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1. Introduction

It has been known for some time that there is a close relation between the hermitian one

matrix model and the conformal field theory of one free boson [36, 29, 42, 33]. One of the
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quantities that appears naturally in the matrix model context corresponds, in conformal

field theory, to the operator

Iλ(a, b) = exp

(
λ

2π

∫ b

a
J+(x) dx

)
. (1.1)

Here λ is a complex number and we have expressed the free boson theory (at the self-dual

radius) in terms of the su(2) level one WZW model with the standard basis of the weight

one fields denoted by J+(z), J3(z) and J−(z). Since the operator product expansion of

J+(z)J+(w) is regular, no normal ordering is required to ensure convergence of the integrals

that occur upon expanding (1.1).

As will be explained in more detail in the next subsection, the matrix model analysis

suggests that the operator Iλ(a, b) will exhibit interesting monodromy properties for the

su(2) fields in the limit of large matrix size n. The aim of this paper is to elucidate these in

terms of the above conformal field theory description. In particular, we shall propose that

the operator (1.1) can also be expressed in terms of dressed twist fields (see section 1.2 below

for more details) which will make these monodromy properties manifest. To leading order

in 1/n the relation between Iλ(a, b) and twist fields had been suggested before in [33, 13];

here we shall propose an exact relation for all n.

1.1 Relation to matrix models and 2d gravity

The matrix integral for the hermitian one matrix model is given by

Zmm

[
t
](n)

= (const)

∫
dΦ e−

1
gs

tr W (Φ) =

∫ ∞

−∞
dλ1 . . . dλn

n∏

i,j=1, i<j

(λi − λj)
2e−

1
gs

Pn
k=1 W (λk) .

(1.2)

The first integral is over all hermitian n×n matrices, while the second integral amounts to

expressing the first one in terms of the eigenvalues of Φ, and W (x) =
∑

m≥0 tmxm is the

potential; more details can be found e.g. in the review [11]. The relation to the free boson

conformal field theory is established by noting that the integrand of (1.2) can be written

as a correlator of free boson vertex operators [36, 29, 42, 33]. Using the language of su(2)1
the expression is,

〈n|e−HJ+(x1) · · · J+(xn)|0〉 = e
− 1

gs

Pn
k=1 W (xk)

∏

i<j

(xi − xj)
2 , (1.3)

where H = 1
gs

∫
C∞ W (z)J3(z) dz

2πi . This formula is most easily verified by employing the

operator product expansion J3(z)J+(w) = (z−w)−1J+(w) + O(1) to commute e−H to the

right. Here we have assumed that W (x) is analytic on C: this allows us to use contour

integrals, and guarantees that the only contributions come from the J+-insertions. Using

charge conservation, the matrix integral can then be expressed in terms of the exponential

(1.1) as

〈n|e−HIλ(−∞,∞)|0〉 =
λn

(2π)n n!
Zmm [t](n) . (1.4)

– 2 –



J
H
E
P
1
0
(
2
0
0
5
)
1
0
7

The correspondence extends also to correlators. Let Zmm[t, f ](n) stand for the the

right hand side of (1.2), with an additional factor f in the integrand. For the matrix model

resolvent we then have the relation

〈n|e−HJ3(z)Iλ(−∞,∞)|0〉 =
λn

(2π)n n!
Zmm

[
t, tr

1

z − M
− 1

2gs
W ′(z)

](n)

, (1.5)

as can be verified by writing out the integrals explicitly and comparing the integrands.

Provided the potential W (x) increases fast enough for x → ±∞, the eigenvalues of the

matrix Φ will condense, in the large-n limit, on one or more intervals on the real axis, the

so-called cuts (for details, consult e.g. [11]). The correlator Zmm

[
t, tr 1

z−M

](n)
has, again

in the large-n limit, square root branch cuts on these intervals. Equivalently, continuing

J3(z) in (1.5) around an endpoint of a cut in the large-n limit results in J3 → −J3. This

motivates the idea to model the endpoints of matrix model cuts by insertions of twist fields

σ(x) on the conformal field theory side [33, 13]. Free boson twist fields have also been

considered in the context of the integrable hierarchy approach to two-dimensional gravity

in [16, 20, 21].

We will investigate this effect in a simplified setting, in which we choose W (x) in (1.2)

to be an infinite well potential, that is, W (x) = 0 for x ∈ [a, b] and W (x) = +∞ otherwise.

This effectively restricts the eigenvalue integrations from the real axis to the interval [a, b],

so that the relation (1.4) takes the simpler form

〈n|Iλ(a, b)|0〉 =
λn

(2π)n n!
Zwell,(n)

mm . (1.6)

Matrix integration measures (or potentials) which force the eigenvalues to lie on a contour

which has an endpoint on the complex plane, rather then to start and end at infinity, are

referred to as ensembles with hard edges, see e.g. [6, 18] where such models are treated and

more references can be found. From the conformal field theory point of view, the relation

(1.6) is easier to analyse than (1.4) because the potential term e−H is absent. For example,

for the one-point functions one finds

〈n|J3(z)Iλ(a, b)|0〉 =
λn

(2π)n n!
Zwell

mm

[
tr

1

z − M

](n)

〈n±1|J±(z)Iλ(a, b)|0〉 =
λn

(2π)n n!
Zwell

mm

[
det(z − M)±2

](n)
. (1.7)

It should be stressed that even if we choose the interval [a, b] to coincide with the location

of a cut in a matrix model with analytic potential W (x), the large-n expansion of the free

energies

ln
(
〈n|e−HJ3(z)Iλ(a, b)|0〉

)
and ln

(
〈n|e−HJ3(z)Iλ(−∞,∞)|0〉

)
, (1.8)

as well as their behaviour in the double scaling limit, will be different. The reason is that

for subleading effects in n−1, the decay-behaviour of the eigenvalues just outside of the cut

will be important, and that has precisely been cut off by the infinite well potential1.

1We thank B. Eynard for a discussion on this point.
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As we have explained above one may expect, given the monodromy properties of

the matrix model correlators, that the operator Iλ(a, b) is proportional to the product

of two twist fields to leading order in 1/n. For finite n, the monodromy properties are

however quite different. Indeed, the correlator Zmm[t,det(z − M)](n) is single valued for

finite n (being a polynomial of degree n), but has jumps at the location of the cuts in

the 1/n-expansion. This is an example of Stokes’ phenomenon (for an exposition see for

example [3], [34, app.B]): the analytic continuation in z of an asymptotic expansion (the

1/n-expansion in this case) of a function f(n, z) can be different from the asymptotic

expansion of the analytic continuation.

The double scaling limit of the hermitian matrix model, with an appropriately tuned

potential, describes a (p, 2)-minimal model coupled to Liouville gravity (see e.g. [11]) or,

equivalently, (p, 2)-minimal string theory (see [43] for a summary of recent developments).

The above effect has been given an interesting target space interpretation in the context

of minimal string theory [34]. There, the target space is identified with the moduli space

of FZZT branes and it is shown that while in the semi-classical limit this moduli space

becomes a branched covering of the complex plane, in the exact quantum description

the moduli space is in fact much simpler, being just the complex plane itself. On the

matrix model side, the analogue of the string partition function in the presence of a FZZT

brane is the correlator of the exponentiated macroscopic loop operator, Zmm[t,det(z −
M)](n) [2, 40, 41, 30]. As described above, this correlator is single valued for finite n but

develops branch cuts in the large-n limit. This is an example for how classical geometry

emerges as an effective concept in string theory.

As we will see, also the simplified matrix model with the infinite well potential that

we consider in this paper exhibits this behaviour. The alternative formula for Iλ(a, b) in

terms of dressed twist fields that we shall propose will then give a suggestive explanation

of this phenomenon.

1.2 Summary of results

To explain more precisely our formula for Iλ(a, b) in terms of dressed twist fields, we first

need to give a few definitions, starting with the relevant twist fields σ±λ(z). Around an

insertion of σ±λ(z), the three su(2)-currents have a Z2-monodromy

(J+, J3, J−) 7−→ (λ−2J−,−J3, λ2J+) . (1.9)

If instead of Jc one uses the basis

K3 =
1

2

(
λJ+ + λ−1J−)

, Kν =
ν

2

(
λJ+ − λ−1J−)

− J3 for ν = ±1 , (1.10)

the twist fields σ±λ(z) have the standard monodromy K3 7→ K3 and Kν 7→ −Kν . In

particular, the field K3(z) is single valued, and the two twist fields σ+λ(z) and σ−λ(z) are

distinguished by their K3-charge (i.e. the eigenvalue of the K3 zero mode), which is 1
4 and

−1
4 , respectively. In the K-basis it is obvious that the monodromy around σ±λ(z) amounts

to an inner automorphism of su(2) of order two.

– 4 –
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σ−λ(a) σλ(b)

C1

C2

Im

Re

Figure 1: The contours in the definition of Sλ(a, b). The dashed line represents the branch cut

between the two twist fields.

i)

a b
-

truncate

ii)

a b

Figure 2: Deforming and truncating the integration contours.

Let us define an operator Sλ(a, b) which is very similar in spirit to (a special case of)

the star-operators introduced in [38, 39]. Explicitly, it is given in terms of twist fields and

exponentiated J−-integrals as follows,

Sλ(a, b)=(b−a)
1
8

[
σ+λ(b) exp

(
− 1

2πλ

∫

C1

J−(x)dx

)
exp

(
− 1

2πλ

∫

C2

J−(x)dx

)
σ−λ(a)

]

reg

.

(1.11)

Here C1 is an integration contour from a to b passing above the interval [a, b], the contour C2

has the same endpoints, but passes below the interval, and [· · · ]reg refers to a prescription

to regulate the first order pole in the operator product expansion of J− and σ±λ (see

sections 5.2 and 5.4 below). The contours are illustrated in figure 1.

As we shall explain below in section 2.3, the product of the two twist fields σ+λ(b)σ−λ(a)

that appears in Sλ(a, b) can be expressed in terms of an exponentiated integral of the form

σ+λ(b)σ−λ(a) = (b − a)−
1
8 : exp

(
1

4

∫ b

a

(
λJ+(z) + λ−1J−(z)

))

: . (1.12)

Qualitatively speaking, the J− integrals in the formula (1.11) for Sλ(a, b) can be interpreted

as removing the J− part of this integral, leaving behind only the J+ integrals that appear

in Iλ(a, b). This observation motivates the following operator identity for the two rather

different looking exponentiated integrals (1.1) and (1.11),

Iλ(a, b) = Sλ(a, b) . (1.13)

This equality is the main result of our paper. We have no complete proof for it; the

supporting evidence will be given in section 5.

