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Abstract
We use the Hough transform to analyse data from the second science run of the
LIGO interferometers, to look for gravitational waves from isolated pulsars. We
search over the whole sky and over a large range of frequencies and spindown
parameters. Our search method is based on the Hough transform, which
is a semi-coherent, computationally efficient, and robust pattern recognition
technique. We also present a validation of the search pipeline using hardware
signal injections.

PACS numbers: 04.80.Nn, 95.55.Ym, 97.60.Gb, 07.05.Kf

(Some figures in this article are in colour only in the electronic version)

1. Introduction

This paper presents partial results for a wide parameter space search for periodic gravitational
waves using data from the LIGO detectors. The most promising sources for such waves are
isolated pulsars. Previous searches for gravitational waves from pulsars have been of two kinds.
The first is a search targeting pulsars whose parameters are known through radio observations.
These searches typically use matched filtering techniques and are not very computationally
expensive. An example of such a search is [1] which targets PSR J1939+2134 using data from
the first science runs of the LIGO and GEO detectors. The end result is an upper limit on the
strength of the gravitational wave emitted by this pulsar and therefore on its ellipticity. See
also [2] which applies some of the techniques presented in [1] to a large number of known
pulsars using data from the second science run of the LIGO detectors. The second kind of
search looks for pulsars which have not yet been observed by radio telescopes. This involves
searching over large parameter space volumes and turns out to be computationally limited.
This is because looking for weak continuous wave signals requires large observation times
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to build up signal-to-noise ratio and to claim a detection with some degree of confidence;
on the other hand, the number of templates that must be searched over, and therefore the
computational requirements, increases rapidly with the observation time. An example of such
a search is [3] where a two-day long data stretch from the Explorer bar detector is used to
perform an all-sky search in a narrow frequency band around the resonant frequency of the
detector.

All the searches mentioned above rely on a coherent integration over the full observation
time; this is well known to be the optimal method. However, a full coherent integration is
computationally expensive and it is therefore also useful to consider methods which are less
sensitive but computationally inexpensive. Such methods typically involve semi-coherent
combinations of the signal power in short stretches of data. The Hough transform is an
example of such a method [4]. Using this method, we perform an all-sky search over a large
frequency range using two months of data from the LIGO detectors. As in all the searches
mentioned above, we assume that the pulsar does not glitch during the full observation time
considered.

Section 2 briefly describes the waveforms that we are looking for. Section 3 describes our
search method, the Hough transform. The search pipeline and the parameter space we search
over are given in section 4. The search results are given in section 5. Section 6 presents a
validation of our search method using hardware injected signals and finally section 7 concludes
with a summary of our results and plans for further work.

2. The expected waveform

The form of the gravitational wave emitted by an isolated pulsar, as seen by a gravitational
wave detector, is [5]

h(t) = F+(t, ψ)h+(t) + F×(t, ψ)h×(t) (1)

where t is time in the detector frame, ψ is the polarization angle of the wave and F+,× are
the detector antenna pattern functions for the two polarizations. If we assume the emission
mechanism is due to deviations of the pulsar’s shape from perfect axial symmetry, then the
gravitational waves are emitted at a frequency which is twice the rotational rate fr of the
pulsar. Under this assumption, the waveforms for the two polarizations h+,× are given by

h+ = h0
1 + cos2 ι

2
cos �(t), h× = h0 cos ι sin �(t), (2)

where ι is the angle between the pulsar’s spin axis and the direction of propagation of the
waves, and h0 is the amplitude:

h0 = 16π2G

c4

Izzεf
2
r

d
. (3)

Here d is the distance of the star from Earth, Izz is the z–z component of the star’s moment
of inertia with the z-axis being its spin axis, and ε is the equatorial ellipticity of the star. The
phase �(t) takes its simplest form in the solar system barycenter (SSB) frame where it can be
expanded in a Taylor series. Up to second order,

�(t) = �0 + 2π
(
f0(T − T0) + 1

2 ḟ (T − T0)
2
)
. (4)

Here T is time in the SSB frame and T0 is a fiducial start time. The frequency f0 and the
spindown parameter ḟ are defined at this fiducial start time. In this paper, we include only
one spindown parameter in our search, i.e. we ignore the higher order terms in equation (4).
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This is reasonable because, as we shall see in section 4, our frequency resolution is too coarse
for the higher spindowns to have any effect for reasonable values of the pulsar spindown age.

