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ABSTRACT
This paper provides the first study of a new dynamical instability in superfluids. This instabil-
ity is similar to the two-stream instability known to operate in plasmas. It is analogous to the
Kelvin–Helmholtz instability, but has the distinguishing feature that the two fluids are inter-
penetrating. The instability sets in once the relative flow between the two components of the
system reaches a critical level. Our analysis is based on the two-fluid equations that have been
used to model the dynamics of the outer core of a neutron star, where superfluid neutrons are
expected to coexist with superconducting protons and relativistic electrons. These equations
are analogous to the standard Landau model for superfluid helium. We study this instability
for two different model problems. First we analyse a local dispersion relation for waves in a
system where one fluid is at rest while the other flows at a constant rate. This provides a proof
of principle of the existence of the two-stream instability for superfluids. Our second model
problem concerns two rotating fluids confined within an infinitesimally thin spherical shell.
The two model scenarios are physically distinct: in the first model the two fluids are coupled
‘chemically’ and the instability sets in through acoustic waves, while in the second problem
the fluids are only coupled via the entrainment effect and the instability is associated with the
superfluid r modes. The two scenarios illustrate that the instability mechanism is generic, and
that it may set in through various modes of oscillation. We briefly discuss whether there are
conditions, e.g. in the inner crust of a mature neutron star, where the coupling between the
two fluids is sufficiently strong that the instability sets in at a relative flow small enough to be
astrophysically plausible.
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1 I N T RO D U C T I O N

In this paper we describe a new dynamical instability in superfluids.
This two-stream instability is analogous to the Kelvin–Helmholtz
instability (Drazin & Reid 1981). The key distinguishing feature of
the two-stream instability is that the two fluids are interpenetrating
rather than in contact across an interface as in the standard Kelvin–
Helmholtz scenario. The two-stream instability is well known in
plasma physics [where it is sometimes referred to as the ‘Farley–
Buneman’ instability (Farley 1963; Buneman 1963, 1959)], and it
has also been discussed in various astrophysical contexts like merg-
ing galaxies (Lovelace, Jore & Haynes 1997) and pulsar magne-
tospheres (Cheng & Ruderman 1977; Weatherall 1994; Lyubarsky
2002), but as far as we are aware it has not been previously con-
sidered for superfluids. In fact, the ‘standard’ Kelvin–Helmholtz
instability was only recently observed in the context of two super-
fluid phases separated by an interface (Blaauwgeers et al. 2002). A
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theoretical description can be found in Volovik (2002) and refer-
ences therein.

The similarity of the equations used in plasma physics [a nice
pedagogical description of the plasma two-stream instability can be
found in Anderson, Fedele & Lisak (2001)] to the ones that have
been extensively used for two-fluid superfluid models [see, for in-
stance, Mendell (1991a,b), Langlois, Sedrakian & Carter (1998),
Andersson & Comer (2001), Comer (2002) and Prix (2004)] in-
spired us to ask whether an analogous instability could be relevant
for superfluids. That this ought to be the case seemed inevitable. To
prove the veracity of this expectation, we have adapted the argu-
ments from the plasma problem to the superfluid case, and discuss
various aspects of the two-stream instability in this paper.

Of particular interest to us is the possibility that the two-stream
instability may operate in rotating superfluid neutron stars. Mature
neutron stars are expected to be sufficiently cold (e.g. below 109 K)
that their interiors contain several superfluid/superconducting com-
ponents. Such loosely coupled components are usually invoked to
explain the enigmatic pulsar glitches, sudden spin-up events where
the observed spin rate jumps by as much as one part in 106 (Lyne,
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Shemar & Graham Smith 2000). Theoretical models for glitches
(Baym et al. 1969; Ruderman 1969; Anderson & Itoh 1975) have
been discussed ever since the first Vela pulsar glitch was observed in
1969 (Radakrishnan & Manchester 1969; Reichley & Downs 1969),
but these events are still not well understood. After three decades
of theoretical effort it is generally accepted that the glitches arise
because a superfluid component can rotate at a rate different from
that of the bulk of the star. A sudden transfer of angular momentum
from the superfluid to the crust of the star could lead to the observed
phenomenon. The relaxation following the glitch is well explained
in terms of vortex creep [see for example Cheng et al. (1988)], but
the mechanism that triggers the glitch event remains elusive. In this
context, it seems plausible that the superfluid two-stream instability
may turn out to be relevant.

Any realistic neutron star model must cover a diverse collection of
physical phenomena. This obviously makes the modelling problem
extremely difficult. Fortunately, if one is mainly interested in the
dynamics of the superfluid constituents one can make several, rea-
sonably justified, simplifications. The problem becomes particularly
tractable in the outer core region where the density is such that one
expects to find superfluid neutrons, superconducting protons and a
normal fluid of highly degenerate electrons. The analysis in this pa-
per is based on equations that are expected to be valid in this region.
The problem can be discussed in terms of two coupled fluids if one
assumes that the electromagnetic interaction forces the electrons to
track the protons very closely. This coupling acts on very short time-
scales, while superfluidity allows the neutrons to be decoupled and
thus function as an independent fluid. Furthermore, since the av-
erage distance between vortices (by means of which the superfluid
mimics bulk rotation) is small one can perform a smooth-averaging
over them for both stationary and pulsating configurations (Langlois
et al. 1998; Comer, Langlois & Lin 1999). This means that, despite
being superfluid, the neutrons can be treated as an ordinary fluid.
Mendell (1991a) has determined that this two-fluid model, which
neglects other effects like magnetic fields, vortex pinning, etc., can
be reliably applied when the core matter oscillations are of suitably
high frequency.

Although the neutrons and protons can be considered as inde-
pendent fluids they are still affected by the strong force. As a re-
sult the bare neutrons (or protons) are ‘dressed’ by a polarization
cloud of nucleons comprising both neutrons and protons. Since
both types of nucleon contribute to the cloud the momentum of
the neutrons, say, is modified so that it is a linear combination
of the neutron and proton particle number density currents (the
same is true for the proton momentum). Thus the fluids exhibit
the ‘entrainment’ effect, which means that when one of the flu-
ids begins to flow it will induce a momentum in the other. Be-
cause of entrainment a portion of the protons (and electrons) will
be pulled along with the superfluid neutrons that surround the vor-
tices. This motion leads to magnetic fields being attached to the
vortices and dissipative scattering of electrons off these magnetic
fields. This ‘mutual friction’ is expected to provide one of the main
dissipative mechanisms in superfluid neutron star cores (Mendell
1991b).