As a consequence of (1.13) it is now possible to see that the operator Iλ(a, b) does

indeed display the monodromy properties described in the previous section. Consider a

correlator of the form 〈n|(fields)Sλ(a, b)|0〉, where (fields) stands for any product of the

currents Jc(z). The integration contour of figure 1 can be deformed as in figure 2i). It

– 5 –
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turns out (see section 5.3) that the part of the integral along the ellipse is suppressed by a

factor r−2n for some r > 0. This results in the approximation

〈n|(fields)Sλ(a, b)|0〉 = 〈n|(fields)Strunc
λ (a, b)|0〉

(
1 + O

(
r−2n

))
, (1.14)

where Strunc
λ (a, b) is defined as Sλ(a, b), but with the J−-integrals taken only over the short

horizontal contours shown in figure 2 ii).2 The difference between Sλ(a, b) and Strunc
λ (a, b)

in a correlator with an out-state of charge n is thus non-perturbative in 1/n. In particular,

both correlators in (1.14) will have the same 1/n expansion (the correlators have to be

normalised appropriately to allow a 1/n-expansion, see section 5.3). But since in Strunc
λ (a, b)

the points a and b are no longer connected by J− integrals, the monodromy of the currents

Jc(z) around the points a and b is just the Z2-monodromy (1.9) of the twist fields. On

the other hand, the monodromy of Iλ(a, b) (and hence that of Sλ(a, b)) is not given by

(1.9). For example, in the presence of Iλ(a, b) the current J+(z) is single valued (since

the operator product expansion J+(z)J+(w) is regular), while under (1.9) it changes to

λ−2J−(z). In this sense, the ‘correct’ monodromy of the currents Jc(z) in the presence

of Iλ(a, b) is a non-perturbative effect and cannot be seen in the 1/n-expansion. This is

the same effect as observed in the previous section for the minimal string, albeit here in a

different model, namely a matrix integral with hard edges.

Further, in the large-n limit itself, the J−-integrals are suppressed altogether, and

Sλ(a, b) can be replaced by a product of twist fields. Taking into account the need to

regulate (1.11) (see section 5.3), we arrive in this way at the second important result of

our paper,

〈n|(fields)Sλ(a, b)|0〉 = n− 1
4 2

1
12 e3ζ′(−1)(b−a)

1
8 〈n|(fields)σ+λ(b)σ−λ(a)|0〉

(
1 + O

(
n−1

))
,

(1.15)

where ζ is the Riemann zeta-function. This shows that our formula for Sλ(a, b) also has

the correct large-n limit.

In passing from Iλ(a, b) to Sλ(a, b) we have effectively decomposed the monodromy

across the interval [a, b] into a product of three terms, one each associated with one of

the lines in figure 1 (the explicit product can be found in (5.2) below). This is analogous

to a method introduced in [10] to analyse Riemann-Hilbert problems, which can also be

applied to investigate the asymptotics of orthogonal polynomials (see [4, 9], and the lecture

notes [8]). There, the orthogonal polynomials are encoded in a Riemann-Hilbert problem

with an appropriate jump matrix across the real line, and their large-n behaviour can be

found by manipulating the contour along which the jump condition is imposed in a way

analogous to figure 1.

The paper is organised as follows. In section 2 we review how free boson vertex

operators and twist fields can be expressed as exponentials of integrated currents. To

compare the properties of Iλ(a, b) and twist fields, we calculate some correlators of su(2)1-

currents in the presence of two twist fields (section 3) and in the presence of Iλ(a, b)

2As explained in section 5.3, in addition the regulator introduces an overall factor.
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(section 4). Finally, the definition of Sλ(a, b) is given in section 5, where also its properties

are investigated. Section 6 contains our conclusions. We have also included two appendices

where some of the more technical calculations are described.

2. Representing fields as exponentiated integrals

Let us begin by explaining how one can represent fields in terms of exponentiated inte-

grals. While this may seem unfamiliar at first, there is at least one example where this

construction is actually well known. This is the case of a free boson that we shall review

first.

2.1 The case of the u(1) representation

The free boson theory with field X(z, z̄) has an u(1) symmetry that is generated by a

weight one current H(z) = i∂X(z, z̄) with operator product expansion

H(z)H(w) =
1

2(z − w)2
+ O(1) . (2.1)

In terms of modes, H(z) can be expanded as H(z) =
∑

n Hnz−n−1. These modes then

satisfy the commutation relations

[Hm,Hn] =
1

2
mδm,−n . (2.2)

The corresponding stress energy tensor is T (z) = :H(z)H(z): , where the colons denote

normal ordering, i.e.

:H(z)H(z) : = lim
w→z

(
H(w)H(z) − 1

2(w − z)2

)
. (2.3)

The modes of the stress energy tensor T (z) =
∑

n Lnz−n−2 define a Virasoro algebra with

c = 1; in terms of the modes Hn we have

Ln =
∑

m

: Hm Hn−m :, (2.4)

where the colons denote here the usual normal ordering of modes.

An (untwisted) highest weight representations of the u(1) theory is generated by a

state |µ〉 that is annihilated by the modes Hn with n > 0, and is an eigenvector of H0 with

eigenvalue µ,

Hn |µ〉 = µδn,0 |µ〉 , n ≥ 0 . (2.5)

The corresponding vertex operator will be denoted by Vµ, and can be described by the

usual vertex operator construction

Vµ(z) = : e2iµX(z) : . (2.6)

We would now like to express this operator in terms of the current H(z) of the conformal

field theory. At least formally we can write iX(z) =
∫ z

H(w)dw, and thus we should be

– 7 –
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able to write the vertex operator Vµ in terms of an exponentiated integral. However, the

exponentiated integral will have a non-vanishing vacuum expectation value, and thus it

will not just describe the field Vµ, but rather the pair of Vµ together with its conjugate

V−µ. Thus one is led to expect [25]

Vµ(b)V−µ(a) = (b − a)−2µ2
: exp

(
2µ

∫ b

a
H(z) dz

)
: , (2.7)

where the prefactor is needed to produce the correct scaling behaviour, as will be discussed

further below (see (2.10)). In fact, one can show that this identity holds in arbitrary

correlation functions. (For a definition of conformal field theory in terms of correlation

functions see for example [25].) To this end one observes that the V±µ satisfy indeed their

defining relations (2.5) since one calculates, using Wick’s Theorem,

〈 n∏

i=1

H(ui)H(w) : exp

(
2µ

∫ b

a
H(z) dz

)
:
〉

=

= µ

(
1

w − b
− 1

w − a

)〈 n∏

i=1

H(ui) : exp

(
2µ

∫ b

a
H(z) dz

)
:
〉

+

+
1

2

n∑

j=1

1

(w − uj)2

〈∏

i6=j

H(ui) : exp

(
2µ

∫ b

a
H(z) dz

)
:
〉
, (2.8)

where we have used that

∫ b

a

dz

(w − z)2
=

1

w − b
− 1

w − a
. (2.9)

Since the ui are arbitrary, it follows that any correlation function of H(w) with the inte-

grated exponential has only poles in (w− a) and (w− b) of order one; the fields at a and b

are therefore highest weight states. It is also manifest from the above formula (by taking

the contour integral around a or b) that their eigenvalues with respect to H0 are ±µ.

The above analysis determines the exponential up to an overall function of b−a. This

is fixed by considering the vacuum expectation value of (2.7), which equals

〈Vµ(b)V−µ(a)〉 = (b − a)−2µ2
. (2.10)

This is of the form (b−a)−2h (as required by conformal symmetry) precisely for the choice

of prefactor made in (2.7). It is easy to see, by the same methods as above and using

the definition of the stress energy tensor in terms of the u(1) field, that the fields that are

defined by the right hand side of (2.7) also have the correct conformal weight.

As a non-trivial consistency check, one can confirm that these highest weight fields

then also give rise to the correct 4-point functions. To this end we consider

〈
Vµ(b1)V−µ(a1)Vν(b2)V−ν(a2)

〉
= (2.11)

= (b1 − a1)
−2µ2

(b2 − a2)
−2ν2

〈
: exp

(
2µ

∫ b1

a1

H(z) dz

)
:: exp

(
2ν

∫ b2

a2

H(w) dw

)
:
〉
.

– 8 –
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The correlator on the right hand side can now be easily evaluated and one obtains

(2.11) = (b1 − a1)
−2µ2

(b2 − a2)
−2ν2

∞∑

l=0

2lµlνl

l!l!

∑

σ∈Sl

(
l∏

i=1

∫ b1

a1

dzi

∫ b2

a2

dwi

)
l∏

j=1

1

(zj − wσ(j))2

= (b1 − a1)
−2µ2

(b2 − a2)
−2ν2

∞∑

l=0

2lµlνl

l!

l∏

i=1

∫ b1

a1

dzi

(
1

zi − b2
− 1

zi − a2

)

= (b1 − a1)
−2µ2

(b2 − a2)
−2ν2

(
(b1 − b2)(a1 − a2)

(a1 − b2)(b1 − a2)

)2µν

. (2.12)

This then agrees with the known answer.

2.2 Representations of su(2)1

At the self-dual radius the free boson theory is actually equivalent to an su(2) current

theory with k = 1. The su(2) current symmetry is generated by three currents J± and J3

of conformal weight one with operator product expansion3

J+(z)J−(w) =
k

(z − w)2
+

2J3(w)

z − w
+ O(1)

J3(z)J±(w) = ±J±(w)

z − w
+ O(1)

J3(z)J3(w) =
k

2(z − w)2
+ O(1) . (2.13)

The modes of J3 and J± then satisfy the commutation relations

[J+
m, J−

n ] = 2J3
m+n + k m δm,−n

[J3
m, J±

n ] = ± J±
m+n

[J3
m, J3

n] =
k

2
m δm,−n . (2.14)

At level k = 1, the su(2) theory has only two irreducible representations: the vacuum

representation, and the representation with j = 1
2 . Here j denotes the spin of the su(2)k

highest weight representation whose states of lowest conformal weight are labelled by |j,m〉
with m = −j,−j+1, . . . , j−1, j. For j = 1

2 there are only two highest weight states, namely

|12 , 1
2 〉 and |12 ,−1

2〉 that are conjugate to one another. It is easy to see that the corresponding

vertex operators V (|j,m〉, z) can then be obtained by the previous construction provided

we take µ = ±1
2

V

(∣∣∣∣
1

2
,
1

2

〉
, b

)
V

(∣∣∣∣
1

2
,−1

2

〉
, a

)
= (b − a)−

1
2 : exp

(∫ b

a
J3(z) dz

)
: . (2.15)

For larger values of k ≥ 2, however, the above construction does not account for all non-

trivial representations. In fact, in addition to the vacuum representation (that corresponds

to µ = 0) only the highest weight state |k2 , k
2 〉 together with its conjugate state |k2 ,−k

2 〉 can

be described in the above manner (with µ = 1
2).

3For k = 1 this then agrees with the above u(1) theory by setting J
3 = H and J

± = V±1.
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2.3 Twisted representations of the su(2)1 theory

Up to now we have only discussed the untwisted highest weight representations of su(2).