Neglecting relativistic effects which do not affect us significantly in this case (again
because of the coarseness of our frequency resolution), the instantaneous frequency f (t) of
the wave as observed by the detector is given, to a very good approximation, by the familiar
non-relativistic Doppler formula:

f (t) − f̂ (t) = f̂ (t)
v(t) · n

c
(5)

where t is time in the detector frame, v(t) is the velocity of the detector at time t, n is the
direction to the pulsar, and f̂ (t) is the instantaneous signal frequency at time t and is given by

f̂ (t) = f0 + ḟ (t − t0). (6)

Equations (5) and (6) describe the time–frequency pattern produced by a signal, and this is the
pattern that the Hough transform is used to look for.

3. The Hough transform

The Hough transform was invented by Paul Hough in 1959 as a method for finding patterns
in bubble chamber pictures from CERN [6] and it was later patented by IBM [7]. The Hough
transform is also well known in the literature on pattern recognition to be a robust method for
detecting straight lines, circles etc in digital images; see, e.g., [8] for a review in this field. A
detailed discussion of the Hough transform as applied to the search for continuous gravitational
waves can be found in [4]. A closely related semi-coherent method is the stack-slide algorithm
described in [9].

The idea of the Hough transform can be illustrated by the following simple example.
Consider the problem of trying to detect straight lines in a noisy two-dimensional digital
image. The digital image is assumed to be made up of pixels which can be in one of only two
possible states, namely ‘on’ or ‘off’. Let (x, y) be the coordinates of the centre of a typical
pixel. We are looking for a pattern which is parametrized by two numbers (m, c) such that

y = mx + c. (7)

The parameter space (m, c) is assumed to be suitably digitized so that it is also made up of
pixels. To find the most likely value of (m, c), we proceed as follows. For each pixel (x̂, ŷ)

which is ‘on’, we mark all the possible values of (m, c) which are consistent with it, i.e. we
mark all pixels in the (m, c) plane lying on the straight line ŷ = mx̂ + c with a ‘+1’. This
is repeated for every pixel which is ‘on’. The end result is an integer, the number count, for
every pixel in the (m, c) plane. In the case when the digital image is too noisy and no straight
lines can be detected, the number counts would be uniformly distributed in the (m, c) plane.
The presence of a sufficiently strong signal would lead to a large number count in at least one
of the (m, c) pixels, and the largest number count would indicate the most likely parameter
space values.

This method enables us to mark all the possible templates consistent with a given
observation without stepping through the parameter space point-by-point. This leads to a
significant gain in computational speed. Furthermore, each observation, no matter how noisy,
only adds at the most +1 to the final number count. These two features are the chief virtues
of the Hough transform method: computational speed and robustness. On the other hand, the
Hough search is likely to be less sensitive than the stack-slide search considered in [9]. The
tradeoffs between sensitivity versus efficiency and robustness are yet to be studied in detail
and will be important in the context of a hierarchical search [9, 10].
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In our case, the Hough transform is used to find a signal whose frequency evolution fits the
pattern produced by the Doppler shift (5) and the spindown (6) in the time–frequency plane.
The parameters which determine this pattern are (f0, ḟ , n); a point in this four-dimensional
parameter space will be denoted by �ξ . This parameter space is covered by a discrete cubic grid
whose resolution is described in section 4. The result of the Hough transform is a histogram,
i.e. an integer (the number count) for each point of this grid. The starting point for the Hough
transform is N short stretches of Fourier transformed data; each short stretch will be called an
SFT (short Fourier transform). Each of these SFTs is ‘digitized’ by setting a threshold ρth on
the normalized power ρk in the kth frequency bin:

ρk = 2|x̃k|2
TcohSn(fk)

. (8)

Here x̃k is the value of the Fourier transform in the kth frequency bin corresponding to a
frequency fk, Tcoh is the time baseline of the SFT, and Sn(fk) is the single-sided power
spectral density of the detector noise at the frequency fk . We require that Tcoh is small enough
so that the signal does not shift by more than, say, half a frequency bin within this time
duration. For frequencies of ∼300 Hz, this restricts Tcoh to be less than ∼60 min [4]. In this
paper, we work with SFTs for which Tcoh = 1800 s. In principle, we could choose Tcoh to
be greater, but we are restricted by the duty cycle of the interferometers in that we should
be able to find suitably long time periods during which the detector is in lock. Furthermore,
the data should be stationary over the chosen time period. The choice of 1800 s is a suitable
compromise for all the three interferometers during the S2 run.

