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quantum corrections to spinning strings. Previously, this method was applied in the sl(2)

subsector and yielded agreement to third order in perturbation theory with the quantum

string Bethe ansatz. In this note we discuss related sums and compare zeta-function reg-

ularization against exact evaluation of the sums, thereby showing that the zeta-function

regularized expression misses out perturbative as well as non-perturbative terms. In par-

ticular, this may imply corrections to the proposed quantum string Bethe equations. This

also explains the previously observed discrepancy between the semi-classical string and the

quantum string Bethe ansatz in the regime of large winding number.
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1. Introduction and summary

Explicit checks of the AdS/CFT correspondence beyond the supergravity approximation

have been obstructed by the disjointness of the regimes in which gauge theory and string

theory are understood in perturbation theory. Exact quantization of string theory on

AdS5 × S5 may help overcoming this problem and has therefore been the focus of much

recent investigations. Key progress in this direction was triggered by the insight gained

from studying the AdS/CFT correspondence in specific limits, as initiated by [1, 2], and

in [3 – 9].

Further insight was obtained by identifying the integrable structures both in gauge and

string theory. On the gauge theory side, this was deduced from the identification of the

planar one-loop dilatation operator of N = 4 SYM with the hamiltonian of an integrable

(super) spin chain [10, 11], solvable by means of a Bethe ansatz. The extension of the

integrable structure to higher loops was subsequently shown in [12 – 14].1 On the other

hand, integrability of the string sigma model on AdS5 × S5 [16] was observed in [17], and

then utilised to test the AdS/CFT correspondence [18 – 20].2 An important step linking the

1Altough integrability breaks down beyond the planar limit, some remnants of it persist and can be used

to study decays of semi-classical strings [15].
2For reviews and further references see [21 – 25].
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two integrable structures on more general grounds was made in [26] by the construction of a

set of Bethe equations for the classical string sigma-model.3 These were then compared to

the gauge theory Bethe equations in the thermodynamic limit, first for various subsectors

and then the full N = 4 SYM and AdS5 × S5 superstring [26, 32 – 36].

Inspired by the classical Bethe equations, a proposal was put forward for the description

of quantum strings on AdS5×S5 [37 – 39]. It was conjectured that the string spectrum can

be described by a new type of quantum string Bethe equations, which diagonalize some

underlying string chain, and which are obtained by discretizing the classical string Bethe

equations [26]. The conjectured quantum string Bethe equations were rigorously tested at

infinite λ. However, they could potentially receive 1/
√

λ corrections [37].

To further test the proposal of [37 – 39], a detailed comparison between the one-loop

worldsheet correction to the energy of a particular string configuration (which was com-

puted semi-classically) to the finite size corrections following from the quantum string

Bethe ansatz was recently performed [40]. The configuration studied was a circular string

spinning in AdS3 × S1 [41]. In this case the correction to the classical energy depends on

two parameters J and k (J 2 = 1/λ′ = J2/λ), where k is the string winding number and

J is the spin in the S1 direction. In [40] the comparison between semi-classical strings and

Bethe ansatz was studied in the following two regimes: large J (and finite k) and large k

(and finite J ).

In the first instance, due to the high complexity of the sums for the semi-classical

string corrections, the analysis was performed by first expanding the summands in the

parameter 1/J (assuming that the summation index n is smaller than J ) and subsequent

resummation. This procedure clearly breaks down for n ≥ J , and thus yields divergent

expressions at each order in 1/J 2l. However upon zeta-function regularisation these agree

with the Bethe ansatz in the first three orders in 1/J 2 [40]. This extended the leading

order agreement previously found in [42, 43]. Other discussions of 1/J corrections have

appeared in [18, 44 – 47].

In the second case of large winding number k, exact evaluation of the sum (which

did not involve zeta-function regularization) resulted in a disagreement with the prediction

of the string Bethe ansatz already at leading order in 1/k [40]. A similar mismatch was

observed numerically.

As a possible explanation for the incompatibility of these results it was proposed that

zeta-function regularization may not correctly sum the semi-classical string result [40]. A

numerical analysis was performed to confirm this conjecture, but due to the insufficient

numerical precision it was not possible to deduce a firm conclusion in its favour.