The corresponding vertex operators have the property that the currents J3 and J± are

single-valued around the insertion point of the vertex operator. As is well known, the su(2)

theory (like any affine theory) has also twisted representations for which the currents have

non-trivial monodromies around the insertion points of the vertex operators. For su(2) all of

these twisted representations are actually equivalent (as affine representations) to untwisted

representation, since all automorphisms of SU(2) are inner. However since the relevant

identification modifies the energy momentum tensor, twisted representations describe often

different physical systems (for an introduction to these matters see for example [26]).

In the following we shall mainly be interested in Z2-twisted representations of su(2)1.

One class of Z2-twisted representations have the property that the monodromy of the

currents is described by the (inner) automorphism

J3 7→ J3 , J± 7→ −J± . (2.16)

The corresponding representation then has modes J3
n that are integer valued (n ∈ Z), while

the modes J±
r are half-integer valued (r ∈ Z + 1

2); these modes then still satisfy the same

commutation relations (2.14) as above. Since these twisted representations are in one-to-

one correspondence with the usual untwisted representations, there are two inequivalent

irreducible Z2-twisted representations for su(2)1: they are generated from highest weight

states σ̃± with J3
0 σ̃± = ±1

4 σ̃±. From what was explained above, it is then clear that these

vertex operators can also be described by exponentiated integrals; indeed we have simply

σ̃+(b)σ̃−(a) = (b − a)−
1
8 : exp

(
1

2

∫ b

a
J3(z) dz

)
: . (2.17)

In the following another class of Z2-twisted representations will play an important role:

these are the Z2-twisted representations for which the monodromy is described by4

J3 7→ −J3 , J± 7→ J∓ . (2.18)

Obviously, this only differs by a field redefinition from (2.16): if we define (cf. (1.10) with

λ = 1)

K3 =
1

2

(
J+ + J−)

, K± = ±1

2

(
J+ − J−)

− J3 , (2.19)

then the fields K± and K3 satisfy the same operator product expansion as J± and J3

(and thus their modes have the same commutation relations as (2.14)). Furthermore, the

monodromy (2.18) has the same form as (2.16). In particular, the two highest weight states

σ± that are now characterised by the condition that K3
0σ± = ±1

4σ± are given by

σ+(b)σ−(a) = (b − a)−
1
8 : exp

( 1

4

∫ b

a

(
J+(z) + J−(z)

)
dz

)
: . (2.20)

This is the formula that will motivate our ansatz for Sλ(a, b) (see section 5.1).

4see (1.9) with λ = 1. The case of general λ differs from λ = 1 by the rescaling J
±

7→ λ
±1

J
±. For the

following it is therefore sufficient to consider λ = 1.
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3. Properties of the su(2)-twist fields

As explained in the introduction, we propose that the operator Iλ(a, b) given in (1.1) can

be expressed in terms of twist fields as in (1.11). To support this claim, we shall compare,

in section 5, a number of properties of Iλ(a, b) and Sλ(a, b). As a preparation, we now want

to study the correlation functions of the su(2) twist fields.

3.1 Monodromy and zero-point function

We will start with the zero-point function 〈n|σ+(b)σ−(a)|0〉. Here 〈n| denotes an out-state

which is highest weight with respect to J3 and has J3-charge n,

〈n|J3
m = n δm,0〈n| for m ≤ 0 . (3.1)

For n ≥ 0 one can write 〈n| explicitly in terms of J− modes (for n ≤ 0 one has to use J+)

〈n| = 〈0|J−
1 J−

3 · · · J−
2n−1 . (3.2)

Let us normalise 〈0|0〉 = 1. One verifies that with the above definition 〈n|n〉 = 1, as well

as

〈n|J−
m = 0 for m ≤ 2n and 〈n|J+

m = 0 for m ≤ −2n , (3.3)

where we have used the null-vector relations of su(2)1. The highest weight property 〈n|J3
m =

0 for m < 0 and 〈n|J3
0 = n〈n| are then immediate consequences of the commutation

relations (2.14). In order to evaluate 〈n|σ+(b)σ−(a)|0〉 one can write the out-state in

the form (3.2) and express the J− modes in terms of the K-basis (2.19). For example,

abbreviating |σσ〉 ≡ σ+(b)σ−(a)|0〉,

〈1|σσ〉 = 〈0|J−
1 |σσ〉 =

〈
0

∣∣∣∣

(
K3

1 − 1

2
(K+

1 − K−
1 )

) ∣∣∣∣σσ

〉
. (3.4)

As is clear from the discussion in section 2.3, the field K3 has only a simple pole with σ±,

K3(z)σ±(a) = ±1

4

1

(z − a)
+ O(1) , (3.5)

and thus it is easy to evaluate the term involving K3
1 , giving 〈0|K3

1 |σσ〉 = 1
4(b − a)〈0|σσ〉.

For K± one can write (cf. also [23])

〈0|K±
1 |σσ〉 =

∫

C∞
z〈0|K±(z)|σσ〉 dz

2πi
=

∫

C∞

√
(z − a)(z − b)〈0|K±(z)|σσ〉 dz

2πi
= 0 . (3.6)

To see the second equality, expand the square root in z−1 and use the highest weight

property of 〈0|. In the third step the contour C∞ is deformed around the insertions σ+(b)

and σ−(a) and the highest weight property of the latter is used.

Altogether we thus obtain 〈1|σσ〉 = 1
4 (b−a)〈0|σσ〉. For higher values of n the calcula-

tion is similar, but more tedious. Luckily, the exact answer is known from factorising the

correlator of four twist fields [44, 45], [17, eq. (4.17)],

〈n|σ+(b)σ−(a)|0〉 = 4−n2
(b − a)n

2− 1
8 , (3.7)

where we normalised the twist fields such that 〈0|σσ〉 = 1 · (b − a)−
1
8 .
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3.2 Correlators involving su(2)-currents

The next correlator we consider is the one-point function of J3(z) in the presence of two

twist fields. It is easily determined by considering the function

f(z) =
√

(z − a)(z − b)〈n|J3(z)σ+(b)σ−(a)|0〉 (3.8)

and noting that f(z) is single valued on the complex plane and does not have any poles.

Since 〈n|J3
0 = n〈n| we furthermore have limz→∞ f(z) = n 〈n|σ+(b)σ−(a) |0〉 so that f(z)

is in fact a constant. In this way we find

〈n|J3(z)σ+(b)σ−(a) |0〉 =
n√

(z − a)(z − b)
〈n|σ+(b)σ−(a) |0〉 . (3.9)

Correlators with several J3 insertions can be determined in a similar fashion.

Finally we will need correlators with several J± insertions in the presence of two twist

fields. These can be determined from the Knizhnik-Zamolodchikov equation, that is, by

solving the first order differential equations resulting from the null-vector

(L−1 − 2νJ3
−1)|Jν〉 = 0 , where ν ∈ {±1} . (3.10)

Knizhnik-Zamolodchikov equations in the presence of twist fields have been studied in [5].

To find the differential equations first note that as a consequence of this null-vector we

have the identity

∫

Cz

√
(u−a)(u−b)

u − z
J3(u)Jν(z)

du

2πi
=

ν

2

(
2z − a − b√
(z−a)(z−b)

+
√

(z−a)(z−b)
∂

∂z

)

Jν(z) , (3.11)

where Cz is a contour winding closely around the point z. Here we have used the operator

product expansion

J3(u)Jν(z) =
ν

(u − z)
Jν(z) + (J3

−1J
ν)(z) + O(u − z) . (3.12)

Around a point w 6= z and around infinity we find analogously

∫

Cw

√
(u−a)(u−b)

u − z
J3(u)Jν(w)

du

2πi
= ν

√
(w−a)(w−b)

w − z
Jν(w)

∫

C∞

√
(u−a)(u−b)

u − z
〈n|J3(u)

du

2πi
= n〈n| . (3.13)

Consider now the integral

∫

Czk

√
(u−a)(u−b)

u − zk
〈n|J3(u)Jν1(z1) · · · Jνm(zm)|σσ〉 du

2πi
. (3.14)

This contour integral can be calculated in two ways: on the one hand, we can directly

use (3.11) and thus evaluate the contour integral in terms of the right hand side of (3.11).

On the other hand, we can deform the contour around zk to encircle all other insertion
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points zi, i 6= k as well as infinity and a and b. As in the previous calculation, there is no

contribution from the twist-field insertions at a and b. The individual contributions from

the points zi and infinity can be evaluated using (3.13), and one thus arrives at the system

of partial differential equations

Dk〈n|Jν1(z1) · · · Jνm(zm)|σσ〉 = 0 for k = 1, . . . ,m , (3.15)

with

Dk =
νk

2

(
2zk − a − b√
(zk−a)(zk−b)

+
√

(zk−a)(zk−b)
∂

∂zk

)

− n +
∑

i6=k

νi

√
(zi−a)(zi−b)

zi − zk
. (3.16)

To solve the equations (3.15) it is convenient to pass from the complex plane with twist-

field insertions at a and b, which generate a branch cut on the interval [a, b], to a double

cover (cf. [17, 45]). The letters z, w will always refer to points on the complex plane which

forms the base of the double cover and ζ, ξ to points on the double cover. Since we have

a single cut, the double cover has again the topology of a Riemann sphere and we fix the

projection from the double cover to the base by

z =
b − a

4

(
ζ + ζ−1

)
+

a + b

2
. (3.17)

Conversely, the two pre-images of a point z /∈ [a, b] are given by ζ(z) and ζ(z)−1 with

ζ(z) =

(√
z−a +

√
z−b

)2

b − a
. (3.18)

For all square roots we choose the convention that there is a branch cut from −∞ to 0 and

that
√

1 = 1. Then z 6= [a, b] implies |ζ(z)| > 1. In fact, if we write z = x + iy + a+b
2 , the

curve |ζ(z)| = r > 1 is the following ellipse with centre a+b
2 ,

x2

r 2
x

+
y2

r 2
y

= 1 , rx =
b−a

2

r2+1

2r
, ry =

b−a

2

r2−1

2r
. (3.19)

This ellipse can also be described by |z−a| + |z−b| = b−a
2

(
r + r−1

)
, which shows that a

and b are the two focal points of the ellipse (3.19). The significance of this parametrisation

is that the contour integrals defining (1.1) will be suppressed by factors r−2n when carried

out along the ellipse (see section 5.3).

