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Abstract
We propose a new, augmented formulation of the coupled Euler–Einstein
equations for perfect fluids on plane-symmetric Gowdy spacetimes. The
unknowns of the augmented system are the density and velocity of the fluid
and the first- and second-order spacetime derivatives of the metric. We
solve the Riemann problem for the augmented system, allowing propagating
discontinuities in both the fluid variables and the first- and second-order
derivatives of the geometry coefficients. Our main result, based on Glimm’s
random choice scheme, is the existence of solutions with bounded total variation
of the Euler–Einstein equations, up to the first time where a blow-up singularity
(unbounded first-order derivatives of the geometry coefficients) occurs. We
demonstrate the relevance of the augmented system for numerical relativity.
We also consider general vacuum spacetimes and solve a Riemann problem,
by relying on a theorem by Rendall on the characteristic value problem for the
Einstein equations.

PACS numbers: 04.20.Cv, 04.20.Ex, 04.30.−w, 47.75.+f

1. Introduction

It is well known that solutions of the Euler equations for inviscid hydrodynamics can
develop ‘shocks’ or discontinuities in the density and velocity, even starting from smooth
initial data. The same is known to be true for special relativistic hydrodynamics assuming
plane symmetry. What happens when general relativity is taken into account? A shock
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would imply a discontinuity in the energy–momentum tensor and hence, via Einstein’s
field equations, a discontinuity in the Ricci curvature tensor or, equivalently, jumps in
the second derivatives of certain metric tensor components. But do Einstein’s equations
permit such discontinuities? If the sources and fields are weak so that linearized theory is
applicable, it seems very plausible physically that they should. But what of the full nonlinear
theory? Although there is a rich literature concerned with relativistic jump conditions
(for instance [12]), the relativistic Rankine–Hugoniot relations, very little seems to have
been done to establish existence and uniqueness of discontinuous solutions of the field
equations.

The first rigorous result of which we are aware is due to Smoller and Temple [18]. They
looked at the special relativistic Euler equations and assumed planar symmetry. (In Cartesian
coordinates (t, x, y, z) all quantities are assumed to depend on t and x only.) They demonstrated
the existence of global solutions with bounded variation, by generalizing Nishida’s proof
[13, 14] for the non-relativistic system.

Much earlier Taub [19] had proposed an approximation scheme for solving the Einstein
field equations with planar symmetry and not-so-weak fields. At the lowest level one has
precisely the special relativity problem. Taub assumed the Smoller–Temple result and
then described a systematic iteration process to include the matter–geometry and geometry–
geometry interactions. A demonstration of its convergence would appear to be a daunting
problem.

Rigorous existence results for full general relativity have been obtained by Groah and
Temple [6, 7] under the assumption of spherical symmetry. While their results are very
interesting we feel that the assumption of spherical symmetry is restrictive. We shall argue
that general relativistic shocks are a fascinating example of the features of hyperbolic systems.
But for spherical symmetry many of these features are suppressed (cf Birkhoff’s theorem
[21]).

There is an important difference between classical hydrodynamics and Einstein’s theory.
Reductions of Einstein’s equations produce a hyperbolic system but with elliptic constraint
equations. The latter are often regarded as secondary, subsidiary features but we shall argue
that they are of pivotal importance. For a related discussion see, e.g., [4].

The use of the space of functions with bounded variation in general relativity is not new;
cf the extensive and profound work by Christodoulou (for instance in [2]) on the Einstein
equations coupled to a scalar field.

We start by considering the vacuum case for this is the key to the entire discussion. It
is explored in detail in the next section. Within an initial spacelike hypersurface we assume
that there is an internal hypersurface (i.e., a 2-surface) across which some second transverse
derivatives of the 3-metric are discontinuous. (We do not ask how these discontinuities
occurred.) By imposing the constraint equations we determine directly which discontinuities
are permitted. We next demonstrate that for permissible discontinuities we can solve the initial
data problem, i.e., determine the initial data for Einstein’s equations on the initial hypersurface
which satisfy the constraint equations. The Cauchy problem has initial data discontinuous
across a 2-surface and so resembles a Riemann problem. On each side of the discontinuity we
can solve a standard Cauchy problem within the appropriate domain of dependence. Reading
off the solutions on the future boundary of each side we have sufficient data to solve the
characteristic initial value problem to the future of the boundaries, according to a theorem
of Rendall [15]. This produces an existence/uniqueness result which is local, i.e., valid in a
small spacetime neighbourhood of the initial discontinuity. In each domain of dependence and
in their common future the solution is smooth. However if there were discontinuities in the
initial data then there will be discontinuities in the second transverse derivatives of the metric
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across the boundaries. Apart from vacuum, no other assumption is required, and so this is a
general result.

We next turn to the case where an inviscid perfect fluid is present. In classical (non-
relativistic) hydrodynamics, existence/uniqueness theorems are usually based on a technique
introduced by Glimm [5] (cf [11] for recent developments) which assumes planar symmetry.
We therefore restrict consideration to a subclass of plane-symmetric Gowdy spacetimes
whose general properties are described in sections 3 and 4. In section 5 we introduce the
new, augmented formulation in which the first- and second-order derivatives of the metric
components are considered as independent unknowns. Section 6 states precisely the main
result of this paper, an existence theorem for arbitrary large initial data. We write the field
equations as a quasilinear system of conservation laws with sources. This differs from standard
reductions in that we write down equations for the evolution of first and second derivatives of
metric coefficients, allowing them to be as discontinuous as the fluid variables. Further we
assume that the initial data satisfy the constraints for we do not use the constraint equations
directly in our analysis. We treat the convection terms through a Riemann problem defined
in section 7. We introduce a generalization to the Glimm scheme, whose convergence is
established in section 8. The main difficulties for the convergence analysis are to ensure that
(1) the total variation of the fluid and the first-order derivatives of the geometry coefficients
have uniformly bounded variation, and that (2) the energy density remains bounded away from
zero and the velocity remains bounded away from the light speed. This leads us to the main
result of this paper, the existence theorem stated in section 6.

In section 9 we describe the numerical implementation of a finite difference scheme based
on the augmented formulation, and show some results from numerical simulations. A final
section provides some concluding observations.

2. The vacuum case

Let � be a spacelike hypersurface in spacetime M with intrinsic curvature tensors hab and
kab. Suppose there is a surface S ⊂ � such that

(1) the fields hab and kab are C∞ on the complement of S,
(2) the second transverse derivatives may be discontinuous across S.

We first ask what restrictions are imposed on such jumps by the constraint equations, then
whether the constraint equations can be solved, and finally whether the vacuum Einstein field
equations can be solved. For the notation used in this section we refer to the textbook [21].

The constraint equations are

ka
b |b − k,a = 0, (2.1)

3R + kabk
ab − k2 = 0. (2.2)

Here | denotes the covariant derivative of hab,
3R its Ricci scalar and k = ka

a . Since the
questions we are asking are local we use Gaussian normal coordinates adapted to S so that S
is (x1 = 0) and

ds2 = dx12
+ hAB dxA dxB,

where A,B, . . . range over 2, 3. We are interested in the second transverse derivatives of hAB

and the first transverse derivatives of kAB . We may decompose the momentum constraint as

k1
1
,1 + k1

A
,A − ka

a
,1 + · · · = 0, kA

1
,1 + kA

B
,B − ka

a
,A + · · · = 0,
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where · · · denotes terms containing no derivatives of kab and at most first derivatives of hab so
that they are continuous at S. We deduce immediately that kA1,1 and kA

A
,1 must be continuous

across S.
Next we introduce the notation dAB = − 1

2hAB,1 and d = hABdAB . Then the Hamiltonian
constraint can be written in the form

2R − hABdAB,1 + d2 + 3dABdAB + kabk
ab − k2 = 0,

where 2R is the Ricci scalar curvature of hAB . Now hABdAB,1 = d,1 + 2dABdAB and so we
see that d,1 must be continuous. Thus we can allow jumps only in the trace-free parts of dAB,1

and kAB,1. If we introduce the normal (in M) to the surface � and decompose the Weyl tensor
into its electric and magnetic parts then only the trace-free parts of these can have jumps.
Equivalently if we introduce a Newman–Penrose null tetrad with lµ, nµ spanning the 2-space
generated by the normal and ∂/∂x1 then �1, �2 and �3 must be continuous across S; only �0

and �4 can have jumps.
Can we find solutions of the constraint equations with these properties? Consider first the

case of time-symmetric data, kab = 0. Let h̃AB be any symmetric tensor field such that the
trace-free part of h̃AB,11 is discontinuous and require that f (xa)̃hAB satisfies the Hamiltonian
constraint. The equation for f is

�f − 1
6

3R̃f = 0,

where 3R̃ is the Ricci scalar of h̃AB . We can solve this easily in two special cases:

(1) If h̃AB is piecewise analytic we can impose boundary data

f (0, xA) = 1, f,1(0, xA) = 0

and use the Cauchy–Kovalevski theorem.
(2) If we set h̃AB = h̃AB(x1) and f = f (x1) then we have an ordinary differential equation

which can be solved. (Such data admit an Abelian two-dimensional isometry group.)

In the general case we have to try a different approach. We prescribe hAB arbitrarily and
use the constraint equations to obtain parts of kab. We decompose ka

b into k1
1, k1

B, kA
B and

further decompose kA
B into 2k (its trace) and k̃A

B (its tracefree part). We prescribe k̃A
B with

a jump in S. In the Hamiltonian constraint k1
1 appears only in the form k1

1(k2
2 + k3

3) and we
can solve for it provided 2k �= 0. In the momentum constraint the k1

1
,1 terms cancel and we

can solve for 2k,1 and k1
A

,1. Assuming again analyticity or symmetry we can obtain a solution
if we give initial values 2k �= 0 and k1

A at S.
We next introduce a chart in spacetime M as follows. (Figure 1 may be helpful here.) N0

and N1 are null hypersurfaces in M which intersect in S. x0 is an affine parameter along the
null geodesic generators of N0 such that x0 = 0 at S. It is also defined to be zero on N1. x1

is similarly defined, so that S is x0 = x1 = 0. (xA) are the intrinsic coordinates in S and we
propagate them onto N0 and N1 by requiring them to be constant along the null generators.
This defines (xα) on N0 ∪ N1. We propagate them into the future U by requiring �xa = 0
and solving the characteristic initial value problem.

