
b

minimal
of

rch for
ng
equally

ma-
of the

back-

al
h create
Physics Letters B 599 (2004) 118–128

www.elsevier.com/locate/physlet

Spinning membranes

Joakim Arnlinda, Jens Hoppea, Stefan Theisenb

a Department of Mathematics, Royal Institute of Technology, 10044 Stockholm, Sweden
b Albert-Einstein-Institut, Am Mühlenberg 1, D-14476 Golm, Germany

Received 27 June 2004; received in revised form 12 August 2004; accepted 13 August 2004

Available online 25 August 2004

Editor: P.V. Landshoff

Abstract

We present new solutions of the classical equations of motion of bosonic (matrix-)membranes. Those relating to
surfaces in spheres provide spinning membrane solutions inAdSp × Sq , as well as in flat space–time. Nontrivial reductions
the BMN matrix model equations are also given.
 2004 Published by Elsevier B.V.

1. Introduction

Starting from the premise that ‘membranes are to M-theory what strings are to string theory’ the sea
classical solutions of membrane dynamics needs almost no justification. Given the additional fact that promisi
approaches to M-theory are within the context of matrix mechanics, solutions to its equations of motion are
relevant. The observation that a discretized formulation of membrane dynamics is matrix mechanics[1] links the
two.

In the context of string theory, the study of classical solutions was recently revived in[2] (see[3] for a review
of further interesting subsequent developments). Relating time-dependent classical solutions of the string sig
model in anAdS5 × S5 target space–time to the dual conformal field theory, extends the testable features
duality between string theory andN = 4 SYM, i.e., of the AdS/CFT correspondence.

A likely extension of these ideas to M-theory is to consider their motion on maximally supersymmetric
grounds which, aside from eleven-dimensional Minkowski space, areAdS7 × S4 andAdS4 × S7. The former is
the near-horizon limit of a stack ofN coincident M5 branes with12RAdS = RS = lp(πN)1/3 and the latter is the
near-horizon limit of a stack ofN M2 branes with 2RAdS = RS = lP (32π2N)1/6. The dualities between classic
supergravity on these background and the conformal field theories on the world-volume of the branes whic
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them has been studied. In particular for theAdS7 × S4 case, if the duality holds, nontrivial information about t
(0,2) conformal field theory ofN interacting tensor multiplets in six dimensions has been obtained, e.g., its
formal anomaly has been computed[4,5]. Direct verifications have, however, so far been impossible, mainly
to the lack of knowledge of the interacting(0,2) theory.

One of the open problems in string theory is its quantization in nontrivial backgrounds, such asAdS5 × S5.
An exception is the gravitational plane wave background which is obtained as the Penrose limit of theAdS5 × S5

vacuum of type IIB string theory. In this background light-cone quantization leads to a free theory on the wo
sheet whose spectrum is easily computed[6]. This opens the way to the duality between string theory and an
sector of large-N SYM, which is characterized by largeR-charge(∼ √

N ) and conformal weight(∼ √
N ). The

extensive activity to which this has led was initiated in[7].
The difficulties related to quantization are much more severe in M-theory where quantization on an

ground is still elusive. The semiclassical analysis, which inthe case of string theory provides valuable nontrivial
information about the dual conformal field theory, can, however, be extended to M-theory. While the equation
motion of strings onAdS5 × S5 reduce, for special symmetric configurations, to classical integrable systems[8,9],
this is not as simple for membranes. Also, the integrable spin-chains which appear in the discussion of
gauge theory[10,11], have so far no known analogue in the(0,2) tensor theory. However, the matrix model of t
discrete light cone description of M-theory on plane waves obtained as Penrose limits ofAdS4 ×S7 andAdS7 ×S4

is known[7] and has been studied (see, e.g.,[12]).
In this Letter we present new solutions to bosonic matrix model equations (in Minkowski space, and of

BMN matrix model), as well as make a first step towards the semi-classical analysis of M-theory inAdSp × Sq

backgrounds, where we will find that the equations of motion, upon imposing a suitable ansatz, may be reduce
the equations describingminimal embeddings of2-surfaces into higher spheres (as well as generalizations the

2. The bosonic matrix model equations

The time evolution of spatially constantSU(N) gauge fields inR1,d as well as of regularized membranes
R1,d+1 [1] is governed by equations of motion

(1)Ẍi = −
d∑

j=1

[[Xi,Xj ],Xj

]
involving d Hermitean tracelessN × N time-dependent matrices, with the constraint (‘Gauss law’, respect
reflecting a residual diffeomorphism invariance in a lightcone orthonormal gauge description of relativistic me
branes)

(2)
d∑

i=1

[Xi, Ẋi ] = 0.