In the next section, we will use a local analysis of the linearized
two-fluid equations to provide a proof of principle for the two-
stream instability. The analysed oscillation modes have a predomi-
nately acoustic nature and depend mainly on the local equation of
state of the matter. To gain some insight into the possibility that
this instability may act in neutron stars, we consider a suitably
realistic neutron-star equation of state. In Section 3, we consider
a qualitatively different situation by performing a global analysis

of modes of two rotating fluids confined within an infinitesimally
thin spherical shell. In this case, the considered modes are iner-
tial rather than acoustic. In fact, they are closely related to the
r modes of rotating single-fluid objects (Papaloizou & Pringle 1978;
Provost, Berthomieu & Rocca 1981; Andersson & Comer 2001). Be-
cause of their inertial character, entrainment is the main coupling
agent that leads to the two-stream instability operating for these
modes.

2 P RO O F O F P R I N C I P L E :
A L O C A L A NA LY S I S

2.1 Superfluid dispersion relation

We take as our starting point the two-fluid equations that have
been used to model superfluid neutron stars in a variety of contexts
(Mendell 1991a; Andersson & Comer 2001; Prix 2004). Hence, we
consider superfluid neutrons (index n) coexisting with a conglomer-
ate of charged components (index p). The corresponding equations
are (Andersson & Comer 2001; Prix 2004)

∂t nX + ∇ · (nXvX ) = 0, (1)

where nX represent the respective number densities and vX are the
two velocities. Here, and in the following, we use the constituent
index X which can be either n or p. (Note that a repeated constituent
index never implies summation.) The respective mass-densities are
obviously given by ρ X = mX nX and we further introduce the relative
velocity ∆ between the two fluids as

∆ ≡ vp − vn. (2)

The first law of thermodynamics is defined by the differential of the
energy density or ‘equation of state’, E = E(nn, np, �

2), namely

dE = µn dnn + µp dnp + α d�2, (3)

which defines the chemical potentials µX and the ‘entrainment’
function α as the thermodynamic conjugates to the densities and
the relative velocity. With these definitions we can write the two
Euler-type equations:

(∂t + vn · ∇)(vn + εn∆) + ∇(� + µ̃n) + εn� j∇v j
n = 0 (4)

(∂t + vp · ∇)(vp − εp∆) + ∇(� + µ̃p) − εp� j∇v j
p = 0 (5)

where we have defined µ̃X = µX/m X and introduced the dimen-
sionless entrainment parameters

εX ≡ 2α

ρX
. (6)

In the following we will assume that m n = m p = m. The equation
for the gravitational potential � is

∇2� = 4πGρ, (7)

where ρ = ρ n + ρ p. When α �= 0 these equations make manifest
the entrainment effect.

In order to establish the existence of the superfluid two-stream
instability we consider the following model problem. Let the un-
perturbed configuration be such that the ‘protons’ remain at rest,
while the neutrons flow with a constant velocity v0. For simplicity,
we neglect the coupling through entrainment (even though it should
be noted that it may have a significant effect), i.e. we take α = 0,
and we also neglect perturbations in the gravitational potential. Un-
der these assumptions, the two fluids are only coupled ‘chemically’
through the equation of state.
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Writing the two velocities as vn = [v0 + δvn(t, x)]x̂ and
vp = δvp(t, x)x̂ where δvn and δvp are taken to be suitably small,
we get the perturbation equations

∂tδnn + v0∂xδnn + nn∂xδvn = 0, (8)

∂tδnp + np∂xδvp = 0, (9)

and

∂tδvn + v0∂xδvn + ∂xδµ̃
n = 0, (10)

∂tδvp + ∂xδµ̃
p = 0. (11)

Next, we assume harmonic dependence on both t and x, i.e. we use
the Fourier decomposition δvX(t , x) = δvX exp [i(ω t − kx)]. This
leads to the four equations

i(ω − kv0)δnn − iknnδvn = 0, (12)

iωδnp − iknpδvp = 0, (13)

i(ω − kv0)δvn − ikδµ̃n = 0, (14)

iωδvp − ikδµ̃p = 0. (15)

We thus have four equations relating the six unknown variables
δvX , δnX and δµ̃X . To close the system we need to provide an equa-
tion of state. Given an energy functional E = E(nn, np) (and letting
m = m n = m p) we have

mδµ̃n =
(

∂µ̃n

∂nn

)∣∣∣∣
np

δnn +
(

∂µ̃n

∂np

)∣∣∣∣
nn

δnp

= ∂2E
∂n2

n

δnn + ∂2E
∂np∂nn

δnp

(16)

and similarly

mδµ̃p = ∂2E
∂np∂nn

δnn + ∂2E
∂n2

p

δnp. (17)

Finally, we define the two sound speeds by, cf. Andersson & Comer
(2001),

c2
n = nn

∂µ̃n

∂nn

∣∣∣∣
np

= nn

m

Spp

detS , (18)

c2
p = np

∂µ̃p

∂np

∣∣∣∣
np

= np

m

Snn

detS , (19)

and introduce the ‘coupling parameter’

C = nn
∂µ̃n

∂np

∣∣∣∣
nn

= nn
∂µ̃p

∂nn

∣∣∣∣
np

= −nn

m

Snp

detS (20)

which also has the dimension of a velocity squared. For later conve-
nience we have given the relation to the coefficients of the ‘structure
matrix’ SXY used by Prix, Comer & Andersson (2002).