We relabel the initial data on � on each side of S as 0hab and 1hab and extend each of
them smoothly across S in an arbitrary way. Consider first the data 0hab. By solving the
standard Cauchy problem we can determine, at least locally, a smooth solution in the domain
of dependence U0. Since this includes N0 we can obtain the restriction of 0gAB to N0 by
taking the limit from the past. The same can be done on N1. Then a theorem of Rendall
[15] guarantees the local existence and uniqueness of the solution of the characteristic initial
value problem for the Einstein vacuum field equations in U. The solutions will be smooth in
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U
N0 N1

U0 U1

Σ

S

0hab 1hab

Figure 1. Spacetime M with two dimensions suppressed. Smooth data 0hab and 1hab are specified
on the indicated regions of the Cauchy surface �, but they do not agree in the overlap at S. 0hab is
used to determine the solution in the region U0 and hence, by continuation from below, on the null
hypersurface N0. The data on the null hypersurfaces are used to solve a characteristic initial value
problem for the metric in U. The second transverse derivatives of this solution on N0 and N1 are
discontinuous.

U0, U1 and U, and across N0 and N1 they will be continuous with continuous transverse first
derivatives, but the second transverse derivatives will have jumps.

Thus in the vacuum case we have a fairly complete local result.

3. Plane-symmetric perfect fluids

Even in the Newtonian case existence results are only known for the case of one spatial
independent variable. Therefore we restrict consideration to plane-symmetric spacetimes.

We consider solutions of the Einstein–Euler equations for a compressible perfect fluid,
assuming that the spacetime metric has the following ‘polarized Gowdy’ form,

ds2 = gαβ dxα dxβ = e2a(−dt2 + dx2) + e2b(e2c dy2 + e−2c dz2), (3.1)

where the coefficients a, b, c only depend on the time variable t and the space variable x, but are
independent of y and z. We consider perfect fluids with mass density ρ > 0, energy density
µ > 0 and pressure p. These thermodynamical variables are connected via the so-called
equation of state of the fluid: p = p(ρ,µ). For simplicity (we do not have to worry about the
evolution of ρ) we consider an ultrarelativistic fluid whose equation of state is

p = cs
2µ, 0 < cs < 1,

where the constant cs is called the sound speed.
The 4-velocity vector uα is normalized to be of unit length

uαuα = −1.

We make the simplifying assumption that the velocity is only in the x-direction, and set

uα = e−aγ (1, v, 0, 0),

where the coordinate velocity v satisfies |v| < 1 and γ = (1−v2)−1/2. The matter is described
by the energy–momentum tensor

T αβ = (µ + p)uαuβ + pgαβ, (3.2)

from which we extract fields τ , S and � defined via

T 00 = e−2aτ = e−2a((µ + p)γ 2 − p), (3.3)
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T 01 = e−2aS = e−2a(µ + p)γ 2v, (3.4)

and

T 11 = e−2a� = e−2a((µ + p)γ 2v2 + p). (3.5)

Note that given µ, v and p, which we will consider as our primary unknowns, or primitive
variables, it is easy to compute τ , S and �, which we shall call conserved variables. Given
the conserved variables τ and S it is straightforward to compute primitive variables µ and v

and hence p. These calculations take place in Minkowski spacetime, which is independent of
the geometry variables a, b and c.

Because p = c2
s µ, we have

τ = (µ + p)γ 2 − p = ((
1 + c2

s

)
γ 2 − c2

s

)
µ,

S = (µ + p)γ 2v = (
1 + c2

s

)
γ 2vµ, (3.6)

� = (µ + p)γ 2v2 + p = ((
1 + c2

s

)
γ 2v2 + c2

s

)
µ,

and it is convenient to note here that

−τ + � − 2p = −(
1 + c2

s

)
µ, τ − � = (

1 − c2
s

)
µ. (3.7)

The Einstein field equations are

Gαβ = κT αβ, (3.8)

where Gαβ is the Einstein tensor and κ = 8πG/c4. Here G is Newton’s gravitational constant,
and c is the speed of light which (by appropriate choice of physical units) is set to unity
throughout this paper.

Using the line element (3.1) we may compute the constraint equations, the (00) and (01)

components of (3.8) as

2atbt + 2axbx + b2
t − 2bxx − 3b2

x − c2
t − c2

x = κ e2aτ, (3.9)

−2atbx − 2axbt + 2btx + 2btbx + 2ctcx = κ e2aS, (3.10)

as well as the evolution equations, the (11), (22) and (33) components

2atbt + 2axbx − 2btt − 3b2
t + b2

x − c2
t − c2

x = κ e2a�, (3.11)

−att + axx − btt − b2
t + 2btct + bxx + b2

x − 2bxcx + ctt − c2
t − cxx + c2

x = κ e2ap, (3.12)

and

−att + axx − btt − b2
t − 2btct + bxx + b2

x + 2bxcx − ctt − c2
t + cxx + c2

x = κ e2ap. (3.13)

The evolution equations contain second time derivatives of a, b and c, whereas the constraint
equations contain only zero or first time derivatives.

It is convenient to take certain linear combinations: computing ‘−(3.9)+(3.11)−(3.12)−
(3.13)’ gives

att − axx = b2
t − b2

x − c2
t + c2

x + 1
2κ e2a(−τ + � − 2p), (3.14)

while ‘(3.9) − (3.11)’ yields

btt − bxx = −2b2
t + 2b2

x + 1
2κ e2a(τ − �), (3.15)

and finally ‘(3.12) − (3.13)’ simplifies to

ctt − cxx = −2btct + 2bxcx. (3.16)
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The evolution equations for the fluid are a consequence of the Einstein field equations (3.8)
and are obtained by expressing the Bianchi identities Gαβ ;β = 0 for the metric in terms of the
energy–momentum tensor

T αβ ;β = 0, (3.17)

where ;β denotes the covariant derivative. We thus obtain the Euler equations

τt + Sx = T1, St + �x = T2, (3.18)

in which the ‘source terms’ T1 and T2 are given by

T1 = −τ(at + 2bt ) − S(2ax + 2bx) − �at − 2pbt ,

T2 = −τax − S(2at + 2bt ) − �(ax + 2bx) + 2pbx.
(3.19)

Note that if we set a ≡ b ≡ c ≡ 0, forcing the spacetime to be flat then the right-hand sides
of (3.18) are zero. In this case we have the special relativistic Euler equations.

Next we examine the constraint equations (3.9) and (3.10). It is convenient to define

H = e2b
(
2atbt + 2axbx + b2

t − 2bxx − 3b2
x − c2

t − c2
x − κ e2aτ

)
, (3.20)

and

M = e2b(−2atbx − 2axbt + 2btx + 2btbx + 2ctcx − κ e2aS), (3.21)

so that the constraint equations are equivalent to H = M = 0. If we form the time derivatives
of H and M and make use of the evolution equations we obtain

Ht + Mx = 0 = Mt + Hx, (3.22)

a symmetric hyperbolic system of conservation laws (with characteristic velocities ±1) for H
and M. Thus if the conservation equations are satisfied at say t = 0 for all x and the evolution
equations (3.14)–(3.18) are satisfied for t � 0 and all x, then the constraint equations are
satisfied for t � 0 and all x.

This completes the description of the system under study.

Remark 3.1. It should be noted that the limiting case cs = 1 is very different. For cs < 1
and the energy momentum tensor (3.2), the conservation equations (3.17) imply the nonlinear
Euler equations. However if cs = 1 it is easy to verify that the solution of (3.17) is

µ = (∇βφ)(∇βφ), uα = µ−1/2∇αφ, (3.23)

where φ satisfies the linear wave equation

gαβ∇α∇βφ = 0. (3.24)

4. Special solutions

Before we present the main statement in this paper (section 5), it is useful to investigate the
existence and properties of special solutions, and to discuss the general algebraic properties
of the system under consideration. One important issue of interest before we can develop a
theory of shock waves is to determine the functional space suited to our problem.

We begin by formally decoupling the fluid and the metric and considering the Einstein
equations in vacuum for metric (3.1). Thus we consider the following equations for the
variables a, b, c:

att − axx = b2
t − b2

x − c2
t + c2

x, (4.1)
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btt − bxx = −2b2
t + 2b2

x, (4.2)

and

ctt − cxx = −2btct + 2bxcx. (4.3)

In addition we must satisfy the constraint equations

2atbt + 2axbx + b2
t − 2bxx − 3b2

x − c2
t − c2

x = 0, (4.4)

and

−2atbx − 2axbt + 2btx + 2btbx + 2ctcx = 0. (4.5)

Theorem 4.1. When the coupling with the fluid is neglected (that is, by formally replacing the
coupling constant κ by 0), the geometric variables a, b, c may blow up in amplitude in finite
time. More precisely, the following hold:

• The general solution b = b(t, x) of (4.2) may exhibit blow up in finite time.
• As long as b remains bounded, the variables a and c remain bounded as well.

Furthermore, the initial value problem for the vacuum polarized Gowdy equations admits a
smooth, globally defined solution (for all t � 0 and all x) when the initial data for a, b, c are
smooth compactly supported functions and the initial data for b are sufficiently small, in the
sense that ∫

R

e2b(0,x)(|bx(0, x)| + |bt (0, x)|) dx � 1.

Therefore, the function b determines whether there are singularities in the geometric
variables. A blow up of b corresponds to the formation of a singularity in the metric.
Theorem 4.1 explains why the existence result in section 5 can cover only a finite time interval
for general data.