On the double cover, each J−-field corresponds to the pair of vertex operators

V−(ζ)V+(ζ−1), where V±(ζ) denotes the vertex operator V±1/
√

2(ζ) of J3-charge ± 1√
2
. Thus

one expects that

〈n|J−(z1) · · · J−(zm)|σσ〉
〈n|σσ〉 = (3.20)

=

(
4

b − a

)m m∏

i=1

1

ζi − ζ−1
i

〈
n√
2

∣∣∣∣V−(ζ1)V+(ζ−1
1 ) · · · V−(ζm)V+(ζ−1

m )

∣∣∣∣
n√
2

〉
,
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where ζi = ζ(zi). The right hand side can be computed in terms of the Coulomb gas

expression for free boson vertex operators, and one finds

〈n|J−(z1) · · · J−(zm)σ+(b)σ−(a)|0〉
〈n|σ+(b)σ−(a)|0〉 =

(
4

b − a

)m m∏

i=1

ζ−2n
i

(ζi − ζ−1
i )2

∏

i>j

(
ζi − ζj

ζiζj − 1

)2

. (3.21)

It is straightforward to check that this indeed solves (3.15); to this end it is useful to

rewrite the differential operator (3.16) also in terms of the ζ-variables, using ζ − ζ−1 =
4

b−a

√
(z − a)(z − b) and ∂

∂ζ = b−a
4 (1− ζ−2) ∂

∂z . Of course, (3.15) only determines (3.21) up

to a constant. This constant can be found recursively using (3.2),

〈n+1|J−(z1) · · · J−(zm)|σσ〉 =

∫

C∞
w2n+1〈n|J−(w)J−(z1) · · · J−(zm)|σσ〉 dw

2πi
. (3.22)

This determines the overall constant for a correlator with m+1 insertions of J− in terms

of a correlator with only m insertions. Finally, the expressions with no insertions of J−

has already been given in (3.7). This procedure is the origin of the factor
(

4
b−a

)m
in (3.20)

and (3.21).

A correlator where some of the J−(zi) insertions have been replaced by J+(zi) inser-

tions can be obtained by continuing zi through the branch cut [a, b], which amounts to

replacing ζi → ζ−1
i in (3.21).

4. Properties of the operator Iλ(a, b)

In the previous section we have collected some information about the structure of the twist

field correlators. Now we want to study the correlation functions of Iλ(a, b) defined in (1.1).

4.1 Monodromy and operator product expansion of su(2)-currents

Before computing the monodromy of the su(2)-currents J±, J3 in the presence of Iλ(a, b)

let us consider a slightly more general situation. Define the operator

B(a, b) = exp

(∫ b

a
F (x) dx

)
, (4.1)

where F (x) is a linear combination of holomorphic functions multiplying chiral fields (and

we assume that the operator product expansion of F (x1) and F (x2) does not have any poles

so that no normal ordering prescription is necessary). Consider the analytic continuation

of a chiral field φ(z) around the point b (see figure 3).

a b

φ(z)
-

anal. cont.
a b

φ(z)
Cz

Figure 3: Analytic continuation of a chiral field around the point b.
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It is then clear that under the analytic continuation of figure 3, the monodromy of

φ(z) is

φ(z) −→ exp

(
2πi

∫

Cz

F (x)
dx

2πi

)
φ(z) . (4.2)

In the case of Iλ(a, b) we have F (x) = λ
2πJ+(x). Acting on the state |φ〉 corresponding

to the field φ(z), the monodromy (4.2) then reads |φ〉 → exp(iλJ+
0 )|φ〉. Representing the

linear combination |φ〉 = α|J+〉+ β|J3〉+ γ|J−〉 by the vector (α, β, γ), the monodromy of

the su(2)-currents around the endpoint b of Iλ(a, b) is given by the matrix

Mλ(b) =




1 −iλ λ2

0 1 2iλ

0 0 1



 . (4.3)

For example, exp(iλJ+
0 )|J3〉 = (J3

−1 + iλJ+
0 J3

−1)|0〉 = |J3〉− iλ|J+〉. Since the currents are

single valued on C − [a, b], the monodromy around a is inverse to that around b so that

Mλ(a) = Mλ(b)−1 = M−λ(b).

The above calculation can be repeated for the stress tensor T (z) and one finds that

due to [J+
0 , Lm] = 0, the stress tensor is single valued across [a, b]. Translating this obser-

vation back into matrix model language (as briefly described in section 1.1), gives a way

to derive the quadratic loop equation of the matrix model from the free boson conformal

field theory [29, 42, 33].

To analyse the singularities of the su(2)-currents close to the points a and b it is helpful

to introduce the following combinations of fields

Ĵ+(z) = J+(z)

Ĵ3(z) = J3(z) +
λ

2π
ln

z−b

z−a
J+(z)

Ĵ−(z) = J−(z) − 2λ

2π
ln

z−b

z−a
J3(z) −

(
λ

2π
ln

z−b

z−a

)2

J+(z) . (4.4)

Using (4.3) one verifies that Ĵ±(z) and Ĵ3(z) are single valued in the presence of a single

insertion of Iλ(a, b). In particular, they can be expanded in integer modes

Ĵc(z) =
∑

m∈Z

(z − p)−m−1Ĵc
m;p , where Ĵc

m;p =

∫
(z − p)mĴc(z)

dz

2πi
. (4.5)

Here c ∈ {+, 3,−} and p equals a or b. We would like to establish the following statement:

(S) Suppose limz→b(z − b)J−(z)Iλ(a, b) is finite inside any correlator, and there exists

some N > 0 such that limz→b(z − b)NJ+(z)Iλ(a, b) and limz→b(z − b)NJ3(z)Iλ(a, b)

are zero. Then

Ĵ±
m;bIλ(a, b) = 0 = Ĵ3

m;bIλ(a, b) for m > 0 , Ĵ+
0;bIλ(a, b) = 0 = Ĵ3

0;bIλ(a, b) .

(4.6)

Together with the analogous statement for a, this means that the fields at the end points

a and b are in fact highest weight with respect to the Ĵc action.
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The vanishing of the J+-zero mode implies in particular that J+(z)Iλ(a, b) is regular

for z → b. Of course, this also follows immediately when writing out the integrals in (1.1)

and using that the operator product expansion of J+ with itself is regular. However, in

section 5.5 we will need to apply statement (S) to Sλ(a, b) instead of Iλ(a, b), so we will

present the argument in a form which will be valid also then.

To establish (S), start by expressing J− in terms of the single valued combinations

(4.4),

J−(z) = Ĵ−(z) +
2λ

2π
ln

z−b

z−a
Ĵ3(z) −

(
λ

2π
ln

z−b

z−a

)2

Ĵ+(z) . (4.7)

Denote by C(φ) a correlator involving φ and Iλ(a, b), as well as any number of other fields.

Expanding the right hand side of (4.7) in terms of modes around b then gives

C(J−(z))=

N∑

m=−∞
(z − b)−m−1

(
C(Ĵ−

m;b) +
2λ

2π
ln

z−b

z−a
C(Ĵ3

m;b) −
(

λ

2π
ln

z−b

z−a

)2

C(Ĵ+
m;b)

)
.

(4.8)

The summation is truncated by the assumption on the limit z → b of J+ and J3. Evaluating

the conditions limz→b(z−b)m+1J−(z)Iλ(a, b) = 0 for m = N,N−1, . . . , 1 gives C(Ĵ±,3
m;b ) = 0

for that range of m. Finally, for m = 0 we get C(Ĵ+
0;b) = 0 = C(Ĵ3

0;b). Since C(. . . ) was an

arbitrary correlator, this implies (4.6).

In order to establish the highest weight relations (4.6) for Iλ(a, b) we still have to verify

that the conditions of the statement (S) are met. For J+ this is obvious, but for J3 and

J− this requires a short calculation which is given in appendix A.1.

Finally, let us show that the endpoints of Iλ(a, b) obey the Virasoro highest weight

condition for weight zero. To this end, instead of expressing the stress tensor T (z) as in

(2.3) we use the single valued fields (4.4). Computing the operator product expansion of

Ĵ3 with itself to order O(z−w) one finds

T (w) = lim
z→w

(
Ĵ3(z)Ĵ3(w) − 1/2

(z−w)2

)
+

λ

2π

b − a

(w−a)(w−b)
Ĵ+(w) , (4.9)

which in terms of modes around b reads

Lm;b =
∑

k∈Z

: Ĵ3
k;bĴ

3
m−k;b : +

λ

2π

∞∑

k=0

(a−b)−kĴ+
m+k;b . (4.10)

Together with (4.6) this immediately implies that Lm;bIλ(a, b) = 0 for m ≥ 0. For a instead

of b one finds the same result.

4.2 Zero-point function

Up to now we have kept the parameter λ arbitrary. But just as was the case for twist

fields, we can restrict our attention to the case λ = 1. The results for general values of λ

are then obtained via the identity

Iλ(a, b)|0〉 = eln(λ)J3
0 I1(a, b)|0〉 . (4.11)
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To see this write Iλ(a, b) and I1(a, b) as a sum over J+ integrations and use [J3
0 , J+(z)] =

J+(z) which leads to exp(ln(λ)J3
0 )J+(z) = λJ+(z) exp(ln(λ)J3

0 ). Moving the exponential

in (4.11) past the J+ insertions in the expansion of I1(a, b) gives a factor of λ for each

insertion.

The correlator we would like to compute is 〈n|I1(a, b)|0〉. From the previous section

we know that the endpoints of I1(a, b) behave as Virasoro primary fields of weight zero.

Applying a rescaling and a translation yields

〈n|I1(a, b)|0〉 = (b−a)n
2
2−n2〈n|I1(−1, 1)|0〉 . (4.12)

The correlator on the right hand side can be computed by explicit integration using orthog-

onal polynomials on the interval [−1, 1], i.e. the Legendre polynomials (see e.g. [11, 22] for

an introduction to the method of orthogonal polynomials), or by directly using Selberg’s

integral (see e.g. [37, chapter 17]). The result is

〈n|I1(−1, 1)|0〉 =
1

(2π)n n!

∫ 1

−1
dx1 · · · dxn 〈n|J+(x1) · · · J+(xn)|0〉

=
1

(2π)n n!

∫ 1

−1
dx1 · · · dxn ∆(x)2 = (2π)−n 2n2

det(Hn) .

(4.13)

In the first step, the definition (1.1) has been substituted, in the second step the Coulomb

gas expression for the integrand has been written in terms of the Vandermonde determinant

∆(x) =
∏

i>j(xi−xj). In the result, Hn is the n×n-Hilbert matrix (Hn)ij = (i + j − 1)−1.

Its determinant is given by

det(Hn) = 2−n2
n−1∏

k=0

2

2k+1

(
2k k!2

(2k)!