With these definitions we get

nnδµ̃
n = c2

nδnn + Cδnp, (21)

npδµ̃
p = np

nn
Cδnn + c2

p δnp, (22)

and we can rewrite our set of equations as

nnδvn =
(

ω

k
− v0

)
δnn

=
(

ω

k
− v0

)−1 (
c2

nδnn + Cδnp

)
, (23)

npδvp = ω

k
δnp = k

ω

(
np

nn
Cδnn + c2

p δnp

)
. (24)

Reshuffling we get[(
ω

k
− v0

)2

− c2
n

]
δnn = Cδnp, (25)

[(
ω

k

)2

− c2
p

]
δnp = np

nn
Cδnn, (26)

and a dispersion relation[(
ω

k
− v0

)2

− c2
n

][(
ω

k

)2

− c2
p

]
= np

nn
C2. (27)

Introducing the ‘pattern speed’ (the phase velocity) σ p = ω/k we
have[
(σp − v0)2 − c2

n

](
σ 2

p − c2
p

) = np

nn
C2. (28)

Not surprisingly, this local dispersion relation is qualitatively similar
to the one for the plasma problem (Anderson et al. 2001). We will
now use it to investigate under what circumstances we can have
complex roots for σ p , i.e. a dynamical instability.

2.2 The superfluid two-stream instability

First of all, it is easy to see that (28) leads to the simple roots

σp =
{

±cp

v0 ± cn
(29)

in the uncoupled case, when C = 0. This establishes the interpreta-
tion of cX as the sound speeds.

To investigate the coupled case, we introduce new variables
x = σ p/cn and y = v0/cn. Then we get

f (x, y) = 1

a2
[(x − y)2 − 1](x2 − b2) = 1 (30)

where we have defined

a2 ≡ np

nn

C2

c4
n

and b2 ≡ c2
p

c2
n

. (31)

The onset of dynamical instability typically corresponds to the
merger of two real-frequency modes. If this is the case, a marginally
stable configuration will be such that equation (30) has a double
root. This happens when an inflexion point of f (x , y) coincides with
f (x , y) = 1. This is a useful criterion for searching for the marginally
stable modes of our system.

As a ‘proof of principle’ we consider the particular case of
a2 = 0.0249 and b2 = 0.0379 (we will motivate this particular
choice in Section 2.5). The real and imaginary parts of the mode-
frequencies for these parameter values are shown as functions of y in
Fig. 1. We have complex roots (an instability) in the range 0.6 < y <

1.5. The corresponding mode frequencies lie in the range 0.03 <

x 0 < 0.36. The fastest growing instability occurs for y ≈ 1.1 for
which we find that Im x ≈ 0.17. In other words, in this particular
case we encounter the two-stream instability once the rate of the
background flow is increased beyond

v0 = cn y ≈ 0.6cn. (32)

The corresponding frequency is given by

ω = kcnx0 ≈ 0.1kcn. (33)
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Figure 1. Real (left-hand panel) and imaginary (right-hand panel) parts
of the four roots of the dispersion relation (30) for model parameters
a2 = 0.0249 and b2 = 0.0379. For these parameters the quartic dispersion
relation has four real roots for both y = 0 and y = 2, while it has two real
roots and a complex conjugate pair for y in the range 0.6 < y < 1.5. In this
range, the two-stream instability is operating. The grey area corresponds to
0 � Re x � 1/2 which is contained in the range of the instability criteria
discussed in Section 2.3.

From this we see that the instability is present well before the neutron
flow becomes ‘supersonic’. This is crucial since one would expect
the superfluidity to be destroyed for supersonic flows.

Even though the indicated velocity scale for the onset of the
instability is large, the above example clearly establishes that the
two-stream instability may, in principle, operate in superfluids. Our
example indicates the existence of a lower limit of the background
flow for the instability. This turns out to be a generic feature. In
contrast, the plasma two-stream instability can operate at arbitrarily
slow flows. An ideal plasma is unstable to sufficiently long wave-
lengths for any given v0. In reality, however, one must also account
for dissipative mechanisms. In the case of real plasmas one finds
that so-called Landau damping stabilizes the longest wavelengths
(Anderson et al. 2001). Thus the two-stream instability sets in below
a critical wavelength in more realistic plasma models, and there is
typically (just like in the present case) a range of flows for which
the instability is present. We will discuss the effects of dissipation
on the superfluid two-stream instability briefly in Section 4.

2.3 Necessary criteria for instability

It is useful to consider whether we can derive a necessary con-
dition for the two-stream instability. To approach this problem in
full generality would likely be quite complicated, but we can make
good progress for the simple one-dimensional toy problem discussed
above.

We begin by multiplying the Euler equation (14) for the neutrons
by the complex conjugate δv∗

n. This leads to (after also using the
continuity equations to replace the perturbed number densities)(
ω − kv0 − k2c2

n

ω − kv0

)
|δvn|2 = C k2np

nnω
δv∗

nδvp. (34)

Similarly, we obtain from the second Euler equation (15)(
ω − k2c2

p

ω

)
|δvp|2 = C k2

ω − kv0
δv∗

pδvn. (35)

Next we combine these two equations to get

L = nn

np
σp

(
σp − v0 − c2

n

σp − v0

)
|δvn|2

+ (σp − v0)

(
σp − c2

p

σp

)
|δvp|2

= C
(
δv∗

nδvp + δv∗
pδvn

)
(36)

where we have introduced the pattern speed σ p . From this expres-
sion we see that the imaginary part of the left-hand-side must vanish,
so we should have Im L = 0. Allowing the pattern speed to be com-
plex, i.e. using σ p = σ R + iσ I we find that the following condition
must be satisfied:

Im L = σRσI

{
nn

np

[
2 − v0

σR

(
1 − c2

n

|σp − v0|2
)]

|δvn|2

+
[

2 − v0

σR

(
1 + c2

p

|σp|2
)]

|δvp|2
}

= 0. (37)

If we are to have an unstable mode, σ I �= 0, the frequency clearly
must be such that the factors multiplying the absolute values of the
two velocities have different signs.