Proof. We observe that the nonlinear equation (4.2) for the function b is equivalent to the
linear wave equation

(e2b)tt − (e2b)xx = 0,

and can therefore be integrated explicitly:

b(x, t) = 1

2
log(f (x + t) + g(x − t)), bx(x, t) = 1

2

f ′(x + t) + g′(x − t)

f (x + t) + g(x − t)
, (4.6)

where f and g are arbitrary functions satisfying f +g > 0. The function e2b being the solution
of a linear wave equation, may well be positive initially but it can vanish after a finite time,
corresponding to a blow up of the coefficient b itself. Clearly, depending upon the choice of
the functions f and g, the function b and its derivatives may (or may not) blow up in finite
time. However, when f and g are sufficiently close to a positive constant, or equivalently
when bx , and bt are sufficiently small at time t = 0, then the solution b remains close to 0 for
all times and no blow up takes place.

If b is already determined and smooth, equation (4.3) can be regarded as a linear equation
in c and therefore its solutions cannot blow up in finite time. Similarly, if both b and c are
already determined, the coefficient a is the solution of a linear wave equation (4.1) with given
right-hand side. Again no blow up can possibly take place. �

A special class of homogeneous vacuum solutions, possibly exhibiting blow up, is obtained
by assuming that a, b, c are independent of the space variable. Note that b does not have
compact support and, therefore, the following result does not contradict the global existence
result in theorem 4.1.
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Theorem 4.2. When the coupling with the fluid is neglected, the homogeneous solutions have
the form

e2a = A|t − t0|2k2−1/2, e2b = B|t − t0|, e2c = C|t − t0|2k

where t0, A,B,C and k are constant parameters. The curvature invariant Rαβγ δRαβγ δ is
proportional to |t − t0|−4k2−3. Thus by suitable choice of the parameters we can arrange blow
up at t = t0 in the future.

We now turn to the coupled Einstein–Euler system. Here there are a few exact solutions,
including a homogeneous one [1]. Let α and m be positive constants, and set

f (s) = (
α + ms1−cs

2)1/(1−cs
2)
.

Define τ implicitly via

t =
∫ τ

0

s1/3

(f (s))1−cs
2 ds.

Then the solution is given by

a = −1

3
log τ +

(
1 − cs

2
)

log f (τ), b = 2

3
log τ, c = 0

µ = 4m

3(τf (τ))1+cs
2 , v = 0.

The singularity here occurs at t = τ = 0. By choosing data at some positive t and time-
reversing it we can arrange for blow up in the future. For a related discussion see Rendall
[16].

5. The augmented Euler–Einstein system

Consider the two constraint equations (3.9), (3.10). It is natural to place the terms bxx and
btx (which have the highest derivatives) in the same functional class as the unknowns τ and S
(which may have jumps). This motivates us to consider bxx and btx as independent variables,
and, in order to treat all geometry variables on the same level of regularity, we set

U := (atx, axx, btx, bxx, ctx, cxx, ), V := (τ, S), W := (e2a, at , ax, bt , bx, ct , cx).

The augmented system associated with the equations under consideration has the abstract
form

Ut + A1Ux + A2Vx + A3Wx = R(U,W), U = U(t, x) ∈ R
6,

Vt + B(V )Vx = S(V,W), V = V (t, x) ∈ R+ × R,

Wt + CWx = T (V,W), W = W(t, x) ∈ R+ × R
6.

(5.1)

Specifically, we find

U1t − U2x + 1
2κ

(
1 + c2

s

)
(W1µ)x = 2(U3W4 − U4W5 − U5W6 + U6W7),

U2t − U3x = 0,
(5.2)

U3t − U4x − 1
2κ

(
1 − c2

s

)
(W1µ)x = 2(U3W5 + U4W6),

U4t − U3x = 0,
(5.3)
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in which µ is a function of V , and

U5t − U6x = 2(−U3W6 + U4W7 − U5W4 + U6W5),

U6t − U5x = 0.
(5.4)

The evolution equations for the V-variables are (3.18), that is with the new notation

V1t + V2x = −V1(W2 + 2W4) − V2(2W3 + 2W5) − �W2 − 2pW4,

V2t + �x = −V1W3 − V2(2W2 + 2W4) − �(W3 + 2W5) + 2pW5,
(5.5)

in which �,p are functions of V . Finally, for the variable W we add

W1t = 2W1W2,

W2t − W3x = W 2
4 − W 2

5 − W 2
6 − 1

2κW1
(
1 + c2

s

)
µ,

W3t − W2x = 0,

W4t − W5x = −2W 2
4 + 2W 2

5 + 1
2κW1

(
1 − c2

s

)
µ,

W5t − W4x = 0,

W6t − W7x = −2W4W6 + 2W5W7,

W7t − W6x = 0.

(5.6)

In addition, the system of evolution equations is supplemented with two constraints of the
form

D(U, V,W) = 0, E(U, V,W) = 0, (5.7)

where D and E are given by

2W2W4 + 2W3W5 + W 2
4 − 2U4 − 3W 2

5 − W 2
6 − W 2

7 = κW1V1, (5.8)

−2W2W5 − 2W3W4 + 2U3 + 2W4W5 + 2W6W7 = κW1V2. (5.9)

If these constraints are satisfied at the initial time, then they are satisfied for all times as
a consequence of the evolution equations. For suppose that U,V and W satisfy the evolution
equations (5.1). It follows from the Bianchi identities that D and E satisfy a similar system
with fluxes and sources which are homogeneous functions of D and E of degree 1. Thus if D
and E are zero initially they will remain so.

It is illuminating to compare the vacuum and fluid cases at this point. If the fluid has a
shock then V1 = τ and V2 = S will be discontinuous and so U3 = btx and U4 = bxx might
also be discontinuous, as a consequence of the constraint equations (5.8), (5.9) (assuming
a priori that W1 = ea is continuous). But in vacuum the same argument shows that these second
derivatives of b will be continuous. This is fully consistent with section 2 for trace(hAB) = e4b.
In the vacuum case it is ctx and cxx which can carry discontinuities.

We observe that the matrix A1 has constant coefficients and eigenvalues ±1 (each with
multiplicity 3) and a full basis of eigenvectors. Basically, the unknown U ∈ R

6 satisfies
three wave equations in flat space, coupled only through the source term R(U,W), a given
algebraic expression of U and W . Note however that the term (W1µ)x generates some
additional coupling, that is the terms A2Vx + A3Wx , between the fluid and the geometry
(which should not be handled as a source term since µ may contain discontinuities). To
handle this coupling we will solve a Riemann problem (section 7).

On the other hand, the matrix B(V ) depends nonlinearly on V and describes the standard
relativistic fluid equations in a Minkowski background. The eigenvalues of the matrix B(V )

are those of the special relativistic Euler equations in flat space [18],

λ± = v ± cs

1 ± vcs

. (5.10)
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Note that since 0 < cs < 1, λ+ is a strictly increasing function of cs and so λ+ > λ− for all v

with 0 � |v| < 1.
Finally, we note that the matrix C has constant coefficients and eigenvalues 0 and ±1 with

multiplicities 0, 3 and 3, and a full basis of eigenvectors. We have a simple evolution equation
for e2a and three wave equations. As a matter of fact, the equations for V and W can be solved
independently from the equations for U, and the latter serve only to propagate the constraints.

Remark 5.1. The limiting case cs = 1 needs special treatment. Note first that because of
(3.7), the matter term on the right-hand side of (3.15) vanishes and so the b-equation reduces
to its vacuum form (4.2) with explicit solution (4.6). The field equation (3.24) for φ implies

(e2bφt )t − (e2bφr)r = 0,

or

φtt − φxx = −2btφt + 2bxφx, (5.11)

which should be compared with the c-equation (4.3) in vacuum. Note also that (5.10) implies
λ± = ±1.

6. The Cauchy problem

In this section we state the existence result to be established in this paper. With any function
with bounded variation Y : R → R we associate its L∞ norm

‖Y‖L∞ := sup
x∈R

|Y (x)|

and its total variation

T V (Y ) = sup
∑

n

|Y (xn+1) − Y (xn)| < ∞,

where the supremum is over all monotone increasing, finite sequences xn. An alternative
definition (which is essentially equivalent to the above) is to require

sup

∣∣∣∣∫
R

θxY dx

∣∣∣∣ < ∞,

where the supremum is taken over all smooth functions with compact support satisfying
‖θ‖L∞ � 1. (In other words, a function has bounded variation if its derivative in the weak
sense of distributions is a bounded measure.)

The relevance of the space of functions with bounded variation to study nonlinear
hyperbolic systems was recognized by Glimm [5]. Recall that such a function Y admits
left-hand and right-hand traces Y (x±) at each point x, which are distinct at countably many
points, at most. This space is well suited to describe discontinuous solutions of hyperbolic
equations. In addition, the analysis of approximate solutions is based on a key compactness
theorem, due to Helly: if Yh is a sequence of functions whose bounded variation remains
uniformly bounded when h → 0, then one can extract from Yh a subsequence and find a
function of bounded variation Y such that Yh(x) converges to Y (x) at every point x.

Given this background we can state our main theorem:

Theorem 6.1. Suppose that the prescribed initial values U(0), V (0) and W(0) at time t = 0
satisfy

‖U(0)‖L∞ + T V ((V,W)(0)) < ∞ (6.1)
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and satisfy the constraint equations (5.7). Then there exists a solution U = U(t, x), V =
V (t, x) , W = W(t, x) which is defined for all x ∈ R and on a (maximal) time interval
t ∈ [0, Tmax), is a solution of (5.1) (in the sense of distributions) satisfying constraints (5.7) at
each time, and has the regularity

‖U(t)‖L∞ + T V ((V,W)(t)) < ∞, t ∈ [0, Tmax), (6.2)∫
R

|(V ,W)(t, x) − (V ,W)(t ′, x)| dx � C|t − t ′| (6.3)

for some C > 0 and all t, t ′ ∈ [0, Tmax). When Tmax < ∞, then the L∞ norm of the geometry
variables W(t) must blow up at t = Tmax.