As shown in[13], solutions of these equations may be found by making the ansatz

(3)Xi(t) = x(t)Rij (t)Mj ,

with R(t) = eAϕ(t) a real, orthogonald × d matrix and{Mj }dj=1 time-independentN × N matrices. Define�M :=
(M1,M2, . . . ,Md) and requireA2 �M = − �M. Imposing that no component of both�M andA �M vanishes, restrict
d to be even. By a suitable change of basis one can always castA into the form

(4)A= diag(J, . . . , J ) with J =
(

0 1
−1 0

)
,
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or, alternatively,

(5)A=
(

0 1
−1 0

)
.

Inserting the ansatz(3) into (1) yields, under the assumption thatϕ andx are related througḣϕx2 = L (= const),

(6)
1

2
ẋ2 + λ

4
x4 + L2

2x2 = const,

(7)
d∑

j=1

[[ �M,Mj ],Mj

] = λ �M,

and the constraint(2) becomes

(8)
d∑

i=1

[
Mi, (A �M)i

] = 0.

Before we turn to the construction of solutions of the matrix equations, let us note that given any solutio(7)
there are always trivial ways to solve the contraint(8). Given a solution�M ′ of (7) one can define�M := ( �M ′, �0) (by
addingd zeroes) and chooseA such thatA �M = (�0,− �M ′). In this way each term in the sum(8) will be identically
zero. Clearly, �M ′ is a solution of(7) with d ′ = 2d . Another way to satisfy(8) is by letting �M = ( �M ′, �M ′). Below
we will find solutions which do not rely on this “doubling mechanism”.

3. Solutions of the matrix equation for d = 8

A very simple way to solve(7) is in terms of the Hermitian generatorsT a of any semi-simple Lie algebra

(9)[Ta,Tb] = ifab
cTc.

If we choose the basis such that the Cartan–Killing metric isκab = c2δab, �M = (Ta) solves(8) with λ = c2.
If we required � 9 and even, the only physically interesting case, apart fromSU(2) (the ‘fuzzy sphere’) is

SU(3) with d = 8. However, since the discussion can be easily generalized to anySU(N) with N odd, we will give
the solution of(8) for the general case.

To solve(8) with A as given in(4), we choose a particular basis for thesu(N) Lie algrebra. A standard basis
((Eij )kl = δikδjl)

Hk = 1√
k(k + 1)

(
k∑

j=1

Ejj − kEk+1,k+1

)
, k = 1, . . . ,N − 1,

(10)E+
kl = 1√

2
(Ekl + Elk), E−

kl = i√
2
(Ekl − Elk), k < l.

It is not difficult to verify that

(11)�M = (
H1, . . . ,HN−1,E

+
12,−E−

12, . . . ,E
+
kl, (−)k+lE−

kl , . . . ,E
+
N−1,N ,−E−

N−1,N

)
solves(7) and(8) and satisfies�M2 = N2−1

N
.

This being a consequence of the algebra, not its particularrepresentation means, that higher-dimensional re
sentations ofSU(N) yield higher-dimensional solutions of(7) and(8). In particluar we obtain a solution ford = 8
for any representation ofSU(3).
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Another way to present solutions related toSU(N), which has the advantage of allowing to pass to a contin
limit, is as follows. For arbitrary oddN > 1, defineN2 independentN × N matrices

(12)U(N)
m := N

4πM(N)
ω

1
2m1m2gm1hm2,

whereω := e
4πiM(N)

N is a primitiveN th root of unity,m = (m1,m2) and

(13)gij = ωi−1δij , hij = δi,j−1 (j + N ≡ j)

providing a basis of the Lie algebragl(N,C), with [14]

(14)
[
U(N)

m ,U(N)
n

] = − iN

2πM(N)
sin

(
2πM(N)

N
(m × n)

)
U

(N)
m+n

(for the moment, we will putM(N) = 1, as only whenN → ∞, M(N)
N

→ Λ ∈ R, this “degree of freedom” is
relevant). Using(14), it is easy to see that

(15)
[[

U(N)
m ,U(N)

n
]
,U

(N)
−n

] = N2

4π2 sin2 2π

N
(m × n)U(N)

m .

