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Zusammenfassung

Der Dilatationsoperator der

N = 4 Super Yang-Mills Theorie

und Integrabilität

Der Dilatationsoperator mißt Skalendimensionen von lokalen Operatoren in einer konfor-
men Feldtheorie. In dieser Dissertation betrachten wir ihn am Beispiel der maximal super-
symmetrischen Eichtheorie in vier Raumzeit-Dimensionen. Wir entwicken und erweitern
Techniken um den Dilatationsoperator abzuleiten, zu untersuchen und anzuwenden. Diese
Werkzeuge sind ideal geeignet um Präzisionstests der dynamischen AdS/CFT-Vermutung
anzustellen. Insbesondere wurden er im Zusammenhang mit Stringtheorie auf dem plane-
waves Hintergrund (ebenfrontige planare Wellen) und dem Thema spinning strings erfol-
greich angewendet.

Wir konstruieren den Dilatationsoperator ausschließlich mittels algebraischer Metho-
den: Indem wir die Symmetriealgebra und strukturelle Eigenschaften von Feynman-Dia-
grammen ausnützen, können wir aufwendige, feldtheoretische Berechnungen auf höheren
Schleifen umgehen. Auf diese Weise erhalten wir den kompletten ein-schleifen Dilata-
tionsoperator und die planare drei-schleifen Deformation in einem interessanten Untersek-
tor. Diese Resultate erlauben es uns auf das Thema Integrabilität in vier-dimensionalen
planaren Eichtheorien einzugehen: Wir beweisen, daß der komplette Dilatationsopera-
tor auf einer Schleife integrabel ist, und präsentieren den dazugehörigen Bethe-Ansatz.
Weiterhin argumentieren wir, daß die Integrabilität sich bis drei Schleifen und darüber
hinaus fortsetzt. Unter der Annahme der Integrabilität konstruieren wir schließlich ein
neuartiges Spinketten-Modell auf fünf Schleifen und schlagen einen Bethe-Ansatz vor, der
sogar auf beliebig vielen Schleifen gültig sein mag!

Wir veranschaulichen den Nutzen unserer Methoden in zahlreichen Beispielen und
stellen zwei wichtige Anwendungen im Rahmen der AdS/CFT-Korrespondenz vor: Wir
leiten aus dem Dilatationsoperator den Hamiltonoperator der plane-wave String-Feld-
theorie her und berechnen damit die Energieverschiebung auf dem Torus. Weiterhin
wenden wir den Bethe-Ansatz an, um Skalendimensionen von Operatoren mit großen
Quantenzahlen zu finden. Der Vergleich mit der Energie von spinning strings Konfigura-
tionen zeigt eine erstaunliche Übereinstimmung.
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Abstract

The dilatation generator measures the scaling dimensions of local operators in a con-
formal field theory. In this thesis we consider the example of maximally supersymmetric
gauge theory in four dimensions and develop and extend techniques to derive, investigate
and apply the dilatation operator. These tools are perfectly suited for precision tests of
the dynamical AdS/CFT conjecture. In particular, they have been successfully applied
in the context of strings on plane waves and spinning strings.

We construct the dilatation operator by purely algebraic means: Relying on the sym-
metry algebra and structural properties of Feynman diagrams we are able to bypass
involved, higher-loop field theory computations. In this way we obtain the complete
one-loop dilatation operator and the planar, three-loop deformation in an interesting
subsector. These results allow us to address the issue of integrability within a planar
four-dimensional gauge theory: We prove that the complete dilatation generator is inte-
grable at one-loop and present the corresponding Bethe ansatz. We furthermore argue
that integrability extends to three-loops and beyond. Assuming that it holds indeed, we
finally construct a novel spin chain model at five-loops and propose a Bethe ansatz which
might be valid at arbitrary loop-order!

We illustrate the use of our technology in several examples and also present two key
applications for the AdS/CFT correspondence: We derive the plane-waves string field
theory Hamiltonian from the dilatation operator and compute the energy shift on the
torus. Furthermore, we use the Bethe ansatz to find scaling dimensions of operators with
large quantum numbers. A comparison to the energy of spinning strings shows an intricate
functional agreement.
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1

Introduction

Probably the two most important advances in the deeper understanding of our world
in terms of theoretical physics were made at the beginning of the twentieth century: The
theory of general relativity and quantum mechanics. On the one hand, Einstein’s theory of
general relativity (GR) has replaced Newton’s theory of gravity and, in its original form, is
still the most accurate theory to describe forces between massive bodies. It brought about
a major change in the notion of space and time. Both were unified into spacetime which,
in addition, is curved by the masses that propagate on it. Two of the most important
conceptual improvements of GR are symmetry and locality. The symmetry of GR is called
diffeomorphism-invariance and allows to label points of spacetime in an arbitrary way, the
equations of GR do not depend on this. Furthermore, GR is a local field theory, there
is no action at a distance, but instead, just like in Maxwell’s Electrodynamics, forces are
mediated by a field.

On the other hand, there is Quantum Mechanics. It proposes a completely new notion
of particles and forces, both of which should be considered as two manifestations of the
same object. It also departed from a deterministic weltanschauung; a measurement is
inevitably probabilistic and moreover must be considered as an action which influences
the outcome of future measurements. Many aspects of quantum mechanics seem odd at
first and second sight and truly make sense only in a quantum field theory (QFT). QFT
introduced the notion of particle creation and annihilation, an essential element for local
interactions. The price that has to be paid are spurious divergencies due to particles
being created and annihilated at the same place and instant. It required some effort to
understand, regularise and renormalise the divergencies in order to obtain finite, physical
results.

The first fully consistent physical QFT was Quantum Electrodynamics (QED), the
quantum counterpart of Electrodynamics. A guiding principle in the construction of
QED is, again, symmetry. Here, the symmetry is given by gauge transformations; they
allow to change some unphysical degrees of freedom of the theory by an arbitrary amount.
Consequently, QED is termed a gauge theory and, in particular, it has an Abelian U(1)
gauge group. Amplitudes in QED can be expanded in a coupling constant g related to the
fundamental charge of an electron. This perturbative treatment leads to Feynman dia-
grams which describe interactions in a rather intuitive fashion. Besides electromagnetism,
two other interactions between particles have been observed in particle accelerators: the
weak and the strong interactions. Let us discuss the second kind. The strong nuclear
force is responsible for the binding of nucleons to nuclei, which would otherwise disperse
due to their electromagnetic charge. One of the earlier candidates for a description of
these interactions was a string theory, a theory of string-like extended objects instead of
point-like particles. It explained some qualitative aspects of particle (excitation) spectra
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correctly; yet, soon it was found that it embodies some insurmountable theoretical as well
as phenomenological shortcomings and interest in it declined.

In the meantime, an alternative description of strong (and weak) interactions had
emerged. Like QED, it is based on a gauge theory, the so-called Quantum Chromody-
namics (QCD). The gauge group for strong interactions is SU(3), which may, for instance,
be inferred indirectly from the spectrum of hadrons. Here, symmetry is important for sev-
eral reasons. First of all, and even more so for QCD than for QED, symmetry is essential
for the theoretical consistency of the model. Furthermore, the particular gauge group of
QCD leads to a feature called asymptotic freedom/confinement. It implies that QCD is
effectively weak at very short distances, but becomes infinitely strong at larger dimensions
(on the scale of nucleons). On a qualitative level, this may be understood as follows: The
attraction/repulsion between two charges is mediated by flux lines. As opposed to QED,
in QCD flux lines attract each other and will form a small tube stretching between the
charges. The tube effectively behaves like a string with tension and binds the particles
irrespective of their distance. This explains why it is not possible to observe an individual
charged particle and leads us to confinement, which allows only uncharged particles to
propagate freely.

A peculiarity of generic gauge theories with gauge group U(N), which we will make
heavy use of, was observed by ’t Hooft [1]: He derived a relationship between the topolog-
ical structure of a Feynman graph and its N -dependence. When 1/N is interpreted as a
coupling constant, he observed that the perturbative expansion in 1/N is very similar in
nature to the perturbative genus expansion in a generic interacting string theory (string
field theory).

Not only due to their mathematical beauty, the theory of General Relativity and
Quantum Mechanics/QFT have become the foundations of modern physics, but mainly
because of the accuracy to which they describe the world. On the one hand, gravity is a
very weak force and it requires a large amount of matter to feel its effects. Consequently,
GR describes the world at very large scales. For instance, GR was first confirmed when the
aberration of light near the perimeter of the sun was investigated. On the other hand, the
remaining three forces described by QFT’s are incomparably stronger. Therefore quantum
field theories chiefly describe the microcosm. In particular, the standard model of particle
physics, the union of the above three gauge theories, has led to some non-trivial predictions
which have been confirmed with unprecedented accuracy, e.g. the electric moment of the
electron and muon.

One of the major open problems of theoretical physics is to understand what happens
when an enormous amount of matter is concentrated on a very small region of space. For
example, this situation arises at the singularity of a black hole or shortly after the big
bang. To describe such a situation, we would need to combine General Relativity with
the concepts of quantum field theory and consider quantum gravity (QG). Despite the
better part of a century of research, such a unification correctly describing our world has
not yet been found. The main obstacle for the direct construction of a quantum theory of
gravity are the divergencies mentioned above, which cannot be renormalised in this case
and render the quantum theory meaningless.

Currently, the most favoured theory for a consistent quantisation of gravity is su-
perstring theory. It is a refinement of the (bosonic) string theory found in connection
with strong interactions and involves an additional symmetry which relates fermions and
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bosons, namely supersymmetry. Supersymmetry makes string theory very appealing to
theorists: It overcomes several of the shortcomings of bosonic string theory and restricts
the form such that there are only five types of string theories (IIA,IIB,I,HO,HE), which
were, moreover, argued to be equivalent via duality. This is a very good starting point for
a theory of everything, given that string theory not only naturally incorporates gravity,
but also gauge theories, the type of theory on which the standard model is based.

With the advent of superstring theory, supersymmetry has been applied to field theo-
ries as well, giving rise to beautiful structures. One important aspect is that many of the
divergencies observed in ordinary QFT’s are absent in supersymmetric ones. Indeed, this
is the case for the unique, maximally supersymmetric gauge theory in four spacetime di-
mensions, N = 4 super Yang-Mills theory (N = 4 SYM) [2]. This remarkable feature [3],
allows the theory to be conformally invariant, even at the quantum level! Conformal sym-
metry is a very constraining property in field theory. Most importantly, two-point and
three-point correlation functions are completely determined by the scaling dimensions and
structure constants of the involved local operators. For instance, the two-point function
of a scalar operator O of dimension D must be of the form

〈
O(x)O(y)

〉
=

M

|x− y|2D , (1)

whereM is an unphysical normalisation constant. In two dimensions, conformal symmetry
is even more powerful, it makes a theory mathematically quite tractable and leads to a
number of exciting phenomena such as integrability. Consequently, it plays a major role
in the world-sheet description of string theory and was thoroughly investigated. In four
dimensions, however, conformal invariance appeared to be more of a shortcoming at first
sight: It makes the model incompatible with particle phenomenology, which might be the
reason why N = 4 SYM was abandoned soon after its discovery.

New interest in this theory was triggered by the AdS/CFT correspondence. Inspired by
the studies of string/string dualities and D-branes, Maldacena conjectured that IIB string
theory on the curved background1 AdS5 × S5 should be equivalent to N = 4 SYM [4–6]
(see [7] for comprehensive reviews of the subject) and thus substantiated the gauge/string
duality proposed earlier by ’t Hooft. The correspondence is supported by the well-known
fact that the symmetry groups of both theories, PSU(2, 2|4), match. Consequently, the
representation theory of the superconformal algebra psu(2, 2|4) [8] was investigated more
closely [9, 10], and numerous non-renormalisation theorems were derived (see e.g. [11]).
In addition, some unexpected non-renormalisation theorems, which do not follow from
psu(2, 2|4) representation theory, were found [12]. Once thought to be somewhat boring,
it gradually became clear that conformal N = 4 gauge theory is an extremely rich and
non-trivial theory with many hidden secrets; eventually, the correspondence has helped
in formulating the right questions to discover some of them.

Yet, the conjecture goes beyond kinematics and claims the full dynamical agreement
of both theories. For example, it predicts that the spectrum of scaling dimensions D in
the conformal gauge theory should coincide with the spectrum of energies E of string
states

{D} = {E}. (2)

1This manifold consists of the five-sphere and the five-dimensional anti-de Sitter spacetime, which is
an equivalent of hyperbolic space but with Minkowski signature.
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Unfortunately, like many dualities, Maldacena’s conjecture is of the strong/weak type:
The weak coupling regime of gauge theory maps to the strong coupling (i.e. tensionless)
regime in string theory and vice versa. The precise correspondence is given by

g2
YM
N = λ =

R4

α′ 2 ,
1

N
=

4πgs

λ
, (3)

where gYM is the Yang-Mills coupling constant and α′ is the inverse string tension.2 Fur-
thermore, N is the rank of the U(N) gauge group of Yang-Mills theory, λ is the effective
’t Hooft coupling constant in the large N limit, gs is the topological expansion parame-
ter in string theory and R is the radius of the AdS5 × S5 background. It is not known
how to fully access the strong coupling regime in either theory, let alone how to rigor-
ously quantise string theory on the curved background. Therefore, the first tests of the
AdS/CFT correspondence were restricted to the infinite tension regime of string theory
which is approximated by supergravity and corresponds to the strong coupling regime on
the gauge theory side. Gauge theory instanton calculations of four-point functions of op-
erators which are protected by supersymmetry were shown to agree with the supergravity
results see e.g. [13].

Despite a growing number of confirmations of the conjecture in sectors protected by
symmetry, the fundamental problem of a strong/weak duality remained. For example, the
AdS/CFT correspondence predicts that the scaling dimensions D of generic, unprotected
operators in gauge theory should scale as

D ∼ λ1/4 (4)

for large λ, but how could this conjecture be tested? It was Berenstein, Maldacena and
Nastase (BMN) who proposed a limit where this generic formula may be evaded [14]: In
addition to a large λ, consider local operators with a large charge J on S5, whose scaling
dimension D is separated from the charge J by a finite amount only. More explicitly, the
limit proposed by BMN is

λ, J −→∞ with λ′ =
λ

J2
and D − J finite. (5)

In this limit, the AdS5 × S5 background effectively reduces to a so-called plane-wave
background [15] on which the spectrum of string modes can be found exactly and the
theory can be quantised [16]. Remarkably, the light-cone energy ELC of a string-mode
excitation

ELC =
√

1 + λ′n2 = 1 + 1
2
λ′n2 + . . . (6)

has a perturbative expansion at a small effective coupling constant λ′. As the light-cone
energy corresponds to the combination D−J in gauge theory, suddenly the possibility of
a quantitative comparison for unprotected states had emerged! Indeed, BMN were able to
show the agreement at first order in λ′ for a set of operators. Their seminal article [14] has
sparked a long list of further investigations and we would like to refer the reader to [17]
for reviews. Let us only comment on one direction of research: In its original form, the
BMN limit was proposed only for non-interacting strings and gauge theory in the planar

2The actions are inversely related to these constants, SYM ∼ 1/g2
YM

and Sstring ∼ 1/α′. Therefore,
quantum effects are suppressed at small gYM and small α′ in the respective theories.
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limit. Soon after the BMN proposal, it was demonstrated that also non-planar corrections
can be taken into account in gauge theory [18, 19], they correspond to energy shifts due
to string interactions [20]. In gauge theory, the effective genus counting parameter in
the so-called double-scaling limit is g2 = J2/N . The first order correction in λ′ and g2

2

was computed in [21, 22] and was argued to agree with string theory [23, 24]. This is yet
another confirmation of the AdS/CFT correspondence, but for the first time within an
interacting string theory!

In the study of the BMN correspondence, the attention has been shifted away from
lower dimensional operators to operators with a large number of constituent fields [18,19,
21,22,25]. There, the complications are mostly of a combinatorial nature. It was therefore
desirable to develop efficient methods to determine anomalous dimensions without having
to deal with artefacts of the regularisation procedure. This was done in various papers,
on the planar [14,25–28] and non-planar level [18,19,21,22,29,30], extending earlier work
on protected half-BPS [31–33] and quarter-BPS operators [34]. In [35] it was realised,
following important insights in [36,37], that these well-established techniques can be con-
siderably simplified and extended by considering the Dilatation Operator. The dilatation
operator D is one of the generators of the conformal algebra and it measures the scaling
dimension D of a local operator3 O

DO = DO. (7)

In general, there are many states and finding the scaling dimension is an eigenvalue
problem which requires to resolve the mixing of states. Once the dilatation operator has
been constructed, it will generate the matrix of scaling dimensions for any set of local
operators of a conformal field theory in a purely algebraic way (in App. A we present an
introductory example of how to apply the dilatation operator). What is more, scaling
dimensions can be obtained exactly for all gauge groups and, in particular, for the group
U(N) with finite N [38]. Even two or higher-loop calculations of anomalous dimensions,
which are generically plagued by multiple divergencies, are turned into a combinatorial
exercise! Using the dilatation operator techniques, many of the earlier case-by-case studies
of anomalous dimensions [33,39–46] were easily confirmed [38]. They furthermore enabled
a remarkable all-genus comparison between BMN gauge theory and plane-wave string
theory [47]. The subject of this dissertation is the construction and investigation of the
dilatation operator in N = 4 SYM, a conformal quantum field theory, in perturbation
theory.

Classical scaling dimensions of states are easily found by counting the constituent fields
weighted by their respective scaling dimensions. It is just as straightforward to construct
the classical dilatation operator to perform this counting. Scaling dimensions in a field
theory generally receive quantum corrections, D = D(g) and consequently the dilatation
operator must receive radiative corrections D = D(g), too. In the path integral framework
there will be no natural way to obtain quantum corrections to the dilatation operator;
we will have to derive them from correlators, for example from two-point functions. Now
what is the benefit in considering the dilatation operator if a conventional calculation
uses two-point correlators as well? There are two major advantages: Firstly, the dilatation
generator is computed once and for all, while a two-point function will have to be evaluated

3To avoid confusion, we will later speak of ‘states’ instead of local operators.



6 Introduction

for each pair of states (unless one makes use of some effective vertex e.g. [21,22]). Secondly,
the dilatation operator computes only the scaling dimension D(g). The two-point function
also includes a contribution M(g) from the normalisation of states. These two quantities
will have to be disentangled before the scaling dimension can be read off from the two-point
function (1). Here, a complicating issue is that in general the normalisation coefficient
M(g) obtained in field theory is divergent.

A radiative correction to the dilatation operator in the context of N = 4 SYM has
first been computed in [48, 35].4 This one-loop correction was restricted to the sector of
states composed from the six scalar fields of the theory only, the so-called so(6) subsector,
on which the one-loop dilatation operator closes.

However, there is nothing special about the scalar fields, except maybe their conceptual
simplicity. Generic local operators can as well consist of fermions or gauge fields (in
the guise of a field strength). What is more, we can also apply an arbitrary number
of (covariant) derivatives to the basic constituent fields. In principle, one could now
compute the one-loop dilatation operator for all fields (we shall denote a generic field
with derivatives by the symbol W). This is feasible, but certainly much more involved
than the calculations for the so(6) subsector due to infinitely many types of fieldsW and a
complicated structure of spacetime indices in the expected conformal two-point function,
see e.g. [30, 28, 49].

In [38] a different approach to obtain contributions to the dilatation generator has
been proposed: Just as in field theory, all contributing diagrams to a two-point function
are written down. The most complicated part of their computation is to evaluate the
spacetime integrals due to vertices of the Feynman diagram. Nevertheless, the structural
result of the integrals is known; it is some power of the distance |x− y|a of the local oper-
ators multiplied to some function f(ǫ) of the regulator.5 The power a can be inferred by
matching dimensions, but the function f(ǫ) is a genuine result of the integral. The crucial
idea is not to compute the function, but to assume the most general singular behaviour
when the regulator is removed, e.g. f(ǫ) = c−1/ǫ + c0 + c1ǫ + . . . . This allows to write
down the contributions to the dilatation operator in terms of the unknown coefficients ck.
Now one can investigate the structure of the dilatation generator to simplify and combine
the contributions. Usually, it turns out that there are only a few independent coefficients
which actually contribute to anomalous dimensions. The proposed trick is to make use of
known results or other constraints to determine these coefficients.

To derive the complete one-loop dilatation operator, it is useful to consider its sym-
metry. A common practice in physics is to derive some result only for one component of a
multiplet of objects; symmetry will then ensure that the result applies to all components
of the same multiplet. The same simplification can be applied to the one-loop dilatation
operator: It was shown in [50] that superconformal symmetry considerably reduces the
number of independent coefficients to just a single infinite sequence. This sequence was
subsequently evaluated in field theory. Furthermore, it was conjectured that this last
step might be unnecessary and making full use the symmetry algebra would constrain
the complete one-loop dilatation operator uniquely up to an overall constant (the coupling
constant). This is indeed the case as we shall prove in this work. Put differently, su-

4Note that the correction is precisely given by the effective vertices found earlier in [19, 21].
5For integrals with open spacetime indices the result is a linear combination of such terms with

spacetime indices on (x− y)µ or ηµν .
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perconformal symmetry and some basic facts from field theory (i.e. the generic structure
of a one-loop contribution) completely determine all two-point functions at the one-loop
level! To outline the form of the dilatation operator, let us just note that the radiative
correction acts on two fields at a time. The contribution D12 from a pair of fields depends
on their ‘total spin’6 j; it is proportional to the harmonic number

D12 ∼ h(j) =

j∑

k=0

1

k
. (8)

Inspired by the strongly constraining nature of the superconformal algebra at one-loop,
it is natural to expect it to be very powerful at higher-loops as well. This is a very exciting
prospect, since direct higher-loop computations are exceedingly labourious and not much
is known beyond the one-loop level. Although one might think that one-loop accuracy
is sufficient for many purposes, one should keep in mind that it is only the first non-
trivial order. Easily one can imagine some unexpected behaviour at next-to-leading order
and, indeed, we shall encounter an example of a mismatch starting only at three-loops.
Furthermore, taken that the one-loop dilatation operator is completely constrained, there
is hardly any freedom for the quantum theory to decide in either direction. Therefore,
a one-loop computation does not provide much information about the quantum theory
itself.

The trick of writing down the most general structure for the dilatation operator with a
number of undetermined coefficients can be used at higher-loops as well. We will, however,
not try to generalise the complete dilatation operator to higher-loops. The derivation of
the one-loop computation depends heavily on a particular feature of perturbation theory
which allows us to restrict to classical superconformal invariance. Unfortunately, it does
not apply at higher-loops and we would be left with a very large number of independent
coefficients to be fixed. To obtain some higher-loop results with as little work as possible,
we may restrict to a subsector. The so(6) subsector of scalar fields, however, is not
suitable, there will be mixing with states involving fermions and other fields; only at
one-loop it happens to be closed. To proceed to higher-loops, one could therefore restrict
to an even smaller subsector. This so-called su(2) subsector consists of only two charged
scalar fields (which we shall denote by Z and φ) and charge conservation protects the
states from mixing with more general states. Here we can derive the two-loop dilatation
operator by employing some known results without performing a full-fledged two-loop
field theory computation [38].

