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Abstract

We present new solutions of the classical equations of motion of bosonic (matrix-)ymembranes. Those relating to minimal
surfaces in spheres provide spinning membrane solutioAdSp x S9, as well as in flat space—time. Nontrivial reductions of
the BMN matrix model equations are also given.
0 2004 Published by Elsevier B.V.

1. Introduction

Starting from the premise that ‘membranes are to M-theory what strings are to string theory’ the search for
classical solutions of membrane dynamics needs almosistifigation. Given the additional fact that promising
approaches to M-theory are within the context of matrix mechanics, solutions to its equations of motion are equally
relevant. The observation that a discretized formulation of membrane dynamics is matrix meftjdiriks the
two.

In the context of string theory, the study of classical solutions was recently reviy2H (see[3] for a review
of further interesting subsequent developments). Regjatine-dependent classical solutions of the string sigma-
model in anAdSs x S° target space—time to the dual conformal field theory, extends the testable features of the
duality between string theory and = 4 SYM, i.e., of the AdS/CFT correspondence.

A likely extension of these ideas to M-theory is to consider their motion on maximally supersymmetric back-
grounds which, aside from eleven-dimensional Minkowski spaceAd® x S* andAdS; x S’. The former is
the near-horizon limit of a stack d¥ coincident M5 branes witl%RAds = Rg = lp(nN)1/3 and the latter is the
near-horizon limit of a stack o M2 branes with Zags= Rs = [p(3272N)Y/6. The dualities between classical
supergravity on these background and the conformal field theories on the world-volume of the branes which create
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them has been studied. In particular for AdS; x $4 case, if the duality holds, nontrivial information about the
(0, 2) conformal field theory ofV interacting tensor multiplets in six dimensions has been obtained, e.g., its con-
formal anomaly has been comput@ds]. Direct verifications have, however, so far been impossible, mainly due
to the lack of knowledge of the interactin@, 2) theory.

One of the open problems in string theory is its quantization in nontrivial backgrounds, sédSas S°.

An exception is the gravitational plane wave background which is obtained as the Penrose limitd$ghes®
vacuum of type IIB string theory. In this background ligtdne quantization leads to a free theory on the world-
sheet whose spectrum is easily compUy&jd This opens the way to the duality between string theory and another
sector of large¥ SYM, which is characterized by large-charge(~ +/N ) and conformal weight~ /N ). The
extensive activity to which this has led was initiated 7.

The difficulties related to quantization are much more severe in M-theory where quantization on any back-
ground is still elusive. The semiclassical analysis, whicthicase of string theory prles valual# nontrivial
information about the dual conformal field theory, caowkever, be extended to M-theory. While the equations of
motion of strings orAdSs x S° reduce, for special symmetric configtioms, to classical integrable systef8s9],
this is not as simple for membranes. Also, the integrable spin-chains which appear in the discussion of the dual
gauge theory10,11] have so far no known analogue in tf@ 2) tensor theory. However, the matrix model of the
discrete light cone description of M-theory on plane waves obtained as Penrose liAuiS,0f S7” andAdS; x $4
is known[7] and has been studied (see, €12]).

In this Letter we present new solutions to bosoniatrix model equations (in Minkowski space, and of the
BMN matrix model), as well as make a first step todsmthe semi-classical analysis of M-theoryAdS, x §¢
backgrounds, where we will find that the equations ofiorg upon imposing a suitable ansatz, may be reduced to
the equations describimginimal embeddings &-surfaces into higher spheres (as well as generalizations thereof).