Let nowN = 3 and

(16)

�M = 2π

3

(
U1,0 + U−1,0

2
,
U1,0 − U−1,0

2i
,
U0,1 + U0,−1

2
,
U0,1 − U0,−1

2i
,

U1,1 + U−1,−1

2
,
U1,1 − U−1,−1

2i
,
U−1,1 + U1,−1

2
,
U−1,1 − U1,−1

2i

)
.

The components of�M form a basis of hermitian 3× 3 matrices, and thus of the Lie algebrasu(3). It is straightfor-
ward to relate this basis to the basis(10)but perhaps one should note that(10) is not invariant under general linea
transformations.

It is also easy to check that(16)satisfies(7) (for N = 3, sin2(2π/N) = sin2(4π/N)), �M2 = and[M2i−1,M2i ] =
0. Thus, withA as in(4), (8) is also satisfied. We therefore obtain a solution of(1), satisfying the constraint(2) for
N = 3 andd = 8, by letting

(17)(Xi) := x(t)
[ �M cosϕ(t) +A �M sinϕ(t)

]
with x(t) andϕ(t) satisfying(6).

The above construction can be generalized to yield other solutions withd = 8. It is straightforward to verify tha

(18)

�M = 2π

3

(
Um + U−m

2
,
Um − U−m

2i
,
Um′ + U−m′

2
,
Um′ − U−m′

2i
,

Un + U−n

2
,
Un − U−n

2i
,
Un′ + U−n′

2
,
Un′ − U−n′

2i

)
,

with

(19)m =
(

m1
m2

)
, n =

(
n1
n2

)
, m′ =

(−m2
m1

)
, n′ =

(−n2
n1

)
,

is a solution of(7) and(8) if m2 = n2 with N arbitrary. The reason is that, by using(15) the “discrete Laplace
operator”

(20)∆
(N)

�M :=
d∑

j=1

[[ · ,Mj ],Mj

]
,
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when acting on any of the components of�M, in each case yields the same scalar factor (“eigenvalue”)

(21)
N2

4π2

(
sin2 2π

N
(m × n) + sin2 2π

N
m2 + sin2 2π

N
(m · n)

)
.

In the general case(18) is a solution for fixedN = m2 + n2, which we assume to be odd. Higher-dimenso
representations can be obtained if we expand the eightN × N matrices in terms of a basis ofgl(N,C)

(22)M
(N)
j =

N2−1∑
a=1

µa
j (N)T (N)

a with
[
T (N)

a , T
(N)
b

] = ifab
cT (N)

c

and then define

(23)M
(N ′)
j :=

N2−1∑
a=1

µa
j (N)T (N ′)

a

with T
(N ′)
a be aN ′ > N -dimensional representation of(22).

We want to stress that these generalizations of(16)are not higher-dimensional representations ofSU(3); the set
of matrices �M does not form a closed commutator algebra.

4. The continuum limit of matrix solutions as minimal surfaces in S7

As mentioned in[13], (7) (with �M2 = ) is a discrete version of the equations for a minimal surface in a (hig
dimensional) sphere. In[15], such surfaces inS3 were proven to exist for arbitrary genus.

Equations for a minimal surface�m(ϕ1, ϕ2) in a sphere can be obtained by varying the integral∫ (√
g − µ

( �m2 − 1
))

dϕ1dϕ2

with g = det(grs) andgrs = ∂r �m · ∂s �m. One obtains the equations

(24)∆ �m = −2 �m, �m2 = 1,

where∆ is theLaplace–Beltrami operator on scalar functions

∆ := 1√
g

∂r
√

ggrs∂s .

TheN → ∞ limit of (18),

(25)�m(
ϕ1, ϕ2) = 1

2
(cosmϕ,sinmϕ,cosm′ϕ,sinm′ϕ,cosnϕ,sinnϕ,cosn′ϕ,sinn′ϕ),

(whereϕ := (ϕ1, ϕ2)) gives a solution of(24), which for each choice(19)with m2 = n2 describes a minimal toru
in S7.

