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In his recent work on a tilt instability for advanced LIGO interferometers, P. Savov discovered
numerically a unique duality relation between the eigenspectra of paraxial optical cavities with non-
spherical mirrors: he found a one-to-one mapping between eigenstates and eigenvalues of cavities
deviating from flat mirrors by h(~r ) and cavities deviating from concentric mirrors by −h(~r ), where
h need not be a small perturbation. In this paper, we analytically prove and generalize this re-
markable result. We then illustrate its application to interferometric gravitational-wave detectors;
in particular, we employ it to confirm the numerical results of Savov and Vyatchanin for the impact
of optical-pressure torques on LIGO’s Fabry-Perot arm cavities (i.e. the tilt instability), when the
mirrors are designed to support beams with rather flat intensity profiles over the mirror surfaces.
This unique mapping might be very useful in future studies of alternative optical designs for LIGO
interferometers, when an important feature is the intensity distribution on the cavity optics.

PACS numbers: Valid PACS appear here

I. INTRODUCTION

Laser Interferometer Gravitational-wave Observatory
(LIGO) [1] and other long baseline detectors, are formed
by high-Finesse Fabry-Perot arms in order to increase
the circulating optical power and to enhance sensitivi-
ties [2] by suppressing shot noise. LIGO interferomerom-
eters, as well as the baseline design for advanced-LIGO

detectors (whose funding is scheduled to begin in FY
2008) [3], all use spherical mirrors. Non-spherical mir-
rors have been alternatively studied and are considered
for use in gravitational-wave interferometers, for the sup-
pression of thermal noise they offer.

In particular, as shown by O’Shaughnessy, Thorne and
Agresti [4, 5, 6, 7, 8], the thermal fluctuations of mirror
surfaces are better averaged over by a flat beam, such
a mesa-like [9] mode. The corresponding optical design
has shown a strong tilt instability [10] and Thorne has
proposed a different version of the mesa beam, that is sup-
ported by nearly concentric and opportunely shaped mir-
rors; this new version provides the same intensity profile
at the cavity mirrors (and thus the same thermal noise),
but imply a weaker tilt instability (even weaker than cav-
ities with nearly concentric spherical mirrors analyzed by
Sigg and Sidles [11, 12]) — as calculated by Savov and
Vyatchanin [10] . A general method to design a family
of optical cavities has been devised by Bondarescu and
Thorne [13], from nearly flat resonators to nearly con-
centric ones.

Mesa beams are constructed by coherently overlapping
Gaussian beams, with either(i) translated parallel axes,
or (ii) axes in different directions but sharing a common
midpoint [13]. Mirror shapes which support such beams
as fundamental modes are derived from the phase fronts
at the mirror locations, with case (i) corresponding to

Mexican-hat mirrors, and case (ii) corresponding to the
nearly-concentric version. Using the resulting optics pro-
file, higher-order optical modes and eigenfrequencies of
the designed cavities must be calculated by solving an
eigenvalue problem, which has been done for nearly-flat
cavities by O’Shaughnessy and Thorne [4, 5, 6, 7], and for
nearly-concentric cavities by Savov and Vyatchanin [10].
During his numerical work, Savov discovered that the
deviation of nearly-concentric Mexican-hat mirrors from
concentric surfaces is exactly the opposite of the devi-
ation of nearly-flat Mexican-hat mirrors from flat sur-
faces; he also found that the corresponding higher modes
of these cavities all have the same intensity profiles, and
that there is a one-to-one mapping between their eigen-
values. He went on and conjectured a general duality

relation between axisymmetric cavities with two identi-
cal mirrors facing each other: cavities with mirrors de-
viating by −h(|~r |) from concentric surfaces (nearly con-

centric mirrors) will support modes with the same in-
tensity profiles and related eigenvalues as cavities with
mirrors deviating by h(|~r |) from flat surfaces (nearly flat

mirrors). It should be noted that the deviation h(~r ) is
not required to be infinitesimal, it can change the mirror
shape arbitrarily as long as the paraxial approximation

is still satisfied1. While such a duality relation is well-
known between cavities with spherical mirrors, i.e., those
with h(~r) ∼ α~r 2 (for example see [14, 15, 16, 17]), to our
best knowledge no such relations had been established
between generic cavities.

In this paper, we prove this remarkable correspondence

1 Here and henceforth in the paper a 2-D vector ~r has been used to
indicate each point on planes orthogonal to the the cavity axis.



2

analytically, for a even broader category of cavities: those
whose mirror shapes remain invariant under the parity
operation, identified as spatial reflection in the two di-
mensional ~r -space (which is also equivalent to a 180◦

rotation around the cavity axis). Eigenmodes of such
cavities can be put into eigenstates of parity, and we
show that all corresponding eigenmodes of dual cavities
have the same intensity profiles at the mirrors, with their
eigenvalues satisfying

γk
c = (−1)pk+1e−2ikL(γk

f )∗ , (1.1)

where (−1)pk is the parity of the kth eigenmode; sub-
scripts c and f denote nearly concentric and nearly flat
mirrors, respectively.

We will give two alternative proofs of this duality re-
lation. The first one relies on the geometrical properties
of the propagator from mirror to mirror. In this descrip-
tion the eigenfunctions are field amplitudes at mirror sur-
faces, and we see right away that the corresponding eigen-
states have the same intensity profiles there. The second
proof is based on the “center-to-center” propagator. The
center-of-the-cavity fields are the eigenstates and the cor-
respondence relation is manifested by a two-dimensional
Fourier transform, that univocally relates the dual cavi-
ties.