In this note we further examine this issue. We find strong evidence that zeta-function

regularization does not give the correct answer for the sums in question. We first consider

a simple toy example of a sum which has the same divergence problems when expanded in

1/J as the sum in [40]. We then discuss the case of the folded string in the sl(2) subsector

and circular string in the su(2) subsector [4, 5]. We evaluate the sums in question first

3See also [27 – 30] which identified the infinite tower of conserved charges on both sides. The classical

string sigma-model reduces in the large spin limit to the effective action of the spin-chain, as was first

observed in [31].
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by zeta-function regularization and then exactly, using various methods developed in [48,

49, 40]. These results confirm that zeta-function regularization does not reproduce the full

sum. The explicit analysis (in the su(2) subsector) shows that although the coefficients

of 1/J 2n in the expansion are correctly reproduced by the zeta-function regularisation,

the coefficients of 1/J 2n+1 are not present, as well as the possibly non-vanishing non-

perturbative contributions (i.e. of order e−J ). Both types of terms do not follow from the

quantum string Bethe equations, explaining thus the mismatch in the large k regime found

in [40]. In particular the oscillatory behaviour observed in the large k limit in [40], is hidden

in the exponential terms, which are entirely missed by zeta-function regularization.4

One important outcome of this analysis is that the terms in the string sums which

are not captured by the quantum Bethe equations are non-analytic in the coupling, being

proportional to (
√

λ′)2n+1 for integral n and e−1/
√

λ′

. It would be important to modify the

S-matrix of [37 – 39] to incorporate these effects. Some of these issues are discussed in [50],

where the terms with odd powers of 1/J were also found in the su(2) subsector and the

relation to the Bethe ansätze in [37 – 39] was discussed.

The plan of this note is as follows. We first discuss two relatively simple sums (a toy

model, as well as the folded string solution), which can be evaluated both exactly and by

zeta-function regularization. In both cases zeta-function regularization fails to reproduce

the exact sum. In section 4 we apply an approximation method, replacing the sum by an

integral. Comparison with the exact expression for the sums, shows that the approximate

evaluation correctly reproduces the terms missing in the zeta-function regularized result.

We then apply this method to the su(2) string and by comparing it with the zeta-function

evaluated result, identify the missing terms.

2. Folded string solution

In this section we consider the one-loop energy shift for the folded rigid string, which rotates

with a single spin S in AdS3 and no spin in S5. This correction was computed in [3], and

is (in approximation) given by

κδEfold =

∞
∑

n=1

√

n2 + 4κ2 + 2
√

n2 + 2κ2 + 5n − 8
√

n2 + κ2 , (2.1)

where κ ∼ log S, S = S/
√

λ. We wish to evalute this sum for large values of the parameter

κ.5 Recall, that the asymptotic value for the sum, obtained in [3] by replacing the sum

with an integral is

δEFT
fold = −3 log 2 κ + O(κ0) . (2.2)

In the following sections we shall evaluate the sum (2.1) first by naive zeta-function regu-

larization and then by various exact evaluation methods. This will show that zeta-function

fails to reproduce the correct sum.

4We are grateful to K. Zarembo for this remark.
5We thank A. Tseytlin for the suggestion to consider this sum.
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2.1 Zeta-function regularization

Let us first evaluate the sum along the lines of the zeta-function regularization applied

in [40]. In order to do so, we pull the large-κ limit into the sum, i.e. expand each summand

in 1/κ assuming that the summation index n is smaller than κ. This expansion is obviously

incorrect when n ∼ κ, which reflects itself in the divergence of the resulting sums at each

order in 1/κ — despite the fact that the initial sum is convergent. We regularize these

divergences using the zeta-function ζ(z) analytically continued to negative integers. This

can in fact be done to all orders in 1/κ and results in

δEfold =
∑

n

2(
√

2 − 3) +
1

κ

∑

n

5n + O

(

1

κ2

)

= (3 −
√

2) − 5

12

1

κ
+ O(e−κ) . (2.3)

Here we used that ζ(−1) = −B2/2 = −1/12 and each higher term is a sum over n2l, and

thus vanishes in the zeta-function prescription. This clearly contradicts the asymptotics

in (2.2) by missing out the crucial linear term in κ. The result (2.2) was obtained by

an approximative method, so it would be desirable to have independent checks of the

sum to confirm the failure of zeta-function regularization. We shall subsequently present

three methods which will be in agreement with (2.2), as well as produce subleading terms

obtained in (2.3) (up to exponentially small corrections).

2.2 Asymptotic evaluation

A method to asymptotically evaluate sums of the type (2.1) was obtained in [48, appendix

B] in the context of plane-wave string field theory. The main idea is to represent the square

root terms using the integral representation of the Gamma-function

1

xz
=

1

Γ(z)

∫ ∞

0
dttz−1e−xt , (2.4)

which is valid for x, z > 0. For this to be applicable, we first act with ∂
∂κ

(

1
κ

∂
∂κ

)

on the

sum (2.1), which reduces to the expression

R = −8κ

∞
∑

n=1

(

2

(n2 + 4κ2)3/2
+

1

(n2 + 2κ2)3/2
− 1

(n2 + κ2)3/2

)

. (2.5)