Let us first consider the case when the factor multiplying |δvn|2
is negative. Then we find that an instability is only possible if
σ R/ v0 < 0, and the following condition is satisfied:

0 <

∣∣∣σR

v0

∣∣∣ <
1

2

(
c2

n

|σp − v0|2 − 1

)
. (38)

This shows that we must have
cn

|v0| >

∣∣∣σp

v0
− 1

∣∣∣ >

∣∣∣σR

v0
− 1

∣∣∣ =
∣∣∣σR

v0

∣∣∣ + 1 > 1 (39)

which constrains the permissible frequencies to the range
|σ R| < cn − |v0|. Thus we see that the flow must be subsonic,
i.e. |v0| < cn.

In the case when the factor multiplying |δvp|2 is negative we can
only have an instability if σ R/v0 > 0. We also require

0 <
σR

v0

<
1

2

(
1 + c2

p

|σp|2

)

<
1

2

(
1 + c2

p

σ 2
R

)
if |σp − v0|2 < c2

n

(40)

or

1

2

(
1 − c2

n

|σR − v0|2
)

<
1

2

(
1 − c2

n

|σp − v0|2
)

<
σR

v0

<
1

2

(
1 + c2

p

σ 2
R

)
if |σp − v0|2 > c2

n. (41)

For the example illustrated in Fig. 1, the condition that must be
satisfied is (40). It is useful to note two things about this criterion.
First of all, any unstable mode for which σ R > cp must lie in the
range 0 < cp < σ R < v0. Secondly, when σ R >> cp the permissible
range will be well approximated by 0 < σ R < v0/2, cf. Fig. 2. As
is clear from Fig. 1 the unstable modes satisfy this last, and most
severe, criterion.

It is worth noting that the instability can be discussed in terms of a
simple energy argument [see Casti et al. (1998) and Pierce (1974) for
similar discussions in other contexts]. After averaging over several
wavelengths, the kinetic energy of the protons is

Ep ≈ mnpδv
2
p

2
> 0. (42)

Meanwhile we get for the neutrons

En ≈ m

2
(nn + δnn)(v0 + δvn)2 (43)
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Figure 2. An illustration of the instability criterion (40) which is relevant
for the example considered in Section 2.2. This example is constructed by
introducing z = σ R/v0, and then showing the four curves: a(z) = z, b(z) =
(1 + γ 2/z2)/2, c(z) = 1 and d(z) = (z − 1)2. Here we have taken c2

n/v
2
0 = 1

and γ 2 = c2
p/c2

n = 0.0379. Criterion (40) is satisfied when d < c and a <

b (in the grey area). The corresponding range is well approximated by 0 <

σ R/v0 < 1/2.

which leads to

En ≈ mnn

2

(
v2

0 + ω + kv0

ω − kv0
δv2

n

)
(44)

from which we see that the energy in the perturbed flow is smaller
than the energy in the unperturbed case, which means that we can
associate the wave with a ‘negative energy’, when

−v0 <
ω

k
< v0 , i.e. − v0 < σR < v0. (45)

A wave that satisfies 0 < σ R < v0 moves forwards with respect
to the protons but backwards according to an observer riding along
with the unperturbed neutron flow. As we have seen above, the
unstable modes in our problem satisfy this criterion and hence it is
easy to explain the physical conditions required for the two-stream
instability to be present.

2.4 Results for a simple model equation of state

Having established that the two-stream instability may be present
in superfluids, we want to assess to what extent one should expect
this mechanism to play a role for astrophysical neutron stars. To do
this we will consider two particular equations of state. The results
we obtain illustrate different facets of what we expect to be a rich
problem.

We begin by making contact with our recent analysis of rotating
superfluid models (Prix et al. 2002) as well as the study of oscillating
non-rotating stars by Prix & Rieutord (2002). From the definitions
above we have

a2 = np

nn

S2
np

S2
pp

, (46)

b2 = np

nn

Snn

Spp
. (47)

We combine these results with the explicit structure matrix given
in equation (144) of Prix et al. (2002), which is based on a simple
‘analytic’ equation of state. This leads to

a2 = np

nn
σ 2, (48)
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σ
0.64

5
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Figure 3. An illustration of the various domains of instability for the simple
‘analytic’ equation of state of Prix et al. (2002). An absolute instability (see
discussion in the main text) is active in the grey areas (also labelled I and
II). The two-stream instability is, in principle, relevant in the remaining
parameter space. The dashed curves indicate the onset of instability when the
relative flow is equal to the neutron sound speed (y = 1). For slower flows,
these critical curves approach the absolute instability regions. The region
where the two-stream instability may operate in physical flows therefore
lies between each dashed curve and the nearest grey area. For comparison
we also indicate the curve in the x p–σ plane traced out by the PAL equation
of state (discussed in Section 2.5) as the density is varied from that near
the crust–core interface (u = 0.64) to five times that of nuclear saturation
(u = 5).

b2 = 1 + σ (1 − 2xp)

1 − xp
, (49)

where x p = np/(np + nn) is the proton fraction, and σ is defined by

σ = Snp

Spp
. (50)

As discussed by Prix et al. (2002), σ is related to the ‘symmetry
energy’ of the equation of state, cf. Prakash, Ainsworth & Lattimer
(1988).

The instability regions for this model equation of state are il-
lustrated in Fig. 3. A key feature of this figure is the presence of
regions of ‘absolute instability’. This happens when a2 > b2. Then
there exist unstable solutions already for vanishing background flow,
y = 0. That this is the case is easy to see. Consider equation (30) in
the limit y = 0. In the limit we can solve directly for x2:

x2 = 1 + b2

2
±

√(
1 + b2

2

)2

− b2 + a2 (51)

from which it is easy to see that one of the roots for x2 will be
negative if a2 > b2. Hence, one of the roots to the quartic (30) will
be purely imaginary.

The physics of this instability is quite different from the two-
stream instability that is the main focus of this paper. Yet it is
an interesting phenomenon. From the above relations we find that
a2 < b2 corresponds to

SnnSpp > S2
np. (52)

In the discussion by Prix et al. (2002) it was assumed that ‘reason-
able’ equations of state ought to satisfy this condition. We expected
this to be the case since the structure matrix would not be invert-
ible if its determinant were to vanish at some point. We now see
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that this constraint has a strong physical motivation: the condition
is violated when a2 > b2, i.e. when we have an absolute instability.
The regions where this instability is active are indicated by the grey
areas in Fig. 3.