This paper is organized as follows. In Sec. II we report
the first proof; in Sec. II A, the Cartesian coordinates are
used and some general features of the eigenproblem are
described; in Sec. II B, the cylindrical coordinates are
used, and the case of axisymmetric resonators is stud-
ied. Section III contains the second proof and the 2-
D Fourier transform relation between the center-of-the-
cavity eigenmodes of dual cavities. Section IV specializes
to the case of Mexican-hat cavities. When the nearly-
flat and the nearly-concentric mirrors are implemented
in the system, the corresponding mesa beams are con-
nected by Fourier transform, as we report in Sec. IVA.
In Sec. IVB, plots and analytical forms are provided, for
the amplitude distributions at the center of the cavity
and at the mirror surfaces; in Sec. IVC, we address the
tilt instability of the nearly concentric Mexican-hat res-
onator and show how easily it can be analyzed, applying
the duality relation to the results obtained for the nearly
flat Mexican-hat cavities [4, 5, 6]. We comment and re-
view the implications of the general duality in Sec. V.

II. ANALYTICAL PROOF FOR

MIRROR-TO-MIRROR PROPAGATION

A. In the Cartesian coordinate system

In this section we focus on field distributions on mirror
surfaces, and restrict ourselves to cavities with two iden-
tical mirrors facing each other. The extension to the non
non symmetric cavity is presented in Appendix A. We
adopt the Fresnel-Kirchoff diffraction formula to prop-
agate fields from mirror surface to mirror surface (see

e.g. [16]). In this formalism, the field amplitude v1(~r
′)

on the surface of mirror 1 propagates into

v2(~r) =

∫

d2~r ′ K(~r, ~r ′) v1(~r
′) (2.1)

on mirror 2, via the propagator

K(~r, ~r ′) =
ik

4πρ
(1 + cos θ)e−ikρ k =

2π

λ
, (2.2)

from ~r ′ (on mirror 1) to ~r (on mirror 2), where ρ denotes
the (3-D) spatial distance between these two points and
θ stands for the angle between the cavity axis and the
reference straight line, as is illustrated in Fig. 1. We
know that the Fresnel-Kirchoff integral eigenequation

γ v(~r) =

∫

d2~r ′ K(~r, ~r ′) v(~r ′) (2.3)

univocally determines the eigenmodes v and eigenvalues
γ of the cavity.

h(    )

ρ

h(   )

L
θ

r’

r’

r

r

FIG. 1: Symmetric Nearly Flat Mirrors.

Applying the paraxial approximation

θ ≈ 0 , ρ ≈ L +
|~r − ~r ′|2

2L
− h(~r ) − h(~r ′) , (2.4)

and we can use

Kh
f (~r, ~r ′) =

ik

2πL
e−ikLeikh(~r)e−

ik

2L
|~r−~r ′|2eikh(~r ′) . (2.5)

in the integral eigenequation.
Here the mirror surfaces deviate by h(~r ) from a flat

reference, and the subscript f is used to reflect this con-
vention. From here on, we will also refer to Kh

f as the
nearly flat propagator. We now consider two slightly de-
formed concentric mirrors (see Fig. 2) so that the mirrors
height with respect to the flat reference surface is

h(~r ) = ~r 2/L + b(~r ) , (2.6)

where the height b(~r ) is the deviation from the concentric
spherical surface (note that concentric spherical mirrors



3

have their radii of curvature equal to L/2, and thus sur-
face height r2/L). Inserting Eq. (2.6) into Eq. (2.4), we
obtain the propagator for a nearly-concentric cavity,

Kb
c(~r, ~r

′) =
ik

2πL
e−ikL

eikb(~r)e+ ik

2L
|~r+~r ′|2eikb(~r ′) . (2.7)

We use the term nearly concentric propagator for
Kb

c(~r, ~r
′). Although we use the terms nearly-flat and

nearly-concentric, h and b are not required to be small;
in fact, they can represent any deviation from perfectly
flat and concentric spherical mirrors.

L

ρ
θ

r’

r

r’h(    )

rb(   )

L
r2

FIG. 2: Symmetric Nearly Concentric Mirrors.

Now let us consider mirrors that are then invariant
under parity, i.e., those in which we also have

h(~r) = h(−~r) , b(~r) = b(−~r) . (2.8)

so that Kf, c are both invariant under a spatial reflection

{~r, ~r ′} ↔ {−~r,−~r ′} (2.9)

and therefore, we have

PK = KP , (2.10)

where we have defined

Pv(~r) = v(−~r) . (2.11)

for two dimensional reflection. Equation (2.10) implies
that all eigenmodes can be put into forms with definite
parity. We derive the following relation between nearly
flat and nearly concentric propagators, as constructed:

[

Kh
f (−~r, ~r ′)

]∗
= −e2ikLK−h

c (~r, ~r ′) , (2.12)

that is equivalent to:

P
[

Kh
f

]∗
= −e2ikLK−h

c . (2.13)

Nearly Flat Nearly Concentric

Kernel K
h
f K

−h
c

Eigenstate vf v∗

f

Parity (−1)p (−1)p

Half-trip eigenvalue γf e−2ikL(−1)p+1γ∗

f

Round-trip eigenvalue ηf e−4ikLη∗

f

TABLE I: Correspondence of propagation kernels, eigen-
states, parities, and eigenvalues between dual configurations.