In theorem 6.1 the solutions satisfy the equations in the sense of distributions: for instance,
for the fluid equations (5.5) this means that∫ ∫

(θtV1 + θxV2) dx dt =
∫ ∫

θ(−V1(W2 + 2W4)−V2(2W3 + 2W5)−�W2 − 2pW4) dx dt,

and∫ ∫
(θtV2 + θx�) dx dt = −

∫ ∫
(V1W3 − V2(2W2 + 2W4) − �(W3 + 2W5) + 2pW5) dx dt,

for every smooth function θ = θ(t, x) with compact support.
The proof of theorem 6.1 will be based on the Glimm scheme [5]. To establish the

existence of a solution to the Cauchy problem we proceed as follows:

• Solve the Riemann problem when the source terms are neglected.
• Design an approximation scheme based on Glimm’s random choice method and a suitable

fractional step procedure to handle the sources.
• Estimate the L∞ norm of the approximate solutions.
• Derive a bound on the total variation of the variables V and W .
• Check the compactness and consistency of the scheme, including the constraint equations.

Observe that the equations (especially (5.2)–(5.4)) are linear in U and an L∞ bound on U
is sufficient in the convergence analysis. On the other hand, the equations under consideration
are nonlinear in V and W and we must therefore control a stronger norm. The total variation
is natural when propagating discontinuities are expected in the solutions.

Note that we are regarding U,V and W as independent variables, and are allowing
discontinuities in all of them. Thus constraints (5.7) cannot be imposed throughout
the approximation scheme but could be checked afterwards, based on the evolution
equations (5.10). Alternatively, one could, at each time step, project the approximate solution
onto the manifold determined by the constraints. This is probably useful to improve the
accuracy in numerical calculations, although it is not required for the convergence analysis.

Remark 6.2. It can be checked that the solution U in theorem 6.1 is weakly continuous in
time, in the sense that for every smooth, compactly supported function θ there exists C > 0
such that ∣∣∣∣∫

R

(U(t, x) − U(t ′, x))θ(x) dx

∣∣∣∣ � C|t − t ′|

for all t, t ′ ∈ [0, Tmax).
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7. The Riemann problem

Throughout this section we neglect the source terms in (5.1) as well as the constraint
equations (5.7). The fluid variables satisfy the two conservation laws

τt + Sx = 0, St + �x = 0, (7.1)

which are entirely decoupled from the geometry. The Riemann problem for the special
relativistic fluid equations (7.1) corresponding to the piecewise constant, initial data

(τ, S)(0, x) =
{

(τ l, Sl), x < 0,

(τ r , Sr), x > 0,
(7.2)

was solved by Smoller and Temple [18]. It is convenient to introduce the Riemann invariants

r = 1
2 (w − z) s = 1

2 (w + z),

where

w = log

(
1 + v

1 − v

)
,

and

z =
∫ µ

√
p′(m)

m + p(m)
dm = cs

1 + cs
2

log µ = k0 log µ.

The mapping v ∈ (−1, 1) 
→ w ∈ R is one-to-one, while the mapping µ 
→ z is one-to-one
from (0,∞) onto itself.

The construction of the solution of the Riemann problem (7.1), (7.2) requires some tedious
algebra but is rather standard. We will only need here to recall a few properties of the solutions.
The solution of the Riemann problem is made of two waves associated with the two nonlinear
characteristic families associated with the sound speed cs .

(1) The regions

RM = {(r, s) : −M � r � s � M}, M > 0, (7.3)

are convex in the plane of the conservative variables and are invariant regions for the
Riemann solutions, that is, if the Riemann data belong to RM for some M > 0, then
the corresponding Riemann solution also belongs to RM . This is established by direct
verification from the expressions of the shock curves and rarefaction curves which are
used to construct the solution of the Riemann problem.

(2) When two elementary waves of the relativistic fluid system or, more generally, when two
Riemann solutions ‘interact’, the total variation is non-increasing. This is so provided
the total variation is measured in the variable log µ, as first discovered by Nishida for the
fluid equation in flat space [13].

We now turn to the equations for the geometric components. Neglecting the source terms
we obtain

U1t − U2x + 1
2κ

(
1 + cs

2)(W1µ)x = 0,

U2t − U1x = 0,
(7.4)

U3t − U4x − 1
2κ

(
1 − cs

2
)
(W1µ)x = 0,

U4t − U3x = 0,
(7.5)

and

U5t − U6x = 0, U6t − U5x = 0. (7.6)
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Solving the Riemann problem for the linear hyperbolic system (7.6) is straightforward:
the solution (U5, U6) contains two waves with speeds −1 and 1 respectively. Exactly one of the
Riemann invariants U5 ± U6 is discontinuous at each of the two waves. More precisely, the
Riemann problem (7.6) and

(U5, U6)(0, x) =
{(

Ul
5, U

l
6

)
, x < 0,(

Ur
5 , Ur

6

)
, x > 0,

(7.7)

are solved with two waves with speeds −1 and +1. The constant states
(
Ul

5, U
l
6

)
and

(
Ur

5 , Ur
6

)
are separated by a middle constant state

(U ∗
5 , U ∗

6 ),

determined by the Rankine Hugoniot relations for each wave, that is,

−(
U ∗

5 − Ul
6

) − (
U ∗

5 − Ul
6

) = 0, −(
U ∗

6 − Ul
6

) − (
U ∗

5 − Ul
5

) = 0,

and (
Ur

5 − U ∗
5

) − (
Ur

6 − U ∗
6

) = 0,
(
Ur

6 − U ∗
6

) − (
Ur

5 − U ∗
5

) = 0.

This is equivalent to the continuity of the first (second) Riemann invariant across the first
(second) wave, thus

2U ∗
5 = Ul

5 + Ul
6 + Ur

5 − Ur
6 , 2U ∗

6 = Ul
5 + Ul

6 − Ur
5 + Ur

6 .

This explicit form for the solution will allow us to control easily any norm of the Riemann
solution we might need to estimate later in the proof.

Theorem 7.1. Given any constant Riemann data (Ul, V l,W l) and (Ur, V r,Wr), there exists
a solution to the Riemann problem

Ut + A1Ux + A2Vx + A3Wx = 0, U = U(t, x) ∈ R
6,

Vt + B(V )Vx = 0, V = V (t, x) ∈ R
2,

Wt + CWx = 0, W = W(t, x) ∈ R
7,

(7.8)

(U, V,W)(0, x) =
{

(Ul, V l,W l), x < 0,

(Ur, V r,Wr), x > 0.
(7.9)

The variable V contains two (shock or rarefaction) waves associated with the sound speeds
±cs , while the geometric variables U5, U6 contain two shocks with speeds ±1, and the
variables U1, . . . , U4 contain five waves associated with the light speeds ±1, the sound speeds
±cs and the speed 0. The variable W1 has a single wave with zero speed, while W2, . . . ,W7

have jumps with speeds ±1.

Remark 7.2.

• If the components U5, U6 are continuous initially that is Ul
5 = Ur

5 and Ul
6 = Ur

6 then
U5, U6 remain constant. In particular, discontinuities in the components U5, U6 cannot
appear unless they exist at the initial time.

• The same is true for all of the components of U1, U2, U3, U4 along the light cone.

Proof. It remains to solve the Riemann problem for (U3, U4), for instance. The jump relation
along a sound wave with speed λ is

−λ
(
U+

3 − U−
3

) − (
U+

4 − U−
4

) − 1
2κW1

(
1 − cs

2
)
(µ+ − µ−) = 0,

−λ
(
U+

4 − U−
4

) − (
U+

3 − U−
3

) = 0.
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The right-hand components can be expressed in terms of the left-hand components:

U+
3 = U−

3 +
λ

1 − λ2

1

2
κW1

(
1 − c2

s

)
(µ+ − µ−),

U+
4 = U−

4 − 1

1 − λ2

1

2
κW1

(
1 − cs

2
)
(µ+ − µ−).

(7.10)

It will be convenient to set

W−
1 = Wl

1, W +
1 = Wr

1 .

In the special case that the fluid variables contain two shock waves we can combine the above
jump relations and determine the solutions (U3, U4): it is made of five waves and six constant
states (

Ul
3, U

l
4

)
,

(
Ul∗

3 , U l∗
4

)
,

(
U ∗−

3 , U ∗−
4

)
,(

U ∗+
3 , U ∗+

4

)
,

(
U ∗r

3 , U ∗r
4

)
,

(
Ur

3 , Ur
4

)
,

where
(
Ul

3, U
l
4

)
and

(
Ur

3 , Ur
4

)
are given constants and along the wave with speed −1 we have

Ul∗
3 + Ul∗

4 = Ul
3 + Ul

4, (7.11)

while along the sound wave with speed λl

U ∗−
3 − U ∗l

3 = λl

1 − (λl)2

1

2
κW−

1

(
1 − cs

2)(µ∗ − µl),

U ∗−
4 − U ∗l

4 = − 1

1 − (λl)2

1

2
κW−

1

(
1 − cs

2
)
(µ∗ − µl),

(7.12)

and for the stationary wave

U ∗−
3 − U ∗+

3 = 0, U ∗+
4 − U ∗−

4 + 1
2κ

(
W +

1 − W−
1

)(
1 − cs

2
)
µ∗ = 0.