This thresholding produces a set of zeros and ones (called a ‘peakgram’) from each SFT.
This set of peakgrams is the analogue of the digitized two-dimensional image described earlier.
The Hough transform is used to calculate the number count n at each parameter space point
starting from this collection of peakgrams. Let p(n) be the probability distribution of n in the
absence of a signal, and p(n|h) the distribution in the presence of a signal h(t). It is clear that
0 � n � N , where N is the number of SFTs, and it can be shown that for stationary Gaussian
noise, p(n) is a binomial distribution with mean Nq where q = e−ρth is the probability that
any frequency bin is selected:

p(n) =
(

N

n

)
qn(1 − q)N−n. (9)

In the presence of a signal, the distribution is ideally also a binomial but with a slightly larger
mean Nη where, for weak signals, η is given by

η = q
{

1 +
ρth

2
λ + O(λ2)

}
. (10)

λ is the signal-to-noise ratio within a single SFT, and for the case when there is no mismatch
between the signal and the template:

λ = 4|h̃(fk)|2
TcohSn(fk)

(11)

with h̃(f ) being the Fourier transform of the signal h(t) (see [4] for details). The approximation
that the distribution in the presence of a signal is binomial breaks down for reasonably strong
signals. This happens mainly due to two reasons: (i) the random mismatch between the signal
and the template used to calculate the number count and (ii) the amplitude modulation of the
signal which causes η to vary from one SFT to another and for different sky locations. The
result of these two effects is to ‘smear’ out the binomial distribution in the presence of a signal.
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Candidates in parameter space are selected by setting a threshold nth on the number count.
The false alarm and false dismissal rates for this threshold are defined respectively in the usual
way:

α =
N∑

n=nth

p(n), β =
nth−1∑
n=0

p(n|h). (12)

We choose the thresholds (nth, ρth) based on the Neyman–Pearson criterion of minimizing
β for a given value of α. It can be shown [4] that this criterion leads, in the case of weak
signals (i.e. λ � 1), large N, and Gaussian stationary noise, to ρth ≈ 1.6. This corresponds
to q = e−ρth ≈ 0.20, i.e. we select about 20% of the frequency bins from each SFT; for weak
signals, this turns out to be independent of the choice of α and signal strength. Furthermore,
nth is also independent of the signal strength and is given by

nth = Nq +
√

2Nq(1 − q) erfc−1(2α) (13)

where, as before, q = e−ρth and erfc−1 is the inverse of the complementary error function.
These values of the thresholds lead to a certain value of the false dismissal rate β which is
given in [4]. The value of β of course depends on the signal strength, and it turns out that the
weakest signal which will cross the above thresholds at a false alarm rate of 1% and a false
dismissal rate of 10% is given by

h0 = 8.54

N1/4

√
Sn(f0)

Tcoh
. (14)

Equation (14) gives the smallest signal which can be detected by the search, and is therefore
a measure of the sensitivity of the search.

The data analysed in this paper correspond to LIGO’s second science run (S2) that was
held for 59 days, from 14 February 2003 to 14 April 2003. The GEO detector was not running
at that time, but all three LIGO detectors were operating with a significantly better sensitivity
than during the first science run. The LIGO detectors comprise one 4 km facility in Livingston,
Louisiana, (L1) and two, 4 km and 2 km respectively in Hanford, Washington (H1 and H2);
see, e.g. [11]. For our purposes, we note that the duty cycles of the detectors during the S2
run were 37% for L1, 74% for H1 and 58% for H2. The number N of 30 min SFTs available
for L1 data were 687, 1761 for H1 and 1384 for H2.

Figure 1 shows the expected sensitivity for the Hough search by the three LIGO
interferometers during the S2 run. Those h0 values correspond to the amplitudes detectable
from a generic source with a 1% false alarm rate and 10% false dismissal rate, as given by
equation (14). It should be kept in mind that equation (14) significantly overestimates the
sensitivity of the search for unknown pulsars because it does not include the mismatch between
the signal and the template. Furthermore, due to the large number of templates involved in
the search, a false alarm rate of 1% is too large in practice, and it would result in too many
potential candidates. A false alarm rate of ∼10−13 would be more realistic since this would
lead, in the ideal case, to less than one candidate over the parameter space points considered
in this search.

Assuming that the gravitational wave emission mechanism is due to deviations of the
pulsar’s shape from perfect axial symmetry, from equation (3) (equation (2.9) in [4]) and
equation (14), we can estimate the nominal astrophysical reach of the search for the three
detectors:

d = 16π2GN1/4Izzεf
2
r

8.54c4

√
Tcoh

Sn(2fr)
. (15)
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Figure 1. Typical sensitivities of the three LIGO detectors during the S2 run with a 1% false alarm
rate and 10% false dismissal rate.