Suppose we have an eigenstate vf of Kh
f , i.e., an eigen-

state of a cavity with mirror deviating by (+h) from flat
surface, and we compute its eigenvalue γf and know the
parity eigenvalue (−1)p:

Kh
f vf = γf vf , (2.14)

Pvf = (−1)pvf . (2.15)

By applying Eqs. (2.13)–(2.15), we derive the
correspondance

K−h
c v∗f = e−2ikL(−1)p+1γ∗

f v∗f . (2.16)

which identifies vc ≡ v∗f as the corresponding eigen-
state of K−h

c , that is eigenstate of the corresponding
resonator we denote the dual. The eigenvalue is γc ≡
e−2ikL(−1)p+1γ∗

f . We also induce that the parity is still
(−1)p. The reverse is straightforward and the result is
an established one-to-one correspondence between dual
cavities. We summarize this mapping in Table I. It is
obvious to note that that the corresponding eigenstates,
vf and v∗f , have the same intensity profiles on the mirror
surfaces; for infinite mirrors, we know vf(~r) is real-valued
(see Appendix B), so it is an eigenstate of the dual con-
figuration itself.

For cavities with identical mirrors facing each other,
the full, round-trip propagator is just the square of the
half-trip one. From Eqs. (2.12) and (2.10), we have

[

[

Kh
f

]2
]∗

= e4ikL
[

K−h
c

]2
(2.17)

which means that the same duality correspondence ex-
ists between eigenstates of the full propagator, with their
eigenvalues related by

ηc = e−4ikLη∗
f . (2.18)

Note that when h(~r) = r2/(2L) the two dual cavities
are identical to each other. Using the relation that links
the eigenvalues of two dual resonators, we can determine
the spectrum

γc = ±e−2ikLγ∗
f = γf = e−ikL+inπ/2

where n ∈ N . The resulting separation between the
eigenvalues is the Gouy phase

eiθG = ei arccos(1−L/R) R = L

computed for confocal resonators [15, 16, 17].
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B. Specializing to cylindrical mirrors

In most LIGO applications, cavity mirrors still have
cylindrical shapes: h(~r ) = h(|~r |). This allows us to
decouple radial and azimuthal degrees of freedom, and
simplify the eigenvalue problem. We shall follow roughly
the notation of [17].

We adopt the cylindrical coordinate system:

~r = r(cos ϕ, sin ϕ) . (2.19)

Since K is now invariant under rotation along the z-axis,
all eigenmodes can be put into eigenstates of rotation:

v(r, ϕ) = R(r)e−imϕ , m = integer . (2.20)

Inserting this into the eigenequation (2.3) and performing
analytically the angular integration we obtain the radial
eigenequation

γnmRnm(r) =

∫ a

0

Kh
f(m)(r, r

′)Rnm(r′)r′dr′ , (2.21)

where for each angular mode number m we have indexed
the radial eigenstates by n, and

Kh
f(m)(r, r

′) =
im+1k

L
Jm

(

krr′

L

)

e
ik

[

−L+h(r)+h(r′)− r
2+r

′2

2L

]

(2.22)
is a symmetric radial propagator, in the nearly-flat de-
scription.2 Since Kh

f(m)(r, r
′) is symmetric, we obtain or-

thogonality relations between radial eigenfunctions:
∫ a

0

Rn1m(r)Rn2m(r)rdr = δn1n2 . (2.23)

Using Eq. (2.6) again, for a configuration with b(r)
correction from concentric spherical mirrors, we obtain
the radial kernel of the nearly-concentric description:

Kb
c(m)(r, r

′) =
im+1k

L
Jm

(

krr′

L

)

e
ik

[

−L+b(r)+b(r′)+ r
2+r

′2

2L

]

.

(2.24)
Comparing Eqs. (2.24) and (2.22), we obtain:

(−1)m+1
[

Kh
f(m)

]∗

= e2ikLK−h
c(m) . (2.25)

This is a radial version of Eq. (2.13); here we know ex-
plicitly that all m-eigenstates have parity (−1)m.

Following a similar reasoning as done in the previous
section, for each angular mode number m, we can estab-
lish a one-to-one correspondence between radial eigen-
states of a nearly-flat configuration to those of the dual
configuration:

[Rnm]c = [Rnm]∗f . (2.26)

2 Here we have used Jn(z) =
1

2πin

∫ 2π

0

eiz cos ϕeinϕdϕ, where

Jn(z) is the nth order Bessel function of the first kind.

The mapping of the eigenvalues are given by

[γnm]c = (−1)m+1e−2ikL [γnm]
∗
f . (2.27)

Similarly, the round-trip eigenstates have the same cor-
respondence, their eigenvalues related by

[ηnm]c = e−4ikL [ηnm]
∗
f . (2.28)

III. ANALYTICAL PROOF BASED ON

CENTER-TO-CENTER PROPAGATION

A. Propagators for vacuum and mirror surfaces

In this section, we focus on complex amplitudes of the
optical field on planes perpendicular to the optical axis
(the z axis). An optical mode propagating along one di-
rection of the optical axis can be specified completely by
the distribution of the field on the z = const plane. For
example, we denote the optical field on the plane z = z1

by v(~r , z1), where ~r is the 2-D coordinate of the point on
this plane. The effect of any linear paraxial optical sys-
tem (including open space, thin lenses and mirrors) with
input plane z1 and output plane z2 can be characterized
by its transfer operator, U , which takes the form of an
integration kernel:

v(~r , z2) =

∫

d2~r ′ U(~r , z2;~r
′, z1)v(~r ′, z1) . (3.1)

In particular, the operator that describes the paraxial
propagation down a length L in vacuum is

GL(~r , ~r ′) = i
k

2πL
e−ikL exp

[

−ik
(~r − ~r ′)2

2L

]

. (3.2)

For a mode propagating in the ±z direction with field
(complex) amplitude distribution v(~r ′, z1) at z = z1, the
amplitude distribution on a surface described by height
z(~r ) = z1 ∓ h(~r ) is given by

v[~r , z(~r )] = e±ikh(~r )v[~r , z1] . (3.3)

Here we emphasize that the spatial point of interest is
located outside the z = z1 plane, and that the 2-D vector
~r describes the projection of that point onto the z = z1

plane.
From Eq. (3.3), one deduces that the operator for re-

flection off a perfect infinite mirror with shape h(~r) is3

R[h(~r )](~r , ~r ′) ≡ −δ(~r − ~r ′)e2ikh(~r ). (3.4)

It is easy to verify that both GL and R[h(~r )] are unitary
operators.

