB we make the following
ansatz
-11
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hK � �2� b��;�; A; B�; (7.20)

hKB � �c��;�; A; B� � 1	=2: (7.21)

With these adjustments we find that the characteristic
matrix for our system of evolution equations becomes

A � �

�� 0 0 0 f 0
1=A �� �h=2A 0 �h� 0
�2� �2 �� 0 2 �8

0 0 0 �� 0 2
1=A 0 0 b=A �� 0

0 0 0 c=2A 0 ��

0
BBBBBBBB@

1
CCCCCCCCA
:

(7.22)

One may now readily verify that this matrix has the follow-
ing eigenvalues

	f
 � ��

���������
f=A

q
� ��; (7.23)

	h
 � ��

���������
h=A

p
� ��; (7.24)

	c
 � ��

���������
c=A

p
� ��: (7.25)

The system is therefore hyperbolic for ff; h; cg> 0.
Furthermore, there exists a complete set of eigenvectors
as long as c � f and c � h, so the system is strongly
hyperbolic except in those two cases. The eigenfields
turn out to be

wf
 � �c� f�D� � bfDB 

������
fA

p
��c� f�K � 2bKB	;

(7.26)

wh
 � �c� h�
�
A1=2�d� � �1
 �

������
hA
p
�K	 �

���
h
p D

2

�



���
h
p
�b�1
 �

������
hA
p
� � 2c	DB

� 2
����
A
p
�b�1
 �

������
hA
p
� � 2h	KB; (7.27)

wc
 �
���
c
p
DB 
 2

����
A
p

KB: (7.28)

It is clear from these expressions that when c � f the first
and third pairs of eigenfields become proportional to each
other and are hence no longer independent, while for c � h
it is the second and third pairs that become proportional.

C. Gauge and constraint shocks

As we did for the 1� 1 dimensional system, we will
now study the possible formation of blowups for the evo-
lution equations in spherical symmetry. In order to apply
the source criteria for avoiding blowups we need to calcu-
late the quadratic source terms in the evolution equations
for the eigenfields. We first look for gauge shocks, for
which we concentrate on the gauge eigenfields wf
 and
wh
. For the quadratic source terms we find
124018
cfff


 /
1

�c� f�

�
1� f�

�f0

2

�
; (7.29)

chhh


 /
1

�c� h�
@h
@�

: (7.30)

Demanding now that these terms vanish we obtain pre-
cisely the same conditions on f and h as in the 1+1
dimensional case. So again f � 1� const.=�2 and h �
h��� are shock avoiding solutions. Furthermore, if one
chooses f � h � 1� const.=�2, mixed terms of the
form wf
w

h

 do not appear in the evolution equations of

the gauge eigenfields wf
 and wh
, so this is a preferred
choice.

In contrast to the 1� 1 dimensional case, now also
blowups associated with the constraint eigenpair wc
 can
arise. The quadratic coefficient in this case takes the form

cccc


 / �1� 4b� 3c�; (7.31)

and by asking for this coefficient to vanish we find

b � �1� 3c�=4: (7.32)

From (7.20) and (7.21) we then infer that hK and hKB are
related by

hK � �1�
3hKB

2
; hKB >�

1

2
; (7.33)

which is the precisely the same constraint shock avoiding
half line in the fhK; hKBg parameter space that was found in
Ref. [26].

D. Numerical examples

We will now test the effects of the generalized harmonic
shift in spherical symmetry by performing a series of
numerical simulations. As in the 1� 1 dimensional case,
we will concentrate on two aspects, namely, the effect of
the shift condition on the evolution of the metric, and the
possible formation of blowups. Furthermore, in order to
decouple geometric effects associated with the center of
symmetry, we will consider two distinct regimes, one far
from the origin and one close to it.

1. Pulses far from the origin

We will first consider simulations that are far from the
origin, using initial data that is similar to the one used in
Sec. VI C. We start with the Minkowski spacetime, but use
a nontrivial initial slice with a profile tM � p�rM�. The
initial metric and extrinsic curvature then become

A�t � 0� � 1� p02; (7.34)

B�t � 0� � 1; (7.35)
-12
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K�t � 0� � �
1����
A
p

�
p00

A
�

2p0

r

�
; (7.36)

KB�t � 0� � �
p0

r
����
A
p : (7.37)

The profile function p�r� is again chosen to be a Gaussian,

p�r� � � exp
�
�

�
r� rc
s

�
2
�
; (7.38)

using for its amplitude and width the values � � 
5 and
s � 10. The center of the Gaussian is taken at rc � 250,
such that for evolution times of t� 100 the perturbation
will remain away from the origin.