2.5 Results for the PAL equation of state

In order to strengthen the argument that the two-stream instability
may operate in astrophysical neutron stars, we have considered a
‘realistic’ equation of state due to Prakash et al. (1988) (PAL). The
advantage of this model is that it is relatively simple. In particular, it
leads to analytical expressions for the various quantities needed in
our analysis. The energy density of the baryons for the PAL equation
of state can be written

E(nn, np) = (nn + np)
[

E0(u) + S(u)(1 − 2xp)2
]
, (53)

where E0 corresponds to the energy per nucleon, S corresponds to
the ‘symmetry energy’ (and is closely related to σ in the ‘analytic’
equation of state discussed above), and u = (nn + np)/n0 with
n0 = 0.16 fm−3 the nuclear saturation density. E0 takes the following
form:

E0(u) = A0u2/3 + B0u + C0uσ

+ 3
2∑

i=1

Ciα
−3
i

[
αi u

1/3 − arctan
(
αi u

1/3
)]

,
(54)

with A0 = 22.11 MeV, B 0 = 220.47 MeV, C 0 = − 213.41 MeV,
σ = 0.927, C 1 = −83.84 MeV, C 2 = 23.0 MeV, α1 = 2/3 and
α2 = 1/3. The symmetry term is

S(u) = AS[u2/3 − F(u)] + S0 F(u), (55)

with AS = 12.99 MeV and S0 = 30 MeV. Here F(u) is a function
satisfying F(1) = 1 which is supposed to simulate the behaviour
of the potentials used in theoretical calculations. In our study we
have only considered F(u) = u, which is one of four possibilities
discussed by Prakash et al. (1988).

We further need to account for the energy contribution of the
electrons, which is important since the electrons are highly relativis-
tic inside neutron stars. Hence, they can obtain high (local) Fermi
energies which may be comparable with the proton (local) Fermi
energies. Considering only the electrons, the leptonic contribution
to the energy density is given – in units where the speed of light is
unity – by (Shapiro & Teukolsky 1983)

Ee = me

λ3
e

χ
(
χ F

e

)
, (56)

where m e = m/1836 is the electron mass (in terms of the baryon
mass m), λe = h̄/m e is the electron Compton wavelength, and

χ (x) = 1

8π2
{x(1 + x2)1/2(1 + 2x2)

−ln[x + (1 + x2)1/2]} (57)

χ F
e = 1836

[
3π2

(
h̄

m

)3
]1/3

n1/3
p . (58)

In doing this calculation we have assumed local charge neutrality,
i.e. n e = np. The above energy term is added linearly in the equation
of state.

Having obtained an expression for the total energy as a function
of the density, we can derive explicit expressions for all quantities
needed to discuss the two-stream instability. First we need to deter-
mine the proton fraction xp. We do this by assuming that the star is

in chemical equilibrium, i.e.

µn = µp + µe. (59)

Solving (59) for xp provides us with the proton fraction as a function
of u. Given this, and the relevant partial derivatives of E + Ee we can
readily evaluate the symmetry energy as well as the sound speeds
c2

n, c2
p and the chemical coupling parameter C. With this data we can

determine the two parameters a2 and b2 which are needed if we want
to solve the local dispersion relation (30). The results we obtain for
the proton fraction and the symmetry energy are indicated in Fig. 3.
We consider the range from u = 0.64, presumed to correspond to the
core–crust boundary, to u = 5 which represents the deep core of a
realistic neutron star. The corresponding results for the two-stream
instability are shown in Fig. 4. From this figure we can see that the
two-stream instability may operate (albeit at comparatively large
relative flows) in the region immediately below the crust. Finally,
we find that the conditions at the core–crust interface are such that
a2 = 0.0249 and b2 = 0.0379. These are the values we chose for
the example in Section 2.2 and hence the results shown in Fig. 1
correspond to a physically realistic model.

3 T H E ROTAT I N G - S H E L L P RO B L E M

Our aim in this section is to construct a toy problem that probes
a different aspect of the superfluid two-stream instability. In order
to focus attention on the coupling of the two fluids caused by the
entrainment effect, we consider two fluids, allowed to rotate at dif-
ferent rates, confined within an infinitesimally thin spherical shell.
By assuming that the shell is infinitesimal we ignore radial motion,
i.e. we restrict the permissible perturbations of this system in such
a way that the perturbed velocities must take the form

δvX = − 1

R sin θ
U X

lm(t)∂ϕY m
l êθ + 1

R
U X

lm(t)∂θ Y m
l êϕ (60)

where Ym
l (θ , ϕ) are the spherical harmonics and R is the radius of

the shell. This means that the system only permits toroidal mode
solutions. In other words, all oscillation modes of this shell model

1 2 3 4 5
u

0

y

1 2 3 4 5
u

0

0.2

0.4

x
"speed of sound"

0.64n
0 0.64n

0

Figure 4. Two-stream instability results for the PAL equation of state.
Left-hand panel: the region where the two-stream instability is present (grey
area) is shown as a function of the density parameter u. We indicate the
location of the core–crust boundary (u ≈ 0.64) by a vertical dashed line.
Our model is only relevant for the core fluid, i.e. to the right of the vertical
line. Finally, the horizontal dashed line indicates when the relative flow is
equal to the (neutron) sound speed. We expect the superfluid degeneracy
to be broken beyond this level, so an instability located above this line is
unlikely to have physical relevance. The results indicate that there may be
a region of instability immediately below the crust. Right-hand panel: the
corresponding oscillation frequencies. Particularly notable is the point near
u = 2 where the two critical curves cross. At this point the symmetry energy
σ changes sign, cf. Fig. 3, and there exists a particular density such that the
two fluids are uncoupled, cf. equation (31).
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are closely related to the inertial r modes of rotating single-fluid
objects (Papaloizou & Pringle 1978; Provost et al. 1981).