3 The minus sign in Eq. (3.4) is used because we use a convention
in which a phase shift by π is gained upon reflection.
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B. Analytical proof based on center-to-center

propagation

In this section we present an alternative proof moti-
vated from the construction of the flat-topped beams [5,
10]: (i) the nearly flat configuration has its fundamental
mode generated by spatial translation of minimal Gaus-
sian beams, while (ii) the nearly concentric configuration
is generated by rotation (of propagation direction at the
center of cavity) of minimal Gaussian beams, or a trans-

lation in the momentum ~k -space. This had led us to
speculate that the two sets of eigenstates correspond to
each other via Fourier transform (similar to the relation
between position and momentum space in quantum me-
chanics).

We will use the operator GL/2 [see Eq. (3.2)] which
propagates the field forward by half the cavity length.
For simplicity we denote it by G:

G(~r , ~r ′) ≡ i
k

πL
e−ikL/2e−ik

(~r −~r
′)2

L . (3.5)

Using G and Rh(~r ) [defined in Eq. (3.4), with h(~r ) the
mirror surface height], we can re-express the eigenvalue
problem as:

L[h(~r )]u ≡ GR[h(~r )]Gu = γu , (3.6)

with L[h(~r )] the center-to-center propagator when the
mirror deviates from flat surfaces by h(~r ), in which the
optical mode propagates from the cavity center to the
mirror, gets reflected, and propagates back to the center.
In fact, L is related to the surface-to-surface propagator
K by a unitary transformation,

L = G−1R−1
[h(~r )/2]KR[h(~r )/2]G . (3.7)

This means the two proofs are mathematically equiva-
lent. Similar to K, the operator L also commutes with
parity, or [Cf. Eq. (2.10)]

PL = LP ; (3.8)

With the propagator on hand, we proceed with our in-
tuition that the modes must be related by Fourier trans-
forms. In order to do so, we first define the 2-D Fourier-
transform operator F as

F(~r , ~r ′) =
k

πL
e−

2ik

L
~r ·~r ′

, (3.9)

which satisfies

F2 = (F−1)2 = P . (3.10)

It is easy to show that,
[

G∗F−1
]

(~r , ~r ′)

= − ik2

π2L2
e

ik

[

L

2 +~r
2

L
+ (~r −~r

′)2

L

]

∫

d2~r ′′e
ik

L
[~r ′′−(~r −~r ′)]2

=
[

ieikLR[~r 2/(2L)]G
]

(~r , ~r ′) . (3.11)

[The integral on the second line can be done by inserting

a factor e−ǫ(~r ′′)2 into the integrand, and then letting ǫ →
0+.] Similarly, [or by taking the transpose of Eq. (3.11)],
we have

F−1G∗ieikLGR[~r 2/(2L)] . (3.12)

Using Eqs. (3.11) and (3.12), we have

PL∗
[hA]

= F−1(F−1G∗)R[−hA](G∗F−1)F
= −e2ikLF−1GR[~r 2/(2L)]R[−hA]R[~r 2/(2L)]GF
= −e2ikLF−1L[hB]F . (3.13)

Here hA and hB are mirror heights related by the duality
relation,

hA(~r ) + hB(~r ) = r2/L , (3.14)

and we have used the fact that

R[~r 2/(2L)]R[−hA]R[~r 2/(2L)] = R[~r 2/L−hA] = R[hB] .
(3.15)

According to Eq. (3.13), given any eigenstate uA of
L[hA] with eigenvalue γA and a definite parity of p, we
have

(−1)pγ∗
Au∗

A = PL∗
[hA]u

∗
A

= −e2ikLF−1L[hB](Fu∗
A) , (3.16)

⇒ L[hB](Fu∗
A) = (−1)p+1e−2ikLγ∗

A(Fu∗
A) . (3.17)

In other words, the mapping

uA → uB = Fu∗
A (3.18)

transforms each eigenstate of L[hA] into its dual one of
L[hB]; the corresponding eigenvalue relation is

γB = (−1)p+1e−2ikLγ∗
A . (3.19)

For similar reasons, given any eigenstate uB of U[hB]

(with definite parity), Fu∗
B must also be an eigenstate of

U[hA]. Moreover, since

F(Fu∗
B)∗ = FF−1uB = uB , (3.20)

the state Fu∗
B is in fact the inverse image of uB [under

the mapping (3.18)]. This means we have established a
one-to-one correspondence between eigenstates of L[hA]

and those of L[hB].
Now let us look at intensity profiles on the end mirrors

surface. For the eigenstate uA, the field amplitude at the
constant-z plane of the end mirror is GuA. For its image
eigenstate uB ≡ Fu∗

A, we have

GuB = G(Fu∗
A) =

[

G∗F−1uA

]∗

=
[

ieikLR[~r 2/(2L)]GuA

]∗
(3.21)
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which does have the same intensity profile [see Eq. (3.4)].
For the round-trip propagator L2, using Eqs. (3.13)

and (3.8), we have

[

L2
[hA]