Interestingly, theN → ∞ limit, (25), allows for nontrivial deformations (apart from the arbitrary constant
can be added to each of the 4 different arguments), namely

(26)

�mγ = 1√
2
(cosγ cosmϕ,cosγ sinmϕ,cosγ cosm′ϕ,cosγ sinm′ϕ,

sinγ cosnϕ,sinγ sinnϕ,sinγ cosn′ϕ,sinγ sinn′ϕ).
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It is easy to check that(26)solves(24)and, equivalently,

(27)
d∑

j=1

{{mi,mj },mj

} = −2mi with �m2 = 1,

where{f,h} = 2
m2 (∂1f ∂2h − ∂2f ∂1h) (cf. below). When checking(27) via the N → ∞ limit of (14), the γ -

dependence of themj at first looks as if leading to a “contradicition” (itwould, in the finiteN -case), but the
rationality of the structure-constants (m × n instead ofN

2π
sin 2π

N
(m × n)) comes at rescue.

Finally, rewrite(26)as

(28)�mγ = 1√
2

�x[γ ]
+ + 1√

2
�x[γ ]
−

with

(29)

�x[γ ]
± = 1

2

(
cos(mϕ ± γ ),sin(mϕ ± γ ),cos(m′ϕ ± γ ),sin(m′ϕ ± γ ),

± sin(nϕ ± γ ),∓cos(nϕ ± γ ),±sin(n′ϕ ± γ ),∓cos(n′ϕ ± γ )
)
.

While γ , in this form, becomes irrelevant (insofar each of the 4 arguments in�x+ := �x[0]
+ , as well as those in

�x− := �x[0]
− can have an arbitrary phase-constant), not only their sum,(28), but (due to the mutual orthogonality o

�x+, ∂1�x+, ∂2�x+, �x−, ∂1�x− and∂2�x−) both �x+ and�x− separately, in fact any linear combination

(30)�xθ = cosθ �x+ + sinθ �x−
gives a minimal torus inS7.

5. Bosonic membranes on AdSp × Sq

Let us consider closed bosonic membranes inAdSp × Sq (the action for the super-membrane in these ba
grounds was constructed in[16]). Their dynamics is derived from the action

(31)S =
∫

d3ϕ
(√

G + λ
(�x2 − 1

) + λ̃
(
y2 − 1

))
,

whereyµ(ϕα) (µ = 1, . . . , p;α = 0,1,2) andxk(ϕ
α) (k = 1, . . . , q + 1) are the embedding coordinates,�x2 =∑q+1

k=1 xkxk, y2 = yµyνηµν = y2
0 + y2

p − ∑p−1
µ′=1(yµ′)2 and

(32)Gαβ = ∂αyµ∂βyνηµν − ∂α �x · ∂β �x.

The constraintsy2 = 1 = �x2 follow by varying(31) w.r.t. the Lagrange multipliersλ and λ̃ while variation w.r.t.
yµ andxk yields the equations of motion

(33)∂α

(√
GGαβ∂βyµ

) = 2λ̃yµ,

(34)∂α

(√
GGαβ∂β �x) = −2λ�x.

Note that we take the radii of the AdS spaces and the sphereto be equal. It is straightforward to generalize
discussion to the case of unequal radii, which is the situation in the M-theory context. Contracting(33) with yµ

and(34)with �x, respectively, and using the constraintsy2 = �x2 = 1, one finds that

2λ̃ = −√
GGαβ∂αyµ∂βyνηµν,

(35)2λ = +√
GGαβ∂α �x · ∂β �x,
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implying

(36)λ + λ̃ = −1

2

√
GGαβ

(
∂αyµ∂βyµ − ∂α �x · ∂β �x) = −3

2

√
G.

Denotingϕ0 by t , let us make the ansatz (analogous to the corresponding string case, and similar to[17]),

y0 = sin(ω0t), yp = cos(ω0t), yµ′ = 0 (µ′ = 1, . . . , p − 1),

(37)�x(
t, ϕ1, ϕ2) =R(t) �m(

ϕ1, ϕ2)
with

(38)R(t) =




cos(ω1t) −sin(ω1t)

sin(ω1t) cos(ω1t)

cos(ω2t) −sin(ω2t)

sin(ω2t) cos(ω2t)
. . .