We have performed runs with the code described in [31],
which uses a method of lines with fourth order Runge-
Kutta integration in time, and standard second order cen-
tered differences in space. We used 5 000 grid points and a
grid spacing of �r � 0:1 (which places the outer boundary
at 500) together with a time step of �t � �r=4.

In a preparatory experiment, we studied which evolution
systems perform best for our optimal gauge choice f �
h � 1. The upper panel of Fig. 7 (which should be com-
pared with Fig. 7 of [26]) shows the rms of the Hamiltonian
constraint at time t � 100, as a function of the adjustment
parameters hK and hKB . We can see that the line (7.33)
obtained by the source criteria is numerically preferred,
although there does seem to be a discrepancy for large
values of hKB for which the numerical results suggest a
somewhat steeper line. This discrepancy is due to the effect
of 1=r terms which are not taken into account by the source
criteria and can be eliminated by removing these terms by
hand. It is also important to point out that, in contrast to
Ref. [26], the initial data used here satisfies the constraints
and all subsequent constraint violations are caused by
truncation error.

In order to determine which points on this line perform
best, i.e. to fix the eigenspeeds 	c
 of the constraint mode,
we tested different (constant) values of c. From the lower
panel of Fig. 7 (to be compared with Fig. 5 of [26]) we find
that values c� 1=4 and c� 1 are preferred. This obser-
vation can be readily understood by the fact that the system
is not strongly hyperbolic for c � 0 and c � 1, and by the
fact that for c� 1 we expect contributions from mixed
source terms, since then wf
, wh
, and wc
 propagate with
similar or even identical eigenspeeds.

For our main experiment regarding gauge effects, we
concentrated on evolution systems which belong to the
shock avoiding family hK � �1� 3hKB=2, where for c
we considered three different values: c � f1=4; 1; 4g. As
long as the pulses remain far from the origin, we have
found that the evolutions behave in a very similar way to
those of the 1� 1 dimensional case described in Sec. VI C.
We summarize these results in Fig. 8, showing for these
three choices of c the rms of the Hamiltonian constraint at
124018
time t � 100 as a function of f and h. These graphs are
very similar to Fig. 6 and show that f � 1 together with
h � 1 or h� 1, and f � h are again preferred parameter
choices, indicating that the same mechanisms as in the
1� 1 dimensional case are at work. One should observe
the different scales when comparing the three plots corre-
sponding to different values of c, which indicate that by far
the lowest constraint violations are found when the con-
straint eigenspeed is different from the gauge eigenspeeds.
Notice also in the middle plot corresponding to c � 1 that
the region around f � h � 1 is in fact dark. This can be
explained by the fact that for f � h � c � 1 the evolution
system is not strongly hyperbolic.

When the pulses come close to the origin, however,
additional effects arise due to 1=r terms. In the next section
we will consider this situation.
-13
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2. Pulses close to the origin

In order to see directly the effect of the generalized
harmonic shift condition on the evolution of the geometric
variables, we will consider again a series of simulations of
Minkowski spacetime, but this time close to the origin r �
0. The initial data for these runs will be simpler than the
one used in the previous section: We start with a flat
Minkowski slice with A � B � 1 and KA � KB � 0, and
take a nontrivial initial lapse of the form

� � 1� �r2�e��r�rc�
2=s2
� e��r�rc�

2=s2
�; (7.39)

with � � 10�5, rc � 10, and s � 1 (the reason for the two
Gaussians is to make sure the initial lapse is an even
function of r). All simulations shown here use 4 000 grid
points, with a grid spacing of �r � 0:01 (which places the
outer boundary at r � 40), together with a time step of
�r=4. In the plots, the initial data is shown as a dashed line
and the final values at t � 20 as a solid line. Intermediate
values are plotted every �t � 2 in light gray.

As reference, we first show in Fig. 9 a run for the case of
harmonic slicing (f � 1) with no shift. In order to look at
the details in a clearer way, in the figure we plot �� 1,
A� 1, and B� 1. As expected, the perturbation pulse in
the lapse separates into two pulses, one moving outward
and one inward. The inward moving pulse goes through the
origin and starts moving out much in the way a simple
scalar wave would. The pulses in the lapse are accompa-
nied by similar pulses in the metric variables A and B.
However, one can clearly see that the metric variables are
not evolving toward trivial values, so in the end we are left
with Minkowski slices with nontrivial spatial coordinates.