We cannot go much further at the moment because there are no known results besides
a few basic facts from representation theory. Symmetry is not very constraining in the
su(2) sector because the dilatation operator is abelian and not part of a bigger algebra.
A better choice is the su(2|3) subsector: It consists of only five fields and the symmetry
algebra includes the dilatation generator. These properties make it both, convenient to
handle and sufficiently constraining. Furthermore, not only the dilatation generator, but
also the other generators of the algebra receive radiative corrections, a generic feature of
the higher-loop algebra. In [51] this subsector was investigated in the planar limit and

6The total spin is a quantity of the representation theory of the superconformal symmetry similar to
the total spin of the rotation group.
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up to three-loops with an astonishing result: Although there are hundreds of independent
coefficients at three-loops, closure of the symmetry algebra

[
JM(g), JN(g)

}
= FPMN JP (g) (9)

constrains nearly all of them in such a way that only a handful remain. Moreover, all
of them can be related to symmetries of the defining equations. Again, symmetry in
combination with basic field theory provides a unique answer.

Spectral studies of all the above radiative corrections to the dilatation operator reveal
a property with tremendous importance: One finds a huge amount of pairs of states O±
whose scaling dimensions are exactly degenerate in the planar limit

D+ = D−. (10)

This would not be remarkable if there was an obvious symmetry to relate those states.
This symmetry, however, cannot be superconformal symmetry (or any subalgebra) for
two reasons. Firstly, the degeneracy is actually broken by non-planar corrections while
superconformal symmetry is exact. Secondly, the degenerate states have a different parity
which is preserved by superconformal transformations. Here, as in the remainder of
this thesis, parity refers to complex conjugation of the SU(N) gauge group. To explain
the degeneracy we need some generator Q which inverts parity and commutes with the
dilatation generator.

This curiosity of the spectrum is merely the tip of an iceberg; it will turn out that the
conjectured generatorQ is part of an infinite set of commuting charges due to integrability.
Integrability of a planar gauge theory will be the other major topic of this dissertation.
The statement of integrability is equivalent to the existence of an unlimited number of
commuting scalar charges Qr

[Qr,Qs] = [J,Qr] = 0. (11)

The planar dilatation operator δD = g2Q2 is related to the second charge Q2. It turns
out that the odd charges are parity odd, therefore the existence of the charge Q = Q3

explains the pairing of states. Only a few states have no partner and are unpaired.
Integrable structures play a crucial role in two dimensional field theories. One of the

many intriguing features of two-dimensional CFT’s is that they are intimately connected
to integrable 2+0 dimensional lattice models in statistical mechanics or, equivalently, to
1+1 dimensional quantum spin chains. The infinite set of charges is directly related to
the infinite-dimensional conformal (Virasoro) algebra in D = 2. Given the huge success in
understanding CFT’s in two dimensions, one might hope that at least some of the aspects
allowing their treatment might fruitfully reappear in four dimensions. One might wonder
about standard no-go theorems that seem to suggest that integrability can never exist
above D = 2. These may be potentially bypassed by the fact that there appears to be a
hidden ‘two-dimensionality’ in U(N) gauge theory when we look at it at large N where
Feynman diagrams can be classified in terms of two-dimensional surfaces.

The first signs of integrability in N = 4 gauge theory were discovered by Minahan
and Zarembo [48]. They found that the planar one-loop dilatation operator in the so(6)
sector is isomorphic to the Hamiltonian of a so(6) integrable quantum spin chain. The
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analogy between planar gauge theory and spin chains is as follows: In the strict large N
limit, the structure of traces within local operators cannot be changed and therefore we
may consider each trace individually or, for simplicity, only single-trace states. We then
interpret the trace as a cyclic spin chain and the fields within the trace are the spin
sites. For example, the su(2) sector with two fields Z, φ maps directly to the Heisenberg
spin chain, in which the spin at each site can either point up (Z) or down (φ). For
the so(6) sector one considers a more general spin chain for which the spin can point
in six distinct abstract directions. The spin chain Hamiltonian alias the planar one-loop
dilatation generator acts on the spin chain and returns a linear combination of states. The
action is of a nearest-neighbour type, it can only modify two adjacent spins at a time.
Likewise the higher charges Qr act on r adjacent spins and are therefore local (along the
spin chain).

Integrable spin chains had appeared before in four-dimensional gauge theories through
the pioneering work of Lipatov on high energy scattering in planar QCD [52]. The model
was subsequently identified as a Heisenberg sl(2) spin chain of non-compact spin zero
[53]. More recently, and physically closely related to the present study, further integrable
structures were discovered in the computation of planar one-loop anomalous dimensions
of various types of operators in QCD [54] (see also the review [55]).7

The full symmetry algebra of SYM is neither so(6) nor sl(2), but the full supercon-
formal algebra psu(2, 2|4). If the discovered integrable structures are not accidental, we
should expect that the so(6) results of [48] and the sl(2) results suggested from one-loop
QCD [54,55] (see also [43,57]) can be combined and ‘lifted’ to a full psu(2, 2|4) super spin
chain. Indirect evidence can be obtained by the investigation of the spectrum of anoma-
lous dimensions. As we have mentioned above, the occurrence of pairs of states hints
at the existence of at least one conserved charge. Indeed, the spectrum of the complete
one-loop planar dilatation operator displays many such pairs. Obviously, they are found
in the so(6) and sl(2) subsectors where integrability is manifest, but also generic states do
pair up. Subsequently, it was shown in [58] that the complete one-loop planar dilatation
operator is isomorphic to a psu(2, 2|4) supersymmetric spin chain.

Integrability is not merely an academic issue, for it opens the gates for very precise tests
of the AdS/CFT correspondence. It is no longer necessary to compute and diagonalise
the matrix of anomalous dimensions. Instead, one may use the Bethe ansatz (c.f. [59] for a
pedagogical introduction) to obtain the one-loop anomalous dimensions directly [48, 58].
In the thermodynamic limit of very long spin chains, which is practically inaccessible
by conventional methods, the algebraic Bethe equations turn into integral equations.
With the Bethe ansatz at hand, it became possible to compute anomalous dimensions of
operators with large spin quantum numbers [60].

Via the AdS/CFT correspondence, these states correspond to highly spinning string
configurations. Even though quantisation of string theory on AdS5 × S5 is an open
problem, these spinning strings can be treated in a classical fashion, c.f. [61, 62], when
interested in the leading large spin behaviour. It was shown by Frolov and Tseytlin [63,64]
that quantum (1/

√
λ) corrections in the string theory sigma model are suppressed by

powers of 1/J , where J is a large spin on the five-sphere S5. In direct analogy to the

7While QCD is surely not a conformally invariant quantum field theory [56], it still behaves like one
as far as one-loop anomalous dimensions are concerned.
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plane-wave limit, one obtains an effective coupling constant

λ′ =
λ

J2
. (12)

What makes the low-energy spinning string configurations very appealing is that their
energies permit an expansion in integer powers of λ′ around λ′ = 0 [65]. Just as in the
case of the plane-wave/BMN limit one can now compare to perturbative gauge theory in
a quantitative fashion. It was found that indeed string energies and gauge theory scaling
dimensions agree at first order in λ′ [66, 67]. Moreover, the comparison is not based on
a single number, but on a function of the ratio of two spins. Except in a few special
cases, this function is very non-trivial; it involves solving equations of elliptic or even
hyperelliptic integrals. The agreement can also be extended to the commuting charges
in (11), c.f. [68–70]. These are merely tests of the spinning string correspondence and
there have been two recent proposals to prove the equivalence of classical string theory
and perturbative gauge theory in the thermodynamic limit. The proposal of Kruczenski is
based on comparing the string Hamiltonian to the dilatation operator [71–73] (see also the
related work [74]) while Kazakov, Marshakov, Minahan and Zarembo find a representation
of string theory in terms of integral equations and compare them to the Bethe ansatz [75].
For a review of the topic of spinning strings please refer to [76].

We have argued that integrability of the planar gauge theory is, on the one hand,
an interesting theoretical aspect of N = 4 SYM and, on the other hand, it allows for
precision tests of the AdS/CFT correspondence. So far, however, integrability is only
a firm result at the one-loop level. At higher-loops, it may seem to be inhibited for
the following simple reason: The Hamiltonian of an integrable spin chain is usually of
nearest-neighbour type (as for one-loop gauge theories) or, at least, involves only two,
non-neighbouring spins at a time (as for the Haldane-Shastry and Inozemtsev integrable
spin chains [77, 78]). This structure may appear to be required by the elastic scattering
properties in integrable models. In contrast, higher-loop corrections to the dilatation
generator require interactions of more than two fields. Moreover, the number of fields is
not even conserved in general (as in the su(2|3) subsector). Nevertheless, there are two
major reasons to believe in higher-loop integrability: Firstly, the observation of pairing
of states in the spectrum of anomalous dimensions has been shown to extend to at least
three-loops in the su(2|3) subsector [51] (see [79] for the related issue of integrability in
the BMN matrix model)

D+(g) = D−(g). (13)

At one-loop this degeneracy is explained by integrability, but there is no obvious reason
why it should extend to higher-loops unless integrability does.8 Moreover, it is possible to
construct a four-loop correction in the su(2) sector with this property [38, 81]. Secondly,
one might interpret the AdS/CFT correspondence as one important indication of the
validity of integrability: The classical world sheet theory, highly non-trivial due to the
curved AdS5 × S5 background, is integrable [82–84] (for the simpler but related case of
plane-wave backgrounds see also [85, 86]).

8Pairing may appear to be a weaker statement, but there are some indications that it is sufficient to
ensure integrability, see e.g. [80, 38].
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It seems that spin chains with interactions of many spins or dynamic spin chains with
a fluctuating number of spin sites have not been considered so far.9 Yet, their apparent
existence [38,79,81,51] is fascinating. The novelty of such a model, however, comes along
with a lack of technology to investigate it. For instance, we neither know how to construct
higher commuting charges or even prove integrability, nor is there an equivalent of the
Bethe ansatz to push the comparison with spinning strings to higher loops.

A first step to overcome those difficulties has been taken by Serban and Staudacher
who found a way to match the Inozemtsev integrable spin chain [78] to the three-loop
results in gauge theory [87]. The Bethe ansatz for the Inozemtsev spin can thus be
used to obtain exact planar three-loop anomalous dimensions in gauge theory. They
have furthermore pushed the successful comparison of [66] to higher-loops and found that
the agreement persists at two-loops. The agreement was subsequently generalised to a
matching of integral equations or Hamiltonians in [75, 72].

However, at three-loops the string theory prediction turned out not to agree with gauge
theory. This parallels a discrepancy starting at three-loops which has been observed earlier
in the near plane-wave/BMN correspondence [88]. These puzzles have not been resolved
at the time this work was written and we shall comment on some possible explanations,
such as an order of limits problem and wrapping interactions, in the main text. Here we
mention only one, even if unlikely: The AdS/CFT correspondence might not be exact
after all. Irrespective of the final word on this issue, we have learned that it is not always
sufficient to restrict to the leading, one-loop order, but there are interesting and relevant
effects to be found at higher-loops.

To deepen our understanding of the string/gauge correspondence, whether or not
exact, it would be useful to know the quantitative difference. Unfortunately, starting at
four-loops, the Inozemtsev spin chain has a scaling behaviour in the thermodynamic limit
which does not agree with the one of string theory; consequently it makes no sense to
compare beyond three-loops. However, there is a proposal for an integrable spin chain
with the correct scaling behaviour even at four-loops [81]. In [89] a Bethe ansatz is
presented which accurately reproduces the spectrum of the four-loop (and even five-loop)
spin chain. What is more, the Bethe ansatz has a natural generalisation to all-loops, which
incidentally reproduces the BMN energy formula (6). In principle, this allows to compute
scaling dimensions as a true function of the coupling constant10 and thus overcome some
of the handicaps of perturbation theory. One may hope that the ansatz gives some insight
into gauge theory away from the weak coupling regime.

Note added: This work is based on the author’s PhD thesis, which was submitted to
Humboldt University, Berlin.

9The higher charges of an integrable spin chain are indeed of non-nearest neighbour type. Nevertheless,
they cannot yield higher-loop corrections because they commute among themselves, whereas the higher-
loop corrections in general do not.

10The ansatz cannot deal with short states correctly, it should only be trusted when the number of
constituent fields is larger than the loop order.
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Overview

This thesis is organised as follows: The main text is divided into six chapters, in the
first two we investigate generic aspects of the dilatation operator and in the remaining
four we will explicitly construct one-loop and higher-loop corrections and investigate their
integrability.

1. We start by presenting the N = 4 supersymmetric field theory and review some useful
results concerning the representation theory of the superconformal algebra psu(2, 2|4)
on which we will base the investigations of the following chapters.

2. We will then investigate some scaling dimensions and introduce the dilatation operator
as a means to measure them. Most of the chapter is devoted to the discussion of various
aspects of the dilatation operator and its structure. These include the behaviour in
perturbation theory and how one can consistently restrict to certain subsectors of
states in order to reduce complexity. From an explicit and a conceptual computation
of two-point functions in a subsector we shall learn about the structure of quantum
corrections to the dilatation generator. Finally, we will investigate the planar limit
and introduce some notation.

3. Having laid the foundations, we will now turn towards explicit algebraic constructions.
In this chapter we will derive the complete one-loop dilatation operator ofN = 4 SYM.
The derivation is similar to the one presented in the article [50], but here we improve
it by replacing the field theory calculations by algebraic constraints.

4. Next, we introduce the notion of integrability and a framework to investigate integrable
quantum spin chains. We will then prove the integrability of the just derived dilatation
generator in the planar limit. We extend the results of the article [58] by a proof
of a Yang-Baxter equation. This allows us to write down the Bethe ansatz for the
corresponding supersymmetric quantum spin chain.

5. At this point, the investigations of one-loop scaling dimensions is complete and we
proceed to higher-loops. For simplicity we will restrict to a subsector with finitely
many fields and the planar limit. We demand the closure of the pertinent symmetry
algebra, determine its most general three-loop deformations [51] and find an essentially
unique result. An interesting aspect of the deformations is that they do not conserve
the number of component fields within a state.

6. In the final chapter we consider integrability at higher-loops and argue why it should
apply to planar N = 4 SYM. We will then construct deformations to the Heisenberg
spin chain to model higher-loop interactions; they turn out to be unique even at five-
loops. Finally, we present an all-loop Bethe ansatz which reproduces the energies of
this model.
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The developed techniques are illustrated by several sample calculations at various places in
the text. In particular, we will present two important computations of scaling dimensions
in the context of the AdS/CFT correspondence. In Sec. 3.6 we shall compute the genus-
one energy shift of two-excitation BMN operators to be compared to strings on plane
waves. The agreement represents the first dynamical test including string interactions. In
Sec. 4.6 we consider classical spinning strings on AdS5 × S5 and compare them to states
with a large spin of so(6) to find an intricate functional agreement.

We then conclude and present a list of interesting open questions. To expand on the
main text we present some miscellaneous aspects in the appendices:

A. An example to illustrate the application of the dilatation operator, at finite N or in
the planar limit.

B. Spinor identities in four, six and ten dimensions.

C. A short review of the ten-dimensional supersymmetric gauge theory, either in super-
space or in components.

D. The algebra u(2, 2|4), its commutation relations and the oscillator representation.

E. Some Mathematica functions to deal with planar interactions in the su(2) subsector
which can be used in the application and construction of the dilatation operator.

F. The harmonic action to compute one-loop scaling dimensions in a more convenient
fashion than by using the abstract formula (8).



15

Chapter 1

Field Theory and Symmetry

In this chapter we will discuss various, loosely interrelated aspects of N = 4 super
Yang-Mills theory, the superconformal algebra and its representation theory. We lay the
foundations for the investigations of the following chapters and introduce our notation,
conventions as well as important ideas.

We will start with a review of classical N = 4 SYM in Sec. 1.1 and its path-integral
quantisation in Sec. 1.2. In the following two sections we consider the gauge group (a
generic group in Sec. 1.3 or a group of large rank in Sec. 1.4) in a quantum field theory.
In Sec. 1.5 we introduce the superconformal algebra, a central object of this thesis. The
remainder of this chapter deals with representation theory. Firstly, we present our notion
of fields and local operators and relate it to the algebra in Sec. 1.6. In Sec. 1.7,1.8 we
consider generic highest-weight modules and special properties of multiplets close the
unitarity bounds. The multiplet of fields and the current multiplet is investigated in
Sec. 1.9,1.11. Finally, in Sec. 1.10 we review correlation functions in a conformal field
theory.

1.1 N = 4 Super Yang-Mills Theory

We start by defining the field theory on which we will focus in this work, N = 4
maximally supersymmetric gauge theory in four dimensions [2].1 It consists of a covariant
derivative D constructed from the gauge field A, four spinors Ψ as well as six scalars
Φ to match the number of bosonic and fermionic on-shell degrees of freedom. We will
collectively refer to the fields by the symbol W 2

WA = (Dµ, Ψαa, Ψ̇ aα̇, Φm). (1.1)

Our index conventions are as follows: Greek letters refer to spacetime so(4) = su(2)×su(2)
symmetry.3 Spacetime vector indices µ, ν, . . . take four values, spinor indices α, β, . . . of
one su(2) and spinor indices α̇, β̇, . . . of the other su(2) take values 1, 2. Latin indices

1It is convenient to derive the four-dimensional theory with N = 4 supersymmetry from a ten-
dimensional theory with N = 1 supersymmetry. In App. C we shall present this ancestor theory.

2Of course, the covariant derivative D is not a field. Instead of the gauge field A, we shall place it
here so that all ‘fields’ W have uniform gauge transformation properties.

3As we are dealing with algebras only, global issues such as the difference between a group and its
double covering need not concern us.
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signature ηµν ηmn spacetime sym. internal sym.
physical (3, 1) (6, 0) sl(2,C) su(4)

Euclidian (4, 0) (5, 1) sp(1)× sp(1) sl(2,H)
Minkowski, non-compact (3, 1) (4, 2) sl(2,C) su(2, 2)
maximally non-comapct (2, 2) (3, 3) sl(2,R)× sl(2,R) sl(4,R)

complex 4 6 sl(2,C)× sl(2,C) sl(4,C)

Table 1.2: Possible signatures of spacetime, internal space and symmetry algebras.

belong to the internal so(6) = su(4) symmetry; internal vector indices m,n, . . . take six
values whereas spinor indices a, b, . . . take values 1, 2, 3, 4. Calligraphic indices A,B, . . .
label the fundamental fields in W.

Let us comment on the signature of the field theory and the algebras. In order to
write down a real-valued Lagrangian, the signatures of spacetime and internal space must
be correlated, we have listed the possible choices in Tab. 1.2. The physical choice has
Minkowski signature and a positive-definite norm for internal space. The other choices
require an internal metric of indefinite signature and possibly a spacetime with two time-
like directions. As far as perturbation theory and Feynman diagrams are concerned,
the signature is irrelevant because we can perform Wick rotations at any point of the
investigation. It may therefore be convenient to work with the maximally non-compact
signature which leads to a completely real theory and where conjugation does not play a
role. Alternatively, we can use a complexified spacetime and algebra. In the following we
will not pay much attention to signatures and assume either the maximally non-compact
or complex version of the algebra.

We define the covariant derivative

Dµ = ∂µ − igAµ, DµW := [Dµ,W] = ∂µW − igAµW + igWAµ, (1.2)

where we have introduced a dimensionless coupling constant g. Later on, in the quantum
theory, g will be an important parameter; however, on a classical level, we can absorb it
completely by rescaling the fields, this corresponds to g = 1. Throughout this work we
will assume the gauge group to be SU(N) or U(N) and represent all adjoint fields W by
(traceless) hermitian N × N matrices. Under a gauge transformation U(x) ∈ U(N) the
fields transform canonically according to

W 7→ UWU−1, Aµ 7→ UAµU−1 − ig−1 ∂µU U
−1. (1.3)

The gauge field A transforms differently from the other fields to compensate for the non-
covariant transformation of the partial derivative within D. The covariant derivative D is
not truly a field, it must always act on some other field. Nevertheless we can construct a
field from the gauge connection alone, the field strength F . Together with the associated
Bianchi identity, it is given by

Fµν = ig−1[Dµ,Dν ] = ∂µAν − ∂νAµ − ig[Aµ,Aν ], D[ρFµν] = 0. (1.4)

After these preparations we can write down the Lagrangian of N = 4 supersymmetric
Yang-Mills theory. It is

LYM[W] = 1
4
TrFµνFµν + 1

2
TrDµΦnDµΦn − 1

4
g2 Tr [Φm, Φn][Φm, Φn] (1.5)

+ Tr Ψ̇ aα̇σ
α̇β
µ DµΨβa − 1

2
igTrΨαaσ

ab
mε

αβ[Φm, Ψβb]− 1
2
ig Tr Ψ̇ aα̇σ

m
abε

α̇β̇[Φm, Ψ̇
b
β̇
].
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In addition to the standard kinetic terms for the gauge field, spinors and scalars, there
is a quartic coupling of the scalars and a cubic coupling of a scalar and two spinors.
The symbols ε are the totally antisymmetric tensors of su(2) and su(4). The matrices
σµ and σm are the chiral projections of the gamma matrices in four or six dimensions,
respectively. They have the symmetry properties σµα̇β = σµβα̇, σ

m
ab = −σmba and satisfy the

relations4

σ{µσν} = ηµν , σ{mσn} = ηmn, (1.6)

when considered as matrices which are summed over a pair of alike upper and lower inter-
mediate indices. Please refer to App. B for a number of useful identities and conventions.
The equations of motion which follow from this action are

DνFµν = ig[Φn,DµΦn]− igσα̇βµ {Ψ̇ aα̇, Ψβa},
DνDνΦm = −g2[Φn, [Φ

n, Φm]] + 1
2
igσm,abεαβ{Ψαa, Ψβb}+ 1

2
igσmabε

α̇β̇{Ψ̇ aα̇, Ψ̇ bβ̇},
σα̇βµ DµΨβa = igεα̇β̇σmab[Φm, Ψ̇

b
β̇
],

σαβ̇µ DµΨ̇ aβ̇ = igεαβσabm [Φm, Ψβb]. (1.7)

It can be shown that the action and the equations of motion are invariant under the
N = 4 super Poincaré algebra. It consists of the manifest Lorentz and internal rotation
symmetries L, L̇,R of su(2) × su(2) × su(4) as well as the (super)translations Q, Q̇,P.
The (super)translation variations are parameterised by the fermionic and bosonic shifts
ǫαa , ǫ̇

α̇a and eµ

δǫ,ǫ̇,e = ǫαaQ
a
α + ǫ̇α̇aQ̇α̇a + eµPµ. (1.8)

The action of the variation on the fundamental fields δǫ,ǫ̇,eW := [δǫ,ǫ̇,e,W] is given by

δǫ,ǫ̇,eDµ = igǫαaεαβσ
βγ̇
µ Ψ̇ aγ̇ + igǫ̇aα̇εα̇β̇σ

β̇γ
µ Ψγa + igeνFµν ,

δǫ,ǫ̇,eΦm = ǫαaσ
ab
mΨαb + ǫ̇aα̇σm,abΨ̇

b
α̇ + eµDµΦm,

δǫ,ǫ̇,eΨαa = −1
2
σµ
αβ̇
εβ̇γ̇σνγ̇δǫ

δ
aFµν + 1

2
igσmabσ

bc
n εαβǫ

β
c [Φm, Φ

n]

+ σnabσ
µ

αβ̇
ǫ̇bβ̇DµΦn + eµDµΨαa,

δǫ,ǫ̇,eΨ̇
a
α̇ = −1

2
σµα̇βε

βγσν
γδ̇
ǫ̇aδ̇Fµν + 1

2
igσabmσ

n
bcεα̇β̇ ǫ̇

cβ̇[Φm, Φn]

+ σabn σ
µ
α̇βǫ

β
bDµΦn + eµDµΨ̇ aα̇. (1.9)

The algebra of supertranslations resulting from these variations is given by

{Qa
α,Q

b
β} = −2igǫαβσ

ab
mΦ

m, [Pµ,Q
a
α] = −igεαβσβγ̇µ Ψ̇ aγ̇ ,

{Q̇α̇a, Q̇β̇b} = −2igǫα̇β̇σ
m
abΦm, [Pµ, Q̇α̇a] = −igεα̇β̇σβ̇γµ Ψγa,

{Qa
α, Q̇bβ̇} = 2δabσ

µ

αβ̇
Pµ, [Pµ,Pν ] = −igFµν , (1.10)

up to terms proportional to the equations of motion.5 Note that the action of the gen-
erators J on a combination of fields X should be read as [J, X]. When X is a covariant

4The brackets {. . .} at index level indicate a symmetric projection of enclosed indices. Likewise [. . .]
and (. . .) correspond to a antisymmetric and symmetric-traceless projection with respect to the metric η.