Each partial sum is now absolutely convergent and can be asymptotically evaluated sepa-

rately using (2.4). The relevant asymptotics derived in [48]6 are

∞
∑

n=1

1

(J 2 + n2)3/2
=

2√
πJ 3

∫ ∞

0
dss1/2e−s

(

θ

(

s

(πJ 2)

)

− 1

)

=
1

J 2
− 1

2J 3
+ O

(

e−J )

. (2.6)

6Similar sums are discussed in [51 – 53].
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Here θ(t) =
∑

n∈Z
e−πn2t and we modular transformed and used the asymptotics θ(t) → 1

as t → ∞. Applied to the present case we obtain

R =
1

κ2
(3 −

√
2) + O(e−κ) , (2.7)

which after repeated integration results in

δEfold = (3 −
√

2) +
c1κ

2
+

c0

κ
+ O(e−κ) , (2.8)

where ci are integration constants, which need to be determined in some other way. In

particular, this is in accord with [3], as there are choices for ci, for which the sums can be

made to agree. The integration constants can be derived in the way done in [49], but we

shall present two alternative methods to compute the sum exactly.

2.3 Bessel function evaluation

The energy shift can be likewise evaluated using the following integral representation ob-

tained in [40, eq. (2.7) and (2.10)]. Recall that

∞
∑

n=1

(

√

(n + γ)2 + α2 +
√

(n − γ)2 + α2 − 2n − α2

n

)

= γ2−
√

γ2 + α2+F ({γ}, α) , (2.9)

where we defined the function

F (β, α) ≡
√

α2 + β2 − β2 + α2

∫ ∞

0

dξ

eξ − 1

(

2J1(αξ)

αξ
cosh βξ − 1

)

. (2.10)

For large α the asymptotic behaviour of this function is

F (β, α) = −α2 ln

(

eC−1/2

2
α

)

+
1

6
+ O

(

e−α
)

, (2.11)

where C = 0.5772 . . . is the Euler constant. Applying this to (2.1) results in

δEfold = −3 ln 2κ + 3 −
√

2 − 5

12κ
+ O(e−κ) , (2.12)

in agreement with [3] and implying that the integration constants in (2.8) are c0 = −5/12

and c1 = −6 log(2). Note that this also calculates all subleading terms up to exponential

(powerlike in 1/S as κ ∼ log S) corrections.

2.4 Generalized zeta-function evaluation

The result obtained with Bessel functions in the last subsection can be confirmed by the

following analytic continuation argument. Consider a generalization of the Riemann zeta-

function

ζ(s, κ) =

∞
∑

n=1

1

(n2 + κ2)s
. (2.13)

– 5 –
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This is to begin with not well-defined for the choice s = −1/2 that we are interested in,

but the generalized zeta function can be analytically continued to this value. Again, rep-

resenting the summand using the Gamma function integral representation as (2.6) derived

in appendix B of [48], it follows that the large κ asymptotics of this expression is

ζ(s, κ) = −1

2
κ2s +

1

2κ2s−1

Γ(1/2)Γ(s − 1/2)

Γ(s)
+ O(e−κ) . (2.14)

Note now, that this would have been obtained likewise by approximating the sum by an

integral, namely setting u = n/κ in the large κ limit

ζ(s, κ) ∼ 1

κ2s−1

∫ ∞

0
du

1

(1 + u2)s
=

1

2κ2s−1

Γ(1/2)Γ(s − 1/2)

Γ(s)
. (2.15)

Applying this to δEfold for s = −1/2 + α for α → 0 and that the Riemann zeta-function

analytically continued gives ζ(−1) = −1/12, we arrive at

δEfold = −3 log 2 κ + (3 −
√

2) − 5

12κ
+ O(e−κ) , (2.16)

in agreement with the above Bessel function evaluation and [3].

This method is quite general and also explains why zeta-function regularization does

not always work. Namely, zeta-function regularization drops the term that comes from the

Gamma-functions in (2.14).

2.5 Exponential corrections

So far we have refrained from working out explictly the exponential corrections at O(e−κ).