Finally along the sound wave with speed λr

Ur∗
3 − U ∗+

3 = λr

1 − (λr)2

1

2
κW +

1

(
1 − cs

2
)
(µr − µ∗),

Ur∗
4 − U ∗+

4 = − 1

1 − (λr)2

1

2
κW +

1

(
1 − cs

2
)
(µr − µ∗),

(7.13)

and for the wave with speed +1

U ∗r
3 − U ∗r

4 = Ur
3 − Ur

4 . (7.14)

Note that all of the constants τ ∗, �∗, λl and λr are already known from solving the
Riemann problem in the fluid variables. The above linear, algebraic system of eight equations
determines uniquely the eight unknowns U ∗l

3 , U ∗l
4 , U ∗−

3 , U ∗−
4 , U ∗+

3 , U ∗+
4 , U ∗r

3 and U ∗r
4 . Setting

αl = 1

2
κW−

1

(
1 − cs

2
)

1 − (λl)2
(µ∗ − µl), αr = 1

2
κW +

1

(
1 − cs

2
)

1 − (λr)2
(µr − µ∗),

and

β∗ = 1
2κ

(
W +

1 − W−
1

)(
1 − cs

2
)
µ∗,

we find

U ∗l
3 = 1

2

[
Ul

3 + Ur
3 + Ul

4 − Ur
4 − (1 + λl)αl − (1 + λr)αr

]
,

U ∗l
4 = 1

2

[
Ul

3 − Ur
3 + Ul

4 + Ur
4 + (1 + λl)αl + (1 + λr)αr + β∗], (7.15)
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U ∗−
3 = U ∗+

3 = 1
2

[
Ul

3 + Ur
3 + Ul

4 − Ur
4 + (−1 + λl)αl − (1 + λr)αr − β∗],

U ∗−
4 = 1

2

[
Ul

3 − Ur
3 + Ul

4 + Ur
4 + (−1 + λl)αl + (1 + λr)αr + β∗],

U ∗+
4 = 1

2

[
Ul

3 − Ur
3 + Ul

4 + Ur
4 + (−1 + λl)αl + (1 + λr)αr − β∗], (7.16)

U ∗r
3 = 1

2

[
Ul

3 + Ur
3 + Ul

4 − Ur
4 + (−1 + λl)αl + (−1 + λr)αr − β∗],

U ∗r
4 = 1

2

[
Ul

3 − Ur
3 + Ul

4 + Ur
4 + (−1 + λl)αl + (−1 + λr)αr − β∗]. (7.17)

A similar result holds for U1 and U2. Note that jumps in the geometry across the four interfaces
occur if and only if there are jumps in the matter variables across the inner pair of interfaces.
Note too that this Riemann solution violates the constraint equations (3.9) and (3.10). Jumps
in U3 = btx and U4 = bxx can occur only at those interfaces where the matter variables are
discontinuous.

This completes the construction of the Riemann solution in the variables (U3, U4) when
there are only shock waves.

If the fluid variables have a rarefaction fan, we can determine U3, U4 within the rarefaction:

−ξU ′
3 − U ′

4 − 1
2κW1

(
1 − cs

2
)
µ′ = 0, −ξU ′

4 − U ′
3 = 0,

where ξ = x/t , and a is a constant. Therefore the rarefaction fan (and thus the rarefaction
curve) in the variable (U3, U4) issuing from a left-hand state (U−

3 , U−
4 ) is given by the explicit

formula (ξ ∈ [λ−, λ+]),

U3(ξ) = U−
3 +

∫ ξ

λ−

x

1 − x2

1

2
κW1

(
1 − cs

2
)
µ′(x) dx,

U4(ξ) = U−
4 −

∫ ξ

λ−

1

1 − x2

1

2
κW1

(
1 − cs

2
)
µ′(x) dx.

(7.18)

Here λ−, λ+ are the smallest and largest speeds of the rarefaction fan and µ = µ(ξ) denotes
the energy density within the fan. We end up with explicit expressions for the rarefaction.
When the left-hand or right-hand sound waves are rarefaction fans, the jump conditions (7.12)
and (7.13) should be replaced by

U ∗
3 = Ul∗

3 +
∫ λ+l

λ−l

x

1 − x2

1

2
κW−

1

(
1 − cs

2
)
µl ′(x) dx,

U ∗
4 = Ul∗

4 −
∫ λ+l

λ−l

1

1 − x2

1

2
κW−

1

(
1 − cs

2
)
µl ′(x) dx,

(7.19)

and

U ∗r
3 = U ∗

3 +
∫ λ+r

λ−r

x

1 − x2

1

2
κW +

1

(
1 − cs

2)µr ′
(x) dx,

U ∗r
4 = U ∗

4 −
∫ λ+r

λ−r

1

1 − x2

1

2
κW +

1

(
1 − cs

2
)
µr ′

(x) dx,

(7.20)

respectively. This completes the discussion of the Riemann solver. �

Remark 7.3. The discussion above is not applicable to the limiting case cs = 1 because we
assumed right at the start that v ∈ (−1, 1). However the limiting case is very simple. We do
not use the equation for the V -variable, but adjoin U7 = φxt and U8 = φxx to the U-variable
and W8 = φt and W9 = φx to the W -variable. We need also to simplify the first (5.2) and the
second (5.6). Now U7 and U8 satisfy equations whose principal part is identical to that of (5.4)
on replacing U5 by U7 and U6 by U8. Then remark 6.2 applies to U7, U8. Discontinuities in
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these components cannot appear unless they exist at the initial time. Thus the ‘fluid’ variables
remain continuous. It follows that there can be no discontinuities in the U-variable unless they
were present initially.

8. A generalized Glimm scheme

In this section, we introduce a generalization of the Glimm scheme [5, 10, 11] to solve the
initial value problem and we establish its convergence towards a solution of the system of
equations under consideration, under the assumption that no blow up occurs in the geometry
terms, that is on any interval [0, T ] satisfying

sup
t∈[0,T ],x∈R

|W(t, x)| < ∞.

It will be convenient to set u = (U, V,W) and to rewrite the equations in the form

∂tu + ∂xf (u) = g(u), u(t, x) ∈ � ⊂ R
15, t > 0, x ∈ R, (8.1)

The precise expressions of f, g,� are easily deduced from (5.1). The approximation scheme
can be decomposed into a step based on a (generalized) Riemann solver, and a step based on
an ODE solver.

We start by analysing the properties of the source term g(u). For every u0 ∈ � we denote
by u(t) = St (u0) the solution of the ordinary differential equation

u′(t) = g(u(t)), t � 0, u(0) = u0. (8.2)

In general, the solution of (8.2) is defined on a finite time interval only, since u(t) may
tend to infinity in finite time. We shall also use the notation St (u0) = (U, V,W)(t), u0 =
(U0, V0,W0), etc.

Lemma 8.1 (Uniform L∞ bounds). For every u0 ∈ � the solution St (u0) of the problem
(8.2) satisfies the following property: as long as the geometry variables W remain bounded,
the geometry variables U and the fluid variables V remain also bounded and, furthermore, the
fluid variables remain bounded away from the singularities µ = 0 and v = ±1. The Riemann
invariant variables of the fluid (defined in section 7) satisfy the estimate

|w(t)| + |z(t)| � |w0| + |z0| + C∗t, t � T , (8.3)

where C∗ is a constant depending only on supt∈[0,T ] |W(t)| and T is any time such that this
supremum is finite.

Proof. We first show that, as long as U,W remain bounded, we have

0 � µ � C, −1 < v < 1.

To this end we rewrite the V-system in terms of the variables µ, v. Neglecting the space
derivatives in the fluid equations we find

τt = T1(V ,W), St = T2(V ,W),

where T1 and T2 were defined in (3.19). It is straightforward to replace τ and S by µ and v,
finding

µt = f (µ, v), vt = g(v), (8.4)

with{
f (µ, v) = −µ

(
1 + cs

2
)
((1 − v2)W2 + 2(W4 + vW5))

/(
1 − cs

2v2
)

g(v) = (1 − v2)
(−v

(
1 − cs

2
)
W2 − (

1 − cs
2v2

)
W3 + 2vcs

2(W4 + vW5)
)/(

1 − cs
2v2

)
.

(8.5)
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As long as W2,W3,W4 and W5 remain bounded, g(v) is a smooth function of v ∈ (−1, 1)

and g(±1) = 0. We deduce that trajectories t 
→ v(t) cannot exit the interval (−1, 1) and
therefore |v| < 1.

Note further that f (µ, v) is linear in µ,

f (µ, v) = f̃ (v)µ,

where f̃ (v) is smooth for |v| < 1 and smooth at , bt and bx . It follows that µ stays positive
and cannot blow up in finite time, unless the geometry variables themselves blow up.

To bound V uniformly we now consider the evolution of the Riemann invariant variables:

wt = 2

1 − cs
2v2

(−v
(
1 − cs

2
)
W2 − (

1 − cs
2v2

)
W3 + 2vcs

2(W4 + vW5)
)

(8.6)

and

zt = −K0
1 + cs

2

1 − cs
2v2

((1 − v2)W2 + 2(W4 + vW5)). (8.7)

We see that

wt = BwW, zt = BzW,

where Bw,Bz are matrices that remain uniformly bounded, since, as we have just established,
the velocity variable v stays in the interval (−1, 1). As long as the geometry variable W

remains bounded, we can conclude that the fluid variables w, z are also bounded. Finally we
observe that the equations for U, for instance for U1 and U2,

U1t = 2(U3W4 − U4W5 − U5W6 + U6W7), U2t = 0,

are linear in U and therefore can be solved as long as W remains bounded. This completes
the proof of lemma 8.1. �

We now turn to the Riemann problem. Given two constant vectors uL, uR ∈ � and a
point (t0, x0) the generalized Riemann problem RG(uL, uR; t0, x0) is the Cauchy problem for
the system (8.1) with piecewise constant initial data

u(t0, x) =
{

uL, x < x0,

uR, x > x0.
(8.8)

On the other hand, the classical Riemann problem RC(uL, uR; t0, x0) is obtained by neglecting
the source term g(u). Let us denote its solution by uC(t, x; uL, uR; t0, x0). Recall that the
solution of the generalized Riemann problem is piecewise smooth and has a local structure
similar to the one of the classical Riemann problem. This motivates us to define an approximate
solution of it, denoted by uG(t, x; uL, uR; t0, x0) and defined for all t > t0 and x ∈ R, by

uG(t, x; uL, uR; t0, x0) = uC(t, x; uL, uR; t0, x0) +
∫ t−t0

0
g(Sτ u

C(t, x; uL, uR; t0, x0)) dτ.

(8.9)

Observe that uG at a given time t only depends upon uC at the same time t.
We claim that the function uG approximates (in an averaged sense) the system of

equations (8.1). For any s, r > 0 and any smooth function θ : R
+ × R → R with compact

support, we set

�(s, r; θ) =
∫ t0+s

t0

∫ x0+r

x0−r

(uG∂tθ + f (uG)∂xθ + g(uG)θ) dx dt.