For a value of Izz = 1045 g cm2, ε = 10−5, and for typical parameters of the S2 run,
this corresponds to a distance of about 20–30 parsec. It should be kept in mind that this
is not a realistic figure for the astrophysical reach of the search; it does not consider the
mismatch between the template and signal, and it does not use the more realistic false alarm
rate mentioned above. Due to these effects, it turns out that equation (15) overestimates the
astrophysical reach by a factor of about 2–3.

4. The search pipeline

Data from each of the three LIGO interferometers are used to analyse the same parameter
space region. This section describes the portion of the parameter space (f0, ḟ , n) that we
search over, and the resolution of our grid in this portion of the parameter space.

The total observation time is approximately Tobs ≈ 5.2 × 106 s corresponding to the
S2 science run. We search for pulsar signals in the frequency range of 200–400 Hz with a
frequency resolution: δf = Tcoh

−1 = 5.556 × 10−4 Hz. The resolution δḟ in the space of
first spindown parameters is given by the smallest value of ḟ for which the intrinsic signal
frequency does not drift by more than a single frequency bin during the total observation time:
δḟ = δf × T −1

obs ∼ 1.1 × 10−10 Hz s−1. We choose the range of values −ḟ max < ḟ � 0,
where ḟ max = 1.1 × 10−9 Hz s−1. This yields 11 spindown values. All known pulsars (except
for a few supernova remnants) have spindown parameters less than this value. This value of
ḟ max is equivalent to looking for pulsars whose spindown age τ = f̂ /ḟ is at least 1.15 ×
104 yr. This also shows that the approximation to drop higher spindown terms in equation (4) is
reasonable; with a spindown age of 1.15 × 104 yr as above, we would need a total observation
time of ∼10 yr for the second spindown to cause a frequency drift of half a frequency bin.

The resolution δθ in sky positions is frequency dependent, with the number of templates
increasing with frequency, and is given by δθ = 1

2 (δθ)min, where (δθ)min is given in
equation (4.14) of [4]. This yields a resolution of about 9.3 × 10−3 rad at 300 Hz. This
resolution corresponds to ∼1.5 × 105 sky locations for the whole sky.
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Figure 2. Pipeline for the semi-coherent Hough search for a single interferometer.

The pipeline used to search over this parameter space is described in figure 2. The
figure is divided into four distinct blocks. The top-left block is the preparation of the SFTs:
the data stream is broken up into segments, calibrated, and a discrete Fourier transform is
applied to each segment. The calibration connects the error-signal from the interferometer
to the actual value of the strain, and this is calculated in the frequency domain. These SFTs
are passed onto an optional conditioning step. This is meant to remove any known spectral
disturbances from the SFTs. In the present paper, we only present results for which no data
conditioning is applied to the SFTs. Finally, data from the three interferometers are analysed
separately.

The rest of the pipeline consists of two conceptually distinct parts: the actual Hough
search and the process of setting upper limits. The Hough search has been described earlier;
a threshold is set on the normalized power of each SFT, replacing thereby the SFTs by a set
of peakgrams. In this paper, we only present partial results from this Hough search and not
the process of setting upper limits in any detail, except to say that this is the conventional
frequentist upper limit based on Monte Carlo simulations. We set upper limits in each 1 Hz
frequency band, based on the loudest event observed in that band. This will be presented
elsewhere.
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Figure 3. Top: maximum, mean, minimum and standard deviation of the number count of all the
Hough maps in the frequency band of 206–207 Hz. The data correspond to L1 for the entire S2
run using 687 SFTs with a time baseline of 30 min. Bottom: the solid line corresponds to the L1
number-count distribution obtained in that band, and in circles the theoretical expected binomial
distribution for 687 SFTs and a peak selection probability of 20%.

5. Partial results from the search code

As described earlier, the first step in this semi-coherent Hough search is to select frequency
bins from the SFTs by setting a threshold on the normalized power defined in equation (8).
This requires a reliable estimate of the power spectral density Sn for each SFT, for which we
employ a running median applied to the periodogram of each individual SFT. The running
median is a robust method to estimate the noise floor [12] which has the virtue of discarding
outliers which appear in a small number of bins, thereby providing an accurate estimate of the
noise floor in the presence of spectral disturbances and possible signals.