)2

=
2n−2n2

πn+1/2

Γ(n+1
2)

(
G(n+1)G(1

2 )

G(n+1
2)

)2

. (4.14)

Here G(z) is the Barnes function, which is defined by G(z+1) = Γ(z)G(z) and G(1) = 1

together with a convexity condition. The behaviour of det(Hn) for large-n can now be

obtained from the large z expansion of G(z). The latter can be found in [1, eq. (28)] (in

the preprint (v1), the minus in front of the sum should be a plus) or in [35, eq. (2.38)]. In

this way, we finally obtain

〈n|I1(a, b)|0〉 = (b−a)n
2
4−n2

n− 1
4 2

1
12 e3ζ′(−1) exp

(
− 1

64
n−2 +

1

256
n−4 + O(n−6)

)
. (4.15)

Comparing to the correlator of two twist fields (3.7) we observe that σ+(b)σ−(a) does

correctly reproduce the leading term in (4.15) in the sense that

lim
n→∞

n−2 ln〈n|σ+(b)σ−(a)|0〉 = lim
n→∞

n−2 ln〈n|I1(a, b)|0〉 . (4.16)

4.3 One-point function

After computing the zero-point function we will turn to the correlators 〈n|Jc(z)I1(a, b)|0〉
for c ∈ {+, 3,−}. The result can again be obtained by matrix model techniques using

orthogonal polynomials (see e.g. [37, chapter 22] or [22, section 4]), which amount to

– 17 –



J
H
E
P
1
0
(
2
0
0
5
)
1
0
7

explicitly computing the relevant integrals. Another method more in the spirit of conformal

field theory is to use that the h = 1, c = 1 Virasoro highest weight representation has a

null vector at level three. Denoting the highest weight vector in this representation by |J〉
the null vector |η〉 is

|η〉 =

(
3L−3 − 2L−1L−2 +

1

2
L−1L−1L−1

) ∣∣∣∣J
〉

= 0 . (4.17)

Since the three su(2) currents Jc(z) are Virasoro primaries of weight one, the three correla-

tors 〈n|Jc(z)I1(a, b)|0〉 will all solve the same third order differential equation in z, obtained

from the null vector |η〉. To compute this differential equation, recall from section 3.1 that

from the point of view of the Virasoro algebra there is no difference between an insertion

of Iλ(a, b) and a product φ(b)φ(a) of Virasoro primary fields φ with conformal weight zero.

Specialising to a = −1 and b = 1, the differential equation is then found to be (see [12,

section 8.3] for more details on null-vector computations)

0 = 〈n|η(z)φ(1)φ(−1)|0〉

=

{
1

2
∂ 3

z +
4z

z2−1
∂ 2

z +
5z2−1

(z2−1)2
∂z −

2(n2−1)

z2−1

( z

z2−1
+ ∂z

)}
〈n|J(z)φ(1)φ(−1)|0〉 .

(4.18)

The space of solutions to this equation is three-dimensional. The elements in this space de-

scribing the three functions 〈n|Jc(z)I1(−1, 1)|0〉 have to be identified from their behaviour

at the singular points −1, 1, ∞.

In any case, using either orthogonal polynomials or Virasoro null vectors, the final

result for the one-point functions is

〈n|J+(z)I1(−1, 1)|0〉 = πn
(
Pn−1(z)P ′

n(z) − Pn(z)P ′
n−1(z)

)
〈n|I1(−1, 1)|0〉

〈n|J3(z)I1(−1, 1)|0〉 = n
(
Pn−1(z)Q′

n(z) − Pn(z)Q′
n−1(z)

)
〈n|I1(−1, 1)|0〉

〈n|J−(z)I1(−1, 1)|0〉 = −n

π

(
Qn−1(z)Q′

n(z) − Qn(z)Q′
n−1(z)

)
〈n|I1(−1, 1)|0〉 . (4.19)

In these equations, Pn(z) is the n’th Legendre polynomial and Qn(z) the n’th Legendre

function of the second kind. The first few are (chosen such that they are real for z ∈
R − [−1, 1])

Q0(z) =
1

2
ln

(
z+1

z−1

)
, Q1(z) =

z

2
ln

(
z+1

z−1

)
−1 , Q2(z) =

3z2−1

4
ln

(
z+1

z−1

)
− 3z

2
.

(4.20)

One can verify that the functions (4.19) solve (4.18) and their monodromy around the

point 1 is given by (4.3).

To understand the large-n behaviour of the one-point functions, it is convenient to write

Pn(z) and Qn(z) for z /∈ [−1, 1] in terms of hypergeometric functions as [27, eq. (8.723)]

Pn(z) =
Γ(n+1

2)√
πΓ(n+1)

ζn+1

√
ζ2−1

2F1

(
1

2
,
1

2
;
1

2
−n;

−1

ζ2−1

)
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Qn(z) =

√
πΓ(n+1)

Γ(n+3
2)

ζ−n

√
ζ2−1

2F1

(
1

2
,
1

2
;
3

2
+n;

−1

ζ2−1

)
. (4.21)

Here, ζ = ζ(z) is given by (3.18) with a = −1, b = 1. The large-n expansion of the

correlators (4.19) is then found by writing out the definition of the hypergeometric functions

(4.21) as a power series and expanding the Gamma-functions,

〈n|J+(z)I1(−1, 1)|0〉
〈n|I1(−1, 1)|0〉 =

2 ζ2n

(ζ−ζ−1)2

(
1 +

1

4

ζ + ζ−1

ζ − ζ−1
n−1 +

+
1

32

(1+5ζ2)(1+5ζ−2)

(ζ − ζ−1)2
n−2 + O(n−3)

)

〈n|J3(z)I1(−1, 1)|0〉
〈n|I1(−1, 1)|0〉 =

2n

ζ − ζ−1

(
1 − 1

2(ζ−ζ−1)2
n−2 + O

(
n−3

) )

〈n|J−(z)I1(−1, 1)|0〉
〈n|I1(−1, 1)|0〉 =

2 ζ−2n

(ζ−ζ−1)2

(
1 − 1

4

ζ + ζ−1

ζ − ζ−1
n−1 +

+
1

32

(1+5ζ2)(1+5ζ−2)

(ζ − ζ−1)2
n−2 + O

(
n−3

) )
. (4.22)

Comparing to (3.9) and (3.21) (specialised to a = −1 and b = 1) we see again that the

leading behaviour in 1/n is the same for I1(a, b) and the twist fields σ+(b)σ−(a).

In fact not only the leading term in the expansions (4.22) has the Z2-symmetry J± →
J∓ and J3 → −J3 upon analytically continuing z through the branch cut [−1, 1], but

this monodromy is retained at any finite order in the expansions (4.22). It is only after

summing all terms that the ‘correct’ monodromy (4.3) is recovered. For example, at finite

values of n, the correlator 〈n|J+(z)I1(−1, 1)|0〉 is a single valued function of z (in fact, a

polynomial), while in the 1/n-expansion it has a branch cut on [−1, 1]. Recall from (1.7)

that this conformal field theory correlator is related to the correlator Zwell
mm [det(z −M)2](n)

in the hermitian one-matrix model, and hence the latter shares with the correlator of J+(z)

the property that the monodromy of the individual terms in the 1/n-expansion differs from

the monodromy of the complete expression. This is a manifestation of Stokes’ phenomenon

as mentioned at the end of section 1.1.

5. Writing Iλ(a, b) in terms of twist fields

In sections 3 and 4 we have collected some properties of su(2)-twist fields and of the operator

Iλ(a, b). We have seen that in sectors of large J3-charge, Iλ(a, b) behaves very similar to

a product σ+(b)σ−(a) of twist fields. Motivated by these observations one can now try to

find an alternative expression for the operator Iλ(a, b) in terms of appropriately dressed

twist fields.

To achieve this, we make an ansatz Sλ(a, b) involving twist fields and J−-integrals

in section 5.1, and show that it can reproduce the correct monodromy. That the su(2)-

currents have the same monodromy for Iλ(a, b) and Sλ(a, b) is the first piece of evidence

for the proposed identity Iλ(a, b) = Sλ(a, b). The J− integrals in Sλ(a, b) are divergent

and need to be regulated; this is done in section 5.2. Next, in section 5.3 we investigate

– 19 –



J
H
E
P
1
0
(
2
0
0
5
)
1
0
7

the large-n behaviour of Sλ(a, b) and find that it is given in terms of a product of twist

fields σ+(b)σ−(a). This is the second piece of evidence for Iλ(a, b) = Sλ(a, b), since we saw,

in sections 4.2 and 4.3, that the large-n limit of the zero- and one-point function in the

presence of Iλ(a, b) agrees with the corresponding twist field correlators. The requirement

that Sλ(a, b) should have the correct monodromy still left an (a, b)-dependent normalisation

factor undetermined, which is fixed in section 5.4 by matching it against the leading large-n

behaviour of 〈n|Iλ(a, b)|0〉. Finally, in section 5.5 we present the third supporting evidence

by checking, to the extend that we were able to calculate it, that the su(2)-currents have

the same singularities in the presence of Sλ(a, b) as were seen for Iλ(a, b) in section 4.1.

5.1 Reproducing the monodromy of Iλ(a, b)

Our first task will be to modify the product σ+(b)σ−(a) in such a way that instead of the

Z2-monodromy, we find the monodromy (4.3) for the su(2)-currents. As a motivation for

the ansatz below, compare the definition (1.1) of Iλ(a, b) to the expression (2.20) for the

product σ+(b)σ−(a). It seems one can go from the latter to the former by ‘subtracting’ the

J−-contribution to the integrals. In this spirit, define an operator

S̃(a, b) = C(a, b)

[
σ+γ(b) exp

(
α

2π

∫

C1

J−(x)dx

)
exp

(
β

2π

∫

C2

J−(x)dx

)
σ−γ(a)

]

reg

. (5.1)

The contours C1,2 are as shown in figure 1, C(a, b) is a C-valued function and α, β, γ are

constants. Let us postpone the discussion of the regulator to section 5.2; in any case it will

be defined in such a way that it does not affect the monodromy.

The monodromy of the su(2)-currents around the point b of S̃(a, b) is a product of

three terms, two from the exponentiated J−-integrals and one from the Z2-monodromy of

the twist fields. In terms of the basis used in (4.3) the monodromy is

M̃(b) =




1 0 0

−2iβ 1 0

β2 iβ 1








0 0 γ2

0 −1 0

γ−2 0 0








1 0 0

−2iα 1 0

α2 iα 1





=




α2γ2 iαγ2 γ2

2iα(1−αβγ2) 2αβγ2 − 1 −2iβγ2

γ−2(1−αβγ2)2 iβ(αβγ2−1) β2γ2



 . (5.2)

We see that this matches with the monodromy Mλ(b) of Iλ(a, b) in (4.3) for precisely two

choices of the three parameters α, β, γ, namely α = β = −λ−1 and γ = ±λ. We will

choose γ = λ.

5.2 Regulating the J−-integrals

To regulate the J− integrals in (5.1) we will first introduce a cutoff ε and then present

a subtraction scheme which we conjecture to give a finite ε → 0 limit. In fact, we will

regulate (5.1) for the choice γ = 1, which will give the operator Sλ(a, b) in (1.11) for λ = 1.

General values of λ will then be obtained as in (4.11).
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a b

C̃1

C̃2

Cε
a Cε

b
a−Λ b+Λ

Figure 4: Contour for the regularised J− integrals.

The ε-cutoff is imposed simply by changing the integration contours C1,2 to approach

the points a, b only up to a distance ε. More precisely, fix a small positive constant Λ as

well as a value ε ¿ Λ. Consider the integration contours C̃1,2 and Cε
a,b defined as in figure 4.