These may however turn out to be crucial for comparison to the quantum string Bethe

ansatz. We shall now prove that in the simpler case of the folded string these terms are

indeed non-vanishing and find explicit formulas for these terms. As the starting point,

consider the asymptotic evaluation method presented earlier. Recall that

κ

∞
∑

n=1

1

(n2 + κ2a2)3/2
= − 1

2a3κ2
+

1

a2κ
+

2

a2κ

∫ ∞

0
dte−t

∞
∑

n=1

(

e−π2n2κ2a2/t
)

. (2.17)

The last term is the exponential correction term and can be further evaluated

Rexp =
2

a2κ

∞
∑

n=1

∫ ∞

0
dte−t−π2n2a2κ2/t

=
4

a2

∞
∑

n=1

2πanK1(2πnaκ) . (2.18)

Note that ∂κK0(2πnaκ) = −2πnaK1(2πnaκ). So, already integrating up once with respect

to κ yields
∫

dκRexp = − 4

a2

∞
∑

n=1

K0(2πnaκ) . (2.19)

– 6 –
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Then apply the integral represetation (see also [49, appendix D])

K0(zκ) =

∫ ∞

0
dt

e−z
√

t2+µ2

√

t2 + µ2
, (2.20)

and perform the sum, which yields

κ

∫

dκRexp = − 4

a2
κ

∫ ∞

0
dt

1√
t2 + κ2

1

e2πa
√

t2+κ2 − 1

= − 2

a2
κ

∫ ∞

1
dr

coth(aκπr) − 1√
s2 − 1

. (2.21)

Integrating repeatedly with respect to κ, we arrive at

∫

dκκ

∫

dκRexp = − 2

a2

∫ ∞

1
dr

[

κ log
(

1 − e−2πaκr
)

ar
√

r2 − 1
+

(r3 + r2 − 1)Li2
(

e−2πaκr
)

2a2π2r2
√

r2 − 1

]

.

(2.22)

This is a closed formula for the exponential correction term we were looking for. Adding

up the contributions with the various choices for a of each summand in (2.1) produces the

complete correction term for the folded string.

If one is interested in obtaining the first correction term in e−κO(κ0) explicitly, one

can proceed as follows. Note that
∫

dκκK0(bκ) = −κK1(bκ)/b. So we obtain

∫

dκκ

∫

dκRexp =
2κ

πa3

∞
∑

n=1

K1(2πnaκ)

n
. (2.23)

With the asymptotics K1(z) =
√

π/2ze−z(1+O(1/z)) we obtain that the first exponential

correction terms are
∫

dκκ

∫

dκRexp =
κ

πa3

∞
∑

n=1

e−2πnaκ 1

n

√

1

naκ

[

1 + O

(

1

κ

)]

. (2.24)

Adding together the terms with the correct prefactors and choices for a gives the correction

to (2.1).

In summary we have shown in this section that the exponential corrections do not

vanish for the folded string case. It would of course be interesting to see, whether they

contribute in more complicated sums than (2.1), such as the one-loop energy shift for the

su(2) and sl(2) subsectors.

3. Toy model

As a second test case consider the situation of two bosonic and two fermionic frequencies

with the energy shift given by

δEtoy =

∞
∑

n=1

√

1 +
(n + γ)2

J 2
+

√

1 +
(n − γ)2

J 2
− 2

√

1 +
n2

J 2
, (3.1)

where γ is a constant independent of J and the sum is convergent in the same sense as for

the su(2) and sl(2) spinning strings. Again we compare zeta function regularization with

the exact evaluation of the sum in the large J limit and find disagreement.

– 7 –
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3.1 Zeta-function regularization

For the naive perturbative evaluation of (3.1), pull the large J limit through the sum. As

each term in the 1/J expansion is of order n0 or higher, using zeta-function regularization

the sum evaluates to

δEζ
toy = −1

2



−2 + 2

√

1 +
γ2

J 2



 . (3.2)

Expanding this in 1/J yields the energy shift at arbitrary loop orders as obtained from

this prescription.

3.2 Asymptotic evaluation of sums

Alternatively, in this simple case, one can evaluate the sum exactly (up to terms e−J )

using the method in [48]. Consider the sum

δEtoyJ = S =

∞
∑

n=1

√

(n + γ)2 + J 2 +
√

(n − γ)2 + J 2 − 2
√

n2 + J 2 . (3.3)

Then following the strategy in [48], act with ∂
∂J

(

1
J

∂
∂J

)

to obtain

R = −J
∞
∑

n=1

1

((n + γ)2 + J 2)3/2
+

1

((n − γ)2 + J 2)3/2
− 2

1

(J 2 + n2)3/2
. (3.4)

Now each part of the sum is absolutely convergent by itself and can be evaluated and later

on integrated up to give the result for the complete sum. The last summand is easiest and

is evaluated the same way as in [48, appendix B], i.e. (2.6). The remaining two terms are

computed likewise. First recall the definition of the generalized theta-functions

θ

[

a

b

]

(t) =

∞
∑

n=−∞
eπt(n+a)2+2πnbi , (3.5)

which satisfies the modular transformation law, shown by Poisson resummation,

θ

[

a

b

]

(t) =
1√
−t

θ

[

b

−a

]

(1/t) . (3.6)

So in particular we can write

θ

[

γ

0

]

(−t/π) = e−γ2t +

∞
∑

n=1

(

e−(n+γ)2t + e−(n−γ)2t
)