Next we consider the same situation, but now using a
harmonic shift with h � 1. Figure 10 shows results from
124018-14
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this run. The lapse behaves in exactly the same way as
before, but now there is a nontrivial shift. The evolution of
� indicates that the shift behaves much in the same way as
the lapse, with two pulses traveling in opposite directions,
with the inward moving pulse going through the origin and
then moving out as expected. The evolution of the metric
variables A and B shows that after the ingoing pulse goes
through the origin and starts moving out, the perturbations
on the metric become very small. The shift then seems to
be having a similar effect to the one it had in the 1� 1
case, making the metric components evolve toward trivial
values.

Figure 11 shows a similar run, but now using f � 1 and
h � 2. The whole simulation behaves much the same way
124018
as before, except for the fact that the metric coefficient A
(and to a lesser extent B) now shows evidence of two pulses
separating and traveling at different speeds after the re-
bound through the origin.

Finally, in Fig. 12 we show a simulation with h � 1 for a
case where we have left the lapse equal to one throughout
the evolution. The initial data in this case is purely
Minkowski data with a shift of the form

� � �r�e��r�rc�
2=s2
� e��r�rc�

2=s2
�; (7.40)

with � � 10�3, s � 1, and rc � 5. The purpose of this run
is to decouple the harmonic shift condition from the slicing
-15
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condition. The figure shows clearly how, even though the
initial pulse in the shift produces perturbations in the
metric coefficients, these perturbations rapidly decrease
in size leaving trivial values behind them.

One should mention the fact that, even though we do not
show convergence plots in this section, in all cases con-
vergence has been studied and we have found that the
simulations converge at close to second order.

VIII. DISCUSSION

We have proposed a natural generalization of the con-
dition for harmonic spatial coordinates analogous to the
generalization of harmonic time slices of Bona et al. [19],
and closely related to shift conditions recently introduced
by Lindblom and Scheel [8], and by Bona and Palenzuela
[22]. This coordinate condition implies an evolution equa-
tion for the shift components. We have also found that if
one wants to decouple this evolution equation for the shift
from the choice of slicing condition, it is important to work
with a rescaled shift vector �i � �i=�.

The generalized harmonic shift condition thus obtained
turns out not to be 3-covariant, which is not surprising as it
124018
involves the 3-Christoffel symbols directly. In order to be
able to use this condition in arbitrary sets of curvilinear
coordinates, and to be sure that we always obtain the same
shift independently of the choice of spatial coordinates, we
have proposed that the condition should be interpreted as
always being applied to topologically Cartesian coordi-
nates, and later rewritten in a general curvilinear coordi-
nate system. In this way we have obtained a fully 3-
covariant version of the generalized harmonic shift
condition.

We have shown that the evolution equation for the shift
proposed here can be seen to lead to strongly hyperbolic
evolution systems both in the case of 1� 1 ‘‘toy’’ relativity
and in the case of spherical symmetry. Though we have not
done a completely general analysis here, it is to be ex-
pected that it will also lead to strongly hyperbolic systems
in the 3D case. Here we have concentrated on simple one-
dimensional systems in order to take the hyperbolicity
analysis further and study the possible formation of blow-
ups associated with this shift condition. We find that the
coefficient h controlling the gauge speed associated with
the shift can be an arbitrary function of the lapse, but must
be independent of the shift itself in order to avoid blowups.
In the slicing and constraint sectors we recover previous
results found in [26]. An important result of this study is
the fact that evolutions will be much better behaved if the
gauge speeds associated with the lapse and shift are the
same. This can be understood from the fact that terms in
the sources that are mixed products of eigenfields associ-
ated to the lapse and shift vanish in this case. This implies
that if one wants to use a shift of the generalized harmonic
family, together with a lapse of the Bona-Masso type (like
1� log slicing), it is best to take h��� � f���. In particu-
lar, the shock avoiding family h � f � 1� const.=�2 is
an optimal choice.