The dashed circles around the points a and b have radius ε so that Cε
a = [a−Λ, a−ε] and

Cε
b = [b+ε, b+Λ], with orientations as indicated. Indeed, for ε = 0 this is just a deformation

of the contours C1,2 defined in figure 1. Instead of integrating J−(x) define a field ρt(x) as

ρt(x) = tJ−(x) − f(t)〈J−(x)〉1 , where 〈J−(x)〉 ≡ 〈0|J−(x)σ+(b)σ−(a)|0〉
〈0|σ+(b)σ−(a)|0〉 . (5.3)

Here t is a complex parameter and f(t) = t + f2t
2 + f3t

3 + . . . is a power series in t. On

the segments Cε
a, Cε

b and C̃1,2 define the following integrated fields,

U ε,Λ
+,t (b) = exp

(
− 1

π

∫

Cε
b

ρt(x)dx

)
σ+(b)

U ε,Λ
−,t (a) = exp

(
− 1

π

∫

Cε
a

ρt(x)dx

)
σ−(a)

V Λ
t (a, b) = C(a, b) exp

(
− 1

2π

∫

C̃1

ρt(x)dx

)
exp

(
− 1

2π

∫

C̃2

ρt(x)dx

)
. (5.4)

In U ε,Λ
±,t there is a factor of 1

π instead of 1
2π because in deforming the contour of figure 1 to

that of figure 4, the segments Cε
a,b are traversed twice.

The subtraction scheme now consists of expanding the operators U ε,Λ
±,t as a formal power

series in t and demanding that each term in the expansion has a finite limit as ε → 0. This

procedure will result in conditions determining the constants f2, f3, . . . . It is not at all

obvious that such a solution exists, and we have no proof that it can be done to all orders

in t. In appendix A.2 we verify that the subtraction scheme (5.4) works at least to order

t3, with f(t) = t − 1
π t2 + 1

6t3 + O(t4). To proceed we will assume:

(A1) There exists a function f(t) such that each order in the expansion of the operators

U ε,Λ
+,t (b) and U ε,Λ

−,t (a) in powers of t has a finite limit as ε → 0.

Using (A1), we can define the operator S1(a, b) in terms of U ε,Λ
±,t as

S1(a, b) = V Λ
1 (a, b)Spert

+,Λ (b)Spert
−,Λ (a) , (5.5)

where

Spert
+,Λ (b) =

(
lim
ε→0

U ε,Λ
+,t (b)

)

t=1
, Spert

−,Λ (a) =
(

lim
ε→0

U ε,Λ
−,t (a)

)

t=1
. (5.6)
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Finally we then obtain

Sλ(a, b)|0〉 = eln(λ)J3
0 S1(a, b)|0〉 . (5.7)

A number of comments are in order. First, the abbreviation ‘pert’ in (5.6) stands for

‘perturbative’, a qualifier that will be justified in the next section. Second, while the

decomposition (5.5) of S1(a, b) will be useful in the following, we can equivalently write it

in a form that more closely resembles (5.1),

S1(a, b) = C(a, b)

(
lim
ε→0

σ+(b) exp

(
− 1

2π

∫

Cε
1

ρt(x)dx

)
exp

(
− 1

2π

∫

Cε
2

ρt(x)dx

)
σ−(a)

)

t=1

.

(5.8)

Here, Cε
1 is the contour obtained by joining Cε

a, C̃1 and Cε
b , and Cε

2 is obtained by joining

Cε
a, C̃2 and Cε

b . In the form (5.8) it is also apparent that S1(a, b) has the monodromy (5.2),

since ρ1(x) differs from J−(x) only by a central term.

Third, it is clear from the definition that Spert
+,Λ (b) and Spert

−,Λ (a) are coherent states in

the Z2 twisted representations generated by σ+ and σ−, respectively. Coherent states in

twisted representations also appeared in relation to matrix models in [33, 13].

5.3 Behaviour of Sλ(a, b) at large n

In section 4.3 we have seen that the monodromy of Iλ(a, b) around a or b is entirely due to

‘non-perturbative’ effects, i.e. that to any finite order in 1/n, the monodromy is just given

by the Z2 twist (1.9). We now want to show that the behaviour of Sλ(a, b) is the same;

more explicitly, we shall show that (see (1.14))

〈n|(fields)Sλ(a, b)|0〉 = 〈n|(fields)Strunc
λ (a, b)|0〉

(
1 + O(r−2n)

)
, (5.9)

for some r > 0, where Strunc
λ (a, b) has the same monodromy as the two Z2-twist fields. We

will again only treat the case λ = 1; for the general case the reasoning is analogous due to

(5.7).

To define Strunc
1 (a, b) we choose the contours C̃1,2 in figure 4 to lie on the ellipse (3.19)

of constant |ζ| passing through a − Λ and b + Λ. This amounts to choosing r = |ζ| to be

r = 1 +
2Λ

b−a

(
1 +

√
1 +

b−a

Λ

)
. (5.10)

Then define the function

DΛ
t (a, b) = C(a, b) exp

(
1

π
f(t)

∫

C̃1

〈J−(x)〉dx

)
, (5.11)

and set

Strunc
1 (a, b) = DΛ

1 (a, b)Spert
+,Λ (b)Spert

−,Λ (a) . (5.12)

The claim (5.9) is then implied by the following statement: let (F ) =
∏|F |

i=1 Jci(wi) abbre-

viate a product of su(2)-currents. Then we have

〈n|(F )
(
V Λ

t (a, b) − DΛ
t (a, b)1

)
η+(b)η−(a)|0〉 = 〈n|(F )η+(b)η−(a)|0〉 · O(r−2n) , (5.13)
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where η±(z) are fields corresponding to states in the Z2-twisted representations. This is

sufficient to establish (5.9) since the fields Spert
±,Λ (z) correspond to (coherent) states in the

Z2-twisted representations (and thus can play the roles of η±).

To prove (5.13), first note that it is enough to consider products (F ) =
∏|F |

i=1 Jνi(wi)

with νi = ±, because J3 insertions can be obtained in the operator product expansion of

J+ and J−. To express twist-field descendents, define the modes Mr,s as

Mr,s =

∫

Cab

(z−a)r(z−b)sJ3(z)
dz

2πi
, r, s ∈ Z +

1

2
, (5.14)

where Cab is a contour encircling a and b. Since we are at level k = 1, the entire Z2-twisted

representation is generated by acting with modes J3
r , r ∈ Z<0+

1
2 on σ±. Correspondingly,

the product η+(b)η−(a) can be written as a linear combination of appropriate products∏
i Mri,si

σ+(a)σ−(b), with ri+si ≤ 0. Next, note that by definition,

V Λ
t (a, b) − DΛ

t (a, b)1 = DΛ
t (a, b)

∞∑

m=1

1

m!

(−t

2π

)m∫

C̃1+C̃2

J−(x1) · · · J−(xm) dx1 · · · dxm .

(5.15)

Upon inserting (5.15) into (5.13) one obtains integrands of the form

Im =

〈
n

∣∣∣∣(F )J−(x1) · · · J−(xm)

M∏

i=1

Mri,si

∣∣∣∣σσ

〉
, |σσ〉 = σ+(b)σ−(a)|0〉 . (5.16)

Using the commutator [Mr,s, J
±(x)]=±(x−a)r(x−b)sJ±(x), as well as 〈n|Mr,s =δr+s,0n〈n|

(expand Mr,s in integer modes of J3 and use the condition r+s ≤ 0) we can write

Im = A〈n|(F )J−(x1) · · · J−(xm)|σσ〉

A =
M∏

i=1

(
−

|F |∑

j=1

νj(wj−a)ri(wj−b)si +
m∑

j=1

(xj−a)ri(xj−b)si + nδri+si,0

)
. (5.17)

To proceed we need the following two estimates on the large-n behaviour of correlators,

A〈n|(F )|σσ〉
〈n|(F )

∏M
i=1 Mri,si

|σσ〉
= (const) + O(n−1) ,

〈n|(F )J−(x1) · · · J−(xm)|σσ〉
〈n|(F )|σσ〉 = O(r−2nm) .

(5.18)

For the first estimate note that the correlator in the denominator produces a factor given

by A as in (5.17) but with m = 0. To see the second estimate, insert the explicit solution

(3.21) for the correlators. For each J−(xk) insertion there is a factor of ζ(xk)
−2n in the

numerator which, since the xk lie on the contour C̃k, has |ζ(xk)| = r. Then

Im =

〈
n|(F )

∏
Mri,si

∣∣∣∣σσ

〉
A 〈n|(F )|σσ〉

〈n|(F )
∏

Mri,si
|σσ〉

〈n|(F )J−(x1) · · · J−(xm)|σσ〉
〈n|(F )|σσ〉

=

〈
n|(F )

∏
Mri,si

∣∣∣∣σσ

〉
· O(r−2nm) . (5.19)

When inserting (5.15) into (5.13), the most relevant contribution therefore comes from

m = 1 and thus is of order O(r−2n).
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5.3.1 Approximating Sλ(a, b) in terms of twist fields

Next we want to show that to leading order in 1/n, Sλ(a, b) can be replaced by a product

of twist fields (see (1.15)). To obtain this relation we start by defining a field ρt,n(x) in

the same way as (5.3), but where we subtract the one-point function with respect to 〈n|
instead of 〈0|,

ρt,n(x) = tJ−(x) − f(t)〈J−(x)〉n1 , where 〈J−(x)〉n ≡ 〈n|J−(x)σ+(b)σ−(a)|0〉
〈n|σ+(b)σ−(a)|0〉 .

(5.20)

Let C be any contour from a to b. The difference ρt(x)− ρt,n(x) has a well-defined integral

along C since the singular contribution from the poles at a and b cancel. Using (3.21) one

finds explicitly

∫

C

(
ρt(x) − ρt,n(x)

)
dx = f(t)

∫

C′

ζ−2n − 1

ζ2 − 1
dζ = f(t)

n−1∑

l=0

2

2l + 1

= f(t)

(
ψ(n+

1

2
) + γ + 2 ln(2)

)

= f(t)

(
ln(n) + 2 ln(2) + γ +

1

24
n−2 + O(n−4)

)
, (5.21)

where C′ is any contour from −1 to 1 not passing through ζ = 0, γ is Euler’s constant and

ψ(z) is the digamma function, ψ(z) = Γ′(z)/Γ(z). We can then consider the product

On(a, b) = exp

(
1

2π

∫

C1+C2

(
ρ1(x) − ρ1,n(x)

)
dx

)
S1(a, b) , (5.22)

which amounts to replacing ρ1(x) in the definition (5.8) of S1(a, b) by ρ1,n(x). When

using ρt,n instead of ρt, both the J−-integrals and the integrals of the one-point functions

〈J−(x)〉n are suppressed away from a and b for large-n. It is then plausible that in the

expansion of the exponential (5.8), all terms involving ρt,n-integrals are of order O(n−1).