. (3.7)

This allows the evaluation of the remaining two terms in the sum, again asymptotically for

– 8 –
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large J
∞

∑

n=1

1

((n + γ)2 + J 2)s
+

1

((n − γ)2 + J 2)s
=

=
1

Γ(s)

∫ ∞

0
drrs−1e−J 2r

∞
∑

n=1

(

e−(n+γ)2r + e−(n−γ)2r
)

=
1

Γ(s)J 2s

∫ ∞

0
dtts−1e−t

(

θ

[

γ

0

]

(−t/(πJ 2)) − e−γ2t/J 2

)

= − 1

(J 2 + γ2)s
+

√
π

Γ(s)J 2s−1

∫ ∞

0
dtts−3/2e−tθ

[

0

−γ

]

(−πJ 2/t) (3.8)

= − 1

(J 2 + γ2)s
+

√
πΓ(s − 1/2)

Γ(s)J 2s−1
+

√
π

J 2s−1

∫ ∞

0
dtts−3/2e−t

(

θ

[

0

−γ

]

(−πJ 2/t) − 1

)

.

For s = 3/2 the last term is of order e−J , which can be seen by changing to u = JN t. So

in summary we obtain

∞
∑

n=1

1

((n + γ)2 + J 2)3/2
+

1

((n − γ)2 + J 2)3/2
=

2

J 2
− 1

(J 2 + γ2)3/2
+ O

(

e−J )

. (3.9)

Thus we obtain that

R = −J
(

1

J 3
− 1

(J 2 + γ2)3/2

)

. (3.10)

Integrating up, we obtain

δEtoy =
1

J
(

J −
√

γ2 + J 2
)

+ c0J +
c1

J + O(e−J ) , (3.11)

which for vanishing integration constants agrees up to terms O(e−J ) with the perturbative

zeta-function regularized expression δEζ .

In order to determine the integration constants, differentiate with respect to γ and

then evaluate the large J in analogy to [49]. However, we shall determine these using the

Bessel and generalized zeta-function methods introduced earlier.

3.3 Bessel function evaluation

Consider now the evaluation using Bessel functions. First split the sum into two partial

sums which both converge absolutely

δEtoyJ = S = S1 + S2

S1 =

∞
∑

n=1

√

(n + γ)2 + J 2 +
√

(n − γ)2 + J 2 − 2n − J 2

n

S2 = −2
√

n2 + J 2 + 2n +
J 2

n
. (3.12)

– 9 –
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The representation (2.10) implies

S1 = γ2 −
√

γ2 + J 2 + F ({γ},J )

S2 = J − F (0,J ) . (3.13)

The large J asymptotics follow from (2.11), so that

S1 = γ2 −
√

γ2 + J 2 − J 2 lnJ − J 2 ln

(

eC− 1

2

2

)

+
1

6
+ O

(

e−J )

S2 = J + J 2 lnJ + J 2 ln

(

eC− 1

2

2

)

− 1

6
+ O

(

e−J )

, (3.14)

and thus the asymptotic expansion for the energy is up to exponentially small corrections

δEtoy =
1

J
(

γ2 + J −
√

γ2 + J 2
)

+ O
(

e−J )

. (3.15)

This is in agreement with the asymptotic evaluation and determines the integration con-

stants as c0 = 0 and c1 = γ2.

3.4 Generalized zeta-function evaluation

To confirm the result from the last section, we apply analytic continuation to the following

generalized zeta-function

ζ(s, γ,J ) =

∞
∑

n=1

1

((n + γ)2 + J 2)s
. (3.16)

Then by analytic continuation to s = −1/2 we can compute the sums in δE. The asymp-

totics for large values of J follow using (3.8) in the last section using generalized theta

functions and setting s = −1/2

ζ(s, γ,J ) + ζ(s,−γ,J ) = − 1

(γ2 + J 2)s
+

√
πΓ(s − 1/2)

Γ(s)J 2s−1
+ γ2 + O(e−J ) . (3.17)

The last term in (3.8) for s = −1/2 is not exponentially suppressed and is extracted by

performing the integral yielding
∑

an/(nJ )2K1(πJ n), which has the given asymptotics.

Up to exponential corrections we obtain that the sum has large J behaviour given by

S = lim
α→0

{

ζ

(

−1

2
+ α, γ,J

)

+ ζ

(

−1

2
+ α,−γ,J

)

− 2ζ

(

−1

2
+ α, 0,J

)}

= lim
α→0

{

−(γ2+J 2)1/2−α+

√
πΓ(−1+α)

Γ(−1/2)
J 2+γ2−2

(

− 1

2J +
J 2

2

Γ(1/2)Γ(−1 + α)

Γ(−1/2 + α)

)}

= γ2 + J −
√

γ2 + J 2 . (3.18)
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This is again in agreement with the two independent methods of evaluation presented

earlier and confirms the incompleteness of the evaluation by means of zeta-function regu-

larization.