2. Thebosonic matrix model equations

The time evolution of spatially constaBt(~N) gauge fields ifR>¢ as well as of regularized membranes in
RL4+1[1] is governed by equations of motion

d
Z [Xi, X1, X/] (1)

involving d Hermitean traceles®y x N time-dependent matrices, with the constraint (‘Gauss law’, respectively,
reflecting a residual diffeomorphism invariance in a lighhe orthonormal gauge description of relativistic mem-
branes)

d

> IXi, Xi1=0. )

i=1
As shown in[13], solutions of these equations may be found by making the ansatz
Xi(t) = x(O)Rij ()M}, (3)

with R(r) = A g real, orthogonal x d matrix and{M,-}’;?:l time-independenW x N matrices. Definé/ :=

(M1, M>, ..., My) and require421l7l = —M. Imposing that no component of bo# and AM vanishes, restricts
d to be even. By a suitable change of basis one can alwaysicaso the form

. . 0 1
A=diagJ,...,J) with J=<_1 0)’ (4)
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or, alternatively,

A=<_0]l g) ®)

Inserting the ansai8) into (1) yields, under the assumption thaandx are related throughx? = L (= const),
2

1 A L

2x + 4x + 202 = const (6)
d

> (1M, M1, M) =M, 7

j=1

and the constrair(2) becomes
d

> [Mi, (AM);] =o0. (8)
i=1
Before we turn to the construction of solutions of the matrix equations, let us note that given any sol(tipn of
there are always trivial ways to solve the contrg8jt Given a solution?’ of (7)one can define? := (M’, 0) (by
addingd zeroes) and choosé such thatAM = (0, —M’). In this way each term in the su(@) will be identically
zero. CIearIy,M’ is a solution of(7) with d’ = 24. Another way to satisfy8) is by letting M = (M', M"). Below
we will find solutions which do not rely on this “doubling mechanism”.

3. Solutionsof the matrix equation for d =8

A very simple way to solvé7) is in terms of the Hermitian generatdf§ of any semi-simple Lie algebra

[Ta, Tp] = ifabCT‘ (9)

If we choose the basis such thhe Cartan—Killing metric is,, = cgaab, = (T,) solves(8) with A = c¢».

If we required < 9 and even, the only physically interesting case, apart f&h®) (the ‘fuzzy sphere’) is
U (3) with d = 8. However, since the discussion can be easily generalized t8&y) with N odd, we will give
the solution of(8) for the general case.

To solve(8) with A as given in(4), we choose a particular basis for th&N) Lie algrebra. A standard basis is

((Eij)r =ik 1)

H ! Xk:E kE k=1,...,N-1
k= —"F/m——/— ij — k+1,k+1 ) =4 -4
VEGFD\ e

1 i
E} = —=(Eu + En), E =—(Eny—En), k<l 10
W=7 W= (10)
It is not difficult to verify that
V — — k+ + -
M= (Hy, ..., Hy-1, Efp, —Eqp . Efy (9T E,. v EN gy —En_1w) (11)

solves(7) and(8) and satisfied72 = NT—l.

This being a consequence of the algebra, not its particefaesentation means, that higher-dimensional repre-
sentations 08U (N) yield higher-dimensional solutions ¢f) and(8). In particluar we obtain a solution fat= 8
for any representation @&U(3).
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Another way to present solutions related2d(N), which has the advantage of allowing to pass to a continuum
limit, is as follows. For arbitrary od&/ > 1, defineN? independenN x N matrices

N 1
U(N) — @32MIm2 gMipmz. 12
m T 2 M(N) § (12)
47iM(N

wherew :=e¢~ ¥ : is a primitive Nth root of unity,m = (m1, m») and

gij=0"1;,  hj=8j1 (j+N=)) (13)
providing a basis of the Lie algebgh(N, C), with [14]
iIN . (27 M(N) N
[U&N), UrﬁN)] =~ sm( ¥ (m x n))U,.(nJr)n (14)

(for the moment, we will put (N) = 1, as only whenV — co, 80 — A € R, this “degree of freedom” is
relevant). Usind14), it is easy to see that
N2
N
(08 U 0=
LetnowN =3 and
7 21 (U0+U-10 Uro—U-10 Uo1+Uo-1 Uo1—Uo-1
3 2 ’ 2i ’ 2 ’ 2i '
Upn+U-1,1 U1n—-U_11 U 11+U; 1 U_11—-U1
2 ' 2i ’ 2 ’ 2i '

Sin? %(m x UM, (15)

(16)

The components aoff form a basis of hermitian 8 3 matrices, and thus of the Lie algels&?3). It is straightfor-
ward to relate this basis to the bagl®)but perhaps one should note ti§a0)is not invariant under general linear
transformations.