It is not difficult to check the following estimate.
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Lemma 8.2 (Approximate balance law for the Riemann solver). For any t0 � 0, x0 ∈
R, uL, uR ∈ �, any s, r > 0, and any smooth, compactly supported function θ : R

+ ×R → R,
the function uG(t, x) = uG(t, x; uL, uR; t0, x0) satisfies the estimate

�(s, r; θ) −
∫ x0+r

x0−r

uG(t0 + s, x)θ(t0 + s, x) dx +
∫ x0+r

x0−r

uG(t0, x)θ(t0, x) dx

−
∫ t0+s

t0

f (uG(t, x0 + r))θ(t, x0 + r) dt +
∫ t0+s

t0

f (uG(t, x0 − r))θ(t, x0 − r) dt

= O(1)(s2 + r2)(s + r + |uR − uL|), (8.10)

where O(1) is a bounded function depending on θ and remaining uniformly bounded when
r, s → 0.

Our generalization of the Glimm method is based on the approximate Riemann solver
just introduced. Let s and r denote time and space mesh lengths satisfying s/r < 1, the ratio
s/r being kept constant while r, s → 0. Let a = (ak)k=0,1,... be an equidistributed sequence
in (−1, 1).

We define an approximate solution ur = ur(t, x) of the general Cauchy problem consisting
of system (8.1) and prescribed initial data u0:

u(0, x) = u0(x), x ∈ R. (8.11)

First, ur(0, x) is defined to be a piecewise constant approximation of u0, say

ur(0, x) = u0((h + 1)r), x ∈ [hr, (h + 2)r), h even. (8.12)

If ur(t, x) is known for t < ks for some integer k � 0, we set

ur(ks+, x) = ur(ks−, (h + 1 + ak)r) x ∈ [hr, (h + 2)r), k + h even. (8.13)

Then, in each region ks � t < (k + 1)s, (h − 1)r � x < (h + 1)r (k + h even), the function
ur is defined as the approximate solution to the generalized Riemann problem

RG(ur(ks, (h − 1)r), ur(ks, (h + 1)r); ks, hr),

that is (by our definition of the approximate solver)

ur(t, x) = uG(t, x; ur(ks, (h − 1)r), ur(ks, (h + 1)r); ks, hr)

t ∈ [ks, (k + 1)s), x ∈ [(h − 1)r, (h + 1)r), k + h even.
(8.14)

This completes the description of the scheme.
We will use the notation

ur = (Ur, Vr ,Wr).

Based on lemma 8.1 we have :

Lemma 8.3 (L∞ Stability of the generalized Glimm scheme). As long as the geometry
variables Wr remain uniformly bounded, then the fluid variables Vr remain uniformly bounded
and, furthermore, remain bounded away from the singularities µ = 0 and v = ±1. The density
µr and velocity vr associated with Vr satisfy, for every T before blow up, the estimates

c∗ � µr(t, x) � C∗, |vr(t, x)| � 1 − c∗, t ∈ [0, T ), x ∈ R, (8.15)

where c∗ ∈ (0, 1) and C∗ > 0 depend only on T and

sup
t∈[0,T ],x∈R

|Wr(t, x)|.
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Proof. The lemma follows directly from the following two observations:

(1) In view of lemma 6.1, the ODE solver ensures constancy of the sign of the density
variable and keeps the velocity variable within the physically admissible interval (−1, 1).
Moreover, the L∞ norm of µr and vr can increase after each ODE step but, for each time
step, the increase is at most C∗s (see (8.3)).

(2) On the other hand, the Riemann solver satisfies a maximum principle in the Riemann
invariants associated with the fluid variables (see Smoller and Temple [18]).

Our scheme combines the two effects above. Adding up the various contributions C∗ we
deduce that, over the time interval [0, T ],

sup
x

|wr(t, x)| + sup
x

|zr(t, x)| � sup
x

|w0(x)| + sup
x

|z0(x)| + C∗T , t � T .

Rewriting this estimate in terms of the density and velocity gives precisely (8.15). This
completes the proof of lemma 8.3. �

We now establish the uniform stability in total variation for V and W , together with the
L∞ stability of Ur . To simplify the notation we set

uk,h+1 = ur(ks+, (h + 1)r), k + h even,

which, by construction, has the form

uk,h+1 = ũk,h+1 +
∫ s

0
g(Sτ ũk,h+1) dτ, k + h even,

where ũk,h is a value taken by the solution of the classical Riemann problem

RC(uk−1,h, uk−1,h+2; (k − 1)s, (h + 1)r).

Using earlier notation we actually have

ũk,h+1 = uC
(
ak

r

s
; uk−1,h, uk−1,h+2

)
.

Following Glimm [5] we decompose the (t, x)-plane into diamonds �k,h (here k + h is
even) with centre (ks, hr) and vertices

S = ((k − 1)s, (h + ak−1)r), W = (ks, (h − 1 + ak)r),

E = (ks, (h + 1 + ak)r), N = ((k + 1)s, (h + ak+1)r).
(8.16)

For a fixed pair (k, h) we set

uS = uk−1,h, uW = uk,h−1, uE = uk,h+1, uN = uk+1,h,

and

ũW = ũk,h−1, ũE = ũk,h+1, ũN = ũk+1,h.

By construction, uW and uE are values achieved by approximate Riemann solutions at the
points ((k − 1)s, (h − 1)r) and ((k − 1)s, (h + 1)r) respectively, more precisely

uW = ũW +
∫ s

0
g(Sτ ũW ) dτ

and

uE = ũE +
∫ s

0
g(Sτ ũE) dτ.

Similarly, we have

uN = ũN +
∫ s

0
g(Sτ ũN ) dτ.
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We define the strength vector ε(uL, uR) ∈ R
9 from the jumps of the solutions of the

Riemann problem with data uL, uR: the first two components ε1(uL, uR) and ε2(uL, uR) are
the jumps of the log of the density across the fluid shock or rarefaction waves; the remaining
six components of ε(uL, uR) are associated with the geometric variable W and are the jumps
in the corresponding Riemann invariants (along the waves with light speed ±1). It is important
to note that ε depends only on the V,W variables. This is consistent with the fact that we do
not need to control the total variation in U. The norm |ε(uL, uR)| is defined to be the sum of
the absolute values of the components. All the estimates below involve constants that depend
on the geometry for which we assume uniform boundedness.

Lemma 8.4. The wave strength ε : � × � → R
9 is a smooth function of its arguments. For

any uL, uR, u′
L, u′

R (in any given compact subset of �) we have the uniform estimate

ε(u′
L, u′

R) = ε(uL, uR) + O(1)|ε(uL, uR)|(|u′
L − uL| + |u′

R − uR|)
+ O(1)|(u′

R − u′
L) − (uR − uL)|. (8.17)

Proof. Note that εi(uL, uR) = 0 if uR = uL, so that

εi(uL, uR) =
∫ 1

0

∂εi

∂ur

(uL, (1 − τ)uL + τuR)(uR − uL) dτ

and similarly

εi(u
′
L, u′

R) =
∫ 1

0

∂εi

∂ur

(u′
L, (1 − τ)u′

L + τu′
R)(u′

R − u′
L) dτ.

We thus get

εi(u
′
L, u′

R) − εi(uL, uR)

=
∫ 1

0

[
∂εi

∂uR

(u′
L, (1 − τ)u′

L + τu′
R) − ∂εi

∂uR

(uL, (1 − τ)uL + τuR)

]
(uR − uL) dτ

+
∫ 1

0

∂εi

∂uR

(u′
L, (1 − τ)u′

L + τu′
R)((u′

R − u′
L) − (uR − uL)) dτ

= O(1)(|u′
L − u′

L| + |u′
R − u′

R|)|uR − uL| + O(1)|(u′
R − u′

L) − (uR − uL)|,
which leads to the desired estimate since

|uR − uL| = O(1)|ε(uL, uR)|. �

Relying on notation (8.16) we define the strength of the waves entering the diamond
�k,h(k + h even) as

ε∗(�k,h) = |ε(̃uW , uS)| + |ε(uS, ũE)|,
and the strength of the waves leaving the diamond �k,h as

ε∗(�k,h) = |ε(uW , ũN)| + |ε(̃uN, uE)|.
We consider spacelike curves J connecting vertices of the form (ks, (h + 1 + ak)r) (k + h

even). If J contains the segment from ((k−1)s, (h+ak−1)r) to (ks, (h+1+ak)r), one says that
the waves (uk−1,h, ũk,h+1) cross J. We use the same terminology for the waves (̃uk,h−1, uk−1,h).
The total variation along J is then defined by

L(J ) =
∑
waves

crossing J

|ε(uk−1,h, ũk,h+1)| + |ε(̃uk,h−1, uk−1,h)|,
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which can also be decomposed according to its components V,W :

L(J ) = LV (J ) + LW(J ).

We will also control the sup norm of the variable U:

SU(J ) = sup
J

N(Ur),

where, for every function U = U(x),N(U) is defined from the Riemann invariants
U1 ± U2, U3 ± U4 and U5 ± U6 as

N(U) = sup
R

|U1 ± U2| + |U3 ± U4| + |U5 ± U6|.

A spacelike curve J2 is said to be an immediate successor of a spacelike curve J1 if the
curves J1 and J2 pass through the same vertices, except for one, and if J2 lies to the future of
the curve J1.

Lemma 8.5. Let J1 and J2 be two I-curves, J2 being an immediate successor of J1. Denote
by �k,h the diamond limited by these curves. Then we have

LV (J2) − LV (J1) � C∗sε∗(�k,h), LW(J2) − LW(J1) � C∗sε∗(�k,h), (8.18)

where C only depends on the amplitude of the geometry variables Wr . Furthermore, the L∞

norm in the U-variable is controlled by

SU(J ) � (1 + C∗T ) sup
K

L(K), (8.19)

where the supremum is taken over all spacelike curves.

Proof. Let uS, uW , uE, uN be the values taken by the function ur at the vertices of �k,h. We
find

L(J2) − L(J1) = |ε(uW , ũN)| + |ε(̃uN, uE)| − |ε(̃uW , uS)| − |ε(uS, ũE)|,
= ε∗(�k,h) − ε∗(�k,h),

by definition of ε∗ and ε∗.
Assume first that the effect of the source term g(u) can be neglected. Then, the total

variation in V (measured with log µ) is non-increasing [18],

LV (J2) − LV (J1) � 0,

while the total variation in W (the left-hand side of (5.6) is linear) is conserved,

LW(J2) − LW(J1) = 0.