5It is a common feature of supersymmetric theories that the algebra closes only on-shell. Here, it is
related to the fact that the equations of motion (C.9) are implied by the constraint (C.7) which is used
in the reduction of superspace fields to their top level components. For theories with less supersymmetry
one can introduce auxiliary fields or work in superspace to achieve off-shell supersymmetry.
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Φab

ΨαbΨ̇ b
α̇

Dα̇βΦabḞα̇β̇ Fαβ

Dα̇βΨγdDα̇βΨ̇d
γ̇

. . .. . . . . .

Q̇

P

Q

Figure 1.2: Classical supertranslation variations of the fields in spinor notation. Left, vertical
and right arrows correspond to generators Q̇, P and Q, respectively. We have dropped all
commutators of fields which are suppressed for a vanishing coupling constant g.

combination of fields, the above commutators therefore yield [W, X], whereW is the field
which appears on the right-hand side of (1.10). For a gauge invariant combination X all
fields drop out and only the momentum generator P acts non-trivially [Pµ, X] = ∂µX.

As a more unified notation, it is possible to replace all vector indices µ, ν, . . . ,m, n, . . .
by a pair of spinor indices by contracting with the σ symbols

Dµ ∼ σα̇βµ Dα̇β,
Fµν ∼ σαγ̇µ εγ̇δ̇σ

δ̇β
ν Fαβ + σα̇γµ εγδσ

δβ̇
ν Ḟα̇β̇,

Φm ∼ σbamΦab. (1.11)

In this notation Φab is antisymmetric while Fαβ and Ḟα̇β̇ are both symmetric. Using
identities in App. B, one can remove all explicit σ’s from the action and equations of
motion and replace them by totally antisymmetric ε tensors of su(2), su(2), su(4). We
will not do this explicitly here, but note that the set of fields (together with the covariant
derivative) is given by

W = (Dα̇β, Φab, Ψαb, Ψ̇ bα̇,Fαβ, Ḟα̇β̇), (1.12)

all of which are bi-spinors. For Minkowski signature the dotted fields would be related
to the undotted ones by complex conjugation. Here we will consider them to be inde-
pendent and real as for a spacetime of signature (2, 2). The structure of supersymmetry
transformations of these fields, depicted in Fig. 1.2, is of elegant simplicity. Generators
Q simply change a su(4) index into an undotted su(2) index, whereas generators Q̇ add
both a su(4) index and a dotted su(2) index. The momentum generator adds both an
undotted su(2) index and a dotted su(2) index. We will come back to this in Sec. 1.9,
where we will represent the fields and generator in terms of a set of harmonic oscillators.

The N = 4 gauge theory is pure in the sense that it consists only of the superspace
gauge field, c.f. App. C.1. As such it must be a massless theory and enjoys an enhance-
ment of Poincaré symmetry to conformal symmetry. Even more, conformal symmetry
and super(translation)symmetry join to form superconformal symmetry. We will discuss
this symmetry in detail in Sec. 1.5, here we only note that it yields additional special
conformal generators or boosts. The (super)boosts S, Ṡ,K are essentially the conjugate
transformations of (super)translations Q, Q̇,P.
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1.2 The Quantum Theory

There are various ways to quantise a field theory, we will consider only the path integral
approach. The path integral measures the expectation value of some operator functional
O[W] by summing over all field configuration weighted by the exponential of the action6

〈
O[W]

〉
:=

∫
DWO[W] exp

(
−S[W]

)
. (1.13)

We assume the path integral to be normalised, 〈1〉 = 1. The Yang-Mills action S is the
spacetime integral of the gauge theory Lagrangian (1.5)

S[W] =
2

g2
YM

∫
d4xLYM[W, g = 1], (1.14)

where we have used the common definition of the Yang-Mills coupling constant gYM. For
a reason to be explained in Sec. 1.4, it will be more convenient to work with a different
coupling constant

g2 :=
g2

YM
N

8π2
, (1.15)

where N is the rank of the gauge group U(N). We can easily recast the action in the
following form

S[W] =
N

4π2

∫
d4xLYM[W/g, g =

√
g2

YM
N/8π2 ]. (1.16)

This form yields a convenient normalisation for spacetime correlators when the fields W
are rescaled by g. The rescaling can be absorbed into the normalisation of the path
integral and we obtain the action to be used in this work

S[W] = N

∫
d4x

4π2
LYM[W]. (1.17)

There are various expectation values which one might wish to compute, let us state a
few: A frequent application is scattering of particles. Particles are represented by fields
with well-prepared momenta pi and spins ǫi. One inserts these into the path integral

F (pi, ǫi) =
〈
ǫ1·Ψ (p1)Φ(p2) . . .

〉
(1.18)

and obtains the scattering function F which describes the scattering process of the in-
volved particles. Another possibility is to insert Wilson loops O[γ]

F [γ] =
〈
O[γ]

〉
. (1.19)

Wilson loops are operators which are supported on a curve x = γ(τ) in spacetime. The
function F [γ] can, for example, be used to describe the potential between two heavy
charged objects. In this work we shall consider local operators O(x), objects supported
at a single point x in spacetime, and their correlators

F (xi) =
〈
O(x1)O(x2) . . .

〉
. (1.20)

6We assume the signature of spacetime to be Euclidean. For Minkowski signature the weight would
be exp iS.
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In particular we will focus on two-point functions

F (x1, x2) =
〈
O(x1)O(x2)

〉
, (1.21)

which are used to measure some generic properties of the local operators in question.
They describe how a particle which is created/annihilated by that operator propagates
through spacetime. Local operators will be discussed in detail in Sec. 1.6.

The symmetries of the theory will be reflected by the correlation functions F . For
example, due to translation invariance, the Wilson-loop expectation value will not depend
on a global shift of the contour, F [γ+ c] = F [γ]. For the same reason two-point functions
can only depend on the distance of the two points F (x1, x2) = F (x1 − x2). There are
further constraints on two-point functions due to superconformal symmetry which will be
discussed in Sec. 1.10.

However, there is a possible catch about symmetries: Classical symmetries of the
action might not survive in the quantum theory. In the path integral formalism such
anomalies arise when it is impossible to consistently define a measure DW which obeys
the symmetry. In particular, conformal symmetry usually is anomalous. When quantising
a field theory, it is necessary to regularise it first in order to remove divergencies; this
inevitably requires the introduction of a mass scale µ. In the regularised theory µ breaks
conformal symmetry for which scale invariance is indispensable. When, after quantisation,
the regulator is removed, the correlation functions F usually still depend on the scale µ.
Of course, a physically meaningful result must not depend on the arbitrary scale. This
apparent puzzle is resolved by assuming that the parameters of the quantum theory also
depend on the scale µ in such a way that the explicit and implicit dependence cancel out.
In the case at hand, the only parameter is the coupling constant g and its dependence on
the scale is described by the beta function

β = µ
∂g

∂µ
. (1.22)

The appearance of the beta function is related to the breakdown of scale invariance
and conformal symmetry in a massless gauge theory. For N = 4 SYM, however, the
beta function is believed to vanish to all orders in perturbation theory as well as non-
perturbatively [3]

β = 0. (1.23)

In other words, (super)conformal symmetry is preserved even at the quantum level! This
does not imply, however, that there are no divergencies in N = 4 SYM; it merely means
that, once the operators are properly renormalised, all divergencies and scale dependencies
drop out in physically meaningful quantities.

Let us evaluate the expectation value 〈O[W]〉 in perturbation theory. Using standard
path integral methods we find the generator of Feynman diagrams

〈
O[W]

〉
=
(
exp(W0[∂/∂W]) exp(−Sint[g,W])O[W]

)
W=0

, (1.24)

where we have split up the action S(g) = S0 + Sint(g) into the free part, quadratic in the
fields, and the interacting part, which is (at least) cubic.7 The free connected generating

7Apart from the trivial vacuum, in which all fields are identically zero, other classical solutions to the
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Figure 1.4: A contribution to the quantum expectation value of the operator O (Feynman
graph).

functional is given by

W0[J ] =
1

N

∫
dx dy 1

2
TrJ (x)∆(x, y)J (y). (1.25)

Here, ∆(x, y) is the free propagator which is the inverse of the kinetic term in the free ac-
tion S0. The source fields J will usually be replaced by variations ∂/∂W. The expression
(1.24) can be read as follows, see also Fig. 1.4: There are arbitrarily many propagators
W0 and arbitrarily many vertices Sint. Each propagator connects two fields W within the
vertices or the operator O. In the end, all fields must be saturated.

For a perturbative treatment of a quantum gauge theory one must modify the action
slightly. Firstly, the divergencies which appear in a QFT need to be regularised. A
convenient scheme which preserves most of the symmetries is dimensional regularisation.
In this scheme the number of spacetime dimensions is not fixed to four, but rather assumed
to be 4 − 2ǫ with a regularisation parameter ǫ. Correlators are thus analytic functions
of ǫ and divergencies become manifest as poles at ǫ = 0. The other issue is gauge
fixing: Gauge invariance leads to non-propagating modes of the gauge field and a naive
gauge field propagator is ill-defined. We need to fix a gauge and a consistent treatment
may require the introduction of ghosts. The ghosts are auxiliary fermionic fields which
interact with the gauge fields at a cubic vertex. They are an artefact of the quantisation
procedure and can appear only in the bulk of Feynman graphs; they are forbidden in
external states (operators). These two issues are important for a consistent quantisation;
they will however hardly affect our investigations which are algebraic in nature. We will
merely have to assume that the perturbative contributions can be obtained consistently.

Let us comment on the counting of quantum loops. For simplicity, we will assume only
cubic interactions. In gauge theories there are also quartic interactions, but these may
be represented by two cubic interactions connected by an auxiliary field. This fits well
with the fact that cubic interactions are suppressed by one power of the coupling constant
and quartic ones by two. A Feynman graph can then be characterised by the number of
vertices V , propagators I, fields within the operator E and connected components C. As
the number of fields W and variations ∂/∂W must match exactly, we have 3V +E = 2I.
Counting of momentum integrals L (loops) furthermore implies L = I−V −E+C: Each
propagator introduces one new momentum variable, while each vertex and external field

equations of motion exist. For example, there are instantonic vacua with non-trivial topological charge
and non-conformal vacua in which some of the scalar fields have a constant value. One can also expand
around these configurations which leads to qualitatively very different results. For simplicity we shall
only consider the trivial vacuum in this work.
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b Wc
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Figure 1.6: The contraction of a matrix-valued variation W̌ and field W.

introduces a constraint. Due to momentum conservation the external momenta within
each component must add up to zero, reducing the number of constraints by one for each
component. In total we can write

V = 2L+ 2(E/2− C). (1.26)

In the free theory, there are neither vertices nor loops. Therefore we have C0 = E/2
independent pairwise contractions of fields. In the interacting theory E/2− C = C0 − C
gives the number of components that are now connected due to interactions. The above
formula states that it takes two vertices to construct a loop or to connect two components.
The number of vertices is important because it gives the order in perturbation theory gV .
We will consider a graph of order g2ℓ in perturbation theory to be an ‘ℓ-loop’ graph

‘ℓ-loop’ : O(g2ℓ). (1.27)

Note that these ‘loops’ are not the momentum-loops counted by L. The motivation for
this terminology is that, when working in position space, connecting two components
of a graph may produce the same kind of divergency as adding a loop. This is quite
different in momentum space, where divergencies can only arise from true loops in the
graph. At any rate, the counting scheme is different there, as one usually considers only
connected graphs with external propagators removed. For Wilson loops the counting is
again different, because each external leg also contributes one power of g.

1.3 The Gauge Group

In the following we will present some useful notation to deal with the matrix-valued
fields WA. For a start, let us introduce explicit matrix indices for the fields (WA)a

b. For
variations with respect to these fields we introduce the notation W̌A, see also Fig. 1.6,8

(W̌A)a
b :=

δ

δ(WA)b
a

, (W̌A)a
b(WB)

c
d = δA

B
δa
dδ

c
b. (1.28)

When, for the gauge group SU(N), the matrices are traceless Wa
a = 0, the trace of the

variation must vanish as well and we define the variation by

(W̌A)a
b(WB)

c
d = δA

B
δa
dδ

c
b−N−1δA

B
δa
bδ

c
d. (1.29)

We furthermore introduce normal ordering :. . .: which suppresses all possible contractions
between fields and variations by moving all variations to the right, for example

:. . . (W̌A)a
b . . . (WB)

c
d . . .: := . . . (WB)

c
d . . . (W̌A)a

b. (1.30)

8In a canonical quantisation scheme, W and W̌ correspond to creation and annihilation operators.
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For all practical purposes we need not write out the matrix indices writing simply

W̌A :=
δ

δWA

. (1.31)

It is useful to write down the action of a variation on a field (1.28) when both are inserted
within traces. There are two cases to be considered: The variation and field might be
within different traces or within the same; these are the fusion and fission rules, respec-
tively

TrXW̌A Tr YWB = δA

B
TrXY,

TrXW̌AYWB = δA

B
TrX Tr Y. (1.32)

Clearly, W̌ also acts on further fields W within Y in the same way. For the case of a
gauge group SU(N), the fusion and fission rules following from (1.29) are

TrXW̌A Tr YWB = δA

B
(TrXY −N−1 TrX TrY ),

TrXW̌AYWB = δA

B
(TrX Tr Y −N−1 TrXY ). (1.33)

Commonly, variations will appear within commutators only. The appropriate rules are

TrX[Z, W̌A] Tr YWB = δA

B
TrX[Z, Y ],

TrX[Z, W̌A]YWB = δA

B
(TrXZ Tr Y − TrX TrZY ), (1.34)

which are valid for both, U(N) and SU(N) (the abelian trace does not contribute in
commutators). Note that when normal ordering expressions, it is sometimes impossible to
simply move all variations to the right in this notation. Instead, the possible contractions
have to be removed by hand, for example

:TrWAW̌BWCW̌D: = TrWAW̌BWCW̌D − δB

C
N TrWAW̌D. (1.35)

This notation is convenient to express, for example, gauge transformationsW 7→ UWU−1,
which are generated infinitesimally by

δǫW = i[ǫ,W]. (1.36)

Using our notation for matrix-valued variations this becomes

δǫ = Tr ǫj, where j = i:[WA, W̌A]:. (1.37)

We can also consider a more general gauge group. We will start with the gauge theory
Lagrangian as defined in (1.5) for SU(N). Let us parameterise the fields using SU(N)
generators tm

WA =Wm
A
tm. (1.38)

We assume the generators and structure constants fpmn to be normalised in a way such
that

Tr tmtn = gmn, [tm, tn] = ifpmntp. (1.39)

The more general variations will be defined as

W̌A := tmgmn δ

δWn
A

,
δ

δWm
A

Wn
B

= δA

B
δn
m. (1.40)
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This allows us to rewrite the gauge theory and all our results purely in terms of the metric
gmn and the structure constants fpmn. In that form the results generalise to arbitrary gauge
groups. Nevertheless the matrix notation is most convenient and we will stick to it in this
work. On rare occasions we shall use generators tm to write down expressions valid for
generic groups; for example, it is better to write instead of (1.35)

:TrWAW̌BWCW̌D: = TrWAW̌BWCW̌D − δB

C
gmn TrWAtmtnW̌D. (1.41)

For a unitary group we can define a parity operation. It replaces a matrix by its
negative transpose

‘parity operation’ : pW 7→ −WT. (1.42)

For hermitian matrices the conjugate equals the transpose, therefore this parity is equiva-
lent to charge conjugation. Its eigenvalues ±1 will be denoted by the letter P . It is easily
seen that the Lagrangian (1.5) is invariant under this operation. Therefore parity is an
exact symmetry of U(N) or SU(N) gauge theory. Note that this parity is a unique feature
of the unitary groups, it does not generalise to the orthogonal or symplectic groups.

1.4 The ’t Hooft Limit

A field theory with U(N) gauge symmetry has remarkable properties when N is inter-
preted as an additional coupling constant: In the article [1] ’t Hooft realised that, in the
large-N limit, for any Feynman graph there is an associated two-dimensional surface. The
N -dependence of a graph is given by the Euler characteristic (genus) of the corresponding
surface. This makes the large-N field theory very similar to a string field theory whose
coupling constant also counts the genus of the world sheet.

Let us consider a gauge invariant Feynman graph and investigate its structure in terms
of the gauge group. The structure may be represented graphically using ‘double lines’
or a ‘fat graph’. For that purpose we represent every upper (lower) U(N) vector index
of a field within the operators or vertices by a black (white) dot. Consequently, every
(adjoint) field provides one black and one white dot. For all external contractions between
two vector indices, i.e. those in the operator or in the vertex, draw an arrow from the
black to the white dot. For a gauge invariant graph all indices must be contracted, so
there are no unconnected dots. Now we perform the contractions generated by the path
integral, i.e. due to the propagators (1.25)

W0[J ] =
1

N

∫
dx dy 1

2
J a

b(x)∆(x, y)J b
a(y), (1.43)

where we made the gauge indices visible. The propagator connects two fields, we should
now connect the corresponding two pairs of dots by antiparallel arrows along the propaga-
tor. Here, we will draw the arrows from white dot to black dot. In this way all propagators
of the Feynman graph are represented by two parallel lines or, alternatively, a fat line,
c.f. Fig. 1.8. In this representation it is easy to perform all U(N) contractions: All dots
have exactly one incoming and one outgoing arrow. The arrows thus form closed circles,
which are known as index loops. Each index loop provides δa

a = Tr 1 = N and furthermore
there are explicit factors of N in the action and propagators (1.17,1.43). The result is
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Figure 1.8: A fat graph. The circles are U(N) traces of the vertices and operators and the fat
lines are propagators. For each face of the graph there is a closed empty trace Tr 1 = N .

given by NF+V−I where F is the number of closed (index) loops, V the number of ver-
tices and I the number of (double) lines. Assume now that the graph has C components
and that each component will be drawn on a surface of minimal genus without crossing
of any lines. Let G be the total genus of all component surfaces and T the number of
traces within the local operators. Then Euler’s theorem relates these numbers as follows
T + V + F = I + 2C − 2G. In total the N -dependence is given by9

O(N2C−2G−T ) = O(Nχ). (1.44)

Note that the coupling constant g2 as defined in (1.15) is proportional to the ’t Hooft
coupling λ = g2

YM
N

g2 =
g2

YM
N

8π2
=

λ

8π2
. (1.45)

Note also that (1.44) gives precisely the Euler characteristic χ = 2C − 2G− T of the set
of surfaces. This led ’t Hooft to his conjecture of the emergence of a string field theory
in the large N limit of a gauge theory: In string field theory, an amplitude on a world
sheet with Euler characteristic χ is proportional to g−χs , where gs is the string coupling
constant. This matches with the N -dependence in gauge theory when we identify

gs ∼
1

N
. (1.46)

With some additional work, the large N limit can also be taken for gauge groups
SU(N), SO(N), Sp(N) as well as fields in the fundamental representation. Then, also
unoriented surfaces as well as surfaces with boundaries10 may appear.

1.5 The Superconformal Algebra

The Lagrangian (1.5) and action (1.14) of N = 4 SYM in four spacetime dimensions
do not involve any dimensionful coupling constants. Therefore the action is invariant
under the scale transformation

x 7→ c−1x, A 7→ cA, Ψ 7→ c3/2Ψ. (1.47)

9A contribution NV which commonly appears at V/2 quantum loops has already been absorbed into
the definition of the coupling constant (1.15).

10Here we mean boundaries which are not associated to an operator insertion.
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For a gauge theory this implies also conformal invariance and, in the case of a supersym-
metric theory, also superconformal invariance. This symmetry is especially important for
N = 4 SYM, because it is believed to be an exact symmetry even in the quantum theory,
where the beta function (1.23) is apparently exactly zero.

The super Poincaré symmetry algebra consisting of Lorentz rotations L, L̇, internal ro-
tations R and (super)translations Q, Q̇,P is enlarged by (super)conformal boosts S, Ṡ,K
and the scaling operator D which is also known as

‘The Dilatation Operator ’ D. (1.48)

The boosts are essentially the conjugate transformations of the translations. The action
of the translations and boosts on the fields in the free theory is depicted in Fig. 1.2. The
arrows correspond to momenta whereas boosts act in the inverse direction of the arrows.