Itis also easy to check thét6)satisfieq7) (for N = 3, sirf(2r/N) = sir?(4x /N)), M2 = and[Ma;_1, M2;] =
0. Thus, withA as in(4), (8) is also satisfied. We therefore obtain a solutio19f satisfying the constrairf2) for
N = 3 andd = 8, by letting

(X;) :=x(1)[M cosp(r) + A M sing(1)] (17)

with x(¢) ande(r) satisfying(6).
The above construction can be generalized to yield other solutiong/wt8. It is straightforward to verify that

i 2_n(Um +U-m Un—U-m Unw+U_py Uny —U_py
3 2 ’ 2i ’ 2 ’ 2i ’
Un+U.n Un—U_y Uy +U_py Uy — Un/) (18)
2 ’ 2 2 ’ 2i ’

with

m:(ml), n:(nl), m/z(_m2>, n/z(_n2>, (19)
ma n» mi ni
is a solution of(7) and(8) if m2 = nZ with N arbitrary. The reason is that, by usi(tp) the “discrete Laplace

operator”

d
AV =3, M), M), (20)
j=1
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when acting on any of the componentszﬁsf in each case yields the same scalar factor (“eigenvalue”)
y (sm2 (m x n) +S|n2—m +sm2 (m n)) (21)
In the general cas@8) is a solution for fixedV = m? + n?, which we assume to be odd. Higher-dimensonal

representations can be obtained if we expand the @ightN matrices in terms of a basis gf(N, C)
N2-1
M(N) Y ™ with  [1N. 1] =i fupr TN (22)
a=1
and then define
N2-1
M(N) Z ua (NN (23)

with TL,(N/) be aN’ > N-dimensional representation (#2).
We want to stress that these generalizatior(d6fare not higher-dimensional representationS¢3); the set
of matricesM does not form a closed commutator algebra.

4. The continuum limit of matrix solutions as minimal surfacesin S’

As mentioned iff13], (7) (with M? = ) is a discrete version of the equations for a minimal surface in a (higher-
dimensional) sphere. 15], such surfaces i3 were proven to exist for arbitrary genus.
Equations for a minimal surfagg(e?, ¢?) in a sphere can be obtained by varying the integral

/(«/? — n(m? — 1)) do dy?
with ¢ = det(g,,) andg,s = d,m - 9;m. One obtains the equations
Am = —2m, m?=1, (24)

whereA is theLaplace-Beltrami operator on scalar functions

1
A= ﬁarﬂgrsas.

The N — oo limit of (18),
- 1 . . . .
m(ph ¢?) = E(cosmq), sinmg, cosm’g, sinm’g, cosng, sinng, cosn’e, sinn’e), (25)

(whereg := (¢1, ¢?)) gives a solution of24), which for each choic€l9)with m? = n? describes a minimal torus
ins’.

Interestingly, theV — oo limit, (25), allows for nontrivial deformations (apart from the arbitrary constant that
can be added to each of the 4 different arguments), namely

- 1 . .
n, = —(COSy COSMg, COSy SiNMg, cosy cosm’e, cosy sinm’e,

V2

siny cosng, siny sinng, siny cosn’e, siny sinn’g). (26)



J. Arnlind et al. / Physics Letters B 599 (2004) 118-128 123

It is easy to check thg26) solves(24) and, equivalently,

d
Z{{mi,mj},mj}z—Zm,- with n_%z 1, (27)
j=1
where{f, h} = %(Ehfazh — 32 f01h) (cf. below). When checking27) via the N — oo limit of (14), the y-
dependence of the:; at first looks as if leadingot a “contradicition” (itwould, in the finite N-case), but the
rationality of the structure-constants (x n instead of% sin%”(m x N)) comes at rescue.
Finally, rewrite(26) as

S 1. 1.
n, = _x[)/] + — [v1 (28)

Nz

with

1 _ .
3 = 2 (cosme & ). sin(mg £ y), cosm'g £ y). sinm'p = ).