4. Zeta-function regularization versus exact summation

In the previous sections we have performed exact, analytic evaluations of the sums (2.1)

and (3.1) using several methods. These were compared to the zeta function regularized

expressions (2.3) and (3.2) and were found to disagree with them. We would now like to

determine the origin of this disagreement.7 The nature of this section is more experimental

and it would be important to understand this in full generality, e.g. in relation with the

observation in (2.15). In particular, it should be possible to extend this to the case of the

sl(2) subsector.

To proceed, we split the infinite sum into a finite sum, where zeta-function regulariza-

tion applies, and another part, which will be approximated by simply replacing the sum by

an integral. The correction terms that are computed by the Euler-Maclaurin summation

formula will be discussed below. More precisely

S(η) =

K
∑

n=1

f(n, η) +

∞
∑

n=K

f(n, η)

= SI(K, η) + SII(K, η) , K À 1 , (4.1)

where we have denoted the large parameters κ and J in (2.1) and (3.1) by η. Since K À 1

the second sum SII(η) can be replaced with an integral, which will be denoted by S̃II.

Further let us assume that

1 ¿ K ¿ η . (4.2)

Then the second sum (i.e. integral) S̃II(η) can be expanded in 1/η.

On the other hand, for the zeta-function regularization used in [40] one first expands

f(n, η) in 1/η and then resums the expanded series. It is clear that this expansion fails,

when n ∼ η, inducing spurious divergences. These were cured by introducing the zeta-

function regularization, which effectively means that one multiplies all terms in the sum

with a factor e−α n. Since n ≤ K in the first sum, the expansion in 1/η is correct one, and

zeta function regularization does not affect this part of the result.

We thus focus only on the second sum. To compare the zeta-function regularized results

with the integrated sum S̃II, we first need to determine the value of the zeta function that

is cut-off K dependent, and approximated by the integral as when evaluating the sum SII.

For this, we use simply the replacement of the sum by an integral, as in [3]. More precisely,

we use the right colum of the following equation as the values of the zeta-function (taking

7Some of the ideas in this section arose in discussions with A. Tseytlin. Similar observations have

recently appeared in [50].
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α < 1/K)

∞
∑

n=K

e−αn =
1

α
+

(

1

2
− K

)

+ O(α) →
∫ ∞

K
dn e−αn =

1

α
− K + O(α)

∞
∑

n=K

e−αnn =
1

α2
+

(

− 1

12
+

K

2
−K2

2

)

+O(α) →
∫ ∞

K
dn e−αnn =

1

α2
− K2

2
+ O(α)

∞
∑

n=K

e−αnn2 =
2

α3
− 1

6

(

K−3K2+2K3
)

+O(α) →
∫ ∞

K
dn e−αnn2 =

2

α3
− K3

3
+ O(α) .

(4.3)

Comparing to the standard Euler-Maclaurin summation formula yields that all extra tail

and boundary terms contribute subleading in K and can be neglected. However, we will

see that this heuristic method reproduces precisely the missing terms in the zeta-function

regularization. We shall now compare the standard zeta-function regularized result with

the integral version zeta-function regularized expression using this prescription. Let us

first apply both methods to compute the sum SII for the folded string (2.1) and the toy

model (3.1).

4.1 Folded string and toy model

Approximating the sums (3.1), (2.1) with an integral, and subsequently expanding in 1/η,

we obtain, respectively

SII
toy(K,J ) = γ2 − Kγ2 1

J +

(

1

2
K3γ2 +

1

4
Kγ4

)

1

J 3
+ O

(

K

J 5

)

SII
fold(K,κ) = −3 log 2κ2 − 2(

√
2 − 3)Kκ − 5

2
K2 − 1

6

(√
2 − 15

2

)

K3

κ
+ O

(

K5

κ3

)

.(4.4)

On the other hand, expanding the summands f(n, η) as done for the zeta-function regu-

larization leads to

ftoy(n,J ) = γ2 1

J +

(

−3

2
n2γ2 − γ4

4

)

1

J 3
+ O

(

1

J 4

)

ffold(n, κ) = 2(
√

2 − 3)κ + 5n +

(√
2

2
− 15

4

)

n2 1

κ
+ O

(

1

κ2

)

. (4.5)

Comparing the expansions (4.4) with (4.5), we note the absence of the leading, 1/J 0 and

κ2 terms in the expansion of the summands. Summing up the expanded terms (4.5) from

(K,∞) and using the zeta function results (4.3) we obtain the same results as in (4.4)

except for the 1/J 0 and κ2 terms, which were absent from the beginning in the expansion.