The conformal symmetry algebra in four spacetime dimensions is so(4, 2) = su(2, 2),
the superconformal algebra is su(2, 2|N ). In the case of maximal N = 4 supersymmetry,
the algebra su(2, 2|4) is reducible and the superconformal algebra is considered to be only
the irreducible part psu(2, 2|4). Let us, for the moment, consider the supermatrix algebra
u(2, 2|4) and later restrict to psu(2, 2|4). It consists of the generators

J ∈ {L, L̇,R,P,K,D,B,C|Q, Q̇,S, Ṡ}. (1.49)

These are the su(2), su(2), su(4) rotations L, L̇,R, the (super)translations Q, Q̇,P, the
(super)boosts S, Ṡ,K as well as the dilatation generator D, hypercharge B and central
charge C. Please refer to App. D for details of this superalgebra and its commutation
relations. The signature of spacetime will not be important here; for algebraic purposes we
can safely assume to work with a complexified algebra. In the irreducible superconformal
algebra psu(2, 2|4), the generators B,C are absent: The u(1) hypercharge B of pu(2, 2|4) =
u(1)⋉psu(2, 2|4) is an external automorphism which consistently assigns a charge to all the
generators of psu(2, 2|4). The u(1) central charge C of su(2, 2|4) = psu(2, 2|4)⋉u(1) must
vanish to be able to reduce to psu(2, 2|4). The Lorentz algebra so(3, 1) = su(2)× su(2) is
formed by L, L̇. Together with P,K,D one gets the conformal algebra so(4, 2) = su(2, 2).

Note that only the Lorentz and internal symmetries, su(2)×su(2) and su(4), are man-
ifestly realised in the quantum theory; the other generators receive radiative corrections,
i.e. they depend on the coupling constant g, see (1.9). In particular the dilatation gen-
erator D receives loop corrections. As we shall see, it makes sense to define an operator
which measures the classical dimension, the

‘Classical Dilatation Operator ’ D0, (1.50)

even in the quantum theory. The shift of scaling dimensions by quantum effects, the
anomalous dimension, is measured by the

‘Anomalous Dilatation Operator ’ δD = D−D0. (1.51)

This is a u(1) abelian generator. It is also reasonable to identify δD with a ‘Hamiltonian’
H(g) in the following way, c.f. Sec. 2.2.4

‘The Hamiltonian’ H = g−2 δD. (1.52)
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Figure 1.10: The Dynkin diagram of psu(2, 2|4) convenient for N = 4 SYM.

Its eigenvalues, the energies, will be denoted by the letter E.
For a bosonic, semi-simple Lie algebra the Dynkin diagram is unique. In the case of

superalgebras, however, there is some freedom to distribute the simple fermionic roots.
Different choices of fermionic roots correspond to different assignments of positive and
negative roots. In the context of N = 4 SYM one particular choice of Dynkin diagram
turns out to be very useful [90], see Fig. 1.10.11 For this particular Dynkin diagram the
generators associated to positive and negative roots and elements of the Cartan subalgebra
J+, J−, J0 are given by

J+ ∈ {Kαβ̇,Sα
b, Ṡ

aβ̇,Lα
β (α < β), L̇α̇

β (α̇ < β̇),Ra
b (a < b)},

J0 ∈ {Lα
β (α = β), L̇α̇

β̇ (α̇ = β̇),Ra
b (a = b),D,B,C},

J− ∈ {Pα̇β,Q
a
β, Q̇α̇b,L

α
β (α > β), L̇α̇

β (α̇ > β̇),Ra
b (a > b)}. (1.53)

All the elements of the Cartan subalgebra, spanned by {J0}, commute among each other.
One can therefore find simultaneous eigenstates with respect to all its elements, the eigen-
values are the charges or ‘labels ’ of that state. There are many useful bases for the Cartan
subalgebra which give rise to different labellings of states, we will use two of them.

Let us first note the Dynkin labels corresponding to the diagram in Fig. 1.10 of
su(2, 2|4), see also [91]12

w = [s1; r1; q1, p, q2; r2; s2]; (1.54)

these are defined as the following linear combinations of the eigenvalues Lαβ, L̇
α̇
β̇ , R

a
b of

Cartan generators Lα
β, L̇

α̇
β̇,R

a
b (α = β, α̇ = β̇, a = b)

s1 = L2
2 − L1

1, s2 = L̇2
2 − L̇1

1,

r1 = 1
2
D − 1

2
C − L1

1 +R1
1, r2 = 1

2
D + 1

2
C − L̇1

1 −R4
4,

q1 = R2
2 −R1

1, q2 = R4
4 −R3

3,

p = R3
3 −R2

2, r = −D + L1
1 + L̇1

1.

(1.55)

The charges [q1, p, q2] are the Dynkin labels of the su(4) subalgebra. Equivalently [s1, s2]
are the Dynkin labels of the Lorentz algebra so(3, 1) = su(2) × su(2). Together with r
they give the Dynkin labels [s1, r, s2] of the conformal algebra su(2, 2). Note that we shall
always use integer valued Dynkin labels s1, s2 instead of the more common half-integer
valued spin labels for su(2), i.e. s1, s2 equal twice the spin. The labels q1, q2 will also be
integers, only for the labels r1, r2, r we have to allow irrational numbers corresponding to
anomalous dimensions. For the su(2, 2|4) labels (1.54) we do not need the label r which
is given by r = −r1 − q1 − p− q2 − r2.

11One might be tempted to denote the superconformal algebra by psu(2|4|2).
12There is no obvious choice for the sign of the odd labels r1, r2. Our choice implies, e.g., for the

product of two fundamental representations [1; 0; . . .]× [1; 0; . . .] = [2; 0; . . .] + [0;−1; . . .].
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Often, we will consider states of the classical theory at g = 0.13 To label them we will
use a notation which is based on more physical quantities

w = (D0; s1, s2; q1, p, q2;B,L). (1.56)

Here, [q1, p, q2] and [s1, s2] are as above. The label D0 is the classical scaling dimension as
measured by D0. These are the six labels for a weight of the algebra psu(2, 2|4) of rank
six. All of them are non-negative integers except D0, which can take half-integer values.

We further introduce labels B,C, L which do not belong to psu(2, 2|4); they are im-
portant to describe a state of the classical theory. The hypercharge B, measured by B

of pu(2, 2|4), is half-integer valued and is defined via Tab. 1.4. The ‘length’ L, measured
by the operator L, counts the number of constituent fields of a state and is therefore a
positive integer. The central charge C, measured by C of su(2, 2|4), will always be zero.
The anomalous dimension δD = D −D0 is not part of this set of labels, it will be given
elsewhere.

1.6 Fields and States

In this work we will be interested in the properties of local, gauge invariant operators,
which we will also refer to as ‘states ’ and which will usually be denoted by the symbol ‘O’.
Local operators are constructed as linear combinations of products of the fundamental
fields and their derivatives14

‘states ’: O(x) = Φ∗(x)·Φ∗(x)·D∗D∗Ψ∗(x)·D∗F∗(x) . . .+ . . . . (1.57)

Note that the coordinate x is the same for all the fields and hence we can drop it al-
together.15 We demand states to be gauge invariant. Due to the inhomogeneous gauge
transformation (X 7→ UXU−1 + . . .) of the gauge field A and partial derivative ∂, these
cannot be used in the construction of states. Instead, we can use field strengths F and
covariant derivatives D, which transform homogeneously (W 7→ UWU−1). In the case of
gauge groups SU(N), SO(N), Sp(N) and adjoint fields, a basis for the space of states is
given by the multi-trace operators

‘state basis ’:
{
TrW∗ · · ·W∗ TrW∗ · · ·W∗ . . .

}
, (1.58)

where each W is one of the fields

‘field basis ’: WA ∈
{
DkΦ,DkΨ,DkΨ̇ ,DkF

}
. (1.59)

Here we slightly change the definition of the symbol WA: By including arbitrarily many
derivatives, in the sense of a Taylor expansionW(x) =W0+xW1 + 1

2
x2W2+ . . . , we trade

in spacetime-dependence for infinitely many components.16 Roughly speaking, the index

13To use this set of labels makes sense even in the interacting theory: There, the labels should be
defined as the labels in the limit g → 0.

14The ∗’s refer to some unspecified indices
15Moreover, we consider fields and states as abstract objects which are not positioned at some point in

space. They are merely elements of the space of fields or states, respectively.
16This is analogous to moving from a superspace to ordinary spacetime when one trades in the depen-

dence on fermionic coordinates θ for component fields.
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field D0 su(2)× su(2) su(4) B L
DkF k + 2 [k + 2, k ] [0, 0, 0] +1 1
DkΨ k + 3

2
[k + 1, k ] [0, 0, 1] +1

2
1

DkΦ k + 1 [k , k ] [0, 1, 0] ±0 1

DkΨ̇ k + 3
2

[k , k + 1] [1, 0, 0] −1
2

1

DkḞ k + 2 [k , k + 2] [0, 0, 0] −1 1

Table 1.4: Basis fields WA of the N = 4 SYM field strength multiplet VF.

A now comprises also the coordinate x, but in a fashion more suitable for local operators.
The basis (1.58) is in general over-complete. One reason is the Bianchi identity (1.4)
which defines the field strength

[D,D]X ∼ g[F , X], (1.60)

which tells us that the left hand side is reducible, i.e. it can be written as a product of
fields. As products of fields appear naturally within the basis states (1.58), there is no
reason to use reducible fields W. By avoiding them, one eliminates obscure identities
between basis states (1.58) and reduces the ambiguity. Consequently, for an irreducible
field, all derivatives in (1.59) should be totally symmetrised. Furthermore, the Bianchi
identity (1.4)

D ∧ F = 0 (1.61)

implies that none of the derivatives can be antisymmetrised with the field strength. Fi-
nally, the equations of motion (1.7)

D·DΦ,D·Ψ,D·Ψ̇ ,D·F = . . . , (1.62)

lead to further reducible terms Φ3, ΦDΦ, Ψ 2, . . . .17 Therefore, contractions between in-
dices are not allowed for irreducible fields. In total these constraints lead to the set of
irreducible fields as presented in Tab. 1.4. In the table we have split up the field strengths
into their chiral and antichiral parts according to (1.11). We will use index letters A,B, . . .
to label precisely the elements of this set of irreducible fields. For the rest of this work
we will consider only irreducible fields and speak of ‘fields ’ for short.

Matrix identities are another source of linear dependencies between the basis states
(1.58) at finite N . These involve traces of L > N fields and become irrelevant when N
is sufficiently large, e.g., in the large N limit. Note also that traces are cyclic and states
related by cyclic permutations within the traces are to be identified.

An alternative way of representing local operators is to use the state-operator map for
N = 4 SYM on R×S3, which is conformally equivalent to flat R4. When decomposing the
fundamental fields into spherical harmonics on S3 one gets precisely the same spectrum
of fields W as in Tab. 1.4.

1.7 Highest-Weight Modules and Representations

There are various types of representations of u(2, 2|4); for example the defining one 4|4
or the adjoint 30|32+1+1 have finitely many components. In the context of field theory

17In a quantum theory the equations of motion might be modified, but the modifications are again
reducible.



30 1 Field Theory and Symmetry

we have to deal mainly with a different kind, namely non-compact or infinite-dimensional
highest-weight representations. A (Verma) module, i.e. the vector space on which the
representation acts, is characterised by its highest-weight or primary state |0〉. In field
theory this corresponds to a field or local operator,18 for example the primary field Z or
the primary Konishi state K

|Z〉 = Φ34 or |K〉 = εabcd TrΦabΦcd ∼ ηmn TrΦmΦn. (1.63)

A highest-weight state |0〉 is defined as being annihilated by all raising operators J+ in
(1.53)

J+|0〉 = 0, J0|0〉 = w|0〉; (1.64)

the action of the Cartan subalgebra J0 in (1.53) measures the charge vector w of the
highest weight, see (1.54,1.56). Application of the lowering operators yields new states

|0〉, J−|0〉, J−J−|0〉, . . . , (1.65)

which belong to the highest-weight module. These are called descendants. For example

Q3
2|Z〉 = Ψ24 or P22P22|K〉 = 2εabcd

(
TrD22ΦabD22Φcd + TrΦabD22D22Φcd

)
(1.66)

belong to the modules with highest weights |Z〉 or |K〉, respectively. See Fig. 1.2 for an
illustration of the module with highest weight |Z〉.

In general one can apply any number of lowering operators to the highest weight
and obtain an infinite multiplet of states. The space spanned by the states is a module
of u(2, 2|4) because applying any of the generators yields another element: For lowering
operators this is obvious while raising and Cartan generators have to be commuted all the
way to the vacuum |0〉 first. In the most general case, the obtained module is irreducible.
However, for very special highest weights, one will find further states which are annihilated
by all the raising operators. In that case the multiplet is reducible and the irreducible
module which contains |0〉 is called short, see Sec. 1.8 for the cases relevant to N = 4
SYM. Finite-dimensional representations are just extremely short: By repeatedly applying
lowering operators to the highest weight, one will inevitably leave the irreducible module
that belongs to the highest weight |0〉. In a conformal field theory, the modules will
commonly be very short, only a few of the shortening conditions are not satisfied. This
means that, when one considers a fairly large subalgebra, here su(2)× su(2)× su(4), the
modules will split into (infinitely many) finite-dimensional modules of the subalgebra.

Let us demonstrate this feature in terms of a simple example using the algebra of sl(2)
spanned by J±, J0. The algebra of generators is

[J0, J±] = ±2J±, [J+, J−] = J0. (1.67)

We specify a highest-weight state |s〉 by

J+|s〉 = 0, J0|s〉 = s|s〉. (1.68)

A module is spanned by the states

|s, k〉 = (J−)k|s〉. (1.69)

18A local operator can be viewed as an abstract object, i.e. not based at some point in spacetime.
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J−

J+

|3, 0〉|3, 1〉|3, 2〉|3, 3〉|3, 4〉|3, 5〉. . .

Figure 1.12: A reducible highest-weight module. All states can be obtained from the highest-
weight state |3, 0〉 by the action of J−, but there is no way back from |3, 4〉 to |3, 3〉 using J+.
Consequently |3, 4〉 is a highest-weight state.

Let us act with J+ on some state |s, k〉, using the algebra relations we find

J+|s, k〉 = k(s+ 1− k)|s, k − 1〉. (1.70)

The state |s, 0〉 = |s〉 with k = 0 is a highest-weight state by construction. However, if s
is a non-negative integer, the state |s, s+ 1〉 is another highest weight, see Fig. 1.12. It
has J0 charge s′ = −2− s, it is therefore equivalent to |s′〉

|s, s+ 1〉 =̂ |−2− s〉. (1.71)

The charge s′ of this highest weight is negative and the ‘lower’ module therefore irre-
ducible. By defining |s, s+ 1〉 = 0 we can also make the ‘upper’ highest weight module
irreducible. As one can see, this is compatible with the algebra (1.67).

1.8 Unitarity and Multiplet Shortenings

The real algebra psu(2, 2|4) of indefinite signature does not have any non-trivial finite-
dimensional unitary representations. Unitary representations, which are relevant to quan-
tum physics, are necessarily infinite-dimensional. These have been classified [8] and the
following two bounds have been found19

D ≥ 2 + s1 + p+ 3
2
q1 + 1

2
q2 or D = p+ 3

2
q1 + 1

2
q2, s1 = 0,

and D ≥ 2 + s2 + p+ 1
2
q1 + 3

2
q2 or D = p+ 1

2
q1 + 3

2
q2, s2 = 0. (1.72)

Unitary multiplets fall into different series, the first one is the ‘half-BPS’ series with
highest weights given by20

w = (p; 0, 0; 0, p, 0; 0, p). (1.73)

These are the shortest physical multiplets. Multiplets which are of this type in the classical
theory are protected, the scaling dimension of the classical theory is preserved exactly in
the quantum theory, D = p. In field theory the highest weight state is composed only
from fields Z and all states of this form are half-BPS.

Furthermore, there are two ‘eighth-BPS’ conditions21

‘eighth-BPS ’:
I : D = p+ 3

2
q1 + 1

2
q2, s1 = 0,

II : D = p+ 1
2
q1 + 3

2
q2, s2 = 0,

(1.74)

19Using the fermionic labels r1, r2 (D.11) these conditions simplify to ri − si ≥ 1 or ri = si = 0.
20Alternatively w = [0; 0; 0, p, 0; 0; 0].
21Alternatively ri = si = 0.
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δwi δwii

Figure 1.14: A long multiplet can split in up to four short submultiplets at the unitarity bounds.
Short arrows correspond to O(1) generators whereas dashed arrows correspond to O(

√
D −D0)

generators.

and two shortening22 conditions23

‘short ’:
i : D = 2 + s1 + p+ 3

2
q1 + 1

2
q2,

ii : D = 2 + s2 + p+ 1
2
q1 + 3

2
q2.

(1.75)

These condition can be combined into a quarter-BPS condition (I+II), two short-eighth-
BPS conditions (i+II,I+ii) and a doubly-short condition (i+ii).

In perturbation theory multiplets close to the unitarity bound have some special fea-
tures, see for example [8, 10, 92]. Consider a multiplet whose classical dimension D0

saturates one of the bounds in (1.72) and whose anomalous dimension δD is non-zero.
When we send the coupling constant to zero, the anomalous dimension δD vanishes and
the highest-weight multiplet becomes short (1.75). Nevertheless, the remaining states
of the interacting long multiplet cannot disappear, instead they form an additional short
highest-weight multiplet, see Fig. 1.14. For s1,2 > 0 the highest weight of the submultiplet
is offset from the highest weight of the long multiplet by

δwi = (+0.5;−1, 0; +1, 0, 0;−0.5,+1),

δwii = (+0.5; 0,−1; 0, 0,+1; +0.5,+1). (1.76)

The new highest-weight multiplet is also of short type. For s1,2 = 0 the above shift would
lead to a negative spin; then the new highest weight is shifted further by in total

δwI = (+1.0; 0, 0; +2, 0, 0; 0.0,+1),

δwII = (+1.0; 0, 0; 0, 0,+2; 0.0,+1); (1.77)

this multiplet is of eighth-BPS type.

22These are usually called semi-shortening conditions. Here we shall distinguish between short and
BPS multiplets.

23Alternatively ri − si = 1.
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Naively, if one of the eighth-BPS conditions is satisfied in the classical theory, one
might think that the dimension is protected because an anomalous dimension would
violate unitarity (1.72). However, the eighth-BPS multiplet may join, in similarity with
the Higgs mechanism, with short multiplets and form a generic, long multiplet. Note
that the shift δwI,II yields multiplets with q1,2 ≥ 2, therefore eighth-BPS multiplets with
q1,2 = 0, 1 are indeed protected.

1.9 The Field-Strength Multiplet

Let us now reconsider the fields WA and understand their transformation properties.
For that purpose we have another look at Tab. 1.4. All representations of su(2)×su(2) are
symmetric tensor products of the fundamental representation, while the representations of
su(4) are antisymmetric. Using two bosonic oscillators (aα, a†

α), (bα̇,b†
α̇) with α, α̇ = 1, 2

and one fermionic oscillator (ca, c†a) with a = 1, 2, 3, 4 we can thus write [93]24

DkF =̂ (a†)k+2(b†)k (c†)0|0〉,
DkΨ =̂ (a†)k+1(b†)k (c†)1|0〉,
DkΦ =̂ (a†)k (b†)k (c†)2|0〉,
DkΨ̇ =̂ (a†)k (b†)k+1(c†)3|0〉,
DkḞ =̂ (a†)k (b†)k+2(c†)4|0〉. (1.78)

Each of the oscillators a†
α,b

†
α̇, c

†
a carries one of the su(2), su(2), su(4) spinor indices of the

fields, for example
Dα̇β Ψ̇ aγ̇ ∼ εabcda†

βb
†
α̇b

†
γ̇c

†
bc

†
cc

†
d|0〉. (1.79)

The statistics of the oscillators automatically symmetrises the indices in the desired way
as explained in Sec. 1.6. We will further assume the commutation relations

[aα, a†
β] = δαβ , [bα̇,b†

β̇
] = δα̇

β̇
, {ca, c†b} = δab . (1.80)

Finally, the oscillators aα,bα̇, ca are taken to annihilate the state |0〉.
Using oscillators we can construct a representation of the unitary superalgebra. We

assemble the oscillators (a,b†|c) into a 4|4-dimensional superoscillator A, whereas A†

consists of (a†,−b|c†). The generators of u(2, 2|4) are then given by25

JA
B = A†

AA
B,

[
AB,A†

A

}
= δBA . (1.81)

It is straightforward to verify that the generators satisfy the commutation relations of a
unitary superalgebra. In App. D.4 we split up the generators into su(2) × su(2) × su(4)
notation.

Using the expressions in App. D.4 one can see that the set of fields (1.78) is closed
under the action of the generators, the fields thus span a module of u(2, 2|4). This module
will be denoted by VF and is spanned by all the fields WA

‘field-strength module’: VF = [WA] = [DkΦ,DkΨ,DkΨ̇ ,DkF ,DkḞ ]. (1.82)

24In a complex algebra we can assume the oscillators (aα,bα̇, ca) and (a†
α,b†

α̇, c†a) to be independent.
25[A, B} is the graded commutator: It equals [A, B] if A or B is bosonic and {A, B} if both A and B

are fermionic.
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This module is also called the singleton. It is furthermore a module of psu(2, 2|4) because
the central charge vanishes for all fields

C = 1− 1
2
na + 1

2
nb − 1

2
nc = 0. (1.83)

Let us now identify the highest weight. The supercharge S transforms an a† into a c†.
Annihilation of a state by all S’s requires there to be no excitation of type a† or the
maximum number of 4 excitations of type c†. Conversely, annihilation by Ṡ requires
there to be no excitation of type b† or no excitation of type c†. Among the fields (1.78),
these conditions are satisfied only by the scalar fields Φ =̂ (c†)2|0〉. Annihilation by Ra

b

with a < b picks out
Φ34 =̂ c†3c

†
4|0〉 = |Z〉 (1.84)

as the highest weight state or superconformal primary field. The field |Z〉 is a scalar
[s1, s2] = [0, 0], an so(6) vector [q1, p, q2] = [0, 1, 0] and has dimension D = 1 as well as
central charge C = 0. The highest weight is therefore

wF = (1; 0, 0; 0, 1, 0; 0, 1) = [0; 0; 0, 1, 0; 0; 0], (1.85)

where we have defined the hypercharge B = 0 and length L = 1.
The vacuum state |0〉 is invariant under su(4), but it is not physical. Conversely, the

highest weight state |Z〉 is physical, but superficially breaks su(4) to su(2)×su(2). When
dealing with physical states it is convenient to employ a notation suited for su(2)× su(2)
invariance. We define the oscillator dȧ with index ȧ = 1, 2

d†
1 = c4, d†

2 = c3, d1 = c†4, d2 = c†3. (1.86)

The benefit of this notation is that now the highest weight state |Z〉 = c†3c
†
4|0〉, see (1.84),

is annihilated by a1,2,b1,2, c1,2,d1,2. The drawback is that the notation breaks the su(4)
invariant notation and the expressions for the u(2, 2|2 + 2) generators thus complicate.
Let us also state the central charge constraint

C = 1
2
(nb + nd)− 1

2
(na − nc) = 0, (1.87)

i.e. the number of a†, c†’s must equal the number of b†,d†’s.
In this context it is useful to know how to represent a state in terms of excitations of

the oscillators. We introduce a multi-particle vacuum operator |Z, L〉 which is the tensor
product of L vacua |Z〉. The oscillators a†

p,α,b
†
p,α̇, c

†
p,a,d

†
p,ȧ now act on a site specified by p

and commutators of two oscillators vanish unless they act on the same site. Equivalently,
we define the unphysical multi-particle vacuum state |0, L〉. A generic state is written as

(a†)na(b†)nb(c†)nc(d†)nd|Z, L〉 or (a†)na(b†)nb(c†)nc|0, L〉. (1.88)

The individual oscillator excitation numbers n for a state with given weight can be found
in App. D.4.