+sin(ng + ), Fcogng £ y), sin(g £ y), Fcogn'p £y)). (29)

While y, in this form, becomes irrelevant (insofar each of the 4 arguments.in= )?[f], as well as those in

%_ :=x% can have an arbitrary phase-constant), not only their $28), but (due to the mutual orthogonality of
Xy, 01Xy, 02Xy, X_, 91X_ anddox_) both X, andx_ separately, in fact any linear combination
Xp = COSOX4 + SinOX_ (30)

gives a minimal torus irs” .

5. Bosonic membraneson AdS, x S?

Let us consider closed bosonic membranesd$, x S¢ (the action for the super-membrane in these back-
grounds was constructed[ih6]). Their dynamics is derived from the action

S:/d3<p (VG + (72— 1) + (2~ 1)). (31)
wherey“(¢®) (n=1,...,p;a=0,1,2) andx;(¢*) (k=1,...,q9 + 1) are the embedding coordinatég, =
1 -1
kY2 = YRy e =y 4y — X0 () and
Gop = 0 y" 0y Ny — 0o X - DpX. (32)

The constraintg? = 1 = x2 follow by varying (31) w.r.t. the Lagrange multipliers and while variation w.r.t.
y* andx; yields the equations of motion

9 (VG GPagyh) = 2ky", (33)
9 (VGG pR) = —21%. (34)

Note that we take the radii of the AdS spaces and the spbdve equal. It is straightforward to generalize the
discussion to the case of unequal radii, which is the situation in the M-theory context. Cont{&8&jmgth y*
and(34)with X, respectively, and using the constrainfs= x? = 1, one finds that

2\ = _‘/EGaﬁaayMaﬂyvn/wy
20 =+VGG8,% - 5%, (35)
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implying
- 1 . 3
,\+A=—§«/Ecaﬂ(aay“aﬁyu—aax.aﬁx)=—§«/5. (36)
Denotingy? by ¢, let us make the ansatz (analogous to the corresponding string case, and siftif3); to
yo = Sin(wot), yp = CoSwot), yw=0 (u'=1..,p-1),
Xt ot 0% =R (e, ¢?) 37)
with

coSwit) —Sin(w1t)
sin(w1t) coSw1t)
R(t) = coSwyt) — Sin(wat) ) (38)
sin(wat) coqwat)

Let us further demand - 31% = 0= X - 92X, which, writingm T = (r1 c0S01, r1 SiNO1, 2 COSHa, r2SiNbo, . . .) reads

d=[3(g+1)] d
Z Wy r3819a =0= Z Wy r3820¢,. (39)
a=1 a=1
The world-volume metric is then block-diagonal
Gap = diag(w§ — X, —grs) (40)
with g, = 8,% - ;X = 8,m - 8y (r,s = 1,2) andx? = Y"?_, w?r2. As is not difficult to see(33)implies that
pi= VGG = \/5 % (41)
wg - Za 10)3 3

is (a)timeindependent (density). In any case,
Za)ara + — = wg (42)

has to hold and is determined aspwg/z.

Let us now turn to the equation far which determinesi (¢!, ¢2), i.e., the shape of the membrane that is
being rotated insidg? by the orthogonal matriR (¢) (cf. (38)), in order to yield an extremal three-manifold in
AdS, x §9. With (40), (34) becomes

1 s . 2AX
—8r(gg—85x) =x+—x. (43)
P p P

Due to Eqs(37), (38) and (35)implying ¥ =R@)m,

2 _ \/E o
— — om-dm=Yy o r - — (44)
o Z p2

(43)reduces to

{{m,, m;j}, mj ( a)(,)+2wr ——)m,', (45)
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Wherew(l) =w(2) = w1, ©3) = W4 = w2, elc.,

g = detd,x - 3,%) = de@ - dym) = p? ) _(mj.m;)?

i<j

and the (Poisson) bracket is defined @€ & —e21 = 1)

(i) =€, forg (46)
for any two differentiable functions on the two-dimensional parameter manifold. The densityugh time-
independent, was defined(l)in a ‘dynamical’ way, i.e., depending diiz, o1, ¢2). However, due t§18] we may
assume it to be any given ‘nondynamical’ density having the same ‘volmép?, ¢?) d2¢. This freeg46) from
its seemingc-dependence while reducing the origirial, ¢2)-diffeomorphism invariance to those preserving