The perturbation equations for the configuration we consider have
been derived in a different context by Prix, Comer & Andersson
(2004). Our primary interest here concerns whether the modes of this
simple system may suffer the two-stream instability. The presence
of the instability in this toy problem would be a strong indication
that it will also be relevant when the shells are ‘thick’ and radial
motion is possible; that is, when we consider a rotating star that
contains a partially decoupled superfluid in the core (and perhaps
also the inner crust). That this is, indeed, the case has recently been
shown for the case of inertial modes of Newtonian superfluid stars,
cf. Prix et al. (2004).

We can derive the required dispersion relation in a manner very
similar to that which yields the ordinary fluid r modes. Having as-
sumed that motion is confined to the shell, we take the curl of the
linearized forms of equation (5). This removes the pure gradient
terms containing the gravitational and chemical potentials from the
analysis. It is also found that the particle number conservation equa-
tions are automatically satisfied for perturbed velocities taking the
toroidal form written above (to leading order in a slow-rotation
analysis). The net effect is that the equation of state only enters the
problem through the entrainment parameter. In other words, the ve-
locity that sets the scale for the shell problem, and the associated
two-stream instability, is the relative rotation of the two fluids, and
not the speeds of sound which was the case for the acoustic modes
analysed earlier.

After a somewhat laborious calculation, see Prix et al. (2004)
for details, one finds that the dispersion relation for the toroidal
two-fluid modes of the shell problem is1

[l(l + 1)(1 − εn)(ω + m�n) − 2m�̃n]

× [l(l + 1)(1 − εp)(ω + m�p) − 2m�̃p]

− l2(l + 1)2εnεp(ω + m�n)(ω + m�p) = 0. (61)

where we use the shorthand notation

�̃X = �X − εX (�X − �Y ) Y �= X . (62)

This equation should be valid for the conditions in the outer core of
a mature neutron star, where superfluid neutrons are permeated by
superconducting protons. Following Prix et al. (2004) we express
the dispersion relation in terms of the entrainment parameter

ε = εp = 2α

ρp
= ρp

ρn
εn, (63)

the frequency as measured with respect to the rotation of the protons,

κ = ω + m �p

�p
, (64)

and a dimensionless measure of the relative rotation,

R ≡ �n − �p

�p
. (65)

1 This equation corrects the dispersion relation we used in an earlier discus-
sion of the two-stream instability for the shell problem (Andersson, Comer
& Prix 2003). Unfortunately, the error introduced in the earlier version
of the dispersion relation significantly effects the nature of the instability.
For example, the data discussed by Andersson et al. (2003) suggests that
the instability acts mainly through short-wavelength waves. As we show in
the present paper, the correct analysis leads to the instability mainly affect-
ing the long-wavelength oscillations. This has repercussions for the inferred
growth times of the unstable modes.

This leads to a quadratic equation which can be solved for the eigen-
value κ . The onset of the two-stream instability readily follows as
the curves along which the discriminant of the quadratic vanishes.

As discussed in Section 2.3, the two-stream instability can be
understood in terms of negative energy waves. In the current prob-
lem, a simple criterion for waves to carry negative energy accord-
ing to one fluid but positive energy according to the other fluid
is that the mode pattern speed [we are assuming a decomposition
exp(iω t + imϕ)], which is given by

σp = − ω

m
(66)

lies between the two (uniform) rotation rates. In other words, one
may expect a necessary condition for instability to be

(σp − �p)(σp − �n) < 0. (67)

In terms of our new variables a mode would satisfy this criterion
(67) if κ is such that

κ(κ + mR) < 0. (68)

As we will now establish, there exist unstable modes that satisfy
this criterion for ‘reasonable’ parameter values.

Having analysed the quadratic dispersion relation (61) we draw
the following conclusions:

(i) We will not have any instabilities for ε > 0 and a proton
fraction in the physical range 0 < x p < 1. Since the entrainment in
the outer core of a neutron star is implied by Newtonian calculations
to lie in the range 0.4 � ε � 0.7 (Prix et al. 2002), and by relativistic
results to lie in the larger (but still positive) range of 0.3 � ε � 1.2
(Comer & Joynt 2003), this means that the two-stream instability is
not likely to be relevant for the superfluid r modes in the core of a
mature neutron star.

(ii) The situation is markedly different if we allow ε to assume
negative values. Then the instability will set in provided that |R| is
sufficiently large. Three examples of two-stream instability regions
for quadrupole (l = 2) modes and fixed values of ε are shown in
Figs 5–7. The three figures correspond to ε = −2, − 10 and −100,
respectively. We show the results for l = 2 since the instability sets
in first (i.e. at smallest |R|) for these modes. The results in Fig. 5
can be directly compared to the numerical results discussed by Prix
et al. (2004), cf. fig. 7 in that paper.
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Figure 5. Instability regions for the shell problem. We show results for
l = 2 and ε = −2. The left-hand panel shows the regions of instability in
the xp–R plane. The two-stream instability operates in regions I and II. The
right-hand panel shows the real and imaginary parts of the frequency κ for
the particular case of x p = 0.2 (indicated by a dashed horizontal line in the
left-hand panel. Here the grey regions indicate where a mode is prograde
with respect to one of the fluids but retrograde with respect to the other, i.e.
where the naive instability criterion (68) holds.
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Figure 6. Instability regions for the shell problem. We show results for
l = 2 and ε = −10. The left-hand panel shows the regions of instability in
the xp–R plane. The two-stream instability operates in regions I and II. The
right-hand panel shows the real and imaginary parts of the frequency κ for
the particular case of x p = 0.1 (indicated by a dashed horizontal line in the
left-hand panel. Here the grey regions indicate where a mode is prograde
with respect to one of the fluids but retrograde with respect to the other, i.e.
where the naive instability criterion (68) holds.
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Figure 7. Same as Fig. 6 but for ε = −100.

(iii) From the mode frequencies shown in the right-hand panels
of Figs 5–7 we deduce that the simple instability criterion (68)
cannot be relied upon. While the criterion agrees reasonably with
the onset of instability in the case ε = −2 (Fig. 5), it is clear that
the two-stream instability operates outside the predicted domain for
ε = −100 (Fig. 7). This shows that our simple argument is too naive,
and emphasizes the need for a more detailed stability analysis for
rotating superfluid systems. In this respect, extension of the recent
work of Andersson et al. (2004) may lead to useful progress.