 .

Let us further demanḋ�x · ∂1�x = 0 = �̇x · ∂2�x, which, writing �mT = (r1 cosθ1, r1 sinθ1, r2 cosθ2, r2 sinθ2, . . .) reads

(39)

d≡[ 1
2 (q+1)]∑
a=1

ωar
2
a ∂1θa = 0 =

d∑
a=1

ωar
2
a ∂2θa.

The world-volume metric is then block-diagonal

(40)Gαβ = diag
(
ω2

0 − �̇x,−grs

)
with grs = ∂r �x · ∂s �x = ∂r �m · ∂s �m (r, s = 1,2) and �̇x2 = ∑d

a=1 ω2
ar

2
a . As is not difficult to see,(33) implies that

(41)ρ := √
GG00 =

√
g√

ω2
0 − ∑d

a=1 ω2
ar

2
a

= g√
G

is (a)time-independent (density). In any case,

(42)
d∑

a=1

ω2
ar

2
a + g

ρ2 = ω2
0

has to hold and̃λ is determined as−ρω2
0/2.

Let us now turn to the equation for�x which determines�m(ϕ1, ϕ2), i.e., the shape of the membrane tha
being rotated insideSq by the orthogonal matrixR(t) (cf. (38)), in order to yield an extremal three-manifold
AdSp × Sq . With (40), (34)becomes

(43)
1

ρ
∂r

(
g

grs

ρ
∂s �x

)
= �̈x + 2λ�x

ρ
.

Due to Eqs.(37), (38) and (35), implying �̈x = R̈(t) �m,

(44)
2λ

ρ
= �̇x2 −

√
G

ρ
grs∂r �m · ∂s �m =

d∑
a=1

ω2
ar

2
a − 2g

ρ2

(43) reduces to

(45)
{{mi,mj },mj

} =
(

−ω2
(i) +

∑
ω2

ar
2
a − 2g

ρ2

)
mi,
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whereω(1) = ω(2) := ω1, ω(3) = ω(4) := ω2, etc.,

g = det(∂r �x · ∂s �x) = det(∂r �m · ∂s �m) = ρ2
∑
i<j

{mi,mj }2

and the (Poisson) bracket is defined as (ε12 = −ε21 = 1)

(46){f,g} = 1

ρ
εrs∂rf ∂sg

for any two differentiable functions on the two-dimensional parameter manifold. The densityρ, though time-
independent, was defined in(41)in a ‘dynamical’ way, i.e., depending on�x(t, ϕ1, ϕ2). However, due to[18] we may
assume it to be any given ‘nondynamical’ density having the same ‘volume’

∫
ρ(ϕ1, ϕ2) d2ϕ. This frees(46) from

its seeming�x-dependence while reducing the original(ϕ1, ϕ2)-diffeomorphism invariance to those preservingρ.
Confining ourselves (for the time being) to solving(39) in a trivial way by letting theθa(ϕ

1, ϕ2) be constants
i.e., independent ofϕ1,2, the equations to be solved are

(47)
{{ra, rb}, rb} =

(
−ω2

a +
∑

ω2
c r

2
c − 2g

ρ2

)
ra, a = 1, . . . , d

subject to(42) and to
∑

r2
a = 1. In the case of the string, rather thanthe membrane, this equation becomes[8],

for d = 3, the equation of motion of the Neumann system, namely the constrained motion of a three-dime
harmonic oscillator on the surface of a two-sphere.

If the ‘spatial’ frequenciesωa are chosen to be all equal, it follows that
∑

ω2
c r

2
c = ω2 = const as well as (from

(42)) g/ρ2 = ω2
0 − ω2 = const. This simplifies(47) to

(48)
{{ra, rb}, rb} = −2

(
ω2

0 − ω2)ra
which can be explicitly solved by (known) minimal embeddings of two-surfaces intod = [1

2(q + 1)]-dimensional
unit spheres.