We have also performed a series of numerical simula-
tions both to confirm the predictions of the blowup analy-
sis, and to study what effect the shift has on the evolution of
the geometric variables. In the 1+1 dimensional case, we
find that the effect of the shift is to take the spatial metric
back to a trivial value everywhere, by propagating away
any nontrivial values in a wavelike fashion. In spherical
symmetry the situation is considerably richer, but our main
result is that when one uses the 3-covariant version of the
generalized harmonic shift, then the effect of the shift is
also to drive the metric coefficients to trivial values by
propagating away any initial perturbations in the way one
would expect for spherical waves, i.e. the perturbations
become smaller as they propagate outwards. It is important
to mention that, had we not used the covariant form of the
shift condition and tried to apply the original noncovariant
version directly to spherical coordinates, we would have
found the shift condition to be singular, and worse still, to
break the original spherical symmetry of the system. This
shows that working with the 3-covariant version is the
correct approach.
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As a final comment, one should also mention the fact
that the requirement of 3-covariance is not satisfied by
some recently proposed shift conditions that are currently
being used by large scale 3D simulations, such as the
‘‘Gamma driver’’ shift [4,32,33]. We are currently also
studying 3-covariant versions of those conditions.
APPENDIX: GENERALIZED HARMONIC LAPSE
AND SHIFT CONDITIONS

Here we will provide a general derivation of Eqs. (3.1)
and (3.6) for the lapse and shift. Let us start by considering
the d’Alambertian of any number a of functions  a�x��
with their corresponding source terms

� a � S 
a
: (A1)

Now, the d’Alambertian can be written in general as

� a �
1�������
�g
p @��

�������
�g
p

g��@� 
a	: (A2)

Using g�� � ��� � n�n�, with ��� the projector operator
on the hypersurfaces �t with normal n�, we find

� a �
1

�
����
�
p @���

����
�
p

���@� a	

�
1

�
����
�
p @���

����
�
p

n�n�@� 
a	; (A3)

where we used the fact that g :� det g�� � ��2� with
� :� det�ij the determinant of the 3-metric on �t. We
then have

� a � 3� a � a�r� 
a � Kn�r� 

a

� n�r��n�r� a�; (A4)

where 3� is the Laplacian compatible with the 3-metric
�ij, a� � n�r�n

� � ���r��ln�	 �: D��ln�	 is the
4-acceleration of the normal observers, and we used K �
�r�n

�.
In order to obtain for instance a system of first order

equations one can further define

Q�a :� D� a; (A5)

�a :� L ~n a � n�r� a; (A6)

where D� a :� ���r� a. Collecting the above results
we obtain

L ~n�a � a�Q
�a �D�Q

�a ��aK � �S 
a
: (A7)

A simple application of the above results is the case
when  a � xa, in which case �a � na � �1;��i�=�,
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Qa
� � �a�, and D�Q�i � @j�

����
�
p

�ij�=
����
�
p
� ��3��i. The

above equation with S 
a
� 0 is then called the harmonic

coordinate condition, which provides an evolution equa-
tion for the lapse—Eq. (2.9)—and for the shift—
Eq. (2.10)—when taking xa � �t; xi� with t defining the
time slicings and xi being spatial coordinates on �t.

On the other hand one can take � a � S 
a

with a
source term of the form S 

a
� q an�n�r�r� a (no

sum over index a). Now, using n�n� � ��� � g��, one
obtains

n�n�r�r� a � ���r�r� a �� a: (A8)

Using the orthogonal decomposition r� a � D� a �
n�n�r� a � Qa

� � n��a we find

n�n�r�r� a � D�Q�a ��aK �� a; (A9)

where we used ���r�n� � r�n� � �K and ���n� �
0. In this way the equation � a � S 

a
becomes

� a �
q a

1� q a
�D�Q�a ��aK�: (A10)

Finally,�� a is given by the left-hand side of Eq. (A7),
from where we find

L ~n�a � a�Q�a �D�Q�a ��aK

� �
q a

1� q a
�D�Q�a ��aK�; (A11)

which simplifies to

L ~n�a � a�Q�a �
1

1� q a
�D�Q�a ��aK�: (A.12)

In this way by taking  a � �t; xi�, qt � af � 1=f� 1,
qxi � ah � 1=h� 1, together with Eqs. (A5) and (A6)
(leading to �a � na � �1;��i�=� and Qa

� � �a�), one
recovers the evolution Eqs. (3.1) and (3.6) for � and �i,
respectively.
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[18] C. Bona, J. Massó, E. Seidel, and J. Stela, Phys. Rev. D 56,

3405 (1997).
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