As an illustrative example, some results of the Hough search in a 1 Hz frequency band are
shown in figure 3. The first panel of this figure shows, for every frequency bin, the maximum,
minimum, mean and standard deviation of the number counts for all sky-locations and all
spindown values. As expected, the mean is approximately Nq = 0.2 × 687 ≈ 137. Similarly,
as expected, the standard deviation is

√
q(1 − q)N ≈ 10. The second panel of figure 3 shows

the distribution of number counts in this band and compares it with the expected binomial
distribution in the absence of any signal. We find excellent agreement with the expected
binomial distribution, and this is true in all frequency bands which are relatively free of
spectral disturbances.

Figure 4 shows the largest number count obtained for every frequency bin (i.e. the
maximum number count over all sky-locations and spindown values for a given frequency
value). As this figure shows, several environmental and instrumental noise sources are present.
The sources of these disturbances are mostly understood. They consist of broad 60 Hz power
lines, multiples of 16 Hz due to the data acquisition system, and the violin modes of the mirror
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Figure 4. Graph of the L1 maximum number count per frequency analysed, maximized over all
spindown values and sky locations. The dash-dotted line is the corresponding threshold nth for a
false alarm α of 10−10.

suspensions in a neighbourhood of 345 Hz. The 60 Hz lines are rather broad, with a width
of about ±0.5 Hz, while the 16 Hz data acquisition lines are confined to a single frequency
bin. In addition to the above disturbances, we also observe a large number of multiples of
0.25 Hz. While these lines are known to be instrumental, their exact physical origin is yet to
be determined.

6. Pipeline validation with hardware signal injections

Two artificial pulsar signals were injected for a duration of 12 h at the end of the S2 run into all
three LIGO interferometers. These injections were designed to give an end-to-end validation
of the search pipeline starting from as far up the observing chain as possible.

The two artificial signals were injected at frequencies of 1279.123 Hz (P1) and
1288.901 Hz (P2) with spindown rates of zero and −10−8 Hz s−1 respectively, and amplitudes
h0 of 2 × 10−21. The signals were modulated and Doppler shifted to simulate sources at fixed
positions on the sky with ψ = 0, cos ι = 0 and φ = 0. P1 was injected at a right acsension of
5.147 rad and a declination of 0.3767 rad, while P2 had a right ascension of 2.3457 rad and a
declination of 1.2346 rad.

The resolution in the space of sky positions and frequencies are the same as in section 4,
but the spindown resolution depends on the total observation time, and this now turns out to be
−2.28624×10−8 Hz s−1 for L1, −1.77024×10−8 Hz s−1 for H1, and −1.93533×10−8 Hz s−1

for H2. As before, for each intrinsic frequency we analyse ten different spindown values. The
portion of the sky analysed has a width of 0.5 rad × 0.5 rad centred around the location of the
injected signals.

Figure 5 shows some results for pulsar P1 using L1 data. There were 14 SFTs available
in the duration when the pulsar was injected. The top left and top right panels of figure 5
show Hough maps corresponding to the frequency and spindown values nearest to the injected
signal. Although the presence of the signal is clearly visible, 12 h of observation time is
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Figure 5. Hough maps for the hardware injected signal P1 in L1. Map 2442 (top-left) corresponds
to 1279.123 333 Hz, and contains the template which is closest to the signal. The top-right
panel is a zoom of this map, showing the signal more clearly. Maps 2222 and 2662 (bottom-left
and bottom-right) have a larger mismatch in frequency; they correspond to 1279.112 222 Hz and
1279.134 444 Hz respectively. The signal is detected in these maps also, but with a mismatched sky-
location. P1 was injected at a right acsension and declination of 5.147 rad 0.3767 rad respectively.
This sky-location corresponds roughly to the centre of the skypatches shown in these figures.

not enough to identify the location of the source in the sky. In particular, while the signal is
identified with a high number count in these hough maps, one can still identify the signal in
Hough maps corresponding to different frequencies and spindowns with high number-counts,
but with a mismatch in the sky location. This is shown in the bottom left and bottom right
panels of figure 5. Similar results were found for pulsar P2 and the other detectors, thus
providing an important validation of this search pipeline.

7. Conclusions

In this paper, we have described the idea of the Hough search and the search pipeline used to
analyse data from the second science run of the LIGO interferometers. We have shown some
outputs of the Hough search pipeline in the frequency range of 200–400 Hz, over the whole
sky, and the first spindown parameter. We have also validated the search pipeline by showing
that the search can detect hardware injected pulsar signals. Work is in progress to compute
astrophysical upper limits using the search pipeline presented in this paper.

The eventual role of the Hough transform is in a hierarchical scheme [9, 10]. The Hough
transform could be used as a computationally inexpensive and robust method for quickly
scanning large parameter space volumes and producing significant candidates for a follow-up
search using a more sensitive method.
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