]∗

= e4ikLF−1L2
[hB]F , (3.22)

so we have the same duality correspondence (3.18) be-
tween eigenstates of the full propagator, with the map-
ping between eigenvalues given by

ηB = e−4ikLη∗
A . (3.23)

IV. APPLICATION OF THE DUALITY

RELATION USING MESA BEAMS AND

MEXICAN-HAT CAVITIES

The mesa beams were constructed to have flat-topped
intensity profiles at the cavity mirrors with rapid fall-
off near mirror rims, in order to achieve lower thermal
noises [4, 5, 6, 7]. There are two versions of mesa beams
with the same intensity profile, the nearly flat and the
nearly concentric. Cavities that support them (Mexican-
Hat cavities) are related by the duality relation, as real-
ized by Savov [10], during his study of radiation-pressure-
induced tilt instabilities. In this section, we shall explic-
itly construct these two fundamental modes, study their
relations at the center of the cavity, and at the cavity
mirrors. We will also discuss analytical features of the
two modes that have not been obtained before. We will
also give an example of how the calculation of the tilt
instability can be dramatically simplified for nearly con-
centric Mexican-hat cavities, using the duality relation,
based on results already obtained for the nearly flat con-
figuration.

A. Construction of Mesa beams in Cartesian

coordinate system

Nearly-flat Mesa beams are constructed by coher-
ently superimposing minimal Gaussians, namely Gaus-
sian modes with the smallest possible spot size at the
cavity mirrors, σmin =

√

L/(2k), whose axes are parallel
to the cavity axis and lie within a cylinder centered at
the cavity axis. At the middle of the cavity, the axes
intercept with the constant-z plane in a disk D, with ra-
dius p. It is evident that such a construction will give
a rather flat intensity profile in the central region of the
end mirror with radius ∼ p; beyond this radius, the in-
tensity profile falls off as a Gaussian with decay length
σmin, which is conceivably the fastest possible [5, 6, 7].

The complex amplitude of the nearly-flat mesa beam
(fundamental mode of the corresponding cavity) at the
center of the cavity is of the form

vf(~r ) =

∫

~r 0∈D

d2~r 0

(

1√
2πσ

)2

e−
(~r −~r 0)2

2σ2 , (4.1)

Here σ is the waist size, which we leave general (rather
than setting σ = σmin) for the moment. The duality
image of vf is

vc(~r ) = [Fv∗f ] (~r )

=

∫

~r 0∈D

d2~r 0 e
2ik~r ·~r 0

L F
[

(

1√
2πσ

)2

e−
~r

2

2σ2

]

=

∫

~r 0∈D

d2~r 0 e
2ik~r ·~r 0

L

[

(

1√
2πσ∗

)2

e
− ~r

2

2σ2
∗

]

,(4.2)

with

σσ∗ =
L

2k
= σ2

min , (4.3)

When going from Eq. (4.1) to Eq. (4.2), the Fourier trans-
form has been completed by two steps. First, the spa-
tial translation by ~r 0 is replaced by the phase factor of

e
2ik~r ·~r 0

L , which represents a tilt of the propagation axis
by an angle of 2~r 0/L. Second, the σ-Gaussians turn into
σ∗-Gaussians. [This correspondence between Gaussians
in fact reflects the duality between pairs of spherical cav-
ities.] As a consequence, vc represents the superposition
of Gaussians with symmetry axes going through the cav-
ity center, but with tilt angles distributed uniformly in
a disk with radius 2p/L — exactly the construction of
a nearly-concentric mesa beam. In particular, Eq. (4.3)
tells us that minimal Gaussian would have turned into
itself in this process. Hence we have shown explicitly
the correspondence between the nearly-flat and nearly-
concentric mesa beams (the fundamental modes of the
corresponding cavities).

B. Profiles of mesa beams and mirror shapes

In order to study mesa beams in more details, we adopt
the cylindrical polar coordinate system (r, φ); the cylin-
drical symmetry of these beams will make the complex
amplitude only depend on r. Equations (4.1) and (4.2),
written in the polar coordinate system, become

vwaist
f (r, φ) =

1

πw2
0

∫ p

0

r0dr0

∫ 2π

0

dφ0 e
−

r2−2r0r cos(φ−φ0)+r2
0

w2
0 , (4.4)

vwaist
c (r, φ) =

1

πw2
0

∫ p

0

r0dr0

∫ 2π

0

dφ0 e
−

r2+2ir0r cos(φ−φ0)

w2
0 . (4.5)

Here w0 =
√

L/k =
√

2σmin and L is the total length of
the cavity. Carrying out the angular integrations analyt-
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ically, we get

vwaist
f (r) =

∫ p/w0

0

2x0e
−(x2+x2

0)I0(2xx0)dx0 , (4.6)

vwaist
c (r) =

1

x
e−x2

J1(2xp/w0) , (4.7)

where x ≡ r/w0, and I0 is the modified Bessel function
of the first kind. Examples of normalized power distri-
butions of nearly flat and nearly concentric mesa beams
are plotted in the upper panels of Fig. 3. In these plots,
we take p = 4w0, which corresponds to the configuration
proposed for Advanced LIGO (for reasons that will be
explained in Sec. IVC).

1 2 3 4 5
r/�w0
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-0.75

-0.5
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0.25
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1 2 3 4 5
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0.005

0.01

0.015

0.02

0.025

Intensity

1 2 3 4 5
r/�w0

0.005

0.01

0.015

0.02

0.025

Intensity

1 2 3 4 5
r/�w0
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FIG. 3: Comparison between nearly flat (left panels) and
nearly concentric (right panels) Mesa beams. Upper panels:
normalized intensity profiles at the center of the cavity. Mid-
dle panels: normalized intensity profiles at mirror surfaces
Lower panels: phase fronts at the position of the mirrors.