To see this, one could recall(41), which shows that(48), rewritten as

(49)
1

ρ
∂s

(
g

gsu

ρ
∂u�r

)
= −2

(
ω2

0 − ω2)�r,
is identical to the standard‘minimal surface’ equation

(50)
1√
g

∂s

(√
ggsu∂u�r) = −2�r.

This, incidentally, justifies calling(20) ‘discrete Laplace operator’. Eq.(50) is the Euler–Lagrange equation whi
one obtains if one varies

(51)
∫

d2ϕ
(√

g − µ(ϕ)
(�r2 − 1

))
w.r.t. the embedding coordinatesra(ϕ

1, ϕ2) and the local Lagrange multiplierµ(ϕ) (which guarantees�r2 = 1).
Another way to show the equivalence of(49) (hence(48)) to (50) is as follows: the results of Ref.[18] allow

one to choose the coordinatesϕs in the diffeomorphism invariant equation(50)such that
√

g/(ω2
0 − ω2) is equal to

any given density with the same ‘volume’ (i.e., integral overd2ϕ). Choosing it to beρ shows that solutions of(50)
give solutions of(49). To show the converse, one notes that(49)automatically implies thatg

ρ2 = ω2
0 −ω2 (multiply

(49)by �r, and use�r2 = 1 three times: once on the r.h.s., once for�r · ∂u�r = 0 and, finally, to write�r · ∂s∂u�r as−gsu).
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Concerning explicit solutions of(48), respectively,(50) (from now on we putω2
0 − ω2 = 1 by rescalingρ) let

us only mention the two simplest ones:

(52)r1 = sinθ cosϕ, r2 = sinθ sinϕ, r3 = cosθ, ra>3 = 0

(the equator 2-sphere inSd−1�2, ϕ1 = θ ∈ [0,π], ϕ2 = ϕ ∈ [0,2π], ρ = sinθ ) and

(53)�r = 1√
2
(cosϕ1,sinϕ1,cosϕ2,sinϕ2,0, . . . ,0)

(the Clifford-torus inSd−1�3). Lawson[15] proved that there exist minimal embeddings intoS3 of any topological
type.

6. Non-trivial reductions of the bosonic BMN matrix model equations

Consider the bosonic BMN[7] matrix model equations

Ẍa = −
9∑

i=1

[[Xa,Xi ],Xi

] − 4m2Xa − 3imεabc[Xb,Xc],

(54)Ẍµ = −
9∑

i=1

[[Xµ,Xi ],Xi

] − m2Xµ,

9∑
i=1

[Xi, Ẋi ] = 0,

wherea, b, c = 1, . . . ,3, µ = 4,5, . . . ,9 andi = 1,2, . . . ,9. We want to find nontrivial time-dependent solutio
of these equations by using similar techniques as for(1).

One of the reasons for making the ansatz(3) was to find solutions that do not collapse to zero. In(54) we have
mass-terms and hence, we are not forced to only consider “rotating” solutions, as we did for(1).

Consider the following nine traceless Hermitean 3× 3 matrices (a = 1,2,3;a′ = a + 3;a′′ = a + 6, (Eab)cd =
δacδbd )

(55)M̂a = −iεabcEbc, M̂a′ = Eaa − 1

3
, M̂a′′ = |εabc|Ebc,

which are antisymmetric, diagonal and symmetric, respectively and which satisfy
∑

M̂2
a = 3

∑
M̂2

a′ = ∑
M̂2

a′′ =
2·. The corresponding discrete Laplace operators are

∆− := [[ · , M̂a], M̂a

] = −
∑
b<c

[[ · ,E−
bc],E−

bc

]
,

∆‖ := [[ · , M̂a′ ], M̂a′
] =

∑
a

[[ · ,Eaa],Eaa

]
,

(56)∆+ := [[ · , M̂a′′ ], M̂a′′
] =

∑
b<c

[[ · ,E+
bc],E+

bc

]
,

whereE±
ab := Eab ± Eba . As is easy to check, the action of(56)on (55) is purely diagonal, with eigenvalues

(57)∆− = diag(222 666 666), ∆‖ = diag(222 000 222), ∆+ = diag(666 666 222).