1.10 Correlation Functions

In a conformal field theory, correlation functions of local operators obey certain rela-
tions due to conformal symmetry. These are especially tight for two-point and three-point
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functions: For example, two-point functions are allowed only between multiplets of equal
labels and involve only one free parameter. A similar result holds for superconformal
symmetry, but we will not consider it explicitly because it would require working in su-
perspace. For example, let us consider scalar primary or highest-weight operators O1,2,3

with scaling dimensions D1,2,3 at points x1,2,3. For two-point functions the dimensions
must agree exactly D = D1 = D2, the correlator is

〈
O1(x1)O2(x2)

〉
=

M12

|x12|2D
, (1.89)

where xij is the distance xi − xj . Three-point functions are constrained to

〈
O1(x1)O2(x2)O3(x3)

〉
=

C123

|x12|D1+D2−D3 |x23|D2+D3−D1 |x31|D3+D1−D2
. (1.90)

The structural uniqueness of those correlators can be understood by the fact that all
configurations of two or three (non coinciding) points can be transformed to a standard
set, say {0, 1} and {−1, 0, 1}, by means of conformal transformations. The value of the
correlator for this configuration determines the value for all configurations when the points
are shifted back to {x1, x2} or {x1, x2, x3}.

For non-scalar primary operators the story is similar, but we have to take care of
spacetime indices. Although we consider flat R

4, from the point of view of conformal
symmetry, spacetime is not flat; it is rather the coset space of the conformal group by
the Poincaré group and dilatations. As such we cannot simply compare the tangent
spaces at two different points, but we must introduce a connection. For spinor indices the
connection is

J α̇β12 =
xµ12σ

α̇β
µ

|x12|
. (1.91)

A vector may be represented as a bi-spinor and the vector connection is

Jµν12 = −1
2
σµα̇βJ

α̇δ
12 J

βγ̇
12 σ

ν
γ̇δ = ηµν − 2

xµ12x
ν
12

|x12|2
. (1.92)

The two-point function for primary vector operators is thus

〈
Oµ1 (x1)Oν2(x2)

〉
=
M12 J

µν
12

|x12|2D
. (1.93)

In addition to primary operators there are also descendant operators

O′
µν... = PµPν . . .O. (1.94)

Although correlators of descendants follow immediately from the corresponding correla-
tors of primaries by differentiation

〈
O′
µν...(x) . . .

〉
= ∂µ∂ν . . .

〈
O(x) . . .

〉
, (1.95)

it is sometime hard to distinguish between primaries and descendants when mixing oc-
curs. Therefore it is useful to know the difference in correlation functions explicitly. For
example, the two point function of descendants of a scalar operator of dimension D− 1 is

〈
O′µ

1 (x1)O′ν
2 (x2)

〉
= ∂µ1 ∂

ν
2

M12

|x12|2D−2
=

2(D − 1)M12

(
Jµν12 − 2(D − 1) xµ12x

ν
12/x

2
12

)

|x12|2D
. (1.96)
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Up to normalisation this is similar to (1.93) but for the extra piece in the numerator. If
mixing between primaries and descendants has not been resolved, one will see traces of
the extra piece in all correlators.

Starting with four-point functions, conformal invariants appear, e.g.

s =
x2

13x
2
24

x2
12x

2
34

, t =
x2

14x
2
23

x2
12x

2
34

. (1.97)

Naturally, four-point functions may depend on s, t and their form is not fully restricted.
However, in a conformal field theory one may expect to have an operator product ex-
pansion (OPE), which enables one to write products of two local operators at sufficiently
close point x, x+ δx as a sum of local operators at point x

O1(x)O2(x+ δx) =
∑

k
F k

12 e12,k(δx)Ok(x), (1.98)

where e12,k(δx) is the conformal partial wave corresponding to the involved operators. The
structure constants F k

12 can be determined by inserting this expression in the three-point
function and comparing to the two-point function; roughly speaking one obtains

F n
klMnm ∼ Ckln. (1.99)

Equivalently, one obtains for a four-point function where two pairs of points are close
〈
O1O2O3O4

〉
∼
∑

kl
F k

12F
l
34 e12,k(δx12)e34,l(δx34)

〈
OkOl

〉
. (1.100)

1.11 The Current Multiplet

Superconformal symmetry is an exact global symmetry. As such it should give rise to
one conserved current Qµ for each of its generators J,

∂µQµ = 0. (1.101)

In the Hamiltonian picture, a conserved charge Q is obtained as the integral of the time
component Qt over a time slice at t0

Q =

∫
d3xQt(t0, x). (1.102)

The charge is indeed independent of the time slice t0 due to the conservation of Qµ.
It acts as a symmetry generator J when inserted within Poisson brackets J = {Q, . . .}.
Furthermore, the currents satisfy an algebra {Q,Q} ∼ Q, the current algebra. This gives
rise to the symmetry algebra at the level of charges {Q,Q} = FQ. All this naturally
translates into a quantum field theory in canonical quantisation.

The transformation properties of the current Qµ... translate into the transformation
properties of the generator J. For example, the conserved current associated to the
momentum generator Pν is the stress-energy tensor Qµν . It has canonical dimension 4,
one for Pν and three for d3x in (1.102). The stress-energy tensor also gives rise to the
currents corresponding to the other generators of the conformal algebra26

QP
µν ∼ Qµν , QL

µ
ρ
σ ∼ ηρνQµ[νxσ], QD

µ ∼ Qµνxν , QK
µν ∼ x2Qµν − 2Qµρxρxν . (1.103)

26Note that the stress energy tensor is part of the reducible module with highest weight [1, 0, 1], the
adjoint of su(4), as described in Sec. 1.7
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D su(2, 2)× su(4)
2 [0,−2, 0]× [0, 2, 0]
2.5 [1,−3, 0]× [0, 1, 1] + [0,−3, 1]× [1, 1, 0]
3 [2,−4, 0]× [0, 1, 0] + [1,−4, 1]× [1, 0, 1] + [0,−4, 2]× [0, 1, 0] +

[0,−3, 0]× [0, 0, 2] + [0,−3, 0]× [2, 0, 0]
3.5 [2,−5, 1]× [1, 0, 0] + [1,−5, 2]× [0, 0, 1] +

[1,−4, 0]× [0, 0, 1] + [0,−4, 1]× [1, 0, 0]
4 [2,−6, 2]× [0, 0, 0] + [0,−4, 0]× [0, 0, 0] + [0,−4, 0]× [0, 0, 0]

Table 1.6: The supercurrent multiplet decomposed in su(2, 2) × su(4).

One easily verifies that all currents Qµ are indeed conserved despite the appearance of
xν . However, conservation of QD

µ and QK
µν requires the trace of the stress-energy tensor

to vanish
ηµνQµν = 0. (1.104)

In a quantum theory it is often impossible to construct a stress-energy tensor Qµν which
obeys (1.101) and (1.104) at the same time. This indicates the breakdown of conformal
symmetry; only Poincaré symmetry remains because conservation of QL

µ
ρ
σ and QP

µν is
independent of the tracelessness of Qµν . In fact, the trace of the stress-energy tensor is
related to the beta function (1.22).

Before we proceed to superconformal symmetry we note that it is useful to write the
conserved currents in spinor notation. The stress-energy tensor becomes Qα̇γ̇βδ which is
symmetric in both pairs of indices. Now it is straightforward to construct the currents by
contracting the indices of Qα̇γ̇βδ by xµσµ, for example

QD
α̇β ∼ xµσγ̇δµ Qα̇γ̇βδ, QK

α̇β
γ̇δ ∼ xµxνσγ̇λµ σ

δκ̇
ν Qα̇κ̇βλ. (1.105)

The currents are conserved due to the symmetry of the indices.
For superconformal symmetry there are four conserved currents

Qα̇βcd, Qcα̇βδ, Qα̇γ̇βd, Qα̇γ̇βδ. (1.106)

The first three correspond to rotations Rc
d and supertranslations Qc

δ and Q̇γ̇d. Further-

more, upon contraction with one xµ the second and third ones correspond to Ṡcδ̇ and
Sγ

d. All of these currents are part of the supercurrent multiplet with highest weight

wcurr = (2; 0, 0; 0, 2, 0; 0, 2) = [0; 0; 0, 2, 0; 0; 0]. (1.107)

This multiplet, decomposed in terms of representations of su(2, 2)× su(4), is presented in
Tab. 1.6. The labels [s1, r, s2] of su(2, 2) are the spins s1, s2 as well as r = −D− 1

2
s1− 1

2
s2.

It is worth noting that the two scalars at D = 4 are the on-shell Lagrangian LYM and the
topological charge density TrF ∧ F .
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Chapter 2

The Dilatation Operator

The dilatation generator is a means to investigate scaling dimensions in a conformal
field theory. We will start in Sec. 2.1 by comparing different methods of obtaining scaling
dimensions. We will then go on to study aspects of the dilatation operator which will be
useful in the following chapters. In Sec. 2.2 we will consider the symmetry algebra and
states in perturbation theory. Sec. 2.3 contains an investigation of closed subsectors [50]
and in Sec. 2.4 we will compute the one-loop dilatation operator within a subsector [38].
General perturbative contributions in field theory are investigated in Sec. 2.5. Finally, in
Sec. 2.6 we will consider the planar limit and introduce the notation to be used in most
parts of this dissertation.

2.1 Scaling Dimensions

There are many ways to calculate scaling dimensions for local operators in a conformal
field theory. We will explain a few, paying special attention to two-point functions because
their structure will be guiding us in the construction of the dilatation operator.

2.1.1 Two-Point Functions

In Sec. 1.10 we have described how scaling dimensions affect correlation functions. It
seems that they appear in the most direct way within two-point functions, see (1.89). Let
us make the dependence on the coupling constant in the two-point function explicit

〈
O(x1)O(x2)

〉
=

M(g)

|x12|2D(g)
. (2.1)

We are aiming for a perturbative investigation and we can only expect to reproduce
the form predicted by conformal symmetry in a series expansion in g. Here we pause and
reconsider the above equation noting that |x12| is a dimensionful quantity and its exponent
−2D(g) depends on g. A perturbative expansion in g will lead to a formally meaningless
expression involving log |x12|. This is related to the fact that the mass dimension of the
operator changes with g. The only fully consistent way to treat this issue in a series
expansion is to introduce an arbitrary scale µ and rescale O by µ−δD(g) to a fixed mass
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Figure 2.2: Tree-level contributions to the two-point function of Omn = Tr ΦmΦn.

dimension D0 = D(0). We can now expand and obtain

µ−2δD(g)
〈
O(x1)O(x2)

〉
=

M0

|x12|2D0
+ g2M2 +M0D2 log |µx12|−2

|x12|2D0
+ . . . . (2.2)

The very same problem occurs in perturbative quantum field theories and requires for
the introduction of an auxiliary scale. Let us now go ahead and calculate the scaling
dimension of the operator

Omn = TrΦmΦn. (2.3)

Using the free generating functional (1.25) with scalar propagator

∆(x, y) =
1

(x− y)2
, (2.4)

the tree-level two point function is readily evaluated using SU(N) as gauge group and the
diagrams in Fig. 2.21

〈
Omn(x1)Opq(x2)

〉
=
ηmpηnq gmpgnq Tr tmtn Tr tptq

N2|x12|4
+
ηmqηnp gmqgnp Tr tmtn Tr tptq

N2|x12|4
+O(g)

=
2(1−N−2) ηm{pηq}n

|x12|4
+O(g). (2.5)

We can read off the classical dimension D0 = 2 from this expression.
Trying to compute the one-loop correction we will inevitably fail and get a divergent

result unless we first regularise the theory. We will chose the dimensional regularisa-
tion/reduction scheme in which we assume to have a 4− 2ǫ dimensional spacetime. The
difference between the two schemes is that in dimensional regularisation we work with 6
internal directions, i.e. 6 flavours of scalars, whereas in dimensional reduction this number
is assumed to be 6 + 2ǫ. The dimensional reduction scheme [94,95] is convenient for reg-
ularising extended supersymmetric theories.2 We will work with the action (see App. C.2
for the ten-dimensional Lagrangian)

SDR[W] = N

∫
d4−2ǫx

(2π)2−ǫ LYM[W, gµǫ]. (2.6)

1We have neglected contractions between fields at the same point. Their (divergent) contribution will
have to be absorbed into the definition of O. This is always possible and we will assume that this step
has already been performed. In other words, the operator O is considered to be ‘normal ordered’.

2Apparently, the dimensional reduction scheme proposed in [94] leads to problems at higher loops [96].
Certainly, at one-loop it is fine.
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Figure 2.4: One-loop contributions to the two-point function. The solid, wiggly, dashed lines rep-
resent scalars, gluons, fermions, respectively. The dotted lines correspond to a non-propagating
auxiliary field that represents a quartic interaction.

This action is dimensionless if the fields Φ,A have canonical dimensions 1− ǫ and Ψ has
dimension 3

2
− ǫ. The dimensionally regularised propagator is

∆(x, y) =
2−ǫ Γ(1− ǫ)
|x− y|2−2ǫ

. (2.7)

We need to evaluate a couple of diagrams, see Fig. 2.4, and find for the one-loop correlator

〈
Omn(x1)Opq(x2)

〉
= 2(1−N−2) ηm{pηq}n∆

2
12 (2.8)

+ (1−N−2)g2
(

1
2
ηm{pηq}n H̃12,12 − 1

4
ηmnηpqX1122

)
+O(g3).

The following functions and integrals appear at the one-loop level

Ix1x2
= 1

2
∆(x1 − x2),

Yx1x2x3
= µ2ǫ

∫
d4−2ǫz

(2π)2−ǫ Ix1zIx2zIx3z,

Xx1x2x3x4
= µ2ǫ

∫
d4−2ǫz

(2π)2−ǫ Ix1zIx2zIx3zIx4z, (2.9)

H̃x1x2,x3x4
= 1

2
µ2ǫ

(
∂

∂x1
+

∂

∂x3

)2 ∫
d4−2ǫz1 d

4−2ǫz2
(2π)4−2ǫ

Ix1z1Ix2z1Iz1z2Iz2x3
Iz2x4

.

where the shape of the letter represents the connections in terms of scalar propagators.
In two-point functions they evaluate to [97]

Y112 =
ξ I12

ǫ(1− 2ǫ)
, X1122 =

2(1− 3ǫ)κ ξ I2
12

ǫ(1− 2ǫ)2
, H̃12,12 = −2(1− 3ǫ)(κ− 1) ξ I2

12

ǫ2(1− 2ǫ)
. (2.10)

These involve two convenient combinations ξ, κ

ξ =
Γ(1− ǫ)
∣∣1
2
µ2x2

12

∣∣−ǫ , κ =
Γ(1− ǫ) Γ(1 + ǫ)2 Γ(1− 3ǫ)

Γ(1− 2ǫ)2 Γ(1 + 2ǫ)
= 1 + 6ζ(3) ǫ3 +O(ǫ4). (2.11)

At this point, it is useful to split up the operator into irreducible representations of
so(6). There are two, the symmetric-traceless [0, 2, 0] and the singlet [0, 0, 0]

Qmn = O(mn) = Omn − 1
6+2ǫ

ηmnη
pqOpq, K = ηmnOmn. (2.12)
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These have classical weights

wQ = (2; 0, 0; 0, 2, 0; 0, 2), wK = (2; 0, 0; 0, 0, 0; 0, 2), (2.13)

which are indeed highest weights, essentially because there are no states of lower dimen-
sion. For the symmetric-traceless operator the correlator reduces to

〈
Qmn(x1)Qpq(x2)

〉
= 2(1−N−2) ηm(pηq)n

(
∆2

12 + 1
4
g2H̃12,12

)
+O(g3). (2.14)

Here we can take the limit ǫ → 0, it turns out that the one-loop correction vanishes
identically and we obtain precisely the tree-level result [31]. This remarkable cancellation
is intimately related to the vanishing of the beta function. The operator Q is part of the
half-BPS multiplet with weight (2.13), see Sec. 1.8. In fact it is part of the current multi-
plet of superconformal symmetry, see also Sec. 1.11, were it not protected, superconformal
symmetry would be broken.

For the Konishi operator K the result is very different
〈
K(x1)K(x2)

〉
= 4(1−N−2)(3 + ǫ)

(
∆2

12 + 1
4
g2H̃12,12 − 1

4
g2(3 + ǫ)X1122

)
+O(g3)

= 4(1−N−2)(3 + ǫ)∆2
12(1− g2γ ξ/ǫ) +O(g3). (2.15)

We see that the coefficient

γ =
2(1− 3ǫ)(κ− 1)

ǫ(1− 2ǫ)
+

2(3 + ǫ)(1− 3ǫ)κ

(1− 2ǫ)2
→ 6 (2.16)

is finite in the limit ǫ→ 0 and the correlator is thus ill-defined. We should first renormalise
the operator in order to remove the 1/ǫ pole

ZK = (1 + 1
2
g2γ ξ0/ǫ)K, where ξ0 = 2−ǫ Γ(1− ǫ). (2.17)

In a correlator of ZK’s, this replaces ξ in (2.15) by ξ − ξ0. We can now evaluate the
one-loop term which is regular at ǫ→ 0

− g2γ lim
ǫ→0

ξ − ξ0
ǫ

= −g2γ lim
ǫ→0

(
|µx12|−2

)−ǫ − 1

ǫ
ξ0

= −g2γ lim
ǫ→0

∂
(
|µx12|−2

)−ǫ

∂ǫ
= g2γ log |µx12|−2 (2.18)

and take the limit. We find

〈
ZK(x1)ZK(x2)

〉
=

12(1−N−2)

|x12|4
(
1 + 6g2 log |µx12|−2

)
+O(g3). (2.19)

By comparing to (2.2) we obtain the one-loop anomalous dimension D2 = 6 or altogether,
after inserting the definition g2 = g2

YM
N/8π2 (1.14), in agreement with [39]

D = 2 + 6g2 +O(g3) = 2 +
3g2

YM
N

4π2
+O(g3). (2.20)

The calculation presented above resulted in the simplest non-trivial scaling dimension.
In a generic computation one has to deal with more involved operator mixing and many
more diagrams. We have seen only a glimpse of that here, luckily representation theory
alone was sufficient to resolve the mixing.
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2.1.2 Higher-Point Functions

There are other ways in which to obtain scaling dimensions. One could, for example,
calculate three-point functions. They contain information not only about the scaling
dimension of all three involved operators, but at the same time also about the coefficients
C123. These are interesting because they are related to the structure constants F 3

12 of the
operator product expansion. The price one has to pay is the added difficulty due to the
additional spacetime point in the Feynman diagrams. In practice three-point functions are
rarely considered. More interesting are four-point functions, although they might appear
even more difficult at first sight. The simplification comes about when one considers
protected operators at all four points [41]. Using superspace techniques these correlators
turn out to be manifestly finite without the need to regularise or renormalise [98, 41].
Furthermore, there are some constraints from superconformal field theory which can be
used to reduce the complexity of the calculation [99]. Despite their simplicity, these four-
point functions are interesting due to the OPE (c.f. Sec. 1.10) which allows for unprotected
operators in the intermediate channel. A single four-point function can be shown to
encode the information about scaling dimensions and also structure constants of infinitely
many local operators [44]. A number of scaling dimensions, even at two-loops, have been
obtained in this way [41, 42, 44–46].

2.1.3 Violation of Current Conservation

A completely different method to evaluate scaling dimensions due to Anselmi led to
a few early results [40]. It is rather algebraic in nature and does not require quantum
field theoretic computations as those presented above. It makes use of multiplet split-
ting at the unitarity bounds, see Sec. 1.8. Multiplet splitting occurs when the classical
dimension D0 is on one of the unitarity bounds. When δD is precisely zero, the multiplet
splits up into several short multiplets. A superconformal generator which would usually
translate between states of different submultiplets, must annihilate the state. Therefore,
in the interacting theory the action of this generator is proportional to

√
δD ∼ g when

g approaches zero.3 When the states are properly normalised, the anomalous dimension
δD can be read off from the action of the generator. In practice, to compute a one-loop
anomalous dimension, this method requires to normalise the operators, i.e. their two-
point functions, at tree level. For the generator one may use the semi-classical expression
(1.9) which does involve the coupling constant. In principle, this trick allows also to ob-
tain higher-loop anomalous dimensions from a field theory calculation at one loop below.
However, one has to take into account modifications of the generators due to the Konishi
anomaly [100].

2.1.4 The Dilatation Generator

The dilatation generator offers a different perspective on scaling dimensions. As de-
scribed in Sec. 1.5, it measures the scaling dimension of states transforming under the
superconformal algebra. In Sec. 1.6 we have emphasised that local operators can be
viewed as such states in an abstract space. Therefore the dilatation generator D should

3This square root explains why multiplet splitting takes place at the unitarity bound δD ≥ 0: A
negative δD would yield an imaginary action and thus violate unitarity.
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yield the scaling dimension D when acting on an eigenstate O. In particular, we have
learned in Sec. 2.1.1 that

DQmn = 2Qmn, DK = (2 + 6g2)K +O(g3). (2.21)

Clearly, the dilatation operator can act on any state, not just eigenstates. The action of
D on the mixed operator Omn is

DOmn = (2δpmδ
q
n + ηmnη

pq g2)Opq +O(g3). (2.22)

We obtain (2.21) when we project the indices to irreducible representations of so(6).
So far not much is gained by considering the dilatation generator; we have merely

rephrased the physical results of Sec. 2.1.1 into a single equation (2.22). Notice, however,
that (2.22) describes the eigenoperators along with their scaling dimensions. In contrast,
a two-point function also contains the normalisation coefficients. In practice, this fact is
rather disadvantageous because the normalisation coefficients obscure the scaling dimen-
sion and their proper calculation usually involves a large amount of work. The dilatation
generator clearly distinguishes between scaling dimensions and normalisation coefficients
and thus avoids this complication.

To make true progress we need to find a way to obtain the action of the dilatation
generator on the set of states in a more direct fashion. There are several ways in which
this could be done. To compute classical scaling dimensions is a rather trivial task, we
will describe how to implement this at the level of the classical dilatation operator D0

in Sec. 2.2. Quantum corrections δD to the dilatation generator are much harder to
obtain. In Sec. 2.4 we will show how to extract some information from the calculation of
a two-point function of abstract operators.