Let us analyze these amplitude distributions in more
details, in the case of p ≫ w0, i.e., when we translate the
minimal Gaussians by a distance substantially greater
than their waist size. For the nearly-flat configuration,
we can easily see from Eq. (4.1) that, when (p−r)/w0 ≫
1, the field distribution can be approximated as

vf(r ≪ p) ≈
∫

~r 0∈R2

d2~r 0

(

1√
2πσ

)2

e−
(~r −~r 0)2

2σ2 = 1 .

(4.8)

On the other hand, if r is much larger than w0 [since
p ≫ w0, this region overlaps with the previous one], we
can apply the asymptotic expansion of I0

I0(z) =
1√
2πz

ez (4.9)

on Eq. (4.6), and obtain

vwaist
f (r ≫ w0)

≈ 1√
π

∫ p/w0

0

√

x0

x
e−(x0−x)2dx0

≈ 1√
π

∫ p/w0−x

−x

(

1 +
y

2x

)

e−y2

dy

≈
[

1√
π

∫ p/w0−x

−∞

e−y2

dy

]

− 1

4
√

πx
e−(p/w0−x)2 ,(4.10)

where we have defined x ≡ r/w0. From Eq. (4.10), we
note that when w0 ≪ r ≪ p, we recover the result of
vwaist

f ≈ 1; when r gets close to p, the amplitude will drop,
similar to the tail of an error function. Qualitatively,
we could write wf-Mesa(p) ∼ p. In the ultimate limit of
p/w0 → +∞, we have

vwaist
f (r) = 1 , p/w0 → +∞ . (4.11)

The concentric configuration, on the other hand, has
a completely different field distribution. According to
the analytic expression (4.7), the amplitude must be dis-
tributed within a radius of x ∼ w0/p ≪ 1, or r ∼ w2

0/p,
which is much smaller than the waist size of the minimal
Gaussian. In this case, we could also qualitatively write
wc-Mesa(p) ∼ w2

0/p. In the limit of p → ∞, we use

J1(ax)

x
→ δ(x) , a → +∞ (4.12)

and have

vwaist
c (r) = δ(x) , p/w0 → +∞ . (4.13)

The fact that

wf-Mesa(p) · wc-Mesa(p) ∼ w2
0 , (4.14)

clearly reflects the Fourier-transform relation between
two Mesa beams with the same p.

Now, let us turn to field distributions at the cavity mir-
rors. Applying the propagator between parallel planes in
the polar coordinate systems (eq. (3.5)),

G(r′, φ′; r, φ)

=
ik

πL
e−ikL/2e−ik[r2+r′2−2rr′ cos(φ′−φ)]/L, (4.15)
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we obtain the fields

vend
f (r′, φ′) =

∫ p

0

r0dr0

∫ 2π

0

dφ0

e
−

[

1+i
2

]

[

r′2−2r0r′ cos(φ′−φ0)+r2
0

w2
0

]

, (4.16)

vend
c (r′, φ′) =

∫ p

0

r0dr0

∫ 2π

0

dφ0

e
−

[

1+i
2

]

[

r′2+2ir0r′ cos(φ′−φ0)−ir2
0

w2
0

]

, (4.17)

at distance L/2 from the waist. Comparing Eqs. (4.16)
and (4.17), we have

[

vend
f (~r )

]∗
= eik~r 2/Lvend

c (~r ) . (4.18)

It is then obvious that the two beams have the same
intensity profiles on the cavity mirrors:

|vend
f (~r )| = |vend

c (~r )| . (4.19)

(An approximate formula for the end-mirror intensity
profile was given in the Appendix of [5].) We plot these
intensity profiles at the mirror surfaces in the middle pan-
els of Fig. 3.

Let us now determine mirror shapes by imposing that
the optical phase is constant (which we take as 0 for
simplicity) on each mirror surface. We have

vend
f (~r )eikhf (~r ) = |vend

f (~r )| , (4.20)

vend
c (~r )eikhc(~r ) = |vend

c (~r )| . (4.21)

Taking the complex conjugate of Eq. (4.20), and combine
with Eq. (4.21), using Eqs. (4.18) and (4.19), we have

hf(~r ) =
~r 2

L
− hc(~r ) , (4.22)

which is the duality relation between mirror surfaces. In
the lower panels of Fig. 4, we plot the shapes of mirror
surfaces, again, we assume p = 4w0.

1 2 3 4 5 r/w0

-1.25

-0.75

-0.25

corr. from flat

1 2 3 4 5 r/w0
0.25

0.75

1.25

corr. from conc.

FIG. 4: Flat mesa beam wave front (left panel) with respect
to a flat surface and concentric mesa beam wave front (right
panel) with respect to a concentric surface, as analytically
computed.

C. Applications of Mesa beams to Advanced LIGO

In order to achieve lower thermal noise in the test
masses, the intensity profiles at the mirrors must be as
flat as possible. In the case of infinite mirrors, the choice
is to use cavities with flat or concentric spherical mirrors,
whose eigenmodes have uniform (absolutely flat) profile
distribution. However, the mirrors must have finite sizes
(e.g., as limited by the size of the beam tube), and the
intensity profiles must be confined to a very large extent
within the rims of the mirrors, in order to decrease the
diffraction loss upon each reflection. In Advanced LIGO,
a power loss below 10 ppm is required [5]. For this reason,
we are forced to deviate from flat or concentric configu-
rations — to such an extent that the diffraction loss is
within the requirement. When only spherical mirrors are
used, if on the one hand we decrease the radius of cur-
vature from +∞ (flat), and on the other hand increase
the radius of curvature from L/2 (concentric), the dual
configurations, with

1/(2R1) + 1/(2R2) = 1/L , (4.23)

will have the same intensity profiles at the end mirrors,
thus the same diffraction loss and thermal noise. For ex-
ample, R1 = 54 km and R2 = 2.077 km both give exactly
the loss specification, while R1 is the current baseline de-
sign. However, spherical cavities are not optimal in terms
of their thermal noise: (the two types of) mesa beams,
whose intensity profiles are flatter given the same loss
specification, turn out to provide much lower thermal
noises [5, 8]. For these beams, the larger the param-
eter p, the lower the thermal noises, but the higher the
diffraction loss. The loss specification of Advanced LIGO
corresponds to p = 4w0 [5] which is the case we study in
Fig. 3.