Confining ourselves (for the time being) to solvi(89) in a trivial way by letting thed, (¢!, ¢?) be constants,
i.e., independent af1-2, the equations to be solved are

2g
{{ra,rb}7rb}=(—wg-i-za)frcz—;)ra, a=l,...,d (47)

subject to(42) and to) rf = 1. In the case of the string, rather thédnme membrane, this equation beconfgls
for d = 3, the equation of motion of the Neumann system, namely the constrained motion of a three-dimensional
harmonic oscillator on the surface of a two-sphere.
If the ‘spatial’ frequencies, are chosen to be all equal, it follows tHatw?r? = w? = const as well as (from
(42)) g/p? = w3 — w? = const. This simplifie$47)to

{{ra, b}, rb} = —Z(a)g — a)z)ra (48)

which can be explicitly solved by (known) minimal embeddings of two—surfacesllmq%(q + 1)]-dimensional
unit spheres.
To see this, one could rec#&#1), which shows tha{48), rewritten as

1 gsu -\ 2 2\ =
—0s| g=—0,r ) = —2(a)0 —w )r, (49)
p p
is identical to the standarchinimal surface’ equation
1 - "
V8 0s (Vg™ auF) = =27. (50)

This, incidentally, justifies callin¢?0) ‘discrete Laplace operator’. E€p0)is the Euler—Lagrange equation which
one obtains if one varies

[ @0 (V3= no 7~ 1) (51)

w.r.t. the embedding coordinateg¢?, ¢?) and the local Lagrange multipliet(¢) (which guarantees® = 1).
Another way to show the equivalence @) (hence(48)) to (50)is as follows: the results of Ref18] allow

one to choose the coordinatgSin the diffeomorphism invariant equatigb0) such that /g/(a)g — w?) is equal to

any given density with the same ‘volume’ (i.e., integral o¥&p). Choosing it to be shows that solutions ¢50)
give solutions 0{49). To show the converse, one notes t{#) automatically implies tha/g% = wg — w? (multiply

(49)by 7, and useé? = 1 three times: once on the r.h.s., oncefob, 7 = 0 and, finally, to writer - 3,9, 7 as—gs.).
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Concerning explicit solutions q#8), respectively(50) (from now on we putug — w? =1 by rescalingo) let
us only mention the two simplest ones:

r1 = Sinf cosy, rp = sin@ sing, r3 = C0Y, ra=3=0 (52)

(the equator 2-sphere §f 122, o1 =0 € [0, 7], 9? = ¢ € [0, 271, p = sind) and

- 1 . .
= E(co&pl, sing1, COSy2, Sing», 0, ..., 0) (53)

(the Clifford-torus ins?—123). Lawson[15] proved that there exist minimal embeddings ififoof any topological
type.

6. Non-trivial reductions of the bosonic BMN matrix model equations

Consider the bosonic BMIWV] matrix model equations

9
Xo== [[Xa. Xil. Xi] = 4m®X o — Bimeape[ Xp, X,
i=1

X,=—

Me

9
(X Xl Xi] =m?X,. D [Xi. Xi]1=0, (54)
i=1 i=1

wherea,b,c=1,...,3,u=4,5,...,9andi = 1,2, ...,9. We want to find nontrivial time-dependent solutions
of these equations by using similar techniques agifpr

One of the reasons for making the ang&was to find solutions that do not collapse to zero(34) we have
mass-terms and hence, we are not forced to only consider “rotating” solutions, as we(did for

Consider the following nine traceless Hermitear 3 matrices¢ =1,2,3;a’'=a+3;a" =a +6, (Eqp)cqd =
(Sacfsbd)

A A~ A

M, = —iegpcEpe, My =Eq — 57 My = |€ape| Epe, (55)

which are antisymmetric, diagonal and symmetric, respectively and which shligtf = 3" M2 =Y M2, =
2.. The corresponding discrete Laplace operators are