This can be checked explicitly for the first few terms in the expansion, but we have no

general proof. Let us hence assume

(A2) The operator On(a, b) in (5.22) has the large-n behaviour

〈n|(fields)On(a, b)|0〉 = C(a, b)〈n|(fields)σ+(b)σ−(a)|0〉
(
1 + O

(
n−1

))
. (5.23)

In order to obtain a 1/n-expansion, one should thus not consider the correlator 〈n| (fields)

S1(a, b) |0〉 directly, but rather the normalised version 〈n|(fields)On(a, b)|0〉/〈n|(fields)|σσ〉.
However, it is not true that the expansion of the exponential (5.8) with ρt,n instead of ρt

produces the 1/n-expansion term by term. Instead even a term with m J−-integrations

gives a contribution of order n−1. This is not so surprising when one considers more

carefully the regulated expression for the m’th term in the expansion. In fact, the coeffi-

cient of tm will also contain a term of the form fm

∫
〈J−(x)〉ndx from the t-expansion of∫

ρt,n(x)dx. In this sense the subtraction scheme mixes all orders and it is only easy to

extract the large-n limit, but not the subleading terms in the 1/n-expansion.
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5.4 Fixing the normalisation of Sλ(a, b)

In section 5.1 we have partly fixed the operator S1(a, b) by requiring it to have the same

monodromy as I1(a, b). Using assumption (A2) we can further fix the normalisation C(a, b)

by demanding 〈n|S1(a, b)|0〉/〈n|I1(a, b)|0〉 = 1 in the large-n limit. To this end, combine

(5.21) and (5.22) to obtain

On(a, b) = n
f(1)

π e
f(1)

π
(2 ln(2)+γ)S1(a, b)

(
1 + O

(
n−1

))
. (5.24)

Next, using the above approximation together with (5.23) and (3.7) leads to

〈n|S1(a, b)|0〉 = C(a, b)n− f(1)
π e−

f(1)
π

(2 ln(2)+γ)4−n2
(b − a)n

2− 1
8
(
1 + O

(
n−1

))
. (5.25)

Comparing to the corresponding expression (4.15) for I1(a, b) then leads to the requirements

f(1) =
π

4
, C(a, b) = 2

7
12 e3ζ′(−1)+γ/4(b−a)

1
8 . (5.26)

For course, f(1) is in principle determined by demanding the ε-limit in (5.8) to exist, but

one would need the expansion to all orders to check whether its values is indeed π
4 . It may

be taken as an encouraging sign that from f(t) = t − 1
π t2 + 1

6t3 + O(t4), the first three

approximations to f(1) − π
4 are 0.21, −0.10, and 0.06.

After fixing C(a, b), the operator S1(a, b) is completely determined. The definition of

the regulated expression (1.11) is that S1(a, b) is given by (5.8) with C(a, b) as in (5.26).

In (1.11), the constant multiplying (b−a)
1
8 in C(a, b) has been absorbed into the definition

of [. . . ]reg.

5.5 Singularity structure of the su(2)-currents in the presence of Sλ(a, b)

Finally we want to argue that the leading singularities as the currents approach the end-

points of S1(a, b) are the same as for the case of I1(a, b). For I1(a, b) these singularities

were analysed in section 4.1, and the relevant properties are summarised in the statement

(S). Here we want to present two pieces of evidence that the conditions of the statement

(S) are also met for S1(a, b) in place of I1(a, b). In particular we want to argue that the

leading singularity as J−(z) approaches the endpoints of S1(a, b) is a simple pole. We start

by investigating the behaviour of S1(a, b) under global conformal transformations.

Let ϕ(z) = αz+β
γz+δ be a Möbius transformation and Uϕ be the operator implementing

that transformation on the space of states (an explicit expression in terms of Virasoro

generators can for example be found in [24, section 3.1]). Denote the field ρt(z) introduced

in (5.3) by ρt(z; a, b) to keep track of the values for a and b entering its definition. Using

UϕJ−(z)Uϕ−1 = ϕ′(z)J−(ϕ(z)) and Uϕσ±(z)Uϕ−1 = ϕ′(z)
1
16 σ±(ϕ(z)) it is easy to check

that

Uϕρt(z; a, b)Uϕ−1 = ϕ′(z)ρt

(
ϕ(z);ϕ(a), ϕ(b)

)
. (5.27)

Next we observe that for C(a, b) defined in (5.26), we have C(a, b)(ϕ′(a)ϕ′(b))
1
16 =

C(ϕ(a), ϕ(b)). Thus the total effect of the Möbius transformation on S1(a, b) is

UϕS1(a, b)Uϕ−1 = C(a, b)

(
lim
ε→0

Uϕ exp

(
− 1

2π

∫

Cε
1+Cε

2

ρt(x; a, b)dx

)
σ+(b)σ−(a)Uϕ−1

)

t=1

= S1(ϕ(a), ϕ(b)) . (5.28)
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We see that S1(a, b) transforms as a product φ(a)φ(b) of two Virasoro quasi-primary

fields of conformal weight zero. This observation allows us to compute the correlator

〈0|Jc(z)S1(a, b)|0〉, for c ∈ {+, 3,−}, since conformal invariance fixes a three-point func-

tion up to a constant,

〈0|Jc(z)S1(a, b)|0〉 = (const)(z−a)−1 (z−b)−1 (a−b) . (5.29)

In particular this shows that for the out-state 〈0|, all su(2)-currents have at most a first

order pole at a and b.

As a second piece of evidence, we compute the correlator 〈n|Jν(z)S1(a, b)|0〉 for ν = ±
to first order in the t-expansion (that is, in the definition (5.8) of S1(a, b) we expand the

exponential to first order in t before setting t = 1). Instead of using S1(a, b) it is convenient

to use On(a, b) as defined in (5.22) which differs from S1(a, b) by a constant. One finds,

with ζ = ζ(z) and ξ = ζ(x),

〈n|Jν(z) On(a, b)|0〉 = (5.30)

= C(a, b)

(
〈n|Jν(z)

(
1 − t

2π

∫

C1+C2

(
J−(x) − 〈J−(x)〉n

)
dx + O(t2)

)
|σσ〉

)

t=1

= C(a, b)〈n|Jν(z)|σσ〉
(

1 +
t

2π
(ζ2ν − 1)

∫

C′
1+C′

2

ξ−2n

(ξζν − 1)2
dξ + O(t2)

)

t=1

.

Here C′
1 is a contour from −1 to 1 passing along the upper half of the unit circle, while C′

2

passes along the lower half of the unit circle. The integral in (5.30) is given by
∫

C′

x−2n

(xy − 1)2
dx =

[
− 1

2n + 1

x−2n+1

(xy − 1)2
2F1

(
1, 2; 2n + 2; (1 − xy)−1

)]x=1

x=−1

, (5.31)

where C′ is a contour from −1 to 1, which also determines the relevant branch of the

hypergeometric function. We are interested in the asymptotics of (5.30) for ζ → ±1. This

amounts to taking the argument of the hypergeometric function in (5.31) to infinity. The

hypergeometric function has the asymptotics, for u → ∞,

2F1(1, 2; 2n+2;u) = −(2n+1)u−1 + O
(
u−2 ln(u)

)
. (5.32)

Altogether we find that the leading singularities of the integral (5.31) are first order poles

at y = ±1, which in (5.30) get cancelled by the prefactor ζ2ν−1. Hence to first order in t,

the leading singularity of (5.30) for z → a, b is that of 〈n|Jν(z)|σσ〉, which clearly satisfies

the conditions of (S).

After presenting these two calculations regarding the poles of Jc(z)S1(a, b) for z → a, b,

we will assume that in general

(A3) for x = a, b, inside any correlator, limz→x(z − x)J−(z)S1(a, b) is finite, and there

exists some N > 0 such that limz→x(z − x)NJ+,3(z)S1(a, b) is zero.

It then follows that the fields at the endpoints of S1(a, b), just as for I1(a, b), are highest

weight with respect to the single valued combinations (4.4), and that in particular they are

Virasoro primary of weight zero, i.e. Lm;aS1(a, b) = 0 = Lm;bS1(a, b) for m ≥ 0. Together

with the fact that Iλ(a, b) and Sλ(a, b) have the same monodromy properties, this is very

good evidence for the equality of Iλ(a, b) and Sλ(a, b).
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6. Outlook

In this paper we have proposed and provided evidence for the operator identity Iλ(a, b) =

Sλ(a, b). Here Iλ(a, b) has a simple formulation as an exponentiated integral of J+-currents

and is directly related to eigenvalue integrals in matrix models. The expression for Sλ(a, b)

is more complicated, involving twist fields and a regulator. However, properties of the

large-n limit of correlators are easily understood in terms of Sλ(a, b) while they are harder

to see when using Iλ(a, b).

There are several directions in which one can attempt to generalise the analysis of this

paper.

(i) From the conformal field theory point of view, the most obvious question is whether

there is a generalisation to su(2) at level k > 1. In this case the operator Iλ(a, b) is

still given by (1.1). However, there are now k+1 Z2-twisted highest weight represen-

tations, and there is no longer a unique (up to scalar multiples) out-state 〈n| which

is highest weight with respect to J3
m and has J3-charge n, but a finite-dimensional

subspace. Both effects make it more difficult to identify the analogue of Sλ(a, b).

Independently, it is also of interest to see if correlators of Iλ(a, b) in su(2)k do have

a matrix model interpretation.

(ii) Recently a conformal field theory approach to the non-linear σ model with the com-

plex torus (C∗)d as target space has been investigated in [19]. It uses a non-unitary

CFT which contains a su(2) algebra at level k = 0. Similar to (1.1) it has an inte-

grated exponential operator, which does not require normal ordering and generates

a logarithmic branch cut. The above model is related to the A-model by a defor-

mation and to the B-model by an additional T-duality. It would be very interesting

to understand whether this CFT approach to the non-linear σ-model is linked to a

matrix model description. On non-compact Calabi-Yau 3-folds associated to ADE

singularities [15] the topological B-model, a subsector of the non-linear σ-model, has

already been related to ADE-quiver matrix models [14, 15, 7], see also (iv) below.

(iii) From the matrix model point of view, one should use more general potentials than

the infinite well potential that we considered here. This amounts to taking the out-

state 〈n|e−H instead of just 〈n|. Also, it would be good to remove the effect of the

hard edges, possibly by considering Sλ(a − εn, b + εn) to shift the endpoints by an

n-dependent amount away from the location of a cut.

(iv) There is a whole class of multi-matrix models, called ADE-quiver matrix models,

which can be rewritten in terms of free bosons, or, more precisely, in terms of an

ADE-WZW model at level one [31, 29, 42, 32, 15, 7]. For these one would define a

number of operators Ii
λ(a, b), indexed by simple roots αi, i = 1, . . . , r. Since each of

the corresponding raising operators Eαi lies in an su(2)-subalgebra, one would expect

that the analysis of this paper can be repeated without much modification. The

comparison of perturbative versus non-perturbative moduli spaces of FZZT-branes

(as mentioned in the introduction) has also been carried out for (p, 1)-minimal string
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theory using a two-matrix model [28] (however, not an ADE-quiver model) and it

would be interesting to compare results.