2.1.5 Canonical Quantisation

From the path integral point of view there seems to be no obvious way in which to
represent the dilatation operator, but in the Hamiltonian formalism and its canonical
quantisation there is. In that picture, the generators of the symmetry group correspond
to conserved currents as explained in Sec. 1.11. In particular, the dilatation operator is
given by

D =

∫
d3xQtµxµ, (2.23)

where Qµν is the stress energy tensor ofN = 4 SYM. This we can apply to a local operator
state |O(x)〉 = O†(x)|0〉

D |O(x)〉 (2.24)

and thus obtain its scaling dimension. However, it is questionable whether in practice
this leads to a reasonable simplification as compared to Sec. 2.1.1. As the eigenvalues of
the dilatation operator are finite, naively one might think that regularisation would be
unnecessary. Unfortunately, the bare D can only act on renormalised states Z|O〉. When
the dilatation operator is intended to act on bare states, we need to renormalise it instead

Dren = Z−1 Dbare Z. (2.25)

The renormalised Dren is finite and Dbare and Z do not commute, therefore Dbare is
expected to diverge.
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2.1.6 Matrix Quantum Mechanics

A nice representation for the dilatation operator is offered in gauge theory on the
curved manifold R × S3, which is conformally equivalent to flat R

4. The map from R
4

to R × S3 is best described in radial coordinates on R4. The spherical coordinates map
directly to S3 whereas the radial coordinate r is mapped logarithmically to the coordinate
t along R of R× S3

(r, θ, φ, ψ) 7→ (t, θ, φ, ψ) with t = log r. (2.26)

Therefore the dilatation generator, which generates scale transformations r 7→ cr, maps
straightforwardly to the Hamiltonian, i.e. the generator of time translations, on R × S3.
Spacetime rotations so(4) naturally map to rotations of the sphere, whereas translations
and boosts act on both, R and S3. In this picture, it is natural to Kaluza-Klein decompose
fields on a time-slice, S3, in terms of spherical harmonics. For N = 4 SYM this yields
precisely the spectrum of fields as given in Tab. 1.4. The decomposition turns the quantum
field theory into a quantum mechanical system of infinitely many matrices. This matrix
quantum mechanics is equivalent to N = 4 SYM and one could attempt to derive the
dilatation operator in this system. Unfortunately, the Hamiltonian, which is derived as
the Legendre transform of the Lagrangian, is not of the desired form, see Sec. 2.2.3. To
perform the proposed diagonalisation might turn out to be very labourious in practice
due to the infinite number of matrices.

A simpler model which appears to have a lot in common with N = 4 SYM is the BMN
matrix model [14]. It can be obtained from N = 4 on R× S3 by removing all non-singlet
fields under one of the su(2) symmetry algebras [101]. From the infinite set of fields in
Tab. 1.4, only finitely many remain: D0Φ,D0Ψ,D0F [101]. Explicit calculations up to
a relatively high order in perturbation theory are feasible in this model and they show
qualitative agreement with N = 4 [101, 79], even if the results cannot agree in all cases
due to the different multiplet structure.

2.2 Perturbation Theory

In this section we will investigate the corrections to the generators of the symmetry
algebra in perturbation theory. Attention is payed to the dilatation operator which will
take a special role.

2.2.1 Quantum Representations

The superconformal symmetry algebra psu(2, 2|4) is spanned by the generators J.
They satisfy the algebra relations4

[JA, JB ] = FC

AB
JC, (2.27)

where FC

AB
are the structure constants of psu(2, 2|4). The generators can act on the set of

states, or, more precisely, there is a representation which we shall also denote by J. When

4Although psu(2, 2|4) is a superalgebra, for the sake of presentation, we shall assume that all operators
and fields are bosonic. Everything generalises to fermions in a straightforward fashion, but at the cost of
obscure signs at various places.
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quantum corrections are turned on, the transformation properties of states change. In
other words, the representation J(g) depends on the coupling constant g. For all values
of g the generators must satisfy the psu(2, 2|4) algebra

[JA(g), JB(g)] = FC

AB
JC(g). (2.28)

The structure constants are, in particular, independent of the coupling constant. We will
consider a perturbative quantum theory, therefore we shall expand the (representation
of) generators in powers of the coupling constant

J(g) =
∞∑

k=0

gk Jk. (2.29)

In perturbation theory the algebra relations can be written as

l∑

k=0

[JA,k, JB,l−k] = FC

AB
JC,l. (2.30)

Not all generators receive quantum corrections. The Lorentz and internal rotations su(2)×
su(2), su(4) are manifest symmetries and thus independent of g. We do not intend to
modify them

L(g)αβ = Lα
β, L̇(g)α̇β̇ = L̇α̇

β̇, R(g)ab = Ra
b. (2.31)

2.2.2 Tree-Level Algebra

Let us start by investigating the classical algebra spanned by J0 = J(0). In the classical
theory the fields transform among themselves

J0WA = (J0)A
BWB. (2.32)

When interactions are turned off, none of the fields can feel the presence of the others in the
state. Therefore it is natural for a state to transform in the tensor product representation
of its composite fields. A generator J0 of psu(2, 2|4) at tree-level can thus be written in
terms of its action on a single field WA as

J0WA · · ·WB = (J0)A
CWC · · ·WB + . . .+ (J0)B

CWA · · ·WC. (2.33)

Using the notation of variations with respect to fields introduced in Sec. 1.3 we shall write
this as

J0 = (J0)A
B TrWBW̌A. (2.34)

The variation will pick any of the fields within the state and replace it by the transformed
field. In particular, the tree-level dilatation generator is

D0 =
∑

A
dim(WA) TrWAW̌A. (2.35)

This isolates any of the fields and returns the same state multiplied by the dimension of
the field. When summed over all constituent fields, the dilatation operator returns the
same state multiplied by the total dimension being the sum of constituent dimensions

dim(WA · · ·WB) = dim(WA) + . . .+ dim(WB). (2.36)
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Similarly, we can determine the classical dimension of any operator X acting on the set
of states

X =WA · · ·WBW̌C · · · W̌D, [D0, X] = dim(X)X, (2.37)

where the dimension is given by

dim(X) = dim(WA) + . . .+ dim(WB)− dim(WC)− . . .− dim(WD). (2.38)

2.2.3 Pre-Diagonalisation

Our aim is to diagonalise the full dilatation operator D(g). We cannot expect this to
be possible at the level of generators. However, as a first step, we can obtain a dilatation
generator D(g) which commutes with the classical dimension

[D0,D(g)] = 0. (2.39)

This serves two purposes: On the practical side we will have to diagonalise D(g) only
on the subspace of states with equal classical dimension, which is most easily determined
through (2.36). On the theoretical side, this removes the possibility of states decaying
into the vacuum or being created from it. This would be an obstacle for the definition
of a planar limit. For the rest of this work we will assume (2.39) to hold. This has an
interesting side-effect, it specialises the dilatation generator D with respect to the other
generators J of the superconformal algebra, see Sec. 2.2.4.

In dimensional regularisation we can take (2.39) for granted. If (2.39) does not hold
from the beginning,5 we can diagonalise D(g) perturbatively with respect to D0 by means
of a similarity transformation

J(g) 7→ T (g) J(g)T−1(g). (2.40)

This is possible on the operatorial level, i.e. without acting on explicit states, because all
elementary interactions for the construction of Dk have a definite dimension as given by
(2.37,2.38). Let us state the resulting dilatation operator up to second order. Assume
δD(g) = D(g)−D0 decomposes as

δD =
∑

d
δDd with dim(δDd) = d. (2.41)

Then the transformation

T (g) = 1 +
∑

d6=0

1

d
δDd + . . . (2.42)

yields the diagonalised dilatation operator

δD 7→ δD0 +
∑

d6=0
δDd

1

d
δD−d + . . . . (2.43)

Note that this is merely standard perturbation theory: The first terms is the first order
energy shift and the second term is the second order energy shift of two interactions
connected by a propagator. For a given order in g the series terminates, because δD is at
least of first order.

5This is the case for the canonically quantised matrix quantum mechanics of N = 4 SYM on R× S3.
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2.2.4 The Hamiltonian

Conservation of classical dimensions by D(g) also implies that the other interacting
generators have a definite classical dimension

[D0, J(g)] = dim(J) J(g), (2.44)

which can be shown as follows: Let Πd project to the states of classical dimension d.
Then Πd commutes with Dm for arbitrary d,m due to (2.39). Now we project the algebra
relation [D(g), J(g)] = dim(J) J(g) to subspaces of dimension d, d′ from the left and right,
respectively, and expand in the coupling constant g. The contribution at O(gl) reads

l∑

k=1

Πd[Dk, Jl−k]Πd′ =
(
dim(J)− (d− d′)

)
Πd JlΠd′. (2.45)

where we have moved the term with k = 0 from the left to the right hand side making
use of ΠdD0 = D0Πd = dΠd. We assume that [D0, Jk] = dim(J) Jk for all k < l. This is
equivalent to the statementΠd JkΠd′ = 0 for all d−d′ 6= dim(J). Choosing d−d′ 6= dim(J)
in (2.45) we find that Πd JlΠd′ must also vanish. The claim is proved by induction.

We can now combine (2.44) with the algebra relation (D.3)

[D(g), J(g)] = dim(J) J(g) (2.46)

and infer that the anomalous dimension is conserved by the interacting algebra

[J(g), δD(g)] = 0. (2.47)

Thus we have constructed a u(1) charge δD in addition to the superconformal algebra
psu(2, 2|4). A very important consequence of (2.47) is that, at leading order, the anoma-
lous dilatation operator δD must commute with the classical algebra J0,

[D0,Dl] = 0. (2.48)

We will see in Ch. 3 that the leading order is one-loop or g2, i.e. l = 2. For some purposes,
it will therefore turn out that Dk+l should be treated on equal footing with Jk. To make
this manifest we introduce the notion of the ‘Hamiltonian’ which is just the anomalous
dilatation order shifted by l = 2 powers of g

‘The Hamiltonian’: H(g) = g−2δD(g), [J(g),H(g)] = 0. (2.49)

The Hamiltonian is an invariant operator under superconformal symmetry. Note that
its leading order is H0 and corresponds to one-loop, H0 = D2. The eigenvalues of the
Hamiltonian are called ‘energies’, E, and are related to the scaling dimension by

D(g) = D0 + g2E(g). (2.50)
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2.2.5 Eigenstates

Let us investigate the eigenstates of the dilatation operator. For this purpose, we will
introduce some basis of states EM. We have seen that the classical dilatation operator
D0 commutes with D(g). To find eigenstates of D(g) we need to consider only a basis
with fixed classical dimension D0.

6 As there are only a finite number of fields with a
dimension bounded from above, see Tab. 1.4, also the basis EM is finite. When we expand
the operator in the basis as O = OMEM, we can write the eigenstate equation in a finite
matrix form. The matrix of scaling dimensions DM

N is obtained by acting with the
dilatation operator on the basis

Dop(g) EM = EN DN

M(g). (2.51)

We will often find such a basis and write down the action of the dilatation operator in
matrix form. The eigenstate equation is turned into an eigenvector equation

DM

N (g)ON(g) = Dev(g)OM(g). (2.52)

In general the matrix depends on g and so should an eigenvector OM(g). We can expand
the eigenstate equation in powers of the coupling constant, at l-th order we find

l∑

k=0

DM

k N
ON

l−k =
l∑

k=0

Dev,kOM

l−k . (2.53)

Note that we chose a basis of fixed classical dimension D0, therefore DM

0 N = δM

N
D0. The

equation for l = 0 naturally requires D0,ev = D0. The equation at leading non-trivial
order (l = 2) simplifies to

DM

l N ON

0 = Dev,lOM

0 . (2.54)

In general the eigenvalue problem is an algebraic equation which can only be solved nu-
merically. Once that is done and the spectrum of DM

l N
happens to be non-degenerate,

solving (2.53) for any value of l involves only linear algebra. If the leading order spec-
trum is degenerate, the diagonalisation of DM

l+1N
in the degenerate subspace is again an

eigenvalue problem. This continues as long as there are eigenvalues which are degenerate
up to some order in perturbation theory.

The expansion of scaling dimensions is expected to be in even powers of g,

Dev(g) = Dev,0 + g2Dev,2 + g4Dev,4 + . . . , (2.55)

even though Dop involves also odd powers

D(g) = D0 + g2D2 + g3D3 + g4D4 + . . . . (2.56)

The odd powers play a special role as we will see in Ch. 5. This pattern may in principle
be broken when there are degenerate eigenvalues at leading order. Similar problems occur
in a double series expansion in g and 1/N . There are cases in which the leading order
degeneracy is lifted by both, higher-loop and higher genus effects. The eigenstates for
expansion in g and 1/N are not expected to agree, consequently the double expansion
will turn out to be inconsistent [38].

6The generators L, L̇, R do not depend on g and commute with D(g). Therefore one can also restrict
to definite representations of su(2)× su(2)× su(4).
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2.3 Subsectors

In principle it would be desirable to derive the dilatation operator which is valid for
all fields of N = 4 SYM. In most practical cases, however, this will turn out to be too
involved. Therefore it is useful to know how to consistently restrict to subsectors of fields
in such a way that D(g) closes on the subsector. Within a subsector the number of
fields as well as the symmetry algebra is reduced. This reduction of complexity leads
to a simplification of the dilatation generator within the subsector. Thus, restricting to
subsectors one can efficiently compute anomalous dimensions.

2.3.1 Construction of Subsectors

To construct subsectors, we note that the number of excitations in the oscillator pic-
ture, see Sec. 1.9,D.4 and Tab. D.2, naturally puts constraints on the weights of opera-
tors. Certainly, there cannot be negative excitations. Furthermore, the oscillators c† are
fermionic, therefore there can only be one excitation on each site. In total we find twelve
bounds

na ≥ 0, nb ≥ 0, nc ≥ 0, nd = L− nc ≥ 0. (2.57)

All these excitation numbers will turn out to be conserved by D(g) at the one-loop level
(c.f. Sec. 3.1.3), i.e. they commute with D2. This means that the action of the one-loop
dilatation operator closes on operators with fixed excitation numbers. Therefore, we can
construct ‘one-loop subsectors’ by considering operators for which several of the bounds
are met and thus some of the oscillators are not excited. In some cases the subsectors
remain closed even at higher loops. We will refer to these as ‘closed subsectors’.

Let us investigate all closed subsectors. Using Tab. D.2 we can express the oscillator
excitation numbers in terms of the charges D0, s1, s2, p, q1, q2, B, L. We know that D(g)
commutes with the Cartan generators s1, s2, p, q1, q2 which are independent of the coupling
constant. Also the classical dimension D0 is preserved by construction, see Sec. 2.2.3.
Only the charges B and L which are not part of psu(2, 2|4) do not commute with D(g)
in general. To construct a closed subsector we therefore need to find a positive linear
combination of the bounds that is independent of B and L. Put differently, it must be
independent of L−B and L+B. The number of excitations na involves the combination
B − L. This can only be cancelled by L− B in nc. Therefore, we can remove oscillators
of type a if and only if we also remove oscillators of type c. Equivalently, we can remove
oscillators of type b if and only if we also remove oscillators of type d.

In the following we will construct all possible closed subsectors and determine the set of
fields as well as the residual symmetry that transforms states within the subsector. Note
that for local operators we can enhance the superconformal algebra by the anomalous
dimension operator δD(g) = D(g)−D0 and consider

psu(2, 2|4)× u(1) (2.58)

as the full algebra.
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2.3.2 The Half-BPS Subsector

Let us demonstrate how to obtain a rather trivial subsector. We will consider the
subsector of operators with no oscillator excitations

na1
= na2

= nb1
= nb2

= nc1
= nc2

= nd1
= nd2

= 0. (2.59)

Using Tab. D.2, the constraints (2.59) force the weight to be

w = (L; 0, 0; 0, L, 0; 0, L). (2.60)

Here we have removed oscillators of all types, therefore the subsector is closed not only
at one-loop but to all orders in perturbation theory. We can express the length in terms
of a conserved charge, L = p, which implies that the length is protected even at higher
loops. Equivalently, the hypercharge B is exactly zero.

In conventional language the operators within this subsector consist only of the highest
weight of the field-strength multiplet

Z = |Z〉 = c†3c
†
4|0〉 = Φ34. (2.61)

These are the half-BPS operators TrZL and its multi-trace cousins, the subsector will
therefore be called ‘half-BPS’ subsector. The anomalous dilatation operator within this
subsector vanishes identically, as required by protectedness of half-BPS operators. Note
that almost all elements of a half-BPS multiplet are outside this subsector. The important
point is that every half-BPS multiplet has one component, its highest weight, within this
subsector. Due to superconformal invariance this is enough to obtain information about
the complete supermultiplet.

The subalgebra of psu(2, 2|4)×u(1) which closes on this subsector is psu(2|2)2×u(1)3.
Effectively, however, the symmetry is only u(1) which measures p = D0 = D = L, the
other factors act trivially. Therefore we will only consider

u(1) (2.62)

as the residual symmetry.

2.3.3 Short Subsectors

Suppose we require either i or ii in

i : na1
= nc1

= 0,

ii : nb1
= nd1

= 0, (2.63)

which is equivalent to

i : D0 = s1 + 1
2
q2 + p+ 3

2
q1, L−B = D0 − s1,

ii : D0 = s2 + 1
2
q1 + p+ 3

2
q2, L+B = D0 − s2. (2.64)

In perturbation theory (D0 ≈ D) the weight is beyond the unitarity bound (c.f. Sec. 1.8)
and cannot be the highest weight state of a unitary multiplet of psu(2, 2|4).7 However,

7The only exception is s1,2 = 0 and δD = 0 which is the highest weight of an eighth-BPS multiplet.
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δwI,II

δwi,iiδw′
i,ii

δwi,ii

w0

w1w′
0

w′
1

Figure 2.6: Structure of highest weights in short subsectors. The superconformal highest weight
is w0. It is at a unitary bound and w1 is the highest weight of the splitting submultiplet. The
short subsector is marked as shaded. The highest weight within is w′

0 and w′
1 is the highest

weight of the submultiplet. For an eighth-BPS state at w0, the multiplet at w′
0 is absent.

there is exactly one supersymmetry generator that decreases the combination D − s1 −
1
2
q2 − p− 3

2
q1 and one that decreases D− s2 − 1

2
q1 − p− 3

2
q2. These are Q1

2 and Q̇24 and
they shift a weight by

δw′
i = (+0.5; +1, 0; +1, 0, 0; +0.5, 0), δ(D − s1 − 1

2
q2 − p− 3

2
q1) = −2,

δw′
ii = (+0.5; 0,+1; 0, 0,+1;−0.5, 0), δ(D − s2 − 1

2
q1 − p− 3

2
q2) = −2. (2.65)

Due to the fermionic nature of the generators, the shift can only be applied once and
the highest weight must be close to the unitarity bound. In the classical theory the
dimensions are exactly at the unitarity bound and the multiplets become short. The
subsectors i, ii will be called short subsectors, because all short multiplets of psu(2, 2|4)
are represented by their highest weight shifted by the above δw′

i,ii. Shortening also implies
that the multiplet splits up, the weight of the additional submultiplet is reached from the
highest weight by adding (1.76)8

δwi = (+0.5;−1, 0; +1, 0, 0;−0.5,+1), δ(D0 − s1 − 1
2
q2 − p− 3

2
q1) = 0,

δwii = (+0.5; 0,−1; 0, 0,+1; +0.5,+1), δ(D0 − s2 − 1
2
q1 − p− 3

2
q2) = 0, (2.66)

which correspond to Q1
1 and Q̇14.

9 An interesting aspect is that also the additional
submultiplet has a descendant in the subsector. The descendants of the submultiplets in
the subsector are thus related by Q1

1 and Q̇14. In the classical theory these generators
cannot act at all because the corresponding oscillators are disabled, see (2.63). In the
quantum theory this changes and the submultiplets join. The relationship between the
above highest weights is illustrated in Fig. 2.6.

The residual symmetry within this subsector is

u(1) ⋉ psu(1, 2|3)× psu(1|1) ⋉ u(1). (2.67)

The psu(1, 2|3) subgroup classically transforms all oscillators except a1, c1 or b1,d1. The
psu(1|1) is associated to the supercharges which shift by ±δwi and relate the two sub-
multiplets. The u(1) charge L ∓ B and the u(1) anomalous dimension δD are external
automorphisms and central charges, respectively, for both psu factors.

8In the case of s1,2 = 0 for the highest weight, the shift would lead to a negative s1,2. In this particular
case, δwi,ii + δw′

i,ii leads to the highest weight of the other submultiplet which is eighth-BPS.
9Note that the shifts have anomalous values δB, δL and manifestly break the associated symmetries.
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In addition to na1
= nc1

= 0 we can further demand (similarly for the other subsector)

nc2
= 0, nc2

= nc3
= 0 or nc2

= nc3
= nc4

= 0. (2.68)

This restricts to states which have charges

q1 = 0, q1 = p = 0 or q1 = p = q2 = 0 (2.69)

and leads to even shorter subsectors with residual symmetries

su(1, 2|2)× u(1), su(1, 2|1)× u(1) or su(1, 2)× u(1). (2.70)

2.3.4 BPS Subsectors

Assume we now remove both oscillators of either type a or b

I : na1
= na2

= nc1
= 0,

II : nb1
= nb2

= nd1
= 0. (2.71)

Using Tab. D.2, these conditions are equivalent to

I : D0 = 1
2
q2 + p+ 3

2
q1, s1 = 0, L− B = D0,

II : D0 = 1
2
q1 + p+ 3

2
q2, s2 = 0, L+B = D0. (2.72)

For D0 = D these are precisely the eighth-BPS conditions, see Sec. 1.8, and therefore
every eighth-BPS multiplet has components in these subsectors. Consequently we call
them eighth-BPS sectors. In perturbation theory when δD ≈ 0 the states are beyond
the unitarity bound. As discussed below (2.66) we need to apply two supersymmetry

generators εαβQ1
αQ

1
β or εα̇β̇Q̇α̇4Q̇β̇4 to reach any state within the subsector from the

highest weight. The highest weight is shifted by

δwI = δwi + δw′
i = (1; 0, 0; 2, 0, 0; 0, 1),

δwII = δwii + δw′
ii = (1; 0, 0; 0, 0, 2; 0, 1). (2.73)

The residual symmetry within this sector is

su(2|3)× u(1), (2.74)

where u(1) corresponds to the anomalous dimension δD. Note that, as there are no
oscillators of either type a or type b, we can only have a finite number of oscillator
excitations for an elementary field. Therefore there are only finitely many fields within
this subsector, for type II they are

Φa4 = c†ac
†
4|0〉, Ψα4 = a†

αc
†
4|0〉, (2.75)

with a = 1, 2, 3, α = 1, 2. These transform in the fundamental representation of su(2|3).
This sector will be discussed in detail in Ch. 5.