These terms, being cut-off K independent parts of the sums, can be obtaind by setting

K = 0 in the integral. So the difference between the two results is given by

∆(η) =

∫ ∞

0
f(n, η) dn . (4.6)
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4.2 The circular string in the su(2) subsector

In this section we will consider the evaluation of the 1-loop energy energy shift corre-

sponding to the circular string which rotates in an S3 inside the S5 with two equal spins

J1 = J2 = J/2. The energy shift takes the following form [5, 9, 42]

δE = δE(0) +
∞

∑

n=1

δE(n) , (4.7)

where

δE(0) = 2 +

√

1 − 2k2

J 2 + k2
− 3

√

1 − k2

J 2 + k2

δE(n) = 2

√

1 +
(n +

√
n2 − 4k2)2

4(J 2 + k2)
+ 2

√

1 +
n2 − 2k2

J 2 + k2
+ 4

√

1 +
n2

J 2 + k2
−

− 8

√

1 +
n2 − k2

J 2 + k2
. (4.8)

The zeta-function regularized version of the sum is derived to all orders in 1/J in the

appendix. It is hard to exactly repeat the procedure from the previous section for the

sum (4.8) due to the complexity of the integral S̃II. So let us instead first expand the

sum (4.8) in the small parameter k and then repeat the computation from the previous

section order by order in k. Note also, that although the winding number k is in principle

integer valued, in the regime which we are interested, namely J À 1, n > K À 1, the

expansion in small k is justified.

The expansion of the summand (4.8) is

δE(n) = − (J 2 + 2n2)

Jn2(J 2 + n2)3/2
k4 +

−2J 4 − 2J 2n2 + n4

J 3n4(n2 + J 2)3/2
k6 + O(k8)

≡ δE
(n)
1 k4 + δE

(n)
2 k6 + O(k8) . (4.9)

We can now repeat the procedure from the previous section for the sums δE1 and δE2.

Expansion of the first integral yields
∫ ∞

K
dn δE

(n)
1 = − 1

JK
√
J 2 + K2

= − 1

K

1

J 2
+

1

2
K

1

J 4
− 3

8
K3 1

J 6
+ O

(

1

J 8

)

. (4.10)

The integrated function thus admits an integer power expansion in 1
J 2n , and thus is analytic

in λ′. On the other hand, the naive expansion (i.e. the expansion where we assume that

n < J ) of the integrand δE
(n)
1 gives

δE
(n)
1 = − 1

n2

1

J 2
− 1

2

1

J 4
+

9

8
n2 1

J 6
+ O

(

1

J 8

)

. (4.11)

As expected, these terms yield divergent sums starting from 1/J 4, however they appear

with powers 1/J 2k, i.e. the same powers of the expansion in (4.10). Integrating the ex-

pression (4.11) and using the integral version of the zeta-function prescription (4.3), we

reproduce all terms in (4.10).
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The evaluation of the second order term δE
(n)
2 is different

∫ ∞

K
dn δE

(n)
2 =

−2J 4 + 2J 2K2 + K3(K −
√
J 2 + K2)

3J 5K3
√
J 2 + K2

= −2

3

1

K3

1

J 2
+

1

K

1

J 4
− 1

3

1

J 5
− 1

4
K

1

J 6
+ O

(

1

J 9

)

. (4.12)

The main difference to the former case is, the presence of the term 1/J 5, which is non-

analytic in λ′ and which appears as the cuf-off K independent part of the integral. On the

other hand, the naive expansion of δE
(n)
2 yields

δE
(n)
2 = − 1

n4

1

J 2
+

1

n2

1

J 4
+

1

4

1

J 6
− 7

8
n2 1

J 8
+ O

(

1

J 10

)

, (4.13)

where all terms are analytic in λ′. Since the zeta-function prescription does not change

the order in 1/J in the expansion, it is thus clear that the terms at order 1/J 5 in (4.12)

can never be reproduced by the zeta-function regularization of the expression (4.13). The

regular terms in (4.12) are on the other hand easily reproduced using the cut-off zeta-

function regularization (4.3). Similar analysis for the order k6 and higher, yields the

discrepancy between the zeta-function regularization and the exact string result at the

orders 1/J 2k+1.