(iv) From the examples in Figs 5–7 it is clear that the instability
is dynamical. Since |Im κ| ∼ |Re κ| the growth time is of the same
order of magnitude as the dynamical time-scale.

(v) Finally, it is worth noting that for large |ε| (and l = 2) the con-
dition that the discriminant vanishes, i.e. the onset of the instability,
is well approximated by the solution to

8R2xpε + (Rxp + 1 − R)2 = 0. (69)

For a ‘typical’ proton fraction of x p = 0.1, this leads to the approx-
imate relation

ε ≈ − 5

4R2
. (70)

The above examples show that the two-stream instability operates
in the shell problem. In fact, the analysis goes beyond the local
analysis of the plane parallel problem in Section 2.2 since we have
now solved for the actual unstable modes (satisfying the relevant
boundary conditions).

4 A B R I E F D I S C U S S I O N
O F P U L S A R G L I T C H E S

The results we have discussed so far are interesting from a con-
ceptual point of view, but it is not yet clear to what extent this
new instability is astrophysically relevant. It is clear that, unless
the entrainment parameter ε assumes very large negative values,
the relative rotation rates required to make the superfluid quadrupole
r modes unstable in the range 0 < x p < 1 will be too large to be
physically attainable. Yet, it must be recognized that our current
understanding of these parameters in astrophysical neutron stars is
very poor. Recent results indicate that the entrainment parameter
ε may, indeed, assume negative values in the inner crust (Carter,
Chamel & Haensel 2004), but it is not clear how large |ε| it may be
reasonable to consider. Anyway, given the many uncertainties we
do not feel that we can rule out the possibility that this instability
may play a role in the spin evolution of neutron stars. It is a tantaliz-
ing possibility given that the mechanism underlying the enigmatic
glitches observed in dozens of pulsars remains poorly understood.
A speculative suggestion would be that the superfluid two-stream
instability is relevant in this context: perhaps it serves as a trigger
mechanism for large pulsar glitches? As we will discuss below, the
notion that an instability sets in at a critical relative rotation in a
two-component model would seem to agree well with the current
observational data. While our current model is too simple for us
to investigate this possibility in any detail, it is nevertheless useful
to discuss the relevant issues. In particular, this may help identify
promising directions for future research.

A quantity of key importance for this discussion is the rotational
lag between the two components. In order to argue that the two-
stream instability is relevant for pulsar glitches we need to consider
lags that may actually occur in astrophysical neutron stars. To esti-
mate the size of the rotational lag required to ‘explain’ the observed
glitches we assume that a glitch corresponds to a transfer of an-
gular momentum from a partially decoupled superfluid component
(index n) to the bulk of the star (index p). Then we have

In|��n| ≈ Ip��p → ��p ≈ In

Ip
|��n| (71)

where IX are the two moments of inertia. Now assume that the
decoupled component corresponds to 1 per cent of the total mo-
ment of inertia, e.g. the superfluid neutrons in the inner crust or a
corresponding amount of fluid in the core. This would mean that
I n ∼ 10−2 I p, and we have

��p ≈ 10−2|��n|. (72)

Combine this with the observations of large Vela glitches to get

��p

�p
≈ 10−2 |��n|

�p
∼ 10−6. (73)

In other words, we must have

|��n| ≈ 10−4�p. (74)

If we assume that the glitch brings the two fluids back into corota-
tion, then we have ��n = �n − �p = �� and we see that the two
rotation rates will maximally differ by one part in 104 or so, corre-
sponding to R ∼ 10−4. Rotational lags of this order of magnitude
have often been discussed in the context of glitches. Even though
the key quantity in models invoking catastrophic vortex unpinning
in the inner crust – the pinning strength – is very uncertain, and there
have been suggestions that the pinning force is too weak to allow
a build up of the required rotational lag (Jones 1998), typical val-
ues considered are consistent with our rough estimate. In addition,
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frictional heating due to a difference in the rotation rates of the bulk
of a neutron star and a superfluid component has been discussed
as a possible explanation for the fact that old isolated pulsars seem
to be somewhat hotter than expected from standard cooling mod-
els (Shibazaki & Lamb 1989; Larson & Link 1999). In particular,
Larson & Link (1999) argue that a lag of

��

�p
≈ (3.2 × 10−4 − 9.5 × 10−3) ×

(
0.1 s

P

)
(75)

could explain the observational data. Finally, the presence of rota-
tional lags of the proposed magnitude is supported by a statistical
analysis of 48 glitches in 18 pulsars (Lyne et al. 2000). This study
suggests that the critical rotational lag at which a glitch occurs is

��

�p
≈ 5 × 10−4. (76)

In order for an instability to be relevant the unstable mode must
grow faster than all dissipation time-scales. In the case of a super-
fluid neutron-star core the main dissipation mechanisms are likely
to be mutual friction and ‘standard’ shear viscosity due to electron–
electron scattering. A rough estimate of when mutual friction is
likely to dominate the shear viscosity is, due to Mendell (1991b),

� > 100

(
106 cm

λ

)2 (
T

107 K

)2

s−1

≈ 100

(
l

π

)2 (
T

107 K

)2

s−1
(77)

where we assume that the wavelength of the mode is λ = πR/l. We
can write this as

P < 0.62l−2

(
T

107 K

)2

s (78)

which shows that mutual friction is likely to dominate over shear
viscosity for quadrupole oscillations. For example, for a neutron
star rotating with the period of the Vela pulsar mutual friction would
dominate for l < 15 or so (assuming T ≈ 5 × 107 K).