As opposed to Sec. 2.3.3 we cannot disable more of the c’s, here. Requiring na1
=

na2
= nc1

= nc2
= 0 leads, via the central charge constraint, c.f. Sec. 1.9, to nb1

= nb2
=

nd1
= nd2

= 0, i.e. the half-BPS sector of Sec. 2.3.2.
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2.3.5 Combined Subsectors

We can also combine one of the restrictions on a, c with a restriction on b,d. Let
us denote the restrictions of Sec. 2.3.3 by 1, 2, 3, 4 depending on how many of the c’s or
d’s are removed. The BPS restriction of Sec. 2.3.4 will be denoted by 1+. No restriction
is denoted by 0. The possible subsectors are given by a pair of symbols (m,n). Not all
combinations are possible, we cannot remove and fully excite one oscillator of the type c
at the same time (fully exciting is equivalent to removing the corresponding oscillator of
type d). This yields the bound m+ n ≤ 4.

We find the following cases:

• The only subsector which does not fit this scheme is the half-BPS subsector (2+, 2+)
discussed in Sec. 2.3.2.

• We have already discussed all subsectors of type (0, n) in Sec. 2.3.3 and Sec. 2.3.4.

• We can combine two eighth-BPS conditions (1+, 1+) to the quarter-BPS subsector.
We will discuss this one in Sec. 2.4.

• We can combine a short condition with an eighth-BPS condition in (n, 1+) for n =
1, 2, 3. The fields and residual symmetries are

(1, 1+) {c†2, c†3, a†
2}c†4|0〉, su(1|2)× u(1|1),

(2, 1+) {c†3, a†
2}c†4|0〉, u(1|1)× u(1),

(3, 1+) a†
2c

†
4|0〉, u(1)× u(1). (2.76)

In particular the sector (1, 1+) appears to be very interesting due to its high amount
of supersymmetry in combination with only three fundamental fields. This might
allow for higher loop calculations with a minimum amount of work, c.f. the treat-
ment of the (0, 1+) sector in Ch. 5 of which this a subsector. The sector (2, 1+) has
been investigated in [102] and found to be equivalent to free fermions in the one-loop
approximation.

• There are four doubly-short sectors (1, 1), (2, 1), (2, 2) and (3, 1). We find the following
fields and symmetries

(1, 1) {1, c†2d†
2, a

†
2d

†
2, c

†
2b

†
2}(a†

2b
†
2)
n|Z〉, u(1)2 ⋉ psu(1, 1|2)× psu(1|1)2 ⋉ u(1),

(2, 1) {1, a†
2d

†
2}(a†

2b
†
2)
n|Z〉, su(1, 1|1)× u(1|1),

(3, 1) a†
2d

†
2(a

†
2b

†
2)
n|Z〉, su(1, 1)× u(1|1),

(2, 2) (a†
2b

†
2)
n|Z〉, su(1, 1)× u(1)× u(1).

(2.77)
Of particular interest is the sector (3, 1) which allows for a determination of the one-
loop dilatation operator by purely algebraic means. It will be discussed in Sec. 3.2.
The sector (2, 2) is quite similar to (3, 1) and also very useful, we will discuss it in
Sec. 3.4. The sector (2, 1) combines the two.

2.3.6 Excitation Subsector

Instead of removing oscillators of certain kinds, we can also fix the number of oscillator
excitations to some value. Here we will consider only the total number of oscillator
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excitations above the physical vacuum |Z, L〉; this is an even number because oscillators
can only be excited in pairs due to the central charge constraint. A state with 2M
oscillator excitations will be said to have M excitations

‘M excitations ’: (A†)M(Ȧ†)M |Z, L〉, (2.78)

where A = (a, c) and Ȧ = (b,d). According to Tab. D.2 the excitation number is related
to the charges by

M = 1
2
(na + nb + nc + nd) = D0 − p− 1

2
q1 − 1

2
q2, (2.79)

it is thus exactly conserved by the dilatation operator. In other words, the sector of states
with M excitations is closed. This type of sector is different from the above subsectors in
that no type of oscillator is excluded. Instead, there is an upper bound on the number
of excitations on a single field; this also leads to a simplification of the representation of
generators.

The excitation subsectors are somewhat similar to the half-BPS subsector discussed
in Sec. 2.3.2, which is in fact the sector with zero excitations. The residual symmetry in
this type of subsector is

(
u(1) ⋉ psu(2|2)× psu(2|2) ⋉ u(1)

)
× u(1). (2.80)

The generators of psu(2|2) are given by a pair of su(2) generators Lα
β,R

a
b and a pair of

supercharges Qa
α,S

α
a. Classically, they transform between oscillators a and c. Equiva-

lently, the other psu(2|2) is given by L̇α̇
β̇, Ṙ

ȧ
ḃ, Q̇

ȧ
α̇, Ṡ

α̇
ȧ. A u(1) external automorphism

for both psu(2|2)’s is given by D0. The u(1) central charge for both psu(2|2)’s is given
by M + δD. Another central charge is δD. The four sets of su(2) generators transform
indices canonically. The non-vanishing anticommutators of supergenerators are given by

{Sα
a,Q

b
β} = δbaL

α
β + δαβRb

a + 1
2
δbaδ

α
β (M + δD),

{Ṡα̇
ȧ, Q̇

ḃ
β̇} = δḃȧL̇

α̇
β̇ + δα̇

β̇
Ṙḃ

ȧ + 1
2
δḃȧδ

α̇
β̇
(M + δD). (2.81)

The Dynkin labels of a weight of one of the psu(2|2)’s are given by (i = 1, 2)

[si; ri; qi], ri = 1
2
M + 1

2
δD + 1

2
si − 1

2
qi. (2.82)

For a unitary representation the highest weights should obey ri ≥ si + 1 or si = ri = 0.
A multiplet is short for ri = si + 1 and BPS for si = ri = 0. At the unitarity bound
ri = si + 1, a long multiplet [si; ri; qi] splits off a short multiplet [si − 1; ri − 1; qi + 1] or,
when si = 0, a BPS multiplet [0; ri − 1; qi + 2].

A subsector of this kind is suited perfectly to investigate plane-wave physics and BMN
operators [14]. The number of excitations M equals the classical BMN energy D0 − J
or impurity number. The residual symmetry in this sector maps directly to parts of the
symmetries of the dual plane-wave string theory.

2.4 The su(2) Quarter-BPS Sector

In this section we will demonstrate how to extract the dilatation generator from a
perturbative calculation of the two-point function. We will restrict to the one-loop level
and to the quarter-BPS subsector.
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2.4.1 The su(2) Subsector

First of all let us describe the subsector. The quarter-BPS subsector is obtained by
combining both eighth-BPS conditions described in Sec. 2.3.4.

na1
= na2

= nb1
= nb2

= nc1
= nd1

= 0. (2.83)

There are only two charged scalar fields in this subsector

Z := ϕ1 := Φ34 = c†3c
†
4|0〉 = |Z〉,

φ := ϕ2 := Φ24 = c†2c
†
4|0〉 = c†2d

†
2|Z〉, (2.84)

therefore it is the smallest non-trivial subsector and we will often make use of it. The
possible weights are

w = (L; 0, 0;K,L− 2K,K; 0, L), (2.85)

where K counts the number of φ’s and L is the total number of fields. The residual
symmetry is

su(2)× u(1)× u(1). (2.86)

The su(2) factor transforms ϕ1 = Z and ϕ2 = φ in the fundamental representation,
whereas the u(1)’s measure the classical dimension D0 = L and the anomalous dimension
δD. With respect to su(2)× u(1)× u(1) a state is thus described by the charges

[L− 2K], L, δD, (2.87)

where [L − 2K] is the Dynkin label10 of su(2) corresponding to a third component of
spin L/2−K. In terms of the superconformal algebra, a state with δD = 0 is (at least)
quarter-BPS, a generic state, however, will not be protected. In that case the weight w
is beyond the unitarity bounds and cannot be primary. The highest weight within the
subsector is obtained from the highest weight of the psu(2, 2|4) multiplet by a shift of

δwI+II = (2; 0, 0; 2, 0, 2; 0, 2). (2.88)

The psu(2, 2|4) highest weight is on both unitarity bounds and has no spin.

2.4.2 Tree-Level

We will now compute the two-point function of states within the su(2) sector. From the
formal expression we will then extract the dilatation operator. Let us start at tree-level.
The state Oϕ at point x1 is constructed from fields ϕi of the su(2) subsector. Conversely,
the other operator Ȯϕ̇ at point x2 is constructed from fields ϕ̇i of a conjugate su(2)
subsector. Note the charge conjugation requires us to use two different su(2) subsectors.
The operators are constructed as (not necessarily equal) products of traces of fields

Oϕ[W] = Trϕ∗ · · ·ϕ∗ Trϕ∗ · · ·ϕ∗ . . . , ϕi = ϕi(x1),

Ȯϕ̇[W] = Tr ϕ̇∗ · · · ϕ̇∗ Tr ϕ̇∗ · · · ϕ̇∗ . . . , ϕ̇i = ϕ̇i(x2). (2.89)

10The Dynkin label for su(2) equals twice the spin.
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Written in this way, the operators become abstract objects in the tensor product space of
fields and are not necessarily based at some point in spacetime.

According to the path integral (c.f. Sec. 1.2) the two-point function at tree-level is
given by 〈

Oϕ Ȯϕ̇
〉

= exp(W0[∂/∂W])Oϕ[W] Ȯϕ̇[W]
∣∣
W=0

+O(g). (2.90)

In fact, we do not need to work with generic x-dependent fields W, but only the values
of the scalar fields ϕ, ϕ̇ at points x1,2 are relevant. The correlator now becomes

〈
Oϕ Ȯϕ̇

〉
= exp

(
W0(x12, ∂/∂ϕ, ∂/∂ϕ̇)

)
Oϕ(ϕ) Ȯϕ̇(ϕ̇)

∣∣
ϕ=ϕ̇=0

+O(g)

= exp
(
W0(x12, ϕ̌, ˇ̇ϕ)

)
Oϕ Ȯϕ̇

∣∣
ϕ=ϕ̇=0

+O(g), (2.91)

where W0 is the free generating functional of connected Graphs

W0(x12, ϕ̌, ˇ̇ϕ) = N−1∆12 Tr ϕ̌i ˇ̇ϕ
i
. (2.92)

The scalar propagator ∆12 = ∆(x1, x2) is defined in (2.7). Note that the second line in
(2.91) merely involves performing ordinary derivatives ϕ̌, ˇ̇ϕ with respect to the matrices
ϕ, ϕ̇. In order for the result to be non-vanishing, all the fields ϕ in Oϕ need to be
contracted to fields ϕ̇ in Ȯϕ̇ with propagators ∆12. In particular, the numbers of fields of
the two states must be equal.

2.4.3 One-Loop

To compute higher-loop correlators, we insert the interactions Sint[g,W] into the path
integral

〈
Oϕ Ȯϕ̇

〉
= exp(W0[∂/∂W]) exp(−Sint[g,W])Oϕ[W] Ȯϕ̇[W]

∣∣
W=0

. (2.93)

All the fields W in Sint need to be contracted to propagators before setting W = 0,
therefore we can combine the first two exponentials into one and write

〈
Oϕ Ȯϕ̇

〉
= exp(W [g, ∂/∂W])Oϕ[W] Ȯϕ̇[W]

∣∣
W=0

= exp
(
W (g, x12, ϕ̌, ˇ̇ϕ)

)
OϕOϕ̇

∣∣
ϕ=ϕ̇=0

. (2.94)

Again, it will be sufficient to evaluate the full generating functional of connected graphs
W [g,J ] only for fields ϕ, ϕ̇ at points x1,2.

Let us now consider the connected graphs at one-loop. There is no diagram at
O(g) which conserves the charges. The O(g2) connected Green functions are depicted
in Fig. 2.8. To evaluate them we make use of the regularised N = 4 SYM action in
(2.6,1.5). The one-loop Green functions evaluate to

W2,a = 1
32
N−3 X1122 Tr [ˇ̇ϕi, ˇ̇ϕj ][ϕ̌

i, ϕ̌j],

W2,b = 1
32
N−3 X1122 Tr [ˇ̇ϕi, ϕ̌

j][ϕ̌i, ˇ̇ϕj],

W2,c = 1
32
N−3

(
−2H̃12,12 − 4Y112I12 +X1122

)
Tr [ˇ̇ϕi, ϕ̌

i][ ˇ̇ϕj , ϕ̌
j],

W2,d = −1
4
N−2 Y112 gmn Tr [ˇ̇ϕi, tm][tn, ϕ̌

i] (2.95)
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a b c d1 d2 d3 d4

Figure 2.8: Connected graphs at one-loop. The solid, wiggly and dashed lines represent scalars,
gluons and fermions, respectively. The dotted lines correspond to a non-propagating auxiliary
field that represents a quartic interaction. The diagrams display the combinatorial structure
with respect to the gauge group rather than their space-time configuration: The white and
black dots are at the spacetime points x1 and x2, respectively.

with the integrals X, Y, H̃ defined in (2.9). We use a Jacobi identity to transform the
second structure in W2,b

Tr [ˇ̇ϕi, ϕ̌
j][ϕ̌i, ˇ̇ϕj] = Tr [ˇ̇ϕi, ˇ̇ϕj ][ϕ̌

i, ϕ̌j]− Tr [ϕ̌i, ˇ̇ϕi][ϕ̌
j, ˇ̇ϕj] (2.96)

and order the terms according to their spacetime integrals

W2,X = 1
16
N−3 X1122 Tr [ˇ̇ϕi, ˇ̇ϕj ][ϕ̌

i, ϕ̌j],

W2,H = − 1
16
N−3 H̃12,12 Tr [ˇ̇ϕi, ϕ̌

i][ˇ̇ϕj, ϕ̌
j],

W2,IY = −1
8
N−3 I12Y112

(
Tr [ˇ̇ϕi, ϕ̌

i][ ˇ̇ϕj, ϕ̌
j ] +N∆−1

12 gmn Tr [ˇ̇ϕi, tm][tn, ϕ̌
i]
)
. (2.97)

We refrain from evaluating these functions until later and insert them as they stand into
the expression for the one-loop correlator

〈
Oϕ Ȯϕ̇

〉
= exp

(
W0(x12, ϕ̌, ˇ̇ϕ)

)(
1 + g2W2(x, ϕ̌, ˇ̇ϕ)

)
Oϕ Ȯϕ̇

∣∣
ϕ=ϕ̇=0

+O(g3). (2.98)

We now change the argument ˇ̇ϕ of W2 to N∆−1
12 ϕ. This can be done because the result

vanishes unless every ϕ is removed by some ϕ̌ before the fields ϕ are set to zero. Here, the
only possibility is to contract with W0 which effectively changes N∆−1

12 ϕ back to ˇ̇ϕ. In
doing so we need to make sure that no new contractions appear between the arguments
ϕ and ϕ̌ of W2. Formally, this is achieved by ‘normal ordering’. The correlator becomes

〈
Oϕ Ȯϕ̇

〉
= exp

(
W0(x, ϕ̌, ˇ̇ϕ)

)(
1 + g2V2,ϕ(x12)

)
Oϕ Ȯϕ̇

∣∣
ϕ=ϕ̇=0

+O(g3) (2.99)

with the one-loop effective vertex

V2,ϕ(x12) = :W2(x12, ϕ̌, N∆
−1
12 ϕ):. (2.100)

We transform the explicit expressions for the connected graphs (2.97) and obtain

V2,X = 1
4
N−1 X1122I

−2
12 :Tr [ϕi, ϕj][ϕ̌

i, ϕ̌j]:,

V2,H = −1
4
N−1 H̃12,12I

−2
12 :Tr [ϕi, ϕ̌

i][ϕj, ϕ̌
j]:,

V2,IY = −1
2
N−1Y112I

−1
12

(
:Tr [ϕi, ϕ̌

i][ϕj , ϕ̌
j]: + gmn:Tr [ϕi, tm][tn, ϕ̌

i]:
)
. (2.101)

We can change the normal ordering in the first term of V2,IY in order to absorb the second,
see (1.41)

V2,IY = −1
2
N−1Y112I

−1
12 Tr:[ϕi, ϕ̌

i]::[ϕj , ϕ̌
j]: = 1

2
N−1Y112I

−1
12 Tr jj. (2.102)



2.4 The su(2) Quarter-BPS Sector 59

We can thus write V2,IY in terms of the generator of gauge rotations j = i:[ϕi, ϕ̌
i]: within

the su(2) subsector, see (1.37). Therefore V2,IY does not act on gauge invariant objects
such as the states O and we can drop it altogether, V2,IY =̂ 0.

Instead of replacing ˇ̇ϕ we could also have replaced ϕ̌ resulting in the effective vertex

V̇2,ϕ̇(x12) = :W2(x12, N∆
−1
12 ϕ̇, ˇ̇ϕ):. (2.103)

This shows that in (2.99) V2,ϕ is equivalent to V̇2,ϕ̇

V2,ϕ =̂ V̇2,ϕ̇. (2.104)

The form of this V̇2,ϕ̇ is the same as in (2.101) upon conjugation of su(2) indices. In other
words, V2 is self-adjoint with respect to the tree-level scalar product.

In a renormalised theory we should compute the correlator of renormalised states ZO.
At this point it is possible to guess the operator Z for the renormalisation of states

Z = 1− 1
2
g2V2(1/µ) +O(g3). (2.105)

We insert this into (2.99) and use the equivalence of V2,ϕ and V̇2,ϕ̇ to find

〈
ZOϕ ŻȮϕ̇

〉
= exp

(
W0(x12, ϕ̌, ˇ̇ϕ)

)(
1 + g2V2,ϕ(x12)− g2V2,ϕ(1/µ)

)
Oϕ Ȯϕ̇

∣∣
ϕ=ϕ̇=0

+O(g3).

(2.106)
A closer look at V2(x12) reveals that the x12-dependence is only through ξ as defined
in (2.11). This is a manifest property of a renormalisable field theory in dimensional
regularisation. We can thus write

V2(x12) = ξV2 =
Γ(1− ǫ)
∣∣1
2
µ2x2

12

∣∣−ǫ V2. (2.107)

We send the regulator to zero and find

lim
ǫ→0

(
V2(x12)− V2(1/µ)

)
= log |µx12|−2D2 (2.108)

with
D2 = − lim

ǫ→0
ǫV2. (2.109)

In the case at hand, we obtain from (2.101)

D2 = −1
2
N−1:Tr [φi, φj][φ̌

i, φ̌j]:, (2.110)

where we have used the following expansion in ǫ, see (2.10), for the functions appearing
in V2

X00xxI
−2
0x ξ

−1 = 2ǫ−1 + 2 +O(ǫ2),

H̃0x,0xI
−2
0x ξ

−1 = −48ζ(3) ǫ+O(ǫ2). (2.111)

The final answer for the renormalised correlator at ǫ = 0 is

〈
ZOϕ ŻȮϕ̇

〉
= exp(W0) exp

(
log |µx12|−2g2D2,ϕ

)
Oϕ Ȯϕ̇

∣∣
ϕ=ϕ̇=0

+O(g3), (2.112)
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in agreement with the form predicted by conformal field theory.11 The operator D2

is the one-loop correction to the dilatation generator. Furthermore, the coefficient of
the correlator is given by its tree-level value. Notice that although we are interested in
correlators of renormalised operators ZO as on the left-hand side of (2.112), we can work
with bare operators O as on the right hand side of (2.112). In other words, we choose to
renormalise the dilatation operator instead of the states.

2.4.4 Application

In the last section we have derived the one-loop dilatation generator (2.110) for the
su(2) subsector. When we write it in components (Z, φ) = (ϕ1, ϕ2) it reads

D2 = −N−1:Tr [Z, φ][Ž, φ̌]:. (2.113)

Using the rules in Sec. 1.5 we can determine its action on any operator of the form
TrZZφZφTrφ . . . .

Let us now apply D2 to rederive the results of Sec. 2.1.1. The first observation is
that D2 acts on Z and φ simultaneously. If either of them is absent in the state, D2 will
annihilate it, therefore

D2 TrZ · · ·Z TrZ · · ·Z . . . = 0. (2.114)

As emphasised in Sec. 2.3.2, these states are half-BPS and thus protected from quantum
corrections. In particular, the operator Qmn has one component, TrZZ, of this type.
The other state discussed in Sec. 2.1, the Konishi operator K, is not part of the su(2)
sector. However, it is on both unitarity bounds and has spin zero. Therefore, it has a
descendant within the subsector whose weight is given by (2.13,2.88)

w′
K = wK + δwI+II = (4; 0, 0; 2, 0, 2; 0, 4). (2.115)

This is a state of length L = 4 with K = 2 fields of type φ, see also [41]. Let us write
down a basis for all such states in SU(N) gauge theory (the line separates single from
double-trace states)

ET =





TrZZφφ
TrZφZφ

TrZZ Trφφ
TrZφ TrZφ



 . (2.116)

We apply the one-loop dilatation operator to the basis, D2E = ED2, and obtain the
matrix of anomalous dimensions

D2 =





+2 −4 + 8
N
− 4
N

−2 +4 − 8
N

+ 4
N

0 0 0 0
0 0 0 0



 . (2.117)

Its eigenvectors are

(−2, 2, 0, 0)T, (2, 1, 0, 0)T, (0, 0, 1, 2)T, (− 2
N
, 2
N
, 1,−1)T. (2.118)

11In fact, the mass dimension of the operators has not changed from its classical value, hence the
residual µ-dependence. The fully renormalised operator to be inserted into the path integral would be
µδD(g)ZO, but formally this cannot be expanded into a series as emphasised above.
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The first one corresponds to the Konishi descendant

K′ = −2 TrZφZφ+ 2 TrZφφZ = Tr [Z, φ][Z, φ], D(g) = 2 + 6g2 +O(g3) (2.119)

with eigenvalue D2 = 6. The other three states have vanishing anomalous dimension.
The first two, 2 TrZZφφ + TrZφZφ and TrZZ Trφφ + 2 TrZφTrZφ are related to
TrZZZZ and TrZZ TrZZ by su(2) rotations; this explains D2 = 0. The last operator

O = TrZZ Trφφ− TrZφTrZφ+N−1 Tr [Z, φ][Z, φ], D2 = 0 (2.120)

is indeed a highest weight state of psu(2, 2|4), as such it is, unlike K′, quarter-BPS and
protected [41, 42, 34].

2.5 Field Theoretic Considerations

In this section we will investigate the structure of the dilatation operator at higher
orders in perturbation theory without actually computing it. This will yield important
structural constraints for the algebraic construction pursued in the following chapters.

2.5.1 Two-Point Functions at Higher-Loops

Here, we would like to continue the investigation of the last section at higher loops
and see how the dilatation operator can be extracted. We will show how to resolve some
complications which appear starting at four loops and which are due to the fact that the
various loop contributions to the dilatation operator do not commute with each other,
e.g. [D2,D4] 6= 0. We will not compute higher-loop amplitudes explicitly.