A more detailed analysis of the correction terms in the Euler-Maclaurin summation

formula for the sums appearing in (4.9), shows that only the coefficients of 1/J 2k are

corrected, and also that all these corrections are supressed with inverse powers of the

cutoff. Thus, the approximate integral evaluation of the coefficients of 1/J 2k+1 gives the

exact result.8 It should be possible to resum the effect of these terms that are missed by

zeta-function regularization.
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A. Zeta-function regularization for su(2)

In this appendix we derive the all orders result that follows from zeta-function regularization

in the su(2) subsector, where the energy shift is (4.8). Up to two-loops the energy shift

has appeared recently in [47]. Evaluating the sum perturbatively in 1/J 2, i.e., δE =
∑∞

i=0 δEi/J 2i, the energy shifts at the first three loop orders are as follows.

• 1-loop:

δE1 =
k2

2
+

1

2

∑

n

(

2k2 − n2 + n
√

n2 − 4k2
)

. (A.1)

8Recall that the sum S
I in (4.1) only contributes to the even powers of J .
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• 2-loop:

δE2 = −5k4

8
+

1

8

∑

n

(

−10k4 + n4 − (n2 + 2k2)n
√

n2 − 4k2
)

. (A.2)

At large n the sum has asymptotics −k4/2 + O(1/n2) and thus needs to be regularized.

With zeta-function regularization ζ(0) = −1/2 the energy shift is

δEreg
2 = −3k4

8
+

1

8

∑

n

(

−6k4 + n4 − (n2 + 2k2)n
√

n2 − 4k2
)

. (A.3)

• 3-loop: the naively expanded sum diverges as 9k4

8 n2 + k6

4 + O(1/n2), and needs to be

regularized to give

δEreg
3 =

5k6

16
+

1

16

∑

n

(

10k6 − k4n2 + 2k2n4 − n6 + (3k4 + n4)n
√

n2 − 4k2
)

. (A.4)

Given the relatively simple dependence on J of the string frequencies, one can compute

the subtraction term, necessitated by zeta-function regularization in a closed form. Each of

the frequencies is of the type
√

1 + a/(J 2 + k2), which has an expansion around J = ∞.

Consider first the following term

√

1 +
a

J 2
=

∞
∑

p=0

(

1/2

p

)

ap

J 2p
. (A.5)

Now, each a has an expansion in n, and we wish to determine the terms up to order 1/n2

for fixed value of p. Define

a1 =
1

4

(

n +
√

n2 − 4k2
)2

+ k2

a2 = n2 − k2 , a3 = n2 + k2 , a4 = n2 . (A.6)

Then

δE(n)

√

1 +
k2

J 2
= (A.7)

=

∞
∑

p=0

(

1/2

p

)

1

J 2p

{

2

(

k2 +
(n+

√
n2−4k2)2

4

)p

+2(n2 − k2)p + 4(n2 + k2)p−8n2p

}

=
∞
∑

p=0

(

1/2

p

)

n2p

J 2p

{

2

(

1 +
√

1 − 4k2/n2

2

)p

+ 2(1 − k2/n2)p + 4(1 + k2/n2)p − 8

}

.

Then invoking

(

1 +
√

1 + x
)p

= 2p + 2p
∞
∑

q=1

(

p − q − 1

q − 1

)

p

q

(x

4

)q
, (A.8)

– 15 –



J
H
E
P
1
0
(
2
0
0
5
)
0
4
4

and the binomial theorem, we get

δE(n)

√

1 +
k2

J 2
= (A.9)

=
∞

∑

p=0

(

1/2

p

)

n2p

J 2p







2
∞
∑

q=1

(

p − q − 1

q − 1

)

p

q

(

−k2

n2

)q

+ 2

p
∑

q=1

(

p

q

)

(2 + (−1)q)

(

k2

n2

)q






.

Further expanding 1/
√

1 + k2/J 2, the coefficient of the 1/J 2p term is

(δE(n))p = 2

p
∑

g=0

(−1/2

p − g

)(

1/2

g

)

k2(p−g)n2g × (A.10)

×







∞
∑

q=1

(

g − q − 1

q − 1

)

g

q

(

−k2

n2

)q

+

g
∑

q=1

(

g

q

)

(2 + (−1)q)

(

k2

n2

)q






.

Again this is an unpleasant-looking hypergeometric function. However, we only need to

extract the coefficients up to the term 1/n of it, and in order to obtain the zero-point

energy regularization, we only have to extract the coefficient of n0. The subtraction term

at order 1/J 2p is

Sp = 2

p
∑

g=0

(−1/2

p − g

)(

1/2

g

) g
∑

q=1

k2(p+q−g)n2(g−q)(−1)q
{(

g−q−1

q − 1

)

g

q
+((−1)q2 + 1)

(

g

q

)}

.

(A.11)

This agrees to three loops with the above explicitly obtained expressions. We can also

determine the change to the zero-point energy, namely

(δE(0))regp = δE(0)
p − 1

2



2k2p
p

∑

g=1

(−1/2

p − g

)(

1/2

g

)

(1 + (−1)g)



 . (A.12)
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