From the estimates we obtained in the previous section we see
that in order for the superfluid r modes to become unstable at
R ≈ 5 × 10−4 we would need ε ≈ − 5 × 106, cf. (70). This
value is significantly larger than those indicated by the recent work
of Carter et al. (2004), and may be too large to be attainable in a re-
alistic description of the superfluid in the crust. There are, however,
many remaining uncertainties concerning the coupling between the
various core components. Another important coupling mechanism
between neutrons and protons in the core might come from inter-
actions between the neutron vortices and proton flux tubes if the
protons form a type-II superconductor (Ruderman, Zhu & Chen
1998, see also Link 2003). Alternatively, if we consider the neutron
superfluid in the crust, the most important dissipative mechanism
would probably be vortex–crust friction (see Jones 1998 for more
discussion). Considering the many uncertainties concerning this is-
sue, it would seem premature to rule out the interesting possibility
that the superfluid two-stream instability may be relevant in the con-
text of pulsar glitches. Obviously, our shell model is too simplistic
to be considered a representative model of a realistic neutron star.
For example, a more detailed model should account for radial mo-
tion and internal stratification (as well as many other features). This
will complicate the analysis significantly by bringing several classes
of oscillation modes into the picture. In fact, the plane parallel toy
problem considered in the first part of this paper indicates that the
acoustic p modes may be susceptible to the instability.

Supposing that the two-stream instability is relevant for neutron
stars, what affects can it have? The answer to this question obviously
requires much further work, but it is nevertheless interesting to spec-
ulate about some possibilities. Most standard models for glitches are
based on the idea of catastrophic vortex unpinning in the inner crust
(Anderson & Itoh 1975). This is an attractive idea since the glitch
relaxation (on a time-scale of days to months) would seem to be
well described by vortex creep models (Cheng et al. 1988). An in-
teresting scenario is provided by the thermally induced glitch model
discussed by Link & Epstein (1996). They have shown that a deposit
of 1042 erg of heat would be sufficient to induce a Vela-type glitch.
The mechanism that leads to the unpinning of vortices, e.g. by the
deposit of heat in the crust, is however not identified. Maybe the
two-stream instability could fill this gap in the theory? It should, of
course, be pointed out that glitches need not originate in the inner
crust. In particular, Jones (1998) has argued that the vortex pinning
is too weak to explain the recurrent Vela glitches. If this argument
is correct then the glitches must be due to some mechanism operat-
ing in the core fluid. Since the model problems we have considered
would be relevant for the conditions expected to prevail in the outer
core of a mature neutron star, our results show that the two-stream
instability may serve as a trigger for glitches originating there (al-
though this would require a large negative entrainment parameter
not predicted by the standard models). The key requirement for the
instability to operate is the presence of a rotational lag. It is worth
pointing out that such a lag will build up both when there is a strong
coupling between the two fluids (i.e. when the vortices are pinned)
and when this coupling is weak. One would generally expect the
strength of this coupling to vary considerably at various depths in
the star (Langlois et al. 1998), and it is not yet clear to what extent
a rotational lag can build up in various regions. This is, of course, a
key issue for future theoretical work on pulsar glitches.

One final relevant point concerns the recent observation of a
Vela-size glitch in the anomalous X-ray pulsar 1RXS J170849.0–
400910 (Kaspi, Lackey & Chakrabarty 2000). This object has a spin
period of 11 s, which means that any feasible glitch model must not
rely on the star being rapidly rotating. What does this mean for a
model based on the notion of a critical relative rotation rate? Let
us assume that the rotational lag builds up at the same rate as the
electromagnetic spin-down of the main part of the star (i.e. that the
superfluid component does not change its spin rate at all under nor-
mal circumstances). Then the lag would be �� ≈ t�̇ after time t. If
there is a critical value at which a glitch will happen (corresponding
to ��crit) then the interglitch time tg could be approximated by

tg ≈ ��crit

�

�

�̇
= 2τ

��crit

�

where τ is the standard ‘pulsar age’. This argument implies the
following:

(i) For ��crit/� ≈ 5 × 10−4 we would get t g ≈ 10−3τ . This
(roughly) means that only pulsars younger than 104 yr would be
seen to glitch during 30 yr of observation, which accords well with
the fact that only young pulsars are active in this sense.

(ii) There is no restriction on the rotation rate in this scenario; a
star spinning slowly may well exhibit a glitch as long as its spin-
down rate is fast enough. This means that one should not be surprised
to find glitches in stars with extreme magnetic fields (magnetars).

5 C O N C L U D I N G R E M A R K S

In this paper we have introduced the superfluid two-stream instabil-
ity: a dynamical instability analogous to that known to operate in
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plasmas (Anderson et al. 2001), which sets in once the relative flow
between the two components of the system reaches a critical level.
We have studied this instability for two model problems. First we
analysed a local dispersion relation derived for the case of a back-
ground such that one fluid was at rest while the other had a constant
flow rate. This provided a proof of principle of the existence of
the two-stream instability for superfluids. Our analysis was based
on the two-fluid equations that have been used to model the dynam-
ics of the outer core of a neutron star, where superfluid neutrons
are expected to coexist with superconducting protons and relativis-
tic electrons. These equations are analogous to the Landau model
for superfluid helium,2 and should also (after suitable modifications
to incorporate elasticity and possible vortex pinning) be relevant
for the conditions in the inner crust of a mature neutron star. Thus
we expect the two-stream instability to be generic in dynamical su-
perfluids, possibly limiting the relative flow rates of any multifluid
system.

Our second model problem concerned two fluids confined within
an infinitesimally thin spherical shell. The aim of this model was
to assess whether the two-stream instability may be relevant (per-
haps as a trigger mechanism) for pulsar glitches. The results for this
problem demonstrated that the entrainment effect could provide a
sufficiently strong coupling for the instability to set in, although it is
debatable whether sufficiently large negative values of the entrain-
ment coefficient may be reached in realistic models. Incidentally,
the modes that become dynamically unstable in this problem are the
superfluid analogues of the inertial r modes of a rotating single-fluid
star. This is interesting since the r modes are known to be secularly
unstable due to the emission of gravitational radiation (Andersson
& Kokkotas 2001). In fact, the connection between the two insta-
bilities goes even deeper than this since the radiation-driven secular
instability is also a variation of the Kelvin–Helmholtz instability. In
that case, the two fluids are the stellar fluid and the radiation.

This paper is only a first probe into what promises to be a rich
problem area. Future studies must address issues concerning the
effects of different dissipation mechanisms, the non-linear evolution
of the instability, possible experimental verification for superfluid
helium, etc. These are all very interesting problems which we hope
to investigate in the near future.
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