A=l Ma). Ma] == ) [ Eg ] By

b<c

AH = [[, Ma’], Ma’] = Z[[’ Eaa]» Eaa],

a

A= [ Ml 1) = [ B B (56)

b<c

whereEj:b = Eqp £+ Epg. As is easy to check, the action @®6) on (55)is purely diagonal, with eigenvalues

A_=diag222666666, A =diag222000222, A, = diag666 666222 (57)

As an aside we want to mention that this structure generalizes to traceless heNniiah matrices for anyv.
The eigenvalues of the three Laplacians@&V — 2), 2N, 2N) for A_, (2,0, 2) for A and(2N, 2N, 2(N — 2))
for A, where the multiplicities of the entries afgN (N — 1), N, 3N (N — 1)).
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As (56) only involves commutatorg57) extends to the action ¢66)on the 9N x N matrices corresponding to
(55)in an arbitraryN -dimensional representation f(3). This way one can find nine Hermiteahx N matrices
M,—1. .o with eigenvalue¢57). Letting, e.g.,

Xa(O)=x(OMy,  Xg() =v3y(OMy,  Xar(t) =2(t)Mr, (58)

with [M,, Mp] = ie e M. reduceg54), for arbitrary N, to differential equations involving only 3 scalar functions
(x, y andz):

X +x(4m2+2x2+ 6y° + 672 — 6mx) =0,
§+y(m?+6x24+622) =0, %+ z(m?+6x246y2+2:2) =0. (59)

Another reduction can be obtained by considering rotating solutions

Xo(t) =x()Ma, X, = \Ezamw(z)m

(Ru) =e* e06),  29(t)=L=const  A?=—id,

My :=2My, Mgy =My (60)
(note thaf M,, M,] = 0), yielding

18 L?
X + x(4m® + 2x? + 622 — 6mx) =0, Z+z(m2+6x2+€z2——4>=0. (61)
Z

For the ansat£60) to work it is important that all sixV x N matricesM, have the same eigenvalue under the
action of bothA_ andA +2A.
Various other choices and combinations are possible,l&,g.,: 0,M, =M,,ie.,

Xo=x(t)M,,
X, = z(t)(cosp Mz, cosp M>, COsp M3, Sing M1, Sing M>, Sing M3),
7%¢p = L = const (62)
giving
L2
%+ x(20% + 222 4 4m? — 6mx) =0, 'z'+z(2x2+ 22+ m?— 1—4) =0. (63)

Apart from the trivial static (known) solutionsL(= 0,z = 0; x = 0,m or 2m), and genuinely timedependent
solutions of(63), there are several “interrd@&te” solutions, for which is constant, but nonzero (makingt)
linear inr): 2 for which x = 0, z = +z0, as well as those corresponding to the roots of the quintic equation
obtained viaz2 = 3mx — x2 — 2m?2.

ReplacingM, by M/, respectivelyM,~, in the second part ¢62)leads to yet other solutions. One can consider
both them — 0 (m — o0) limit of these solutions as well as théit — oo continuum limit.

Finally note that one can also let baxh, and X, rotate, letting e.g.,

X4 (1) = v/6x(1)(COSI My — SING Ms, SINO My + COSH Ms, Mg), X, (1) = y(1) Ry My,
Ma/zMa, Ma//:Ma//, xzé:K, yz(sz (64)
(as beforeR = ¢A¢® .. ) which results in equations of motion,

K2 L?
5c'+x(4m2+12y2—F>=0, j3+y<m2+12x2+8y2—F)=0. (65)
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Itis easy to show that all four reductions lead to systems of ordinary differential equations which are in a canonical
way Hamiltonian, e.g., fof65) w.r.t.

H:}(,‘524.)‘,2)4.L_2+K—2+m—2(y2+4x2)+6x2y2+2y4 (66)
2 2y2 " 22 2 '

Even though exact solutions of these systems of equations are as yet unknown and probably may not exist in terms
of known functions, they can be easily solved numerically.

Note added

After this paper was submitted, we became aware of R&820] where simple solutions to the membrane
equations orAdS; x $* were found.
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