This completes the derivation of (8.18) when the source term is neglected.
We now include the effect of the source term g(u) and consider the decomposition

L(J2) − L(J1) = X1 + X2,

X1 = |ε(̃uW ,˜̃uN)| + |ε(̃̃uN, ũE)| − |ε(̃uW , uS)| − |ε(uS, ũE)|,
X2 = |ε(uW , ũN)| + |ε(̃uN, uE)| − |ε(̃uW ,˜̃uN)| + |ε(̃̃uN, ũE)|,

where ˜̃uN is obtained from ũN by applying the ODE solver backwards. Now, we observe that
the discussion in the first part of this proof applies to the term X1, while for the term X2 we
can rely on lemma 8.2 and obtain

|X2| � |ε(uW , ũN)|Cs + |ε(̃uN, uE)|Cs + C|uW − ũN − ũW + ˜̃uN | + C|uE − ũN − ũE + ˜̃uN |
� Cs(|ε(uW , ũN)| + |ε(̃uN, uE)|).



The Glimm scheme for perfect fluids on plane-symmetric Gowdy spacetimes 5065

Hence, the total variation of the geometric variable W satisfies

LW(J2) − LW(J1) � Csε∗(�k,h).

The change of the total variation of the geometric variables, that is LW(J2) − LW(J1), is
controlled by the total variation of the right-hand side.

To estimate the L∞ norm of U we rely on the proof of theorem 6.1 in section 6, which
enabled us to derive explicit formula for the Riemann solution. It shows that, when the source
term is neglected, the L∞ norm in U increases proportionally to the total variation in µ and W1.
The Riemann invariant U1 − U2 for instance ‘propagates’ with the light speed and, therefore,
waves associated with the sound speed contribute at most once to the L∞ norm in U. In other
words, we have

SU(J ) � sup
K

L(K),

by taking the supremum over all spacelike curves originating on the initial axis t = 0 and
ending on the curve J . When the source term is taken into account we follow the same
discussion above for the variables V and W and find

SU(J ) � sup
K

L(K) + C∗T sup
K

L(K).

This completes the proof of lemma 8.5. �

For each k0 denote by Jk0 the spacelike curve connecting the points of the form
(ks, (h + ak)r) with k = k0 or k = k0 + 1. By induction from lemma 8.5 we have immediately

L
(
Jk0+1

)
� L

(
Jk0

)
+ C∗s

∑
h

ε∗
(
�k0,h

)
= (1 + C∗s)L

(
Jk0

)
� eC∗T L(J1), (8.20)

where L(J1) � CT V (V0,W0).
We have now established the following result.

Theorem 8.6. Let the initial data u0 : R → � be a function with bounded variation. Consider
the approximate solutions ur = (Ur, Vr ,Wr) constructed by the generalized version of the
Glimm scheme, as defined above. Suppose that on some interval [0, T ] the geometry variables
remain uniformly bounded, that is

sup
t∈[0,T ],x∈R

|Wr(t, x)| � C ′
∗ (8.21)

for some C ′
∗ independent of r.

Then, there exist constants c∗ ∈ (0, 1) and C∗ > 0 depending on C ′
∗ and T, such that

the approximate solutions ur : [0, T ] × R → � remain uniformly bounded in L∞ and for
t ∈ [0, T ]

c∗ � µr(t, x) � C∗, |vr(t, x)| � 1 − c∗, (8.22)

‖Ur(t)‖L∞(R) � ‖Ur‖L∞(R) + C∗T V ((V0,W0)), (8.23)

T V ((Vr,Wr)(t)) � C∗T V ((V0,W0)), (8.24)

and are Lipschitz continuous in time, i.e. for every 0 � t � t ′∫
R

|(Vr,Wr)(t, x) − (Vr,Wr)(t
′, x)| dx � (|t − t ′| + s)C∗T V ((V0,W0)). (8.25)
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We conclude this section with:

Theorem 8.7 (Convergence of the generalized Glimm scheme). Under the assumptions of
theorem 8.6 and for almost all equidistributed sequences a = (ak) there exists a subsequence
of ur such that (Vr,Wr) converges strongly in the L1 norm to a limit (V ,W) and Ur converges
in the averaged sense (weak-star sense in L∞) to some limit U. The function (U, V,W) is a
weak solution (in the integral sense) to the Cauchy problem (8.1) and (8.6), satisfying moreover

c∗ � µ(t, x) � C∗, |v(t, x)| � 1 − c∗, (8.26)

T V ((V,W)(t)) � C∗T V ((V0,W0)), (8.27)

and for every t, t ′ � 0∫
R

|(V ,W)(t, x) − (V ,W)(t ′, x)| dx � |t − t ′|C∗T V ((V0,W0)). (8.28)

Our main result, theorem 6.1, follows now from theorems 8.6 and 8.7.

Proof. In view of the uniform estimate in theorem 8.6 and by Helly’s compactness theorem
it is standard matter to extract a subsequence of approximate solutions (still denoted ur ) such
that (Vr,Wr) converges strongly in L1 to some limit (V ,W) : R

+ × R → R
9 while Ur

converges weakly to some limit U. All the estimates known for ur extend to the limit function
u = (U, V,W).

Relying on lemma 8.2 we now show that u is a weak solution of (8.1). Let θ : R
+×R → R

be a smooth function with compact support and set

�(ur, θ) =
∫ ∫

R
+×R

(ur∂t θ + f (ur)∂xθ + g(ur)θ) dx dt. (8.29)

Using that Ur converges weakly and Vr,Wr converge strongly, while all the equations under
consideration are linear in U (but nonlinear in V,W ), it follows that, by Lebesgue dominated
convergence theorem, as r → 0

�(ur, θ) → �(u, θ). (8.30)

We are going to prove that �(ur, θ) tends to zero, which will establish that �(u, θ) = 0
and that u is a weak solution. We first proceed by tacitly assuming that the total variation of
all component of ur is uniformly bounded and, next, explain how to handle Ur which is only
in L∞. Denote by χ

k0,h0
supp θ the characteristic function of the support of the function θ . We can

write

�(ur, θ) =
∑
k0

∑
h0 odd

∫ (k0+1)s

k0s

∫ (k0+1)r

(k0−1)r

(ur∂t θ + f (ur)∂xθ + g(ur)θ) dx dt

= �1
r + �2

r + �3
r ,

where

�1
r =

∑
k0

∑
h0 odd

O(1)(s2 + r2)(s + r + |uk0,h0+1 − uk0,h0−1|)χk0,h0
supp θ

�2
r =

∑
k0

∑
h0 odd

(∫ (k0+1)r

(k0−1)r

ur((k0 + 1)s−, x)θ((k0 + 1)s, x) dx

−
∫ (k0+1)r

(k0−1)r

ur(k0s+, x)θ(k0s, x) dx

)
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�3
r =

∑
k0

∑
h0 odd

{∫ (k0+1)s

k0s

f (ur(t, (h0 + 1)r − 0))θ(t, (h0 + 1)r) dt

−
∫ (k0+1)s

k0s

f (ur(t, (h0 − 1)r + 0))θ(t, (h0 − 1)r) dt

}
.

Since Vr,Wr have uniformly bounded total variation and θ is a smooth function one finds
easily

�1
r = O(1)r. (8.31)

The term

�2
r = −

∑
k

∫ +∞

−∞
[ur ](ks, x)θ(ks, x) dx

can be rewritten in the form

�2
r =

∑
k

∑
h

∫ (h+1)r

(h−1)r

(ur(ks−, (h + ak)r−) − ur(ks−, hr−))θ(ks, x) dx.

This term was studied by Glimm [5] and, for almost every random sequence (ak)k , satisfies∣∣�2
r

∣∣ � Cr. (8.32)

In order to control �3
r , we use the Lipschitz continuity of the smooth function f and

obtain

�3
r =

∑
k0

∑
h0 odd

∫ (k0+1)s

k0s

(f (ur(t, (h0 + 1)r−)) − f (ur(t, (h0 + 1)r + 0)))θ(t, (h0 + 1)r) dt

= O(1)
∑
k0

∑
h0 odd

∫ (k0+1)s

k0s

|ur(t, (h0 + 1)r+) − ur(t, (h0 + 1)r−)| dtχ
k0,h0
supp θ

= O(1)
∑
k0

∑
h0 odd

∫ (k0+1)s

k0s

t |̃uk0,h0+1) − g(̃uk0,h0+1)| dtχ
k0,h0
supp θ

= O(1)
∑
k0

∑
h0

∫ (k0+1)s

k0s

tr dtχ
k0,h0
supp θ ,

thus

�3
r = O(1)r. (8.33)

Finally, we discuss the component Ur which is only bounded. The original proof of
Glimm requires that the approximate solution is of uniformly bounded total variation, but can
be extended to our situation where the component Ur is solely bounded. The main observation
is that (8.32) must be replaced by the weaker statement

�2
r → 0 when r → 0, (8.34)

which is clearly sufficient to deduce the result.
In conclusion we have

�(ur, θ) → 0

so that the limit function u satisfies

�(u, θ) = 0

and, therefore, is a weak solution of (8.1). The proof of theorem 8.7 is complete. �
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Remark 8.8. It would be interesting to estimate the L∞ norm of the geometric variables W

from the initial data of the problem in order to make the condition (8.21) more explicit. In
particular, this would require to be able to estimate the time of blow up from the initial data of
the problem.

9. Implications for numerical relativity

In recent years numerical relativists have started to treat the special relativistic Euler equations
using modern high resolution shock-capturing (HRSC) methods. There are many such
algorithms, and a detailed comparison can be found in e.g. [8]. They involve three components,
a reconstruction process, an (approximate or exact) Riemann solver and a time discretization
method. Here we will use a third order, weighted essentially non-oscillatory (WENO)
reconstruction [17], the (approximate) Marquina solver [3] and the third order total variation
diminishing Runge–Kutta method (TVDRK3) advocated in [17], for we have found them to
be robust and reliable even in extreme situations [9].