While having the same diffraction losses and thermal
noises, dual configurations do differ significantly in a
very important aspect — their eigenspectra are different.
Thus, any problem using modal analysis of optical cavi-
ties will reveal these differences and probably the duality
relation if nearly flat and nearly concentric configurations
are compared.

One such problem is the radiation-pressure-induced tilt
instability: as the mirrors tilt, the beam inside the cavity
walks away from the center of the mirrors, producing a
torque, which in some cases can drive more tilt in the
same direction, and become destabilizing (see Fig. 5).
As shown by Sigg [11], while for all cavities there is
always one tilt mode in which the radiation-pressure-
induced torque is destabilizing, the instability is much
weaker in nearly concentric configurations than in nearly
flat ones. The reason is that while in the two cases the in-
tensity profiles are identical, the optical axis of the beam
walks away by a much smaller distance in the concentric
case, given the same amount of tilt in the unstable mode
(see Fig. 5). According to Sigg’s calculation for spherical
mirrors, the tilt instability for a nearly flat configura-
tion with Advanced-LIGO power (∼ 1 MW circulating in
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nearly
concentric
cavity

θ

L

R > L

R < L 

L

Rθ

θR

nearly
parallel-plane
resonator
(flat optics)

FIG. 5: Comparison of tilt instability of nearly flat and nearly
concentric symmetric optical cavities. For more details see
Ref. [10, 11].

the cavity) can be too strong to handle for the angular
control system. For this reason, we would prefer nearly
concentric cavities.

For general, non-spherical cavities, a perturbative pre-
scription for calculating the tilt instability has been for-
mulated by Savov and Vyatchanin [10], in which the tilt
instability growth time is expressed in terms of eigenval-
ues and intensity profiles of the cavities’ spatial eigen-
modes (Eqs. 2.13, 2.14, and 4.8 of [10]). Savov and Vy-
atchanin applied their prescription to both nearly flat
and nearly concentric Mexican-Hat cavities; in partic-
ular, they had to solve the eigenvalue problem for the
nearly concentric cavities in order to obtain the eigen-
values and intensity profiles. Savov discovered the du-
ality relation in this process. Had the duality relation
been known, one could have taken the eigenvalues and in-
tensity profiles of nearly flat Mexican-hat cavities, avail-
able from previous works, applied the duality transfor-
mation, and obtained the tilt instability for nearly con-
centric Mexican-Hat cavities without having to solve the
eigenvalue problem again (see Section VI of [10]).

Finally, let us make a qualitative comment on the nu-
merical magnitudes of tilt instabilities in the various con-
figurations considered. Numerically, according to Savov
and Vyatchanin [10], we have

nearly flat MH (p = 4w0)
↓

nearly flat spherical (R = 54 km)
↓

nearly concentric spherical (R = 2.077 km)
↓

nearly concentric MH (p = 4w0)

with configurations less and less unstable from top to bot-
tom. Interestingly, this sequence of decreasing instability

is consistent qualitatively with the corresponding mirror
shapes: with the same amount of diffraction loss, the flat
MH does appear more flat than the nearly flat spherical
mirrors, while the nearly concentric Mexican-Hat mirror
does appear closer to concentric than the nearly concen-
tric spherical mirror.

V. CONCLUSION

In this paper, we provided two different analytic proofs
for Savov’s duality relation between symmetric cavities
with mirror height h(~r ) measured with respect to a
flat surface and those with mirror height −h(~r ) mea-
sured with respect to a concentric spherical surface (valid
within the paraxial approximation): the corresponding
eigenmodes have the same intensity profile at the mirrors,
their amplitude distribution at the center of the cavity
is related via Fourier transform, while their eigenvalues
are related by complex conjugation (see Table I). These
two proofs are based on the mirror-to-mirror propagator,
and the center-to-center propagator, respectively.

We illustrated this duality relation with the two types
of Mesa beams proposed for Advanced LIGO. In partic-
ular, we showed explicitly that these beams are related
to each other by a Fourier transform at the center of the
cavities, and that they have the same intensity profiles at
the end of the cavities. We also related the mirror shapes
of the Mexican-Hat cavities that support these two modes
by the duality relation. In addition, the duality relation
could have allowed us to avoid solving the eigenequations
once more for the nearly concentric Mexican-Hat cavities,
and used instead results already available for nearly flat
Mexican-Hat cavities.