(v) Insertions of several operators Iλ1(a1, b1), Iλ2(a2, b2), . . . correspond to several cuts

in the complex plane. On the matrix model side one obtains in this way not a

partition function with fixed filling fractions, but rather a generating function in the

parameters λk for the various filling fractions. It would be interesting to see if the

methods of this paper can be extended to be a useful tool in investigating the 1/n

expansion of such multi-cut solutions.

We hope to address some of these points in the future.
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A. Appendix

A.1 Calculation of J3 and J− pole with Iλ(a, b)

In this appendix we show that the J3- and J−-conditions of statement (S) in section 4.1

are met. For the case of J− we need to prove that

lim
z→b

(z − b)

〈
∏

j

Jaj (wj)J−(z)Iλ(a, b)

〉

= finite , (A.1)

where the wj 6= a, b are pairwise disjoint. Then
〈

∏

j

Jaj (wj)J
−(z)Iλ(a, b)

〉

=

=
1

n!

(
λ

2π

)n ∫ b

a
dz1 · · ·

∫ b

a
dzn

〈
∏

j

Jaj (wj)J−(z)J+(z1) · · · J+(zn)

〉
(A.2)

for some suitable n. The amplitude in the integrand can be calculated recursively, using

the singular part of the operator product expansion (see for example [24]). Starting with

the J+ fields, it is then obvious that the terms that could be singular in the limit z → b

arise in two ways: either we have the double pole

J+(zi)J
−(z) ∼ 1

(zi − z)2
(A.3)
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that gives rise, after integration of zi, to a simple pole in (z − b); this contribution is

therefore finite in the limit of (A.1). The second contribution comes from the simple pole

J+(zi)J
−(z) ∼ 2J3(z)

zi − z
. (A.4)

The other J+(zj) fields can then either contract with the Jaj (wj) fields, or we can get a

further contraction of J+(zj) with J3(z), which then leads to

J+(zj)J
+(zi)J

−(z) ∼ − 2J+(z)

(z − zi)(z − zj)
. (A.5)

In either case, it is straightforward to determine the zi integrals, and we obtain either a

log(z − b) or a log2(z − b) term. In the limit of (A.1) these contributions therefore vanish.

The analysis for the case of J3 is essentially identical; in this case, only the second

type of terms appear, and we find with the same arguments as above that

lim
z→b

(z − b)

〈
∏

j

Jaj (wj)J3(z)Iλ(a, b)

〉

= 0 . (A.6)

A.2 Existence of the regulator to order t3

In this section we compute the first few orders in t of the function f(t) = f1t+f2t
2 +f3t

3 +

O(t4) which enters the definition (5.5) of S1(a, b) via (5.3). To this end we make use of

the decomposition (5.5) of S1(a, b). The operators Spert
±,Λ are well defined if U ε,Λ

±,t (as given

in (5.4)) has a finite ε → 0 limit. This requirement fixes the constants f1, f2, f3 uniquely.

Here we will only treat Spert
+,Λ (b) explicitly. The calculation for Spert

−,Λ (a) is analogous and

leads to the same answer.

In section 5.5 it was shown that under global conformal transformations, S1(a, b) be-

haves as a product φ(a)φ(b) of Virasoro-primary fields of weight zero. We will use this

freedom to assume that b = 0 and a = −∞. The question whether Spert
+,Λ (b) is well-defined

now amounts to checking that

U ε,Λ
+,t (0)|0〉 = exp

(
1

π

∫ Λ

ε
ρt(x)dx

)
|σ+〉 (A.7)

has a finite ε → 0 limit, order by order in t (the sign difference with respect to (5.4) is due

to the change of direction in the integral). Here, ρt(x) takes the form

ρt(x) = tJ−(x) − f(t) lim
a→−∞

〈0|J−(x)σ+(0)σ−(a)〉
〈0|σ+(0)σ−(a)〉 = tJ−(x) − f(t)

4x
. (A.8)

Set further R(x) = J−(x) − f1/(4x). Then the first few orders in the t-expansion of

(A.7) read

U ε,Λ
+,t (0)|0〉 = |σ+〉 + t

1

π

∫
R(x)dx |σ+〉 + t2

(
1

π2

∫

x>y
R(x)R(y)dxdy − 1

π

∫
f2

4x
dx

)
|σ+〉 +

+t3
(

1

π3

∫

x>y>z
R(x)R(y)R(z) dx dy dz −
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− 1

π2

∫

x>y
R(x)

f2

4y
dx dy −

− 1

π2

∫

x>y

f2

4x
R(y) dx dy − 1

π

∫
f3

4x
dx

)
|σ+〉 + O(t4) , (A.9)

where the integrations are from ε to Λ, subject to the path ordering constraints as indicated.

Order t

Our strategy will be to expand R(x) in modes around zero and analyse which modes give

divergent contributions to the integral. To do so, first express R(x) in the K-basis (2.19),

R(x) = K3(x) − 1

2

(
K+(x) − K−(x)

)
− f1

4x
. (A.10)

The field K3(x) has integer modes and K±(x) half-integer modes. We decompose

K3(x) = K3
≥(x) + K3

<(x) , K3
≥(x) =

∑

m∈Z≥0

x−m−1K3
m , K3

<(x) =
∑

m∈Z<0

x−m−1K3
m ,

K±(x) = K±
> (x) + K±

< (x) , K±
>(x) =

∑

r∈Z≥0+ 1
2

x−r−1K±
r , K±

< (x) =
∑

r∈Z<0+ 1
2

x−r−1K±
r .

(A.11)

We also set R<(x) and R≥(x) to be be given by (A.10) with all fields replaced by their

<-part, respectively their ≥- or >-part; the f1

4x term is part of R≥(x). The coefficient of t

in (A.9) becomes

1

π

∫
R(x) dx |σ+〉 =

1

π

∫
R<(x) dx |σ+〉 +

1

π

∫ (
K3

0 − 1

4
f1

)
x−1dx |σ+〉 . (A.12)

The integral over R<(x) involves only powers xr with r ≥ −1
2 and has a finite ε → 0 limit.

The second integral has a log-divergence for ε → 0 which has to be cancelled. This is

achieved by setting f1 = 1. With this choice for f1 we have

R≥(x) |σ+〉 = 0 . (A.13)

Order t2

For the second order computation, we need to know the commutators [Ka
≥(x),Kb(y)] for

x > y. These can be computed from the commutation relations of the Ka
m-modes, which

are just the same as those of the Ja
m-modes given in (2.14). One finds, for ν = ±,

[
K3

≥(x) ,K3(y)

]
=

1

2(x − y)2
[
K3

≥(x) ,Kν(y)

]
=

ν

x − y
Kν(y)

[
Kν

>(x) ,K3(y)

]
= −

√
y

x

ν

x − y
Kν(y)

[
Kν

>(x) ,K−ν(y)

]
=

1

2(x − y)2

(√
y

x
+

√
x

y

)
+

√
y

x

2ν

x − y
K3(y) . (A.14)
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For the coefficient of t2 in (A.9) we then obtain
(

1

π2

∫

x>y
R(x)R(y) dx dy − 1

π

∫
f2

4x
dx

)
|σ+〉 =

1)
=

(
1

π2

∫

x>y
R<(x)R<(y) dx dy +

1

π2

∫

x>y
[R≥(x), R(y)] dx dy − f2

4π
(ln Λ − ln ε)

)
|σ+〉

2)
=

(
− 1

2π2

∫

x>y

K+(y) + K−(y)√
x(
√

x +
√

y)
dx dy − 1

4π2

∫

x>y

1√
xy(

√
x +

√
y)2

dx dy +

+
f2

4π
ln ε + (finite ε→0)

)
|σ+〉

3)
=

(
1

4π2
ln ε +

f2

4π
ln ε + (finite ε→0)

)
|σ+〉 , (A.15)

where in step 1) we replaced R(x) by R<(x) + R≥(x) and used (A.13). For step 2) note

that the integral over R<(x)R<(y) has a finite ε → 0 limit. The commutator [R≥(x), R(y)]

has been evaluated with the help of (A.14). For step 3), the singular contributions to the

resulting integrals have to be extracted. The most singular term in the first integrand

(expand Kν(y) in modes) is (
√

xy(
√

x+
√

y))−1 = 4∂x∂y((
√

x+
√

y) ln(
√

x+
√

y)), so that

the integral is regular for ε→0. The integrand of the second integral is −4∂x∂y ln(
√

x+
√

y)

so that there is a ln ε singularity. In order to have a finite ε→0 limit at order t2 we need

to choose f2 = −π−1.

Order t3

The coefficient of t3 in (A.9) can be written in the form A1 + A2 + A3 with

A1 =
1

π3

∫

x>y>z
R(x)R(y)R(z) dx dy dz |σ+〉

A2 = − f2

4π2

∫

x>y

(
R(x)

y
+

R(y)

x

)
dx dy |σ+〉

A3 = − f3

4π

∫
1

x
dx |σ+〉 .

(A.16)

The singular contributions to A2 and A3 are easy to evaluate,

A2 = ln(ε)
f2

4π2

∫
R<(x) dx |σ+〉 + (finite ε→0) , A3 = ln(ε)

f3

4π
|σ+〉 + (finite ε→0) .

(A.17)

Extracting the singular part of A1 is some work. One first uses the commutators (A.14)

to remove all positive mode parts of the fields Ka. One obtains a sum of terms, with each

term being a function in x, y, z multiplying a state of the form, for u, v ∈ x, y, z,

|σ+〉 , Ka
<(u)|σ+〉 , Ka

<(u)Kb
<(v)|σ+〉 , Ka

<(u)Kb
<(v)Kc

<(u)|σ+〉 . (A.18)

It turns out that only the coefficients of the first two terms lead to singular behaviour as

ε → 0. In fact on finds

A1 =
1

4π3
I|σ+〉 −

1

8π3

∫ Λ

ε

∫ Λ

ε

∫ Λ

ε

R<(x)|σ+〉√
yz(

√
y +

√
z)2

dx dy dz + (finite ε→0) , (A.19)
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where

I =

∫

x>y>z

dx dy dz√
xyz(

√
x +

√
y)(

√
x +

√
z)(

√
y +

√
z)

= −π2

6
ln(ε) + (finite ε→0) . (A.20)

Altogether

A1 + A2 + A3 = ln(ε)

(
− 1

24π
+

1

4π3

∫ Λ

ε
R<(x) dx +

f2

4π2

∫ Λ

ε
R<(x) dx +

f3

4π

)
|σ+〉 +

+(finite ε→0) , (A.21)

which has a finite limit iff f2 = −π−1 and f3 = 1
6 . Note that the required value for f2

agrees with the one obtained in the order t2 computation.
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