Note that the relativistic Euler equations (3.18) involve only first derivatives of a and b.
Thus we can form a closed system of evolution equations by adjoining the equations (5.6)
for the W -variables. We call this the small system. Thus the simplest approach is to apply
the HRSC algorithm to the Euler equations and some standard approach, e.g., iterated Crank–
Nicholson to the W-equations. However this turns out to be inaccurate and significant
violations of the constraint equations (3.9) and (3.10) develop. This is not surprising for
those equations imply discontinuities in btx and bxx which the standard approach cannot
handle. Our next approach was to treat the first derivatives on an equal footing to the fluid
variables and to apply WENO, Marquina and TVDRK3 schemes to the nine-dimensional
system of equations. This reduced but did not eliminate the constraint violations.

Another approach is to integrate the complete system of U-variables (second derivatives),
V -variables (fluid quantities) and W -variables described in section 4. Because this system has
dimension 15 we call it the big system. Constraint violations, away from discontinuities, were
reduced to acceptable limits. However the evolution of the V and W variables was identical to
that of the small system! The U variables were evolved and satisfied the constraint equations,
but they were not coupled to the other variables.

The numerical results were improved when some coupling was enforced, as now
described. Recall two of the W equations (5.6)

W4t − W5x = · · · , W5t − W4x = 0,

where the source term is irrelevant here. These say

(bt )t − (bx)x = · · · , (bx)t − (bt )x = 0.

We now replace (bx)x by bxx = U4 and (bt )x = btx = U3, i.e., we evolve

W4t = U4 + · · · , W5t = U3.

The other two pairs of equations are treated similarly. This does not reduce the dimension of
the system, it is still 15, but the characteristic structure is considerably simplified. We call this
the medium system.

In order to use characteristic WENO decomposition and the Marquina solver we need
the eigenvalues of the 15 × 15 Jacobian matrix and left and right eigenvectors normalized
by l · r = 1. In what follows we write right eigenvectors as vectors and left eigenvectors as
covectors. Further c± = 1 ± cs

2 and λ± = (v ± cs)/(1 ± vcs). Finally define

D = v2 − cs
2

4cs(1 − v2)
.
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Figure 2. The shock tube evolution at time t = 0.5. The four graphs show, as functions of x,
respectively µ/4 and v, atx and axx, btx and bxx , and finally the Hamiltonian and momentum
constraints.

There is an eigenvalue λ = 0 with multiplicity 7. A basis of normalized eigenvectors is

l0 = d(e2a), r0 = ∂/∂ e2a + 1
2κµ(∂/∂axx − ∂/∂bxx),

l1 = d(at ), r1 = ∂/∂at , l2 = d(ax), r2 = ∂/∂ax,

l3 = d(bt ), r3 = ∂/∂bt , l4 = d(bx), r4 = ∂/∂bx,

l5 = d(ct ), r5 = ∂/∂ct , l6 = d(cx), r6 = ∂/∂cx.

The eigenvalue λ = −1 has multiplicity 3 and the eigenspace has a normalized basis

l7 = 1
4κµcd(e

2a) + 1
2d(btx + bxx) + 1

4κ e2ad(τ − S), r7 = ∂/∂btx + ∂/∂bxx,

l8 = − 1
4κµc+d(e2a) + 1

2d(atx + axx) − 1
4κe2a(c+/c−)d(τ − S), r8 = ∂/∂atx + ∂/∂axx,

l9 = 1
2d(ctx + cxx), r9 = ∂/∂ctx + ∂/∂cxx.

The eigenvalue λ = 1 has multiplicity 3 and the eigenspace has a normalized basis

l10 = − 1
4κµcd(e2a) + 1

2d(btx − bxx) − 1
4κ e2ad(τ + S), r10 = ∂/∂btx − ∂/∂bxx,

l11 = 1
4κµc+d(e2a) + 1

2d(atx − axx) − 1
4κ e2a(c+/c−)d(τ + S), r11 = ∂/∂atx − ∂/∂axx,

l12 = 1
2d(ctx − cxx), r12 = ∂/∂ctx − ∂/∂cxx.

The eigenvalue λ = λ− is simple with eigenvectors

l13 = −(c+/c−)D(−dτ + (dS)/λ+),

r13 = κ e2a[∂/∂atx − λ−−1∂/∂axx − (c−/c+)(∂/∂btx − λ−−1∂/∂bxx + 2λ−−1∂/∂τ + 2∂/∂S)],
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Figure 3. The shock tube evolution at time t = 0.5. The four graphs show, as functions of x,
respectively µ/4 and v, atx and axx, btx and bxx , and finally the Hamiltonian and momentum
constraints. This is a ‘zoom-in’ of figure 2 to the range 0.4 � x � 0.5.

and the eigenvalue λ = λ+ is simple with eigenvectors

l14 = −(c+/c−)D(dτ − (dS)/λ−),

r14 = κ e2a
[
∂/∂atx − λ+

−1∂/∂axx − (c−/c+)(∂/∂btx − λ+
−1∂/∂bxx + 2λ+

−1∂/∂τ + 2∂/∂S)
]
.

We now describe two numerical simulations in which c(t, x) ≡ 0. The first simulation is
a general relativistic version of the classic shock tube problem [20]. We chose time-symmetric
initial data with v(0, x) = S(0, x) = at (0, x) = bt (0, x) = 0. We also chose a(0, x) = −2.
The constraint equation (3.10) is identically satisfied. We chose

κµ(0, x) =
{

100, x < 0,

1, x > 0,

and cs
2 = 1/3 appropriate to black-body radiation. The remaining constraint equation (3.9)

is now a first-order ordinary differential equation for bx which can be solved analytically for
x < 0 and x > 0. Setting f = κ e2aτ , a constant, we have

bx = −
√

f

3
tan

(
1

2

√
3f x + C

)
,

where C is an integration constant. The two constants of integration were used to make bx

continuous at x = 0 and to place the curvature singularity well away from the domain of
integration −1 � x � 1. Our cell-centred simulation used 800 cells with a Courant number
of 0.5.
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Figure 4. The collision evolution at time t = 0.3. The four graphs show, as functions of x,
respectively µ/4 and v, atx and axx, btx and bxx , and finally the Hamiltonian and momentum
constraints.

Figure 2 shows as functions of x, respectively µ/4 and v, atx and axx, btx and bxx and
finally the Hamiltonian and momentum constraints at time t = 0.5. Figure 3 is a ‘zoom-in’ of
figure 2 covering a much smaller x-range.

There is a right moving hydrodynamical shock which has reached x ≈ 0.45 from x = 0.
We know from the constraint equations and the evolution equations for the second derivatives
that discontinuities in the second derivatives should appear at the same point, and these are
clearly visible in figure 3. For the geometry variables we also expect effects travelling at
velocity ±1, which should be visible at x = ±0.5. Indeed there are discontinuities in the
second derivatives of a at these two x-values, although in our simulation they are not as well
resolved as the primary one at x = 0.45. The constraint equations require discontinuities in
the second derivatives of b at hydrodynamic shocks but prohibit them elsewhere, and so there
are no jumps in btx or bxx at x = ±0.5. Away from discontinuities the constraints are as low
as one would expect from a continuous simulation, and this has been verified by convergence
tests.

The second simulation, the collision problem, is similar to the first. There are again two
density states but the transition between them is initially continuous and the states are moving
towards each other

µ(0, x) = 40

κ
(1.1 + tanh(−40x)), v(0, x) = 20

κ
tanh(−40x).

We chose a(0, x) = −3.0 and at (0, x) = 0. We treated the constraint equations as coupled
ordinary differential equations for bt (0, x) and bx(0, x) and solved them numerically assuming
they both vanished at x = 0.
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Figure 5. The collision evolution at time t = 0.3. The four graphs show, as functions of x,
respectively µ/4 and v, atx and axx, btx and bxx , and finally the Hamiltonian and momentum
constraints. This is a ‘zoom-in’ of figure 4 to the range −0.05 � x � 0.35.

We describe the solution at t = −0.3, and figures 4 and 5 are the analogues of figures 2
and 3. Although the hydrodynamical variables were initially smooth, two shocks have
developed at x ≈ 0.02 where the density more than doubles and at x ≈ 0.22 where it
decreases by a factor of about 40. The a-derivatives have a small blip at x = −0.3 travelling
to the left at the speed of light. There are two shocks corresponding to the hydrodynamic
shocks, and a rarefaction fan for 0.22 � x � 0.3. The b-derivatives merely have shocks
corresponding to the hydrodynamical ones. Because the shock at x ≈ 0.02 is relatively weak
the constraints are satisfied to satisfactory precision there. There are still O(�x) deviations
at the strong shock. However this feature originated much earlier and has been moving to
the right. As it does so the constraint violations in its wake can be seen to reduce quickly to
satisfactory levels. This is good news for numerical relativity.

10. Conclusions

At first sight it might appear incongruous, given the title of this paper, to discuss the propagation
of discontinuities in the curvature tensor of vacuum spacetimes. However this topic, discussed
in section 2, is the key to our results, for it forces us to look at the constraint equations. If a
discontinuity arises it must satisfy the constraint equations on any Cauchy surface, and so can
occur only in certain second derivatives of the trace-free part of the spatial 3-metric. In this
case we were able to produce a fairly general existence/uniqueness theorem.
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We are primarily concerned with curvature discontinuities produced during the evolution
of an inviscid fluid, and cannot expect to produce existence results which are more general than
those where self-gravity is not included, and so we have restricted consideration to spacetimes
with planar symmetry, and in particular polarized Gowdy spacetimes. Our main existence
result was stated in section 6, and the formal proof was outlined in the next two sections.
Some exploratory numerical calculations are reported in section 9. Here we see explicitly that
where there are hydrodynamic shocks, certain second derivatives of the metric components
(btx and bxx) also have shocks, as required for the constraints to be fulfilled. Other second
derivatives (atx and axx) contain shocks or rarefaction fans propagating at the speed of light,
as predicted by our theory.

All of this work is in progress, and suggests many new questions. One outstanding
theoretical question is how do matter shock waves interact/affect spacetime singularities?
Another is that, given that we now understand the nature of the problem, can we improve
on the quality of the numerical calculations reported in section 9? Preliminary results, to be
reported, suggest that we can.
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