The duality relation can also be applied to the more
general Mesa beams by Bondarescu and Thorne, which
interpolate between nearly flat and nearly concentric cav-
ities: in these beams, minimal Gaussians are both trans-
lated and have their propagation axes rotated, to differ-
ent extents [13].
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APPENDIX A: DUALITY RELATION FOR

NON-IDENTICAL MIRRORS

In this section we will study the duality relation when
the mirrors shapes are not identical, but each still sym-
metric under a 180◦ rotation around the cavity axis.
Since now the field distributions of eigenstates over the
two mirror surfaces are not the same, we have to study
the eigenvalue problem associated with the round-trip
propagator, instead of the individual surface-to-surface
ones. Nevertheless, we can still use the propagators (2.5)
and (2.7) to build a system of integral equations relating
field distributions v1(~r1) and v2(~r2) over the two mirror
surfaces. [All through this section, we use the subscripts
1 and 2 to refer to quantities associated with mirrors 1
and 2, respectively.] If the mirrors deviate from parallel
planes by h1,2(~r), we have:

γ1v1(~r1) =

∫

S2

d2~r2 K12(~r1, ~r2) v2(~r2) , (A1)

γ2v2(~r2) =

∫

S1

d2~r1 K21(~r2, ~r1) v1(~r1) , (A2)

where γ1,2 are the “eigenvalues” and

K12(~r1, ~r2) =
ike−ikL

2πL
eikh1(~r1)−

ik

2L
|~r1−~r2|

2+ikh2(~r2), (A3)

K21(~r2, ~r1) =
ike−ikL

2πL
eikh2(~r2)−

ik

2L
|~r2−~r1|

2+ikh1(~r1), (A4)

are the propagators from mirror 2 to mirror 1, and from
mirror 1 to mirror 2, respectively. The equations (A1)
and (A2) give the field at each mirror in terms of the
reflected field at the other but they can be combined to
form the round-trip equation which states that the field
at each mirror must reproduce itself after one round-trip.
In the following, we will add a subscript f or c to make a
distinction between quantities related to the nearly-flat
or nearly-concentric case.

ηf v1f (~r1) =

∫

S′

1

d2~r ′
1 Kh1h2

1f (~r1, ~r
′
1) v1f (~r ′

1), (A5)

ηf v2f (~r2) =

∫

S′

2

d2~r ′
2 Kh2h1

2f (~r2, ~r
′
2) v2f (~r ′

2), (A6)

where the common eigenvalue ηf is given by γ1fγ2f and
the round-trip propagators

Kh1h2

1f (~r1, ~r
′
1) =

∫

S2

d2~r2 K12f (~r1, ~r2)K21f (~r2, ~r1)

Kh2h1

2f (~r2, ~r
′
2) = (1 ↔ 2) · Kh1h2

1f (~r1, ~r
′
1) (A7)

In the nearly-concentric configuration, using kernels of
the form (2.7) for the propagation from one mirror to
the other and combining them as done for the nearly-flat
configuration, we obtain the following nearly-concentric
round-trip equation for the field distribution over the

mirror 1 (similar formula for the mirror 2 with the sub-
stitution 1 ↔ 2).

ηc v1c(~r1) =

∫

S′

1

d2~r ′
1 Kb1b2

1c (~r1, ~r
′
1) v1c(~r

′
1) (A8)

Kb1b2
1c (~r1, ~r

′
1) = −

∫

S2

d2~r2 e−2ikL
( k

2πL

)2

· (A9)

· e ik

2L
|~r1+~r2|

2+ ik

2L
|~r2+~r ′

1|
2+ikb1(~r1)+ikb1(~r ′

1)+2ikb2(~r2)

where b1,2 are the mirrors deviations from concentric sur-
faces. Using the assumed symmetry properties of the
mirrors, the propagators for the nearly-flat and nearly-
concentric cavity fulfills this relation (the same is true for
the mirror 2 with the substitution 1 ↔ 2)

K−h1−h2
1c (~r1, ~r

′
1) = e−4ikL[Kh1h2

1f (−~r1,−~r ′
1)]

∗

= e−4ikL[Kh1h2

1f (~r1, ~r
′
1)]

∗ (A10)

Equation (A10), together with Eqs. (A7) and (A8), pro-
vides us with a more general duality relation, for cavities
with non-identical mirrors: as long as the corresponding
mirrors of two cavities A and B satisfy

hαA(~r) =
~r 2

L
− hαB(~r) , α = 1, 2 , (A11)

the eigenstates and eigenvalues of the two cavities will be
related by:

vαA = v∗αB , ηA = e−4ikLη∗
B , α = 1, 2 . (A12)

APPENDIX B: EIGENSTATES AND

EIGENVALUES FOR CAVITIES WITH INFINITE

MIRRORS

When the mirrors are infinite, it is straightforward to
check that two fundamental properties,

∫

d2~r ′K(~r, ~r ′)K∗(~r ′, ~r ′′) = δ(~r − ~r ′′) , (B1)

K(~r, ~r ′) = K(~r ′, ~r) , (B2)

are satisfied by both propagators Kh
f and Kb

c; they can
be re-written into

KK† = I, K = KT , (B3)

where I is identity operator, KT the conjugate of K, and
K† its Hermitian conjugate. In simple terms, K is unitary
and symmetric. It is well known that for unitary oper-
ators, all eigenvalues have modulus 1, and that eigen-
vectors with different eigenvalues are orthogonal to each
other.

Now suppose we have an eigenvector v, with eigenvalue
γ, γγ∗ = 1. By complex conjugating the eigenequation
Kv = γv, we obtain

K∗v∗ = γ∗v∗ = γ−1v∗ ; (B4)
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using Eqs. (B3), we have K∗ = K† = K−1, and hence

K−1v∗ = γ∗v∗ ⇒ γv∗ = Kv∗ . (B5)

This means v∗ and v are both eigenvectors with eigen-

value γ. We can then replace v and v∗ by two real eigen-
vectors of the eigenvalue problem, v + v∗ and (v − v∗)/i.
This corresponds to the physical fact that the optical
phase of eigenstates must be constant on mirror surfaces.
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