As an aside we want to mention that this structure generalizes to traceless hermitianN × N matrices for anyN .
The eigenvalues of the three Laplacians are(2(N − 2),2N,2N) for ∆−, (2,0,2) for ∆‖ and(2N,2N,2(N − 2))

for ∆+, where the multiplicities of the entries are(1
2N(N − 1),N, 1

2N(N − 1)).
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As (56)only involves commutators,(57)extends to the action of(56)on the 9N ×N matrices corresponding t
(55) in an arbitraryN -dimensional representation ofsu(3). This way one can find nine HermiteanN × N matrices
Mi=1,...,9 with eigenvalues(57). Letting, e.g.,

(58)Xa(t) = x(t)Ma, Xa′(t) = √
3y(t)Ma′, Xa′′(t) = z(t)Ma′′ ,

with [Ma,Mb] = iεabcMc reduces(54), for arbitraryN , to differential equations involving only 3 scalar functio
(x, y andz):

ẍ + x
(
4m2 + 2x2 + 6y2 + 6z2 − 6mx

) = 0,

(59)ÿ + y
(
m2 + 6x2 + 6z2) = 0, z̈ + z

(
m2 + 6x2 + 6y2 + 2z2) = 0.

Another reduction can be obtained by considering rotating solutions

Xa(t) = x(t)Ma, Xµ =
√

3

5
z(t)Rµν(t)M̃ν,

(Rµν) = eAϕ(t) ∈ SO(6), z2ϕ̇(t) = L = const, A2 = − id,

(60)M̃a′ := √
2Ma′, M̃a′′ := Ma′′

(note that[M̃a′, M̃a′′ ] = 0), yielding

(61)ẍ + x
(
4m2 + 2x2 + 6z2 − 6mx

) = 0, z̈ + z

(
m2 + 6x2 + 18

5
z2 − L2

z4

)
= 0.

For the ansatz(60) to work it is important that all sixN × N matricesM̃ν have the same eigenvalue under
action of both∆− and∆̃+ + 2∆̃‖.

Various other choices and combinations are possible, e.g.,M̃a′′ = 0, M̃a′ = Ma , i.e.,

Xa = x(t)Ma,

Xµ = z(t)(cosϕM1,cosϕM2,cosϕM3,sinϕM1,sinϕM2,sinϕM3),

(62)z2ϕ̇ = L = const,

giving

(63)ẍ + x
(
2x2 + 2z2 + 4m2 − 6mx

) = 0, z̈ + z

(
2x2 + 2z2 + m2 − L2

z4

)
= 0.

Apart from the trivial static (known) solutions, (L = 0, z = 0;x = 0,m or 2m), and genuinely timedepende
solutions of(63), there are several “intermediate” solutions, for whichz is constant, but nonzero (makingϕ(t)

linear in t): 2 for which x = 0, z = ±z0, as well as those corresponding to the roots of the quintic equ
obtained viaz2 = 3mx − x2 − 2m2.

ReplacingMa by Ma′ , respectively,Ma′′ , in the second part of(62)leads to yet other solutions. One can consi
both them → 0 (m → ∞) limit of these solutions as well as theirN → ∞ continuum limit.

Finally note that one can also let bothXµ andXa rotate, letting e.g.,

Xa(t) = √
6x(t)(cosθM4 − sinθM5,sinθM4 + cosθM5,M6), Xµ(t) = y(t)RµνM̃ν,

(64)M̃a′ = Ma, M̃a′′ = Ma′′ , x2θ̇ = K, y2ϕ̇ = L

(as before,R = eAϕ(t), . . .) which results in equations of motion,

(65)ẍ + x

(
4m2 + 12y2 − K2

x4

)
= 0, ÿ + y

(
m2 + 12x2 + 8y2 − L2

y4

)
= 0.
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It is easy to show that all four reductions lead to systems of ordinary differential equations which are in a ca
way Hamiltonian, e.g., for(65)w.r.t.

(66)H = 1

2

(
ẋ2 + ẏ2) + L2

2y2 + K2

2x2 + m2

2

(
y2 + 4x2) + 6x2y2 + 2y4.

Even though exact solutions of these systems of equations are as yet unknown and probably may not exis
of known functions, they can be easily solved numerically.

Note added

After this paper was submitted, we became aware of Refs.[19,20] where simple solutions to the membra
equations onAdS7 × S4 were found.
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