To obtain the arbitrary loop correlator we insert all ℓ-loop connected Green functions
W2ℓ in the correlator

〈
Oϕ Ȯϕ̇

〉
= exp(W0) exp

(∑∞
ℓ=1g

2ℓW2ℓ(x12, ϕ̌, ˇ̇ϕ)
)
Oϕ Ȯϕ̇

∣∣
ϕ=ϕ̇=0

. (2.121)

In analogy to (2.99) we change the argument ˇ̇ϕ of W2ℓ(x, ϕ̌, ˇ̇ϕ) to N∆−1
12 ϕ

〈
Oϕ Ȯϕ̇

〉
= exp(W0) :exp

(∑∞
ℓ=1g

2ℓW2ℓ(x12, ϕ̌, N∆
−1
12 ϕ)

)
:Oϕ Ȯϕ̇

∣∣
ϕ=ϕ̇=0

. (2.122)

Alternatively, we could change the argument ϕ̌ to N∆−1
12 ϕ̇. We would then like to rewrite

(2.122) in a convenient form for the conformal structure of the correlator:

〈
Oϕ Ȯϕ̇

〉
= exp(W0) exp

(
Vϕ(x12)

)
Oϕ Ȯϕ̇

∣∣
ϕ=ϕ̇=0

= exp(W0) exp
(
V̇ϕ̇(x12)

)
Oϕ Ȯϕ̇

∣∣
ϕ=ϕ̇=0

, (2.123)

where12

V (x12) =
∞∑

ℓ=1

g2ℓV2ℓ(x12)− 1
48
g8
[
V2(x12), [V2(x12), V4(x12)]

]
+ . . . . (2.124)

12The commutator term was included for convenience, it could have been included in V8, we will explain
this issue below.



62 2 The Dilatation Operator

The terms V2ℓ are defined by the equality of (2.122) and (2.123)

exp
(
V (x12)

)
= :exp

(∑∞
ℓ=1g

2ℓW2ℓ(x, ϕ̌, N∆
−1
12 ϕ)

)
:, (2.125)

which will have to be solved perturbatively. All the terms that arise due to normal
ordering of the exponential and the commutator terms in (2.124) need to be absorbed
into the definition of higher order vertices. For example, the two-loop effective vertex is

V4(x) = :W4(x12, ϕ̌, N∆
−1
12 ϕ):− 1

2

(
V2(x12)V2(x12)− :V2(x12)V2(x12):

)
. (2.126)

Let us introduce a transpose operation on a generator X by the definition

exp(W0)X(ϕ, ϕ̌) = exp(W0)X
T(ϕ̇, ˇ̇ϕ). (2.127)

In other words, letting X act on ϕ is equivalent to letting XT act on ϕ̇. The alternative
forms of (2.123) lead to

V T

2ℓ(x12) = V̇2ℓ(x12). (2.128)

In a real field theoryW2ℓ(x12, ϕ̌, ˇ̇ϕ) must be hermitian in the arguments ϕ̌ and ˇ̇ϕ. Therefore
V̇2ℓ is indeed the complex conjugate of V2ℓ and (2.128) shows that V2ℓ is self-adjoint.

We renormalise the operators according to

Z = exp
(
−1

2

∑∞
ℓ=1g

2ℓV2ℓ(1/µ) + 1
24
g6
[
V2(1/µ), V4(1/µ)

]
+ . . .

)
,

Ż = exp
(
−1

2

∑∞
ℓ=1g

2ℓV̇2ℓ(1/µ) + 1
24
g6
[
V̇2(1/µ), V̇4(1/µ)

]
+ . . .

)
. (2.129)

This gives 〈
ZOϕ ŻȮϕ̇

〉
= exp(W0) exp

(
Vϕ(x)

)
ZϕOϕ Żϕ̇Ȯϕ̇

∣∣
φ=ϕ=0

. (2.130)

We can commute objects that depend only on ϕ with objects that depend only on ϕ̇
freely. Then we use the transpose operation (2.127) to make Żϕ̇ act on ϕ instead. We get

〈
ZOφZOϕ

〉
= exp(W0) Ż

T

ϕ exp
(
Vϕ(x12)

)
ZϕOϕ Ȯϕ̇

∣∣
ϕ=ϕ̇=0

. (2.131)

The vertices V2ℓ(1/µ) in Z are hermitian, (2.128), only the commutator in (2.129) requires
special care, because V2 and V4 need to be transformed consecutively. This effectively
inverts their order and flips the sign of the commutator:

ŻT = exp
(
−1

2

∑∞
ℓ=1g

2ℓV2ℓ(1/µ)− 1
24
g6
[
V2(1/µ), V4(1/µ)

]
+ . . .

)
. (2.132)

In a renormalisable field theory the dependence of V2ℓ on x12 is determined, we write

V2ℓ(x12) = ξℓV2ℓ. (2.133)

We combine the exponentials in (2.131) with the surrounding Z’s into a single exponent

∞∑

ℓ=1

(ξℓ − ξℓ0)g2ℓV2ℓ,ϕ − 1
48
g8(ξ − ξ0)4

[
V2,ϕ, [V2,ϕ, V4,ϕ]

]
+ . . . . (2.134)
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The ℓ-loop Green function W2ℓ is expected to have multiple poles at ǫ = 0. In a conformal
field theory, however, these poles must have cancelled in the combination V2ℓ as given by
(2.124,2.125). If so, we can finally send the regulator to zero and find

〈
ZOϕ ŻȮϕ̇

〉
= exp(W0) exp

(
log |µx12|−2∑∞

ℓ=1g
2ℓD2ℓ,ϕ

)
Oϕ Ȯϕ̇

∣∣
ϕ=ϕ̇=0

(2.135)

with

D2ℓ = −ℓ lim
ǫ→0

ǫV2ℓ. (2.136)

Note that the commutator term in (2.134) vanishes due to four powers of ǫ from (ξ− ξ0)4

as opposed to only three powers of 1/ǫ from the V2ℓ. For this cancellation to happen the
commutator terms in (2.124) and (2.129) are necessary: We have investigated all possible
terms that can arise in a four-loop computation. We find that precisely the commutator
structure in (2.124) is required to obtain a finite, conformally covariant correlator.

Some comments about the renormalisation programme are in order. Firstly, the pro-
gramme ensures that the coefficient of the two-point function is given by free contractions
of the unrenormalised operators. Secondly, the effective vertices V2ℓ are self-adjoint with
respect to the scalar product induced by free contractions, see (2.128). The same holds
for the dilatation generator which consequently has real eigenvalues. Notice that in some
case there may appear to be complex eigenvalues. However, a more careful analysis will
show that the corresponding eigenstate is zero. This may happen if the rank of the group
is small compared to the size of the operators and group identities lead to non-trivial
linear dependencies in the basis of operators.

2.5.2 Two-Point Functions of Non-Scalar Operators

Correlation functions of non-scalar operators are not as easy to handle as their scalar
counterparts. This is due to their spacetime indices which can not only be contracted
among themselves but also with x12. Furthermore, there are qualitative differences be-
tween primaries and descendants, see Sec. 1.10. Therefore the form predicted by conformal
symmetry is not as simple as (2.135). It certainly involves the symmetry generators K

and P to be able to distinguish between primaries and descendants. These generators
also receive quantum corrections, which would have to be found at the same time.

However, in some cases the dilatation generator may be obtained anyway without
taking these complications into account. A crucial observation is that, although (1.93)
and (1.96) are different, the difference is only in the part that multiplies xµ12x

ν
12. The

‘direct’ contraction via ηµν is the same for both. If all contractions between the operator
indices and x12 are dropped, the operators behave as though they were a set of scalars.
In [50] this simplification made a computation of the one-loop dilatation operator possible
within the non-scalar subsector (2, 2).

Note that the covariant derivatives acting on a field are just ordinary partial deriva-
tives at leading order. The appearance of the gauge connection should be treated as an
interaction that takes place at the point of the field (boundary) and everywhere in space-
time (bulk). Algebraically, the structure of boundary interactions is the same as in the
bulk, the gauge field couples to the field via the gauge group structure constants and one
power of the coupling constant.
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2.5.3 Feynman Diagrams

In Sec. 2.5.1 we have seen how the corrections to the dilatation operator arise from
divergent Feynman diagrams. Here we would like to investigate the structure of interacting
contributions to the dilatation operator and other generators of the symmetry algebra.
This will be an important constraint for the constructions in the following chapters. The
‘interactions’, i.e. the contributions to the group generators are constructed from fields
W, variations W̌ and structure constants f of the gauge group. Notice that due to the
form of the Lagrangian (1.5) there is exactly one power of the coupling constant g for
each f (before gauge group identities are used).

Our first claim is that the generators J(g) are connected. Here, connectedness refers
to the gauge algebra. It means that all gauge group indices are contracted so that the
symbols form a connected graph. The connectedness can be inferred from Sec. 2.5.1: The
effective vertices V2ℓ are connected diagrams. They are generated from the Green functions
W2ℓ by removing the normal ordering of an exponential (2.125) and adding commutators
(2.124). One can easily convince oneself that these operations produce only connected
diagrams. The same is true also for the dilatation generator D. Connectedness can also
be seen in N = 4 SYM on R × S3. There the bare Hamiltonian is clearly connected,
but it does not obey [H(0),H(g)] = 0 (2.39). In this work we will require this identity
and therefore need to diagonalise the Hamiltonian first. This diagonalisation procedure
described in Sec. 2.2.3 produces only commutator terms and thus connected diagrams.
This can be seen in (2.43) by rewriting it as

δD 7→ δD0 +
∑

d>0

1

d
[δDd, δD−d] + . . . . (2.137)

Secondly, we can count the number of external legs E, i.e. the number of fields Eo

plus the number of variations Ei. According to (1.26) this equals

E = V + 2− 2L′, (2.138)

where V is the number of structure constants and L′ is the number of adjoint index loops.
For each structure constant there is precisely one power of g. A contribution of O(gV )
therefore has no more than V + 2 legs.13 A useful basis for interactions which can be
achieved by making use of Jacobi identities is

‘interactions’: J(g) ∼ gEi+Eo+2L′−2 fEi+Eo+2L′−2
m...m (gmm)L

′

(W∗

m)Eo(W̌∗m)Ei, (2.139)

where the linear contraction of V structure constants fVm...m is given by, see Fig. 2.10,

fVm...m = gm1n1
fn1

m2n2
fn2

m3n3
· · · fnV

mV +1mV +2
= iV Tr tm1

[tm2
, [tm3

, [. . . , [tmV +1
, tmV +2

] . . .]]]. (2.140)

These interactions preserve the parity operation defined in Sec. 1.3 as one can confirm
easily. This is because they are only composed of structure constants which have positive
parity.

Finally, there is a peculiar feature of maximal scalar diagrams which will be important
to select the right terms later on. These are diagrams without index loops L′ = 0 which

13The definition of the Hamiltonian H involves two powers of g, therefore H generically has two legs
more at a given order of g.
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Figure 2.10: A generic interaction with Ei = 5 variations, Eo = 4 fields, L′ = 3 index loops and
V = 13 structure constants and powers of the coupling constant.

therefore have the maximum number of external scalar legs V +2 at order V in perturba-
tion theory. We are interested in the flow of so(6) vector indices across the diagram. As
this is a tree diagram, the internal lines can only be scalars or gauge fields. Gauge fields
are singlets of so(6) therefore only scalar fields can support the flow. Only at quartic
interactions of the scalars two lines of flow can cross. This shows that at order V there
cannot be more than V/2 crossings of so(6) vector flow lines.

2.6 The Planar Limit and Spin Chains

Generic interactions have a very complicated structure due to a large number of pos-
sible contractions between the indices in (2.139). Most of the time it is therefore useful
to restrict to the planar limit, see Sec. 1.4.

2.6.1 States

In the large N limit, field theory diagrams are suppressed unless 2C−2G−T = 0, see
(1.44). As each component requires at least two traces, one incoming and one outgoing
(there are no vacuum diagrams), we need T = 2C andG = 0. In other words, the diagrams
may connect only two single trace operators and cannot have handles. Therefore it makes
sense to consider only single trace states

‘single-trace state’: |A1 . . .AL〉 := TrWA1
· · ·WAL

. (2.141)

The cyclicity of the trace gives rise to cyclic identifications

|A1 . . .ApAp+1 . . .AL〉 = (−1)(A1...Ap)(Ap+1...AL)|Ap+1 . . .ALA1 . . .Ap〉. (2.142)

The sign is due to statistics of the fields: (−1)XY equals −1 if both, X and Y , are fermionic
and +1 otherwise. In particular, some states are incompatible with this symmetry

|A1 . . .AL/2A1 . . .AL/2〉 = 0, if A1 . . .AL/2 is fermionic. (2.143)

A generic state is a linear superposition of the above basis states

O = c |A1 . . .AL〉+ c′ |A′
1 . . .A′

L′〉+ . . . , (2.144)

where mixing of states with different length is explicitly allowed.
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B1 B2
B3

Cp+5A1 A2 A3 A4Cp

{
A1...A4

B1...B3

}

O

Figure 2.12: Insertion of a planar interaction. The black dots correspond to fields, the white
dots to variations. Inside the blob there is some unspecified planar diagram that connects the
dots.

2.6.2 Interactions

For planar interactions the precise structure of internal connections does not play a
role as long as it is planar, c.f. Fig. 2.12. The only relevant structure is the order of
external legs. In the planar limit it is therefore sufficient to consider interactions of the
type

‘planar interactions’:
{A1...AEi

B1...BEo

}
:= N1−Ei TrWB1

. . .WBEo
W̌AEi . . . W̌A1 , (2.145)

which searches for the sequence of fields WA1
. . .WAEi

within a state and replaces it by
the sequence WB1

. . .WBEo
. More explicitly, the action on a state |C1 . . . CL〉 is

L∑

p=1

(−1)(C1...Cp−1)(B1...BEo )δA1

Cp
. . . δ

AEi

Cp+Ei−1
|C1 . . . Cp−1B1 . . .BEo

Cp+Ei
. . . CL〉. (2.146)

A sample action is
{AB

BA
}
|12345〉 = |21345〉 ± |13245〉 ± |12435〉 ± |12354〉 ± |52341〉. (2.147)

The order of an interaction in perturbation theory is given by V = Ei +Eo + 2L′− 2,
therefore J(g) ∼ gEi+Eo+2L′−2

{A1...AEi

B1...BEo

}
. We see that for planar interactions, adding an

index loop simply increases the loop order by one. At a fixed loop order this leads to
diagrams with fewer external legs. To reduce the complexity, we can install a pair of legs
by means of a gauge transformation. For that purpose we insert the generator of gauge
rotations j into some interaction

0 =̂ −iTr j WB1
. . .WBEo

W̌AEi . . . W̌A1

= Tr:WCW̌C:WB1
. . .WBEo

W̌AEi . . . W̌A1 − Tr:W̌CWC:WB1
. . .WBEo

W̌AEi . . . W̌A1

=̂ N TrWB1
. . .WBEo

W̌AEi . . . W̌A1 ∓ TrWCWB1
. . .WBEo

W̌AEi . . . W̌A1W̌C. (2.148)

The equivalence in the last line is for planar insertions only. This means that adding a
pair of legs to the left of the interaction has no effect. Equivalently, we can add a pair of
legs to the right of the interaction

{A1...AEi

B1...BEo

}
=̂
{A1...AEi

C
B1...BEoC

}
=̂ (−1)C(A1...AEi

B1...BEo )
{CA1...AEi

CB1...BEo

}
. (2.149)
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[
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A3

A4
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Figure 2.14: The action of a wrapping interaction. For a planar insertion, the wrapping interac-
tion must surround the state and the number of fields L must match the number of variations
Ei.

This is obvious because the additional pair of legs does not change the field at that
position, it is only a spectator. We can now add L′ pairs of spectator legs to an interaction
and thus drop the index loop parameter14

Jk ∼
{A1...AEi

B1...BEo

}
, with Ei + Eo = k + 2. (2.150)

2.6.3 Wrapping Interactions

This can, however, not be completely true: If the number of variations, Ei, equals the
length of the state, L, we cannot add a spectator pair of legs. In fact, there is a subtlety
in the second equivalence in (2.148): When in the second term the variation hits the field
WBEo

we get a ‘wrapping diagram’. It can be represented by the following symbol and
trace structure

‘wrapping interactions’:
[A1...AEi

B1...BEo

]
:= N−Ei TrWB1

. . .WBEo
Tr W̌AEi . . . W̌A1 . (2.151)

Wrapping interactions remove the state as a whole and replace it by a new one. They
are best understood graphically, see Fig. 2.14. Wrapping diagrams are generically non-
planar, but when applied to a state of the minimally required length, the action becomes
planar. This is because the diagram can be wrapped fully around the trace. If, however,
some uncontracted fields remain within the trace, they are disconnected from the fields of
the interaction and the action is non-planar. An improved version of (2.149) which takes
states of finite length into account is

{A1...AEi

B1...BEo

}
=
{A1...AEi

C
B1...BEoC

}
+
[A1...AEi

B1...BEo

]
= (−1)C(A1...AEi

B1...BEo )
{CA1...AEi

CB1...BEo

}
+
[A1...AEi

B1...BEo

]
(2.152)

For wrapping diagrams the order in perturbation theory is given by

Jk ∼
[A1...AEi

B1...BEo

]
with Ei + Eo = k + 2− 2L′, L′ ≥ 1. (2.153)

They act only on states with length L = Ei and need at least one index loop L′. Therefore
they appear only at rather high loop orders, especially for long states. Unfortunately,

14Note that for Hk as defined in Sec. 2.2.4 there should be Ei + Eo = k + 4 legs.
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there are no obvious structural constraints on wrapping interactions as the one described
at the end of Sec. 2.5.3. This makes them rather hard to handle and we will not make
quantitative statements in this work.

2.6.4 Parity

In Sec. 1.3 we have defined a parity operation for a unitary gauge group. It replaces all
fields by their negative transpose. Transposing all matrices within a trace simply reverses
their order. We find that parity acts on a state as

p |A1 . . .AL〉 = (−1)L+f(f−1)/2|AL . . .A1〉, (2.154)

where f is the number of fermionic fields in the trace. Effectively we can use this definition
of parity also for gauge groups SO(N) and Sp(N). There, however, parity must act
trivially and only states of positive parity are allowed.

The parity operation for interactions is (fi and fo are the numbers of fermions in
A1 . . . AEi

and B1 . . . BEo
, respectively)

p
{A1...AEi

B1...BEo

}
p−1 = (−1)Ei+Eo+fi(fi−1)/2+fo(fo−1)/2

{AEi
...A1

BEo ...Bi

}
. (2.155)

For the interactions within algebra generators J(g) parity must be positive. Nevertheless,
we will also make contact with generators of negative parity later on.

2.6.5 Scalar Product

Our investigations in this work are independent of the definition of a scalar product.
Nevertheless, it is useful to know how to construct a meaningful norm because the dilata-
tion operator will be self-adjoint with respect to this norm and thus have real eigenvalues.
We will sketch how the norm should look like.

The construction in Sec. 2.5.1 shows that states can be renormalised in such a way as to
preserve the classical scalar product. At tree-level the scalar product is given by pairwise
contractions 〈A|B〉 between fields of both states. In the planar limit all contractions must
be parallel. Therefore the planar scalar product of two states

〈A1 . . .AL|B1 . . .BL′〉 = δL=L′

L∑

p′=1

(±1)
L∏

p=1

〈Ap|Bp′−p〉 (2.156)

vanishes unless L = L′ and both states are related by a cyclic permutation. For generic
overlapping states the elementary scalar products in (2.156) are non-zero for all p only for
one very specific value of p′. However, for a state which can be written as |(A1 . . .AL/n)n〉
with n as large as possible, there are n possible values for p′. The square norm for a state
is thus proportional to ±n

|(A1 . . .AL/n)n〉 ∼
√
n . (2.157)

An adjoint operation for interactions compatible with the above scalar product for states
should interchange the two rows in the interaction symbol15

{A1...AEi

B1...BEo

}† ∼
{ BEo ...B1

AEi
...A1

}
. (2.158)

15The reverse ordering of the adjoint is related to the scalar product. One could combine the adjoint
with parity to define a different adjoint operation which only interchanges both rows.
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Figure 2.16: A single-trace operator as a spin chain. For the simplest spin chain, the spin can
take two alignments, for N = 4 the ‘spin’ can take infinitely many.

planar N = 4 SYM psu(2, 2|4) spin chain
single trace operator cyclic spin chain
field spin site
anomalous dilatation operator g−2δD Hamiltonian H
anomalous dimension g−2δD energy E
cyclicity constraint zero-momentum condition U = 1

Table 2.2: Dictionary for N = 4 SYM and the spin chain picture.

Note, however, that the action of a self-adjoint interaction on a set of states is only
equivalent to a hermitian matrix if all states are normalised to one with respect to (2.157).
Otherwise the matrix is only self-adjoint with respect to the norm on the set of states.
For example, this is the case for the asymmetric matrix (2.117).

2.6.6 Spin Chains

Single-trace local operators can be viewed as states of a dynamic, cyclic, quantum spin
chain [48]. A cyclic spin chain is a set of L spin sites with a cyclic adjacency property. In
a quantum spin chain, the spin at each site is a module of the symmetry algebra of the
system and the Hilbert space is the tensor product of L spin modules. For a dynamic spin
chain the number of sites L is not fixed [51]; the full Hilbert space is the tensor product of
all Hilbert spaces of a fixed length. The basic quantum spin chain is the Heisenberg chain.
Its symmetry group is su(2) and all spins transform in the fundamental representation.
A basis for the Hilbert space is given by those states for which the spin at each site points
either ‘up’ or ‘down’. The Hilbert space is thus C

2L

. In a more general spin chain, the spin
can point in more than just two directions, in most cases even infinitely many. Note that
the cyclic identification (2.142) of field theory states is an additional constraint on cyclic
spin chains. For example, the field theory Hilbert space corresponding to the Heisenberg
chain is C2L

/ZL. Physical states are identified by a trivial shift operator, states with
non-zero momentum are unphysical.

In the spin chain picture each field is identified with one site of the chain. The
alignment of the spin at that site corresponds to the component of the multiplet of fields,
c.f. Fig. 2.16. For N = 4 SYM, the spin chain is a psu(2, 2|4) cyclic super spin chain with
spins transforming in the representation [0; 0; 0, 1, 0; 0; 0], see Sec. 1.9, [58]. When working
in the planar limit, we will commonly make use of spin chain terminology. In particular,
the quantum correction to the dilatation generator will be called the ‘Hamiltonian’ H =
g−2δD and anomalous dimensions are synonymous for ‘energies’ E = g−2δD, see Tab. 2.2
for a small dictionary. For the other generators of the superconformal group we use the
same symbols as in the non-planar case.



70



71

Chapter 3

One-Loop

In this chapter we will derive the complete one-loop dilatation operator ofN = 4 Super
Yang-Mills Theory. The text is based on the article [50], but we present a new derivation
of the coefficients Cj. In [50] the coefficients have been obtained in a quantum field
theory calculation, here we will merely employ the superconformal algebra. The spectral
and plane-wave investigations have been compiled from the articles [35, 27, 38, 50, 103].

3.1 The Form of the Dilatation Generator

We start by investigating the general form of the one-loop dilatation generator. We will
see that representation theory of the symmetry group as well as Feynman diagrammatics
put tight constraints on the form. What remains is a sequence of undetermined coefficients
Cj, one for each value of ‘total spin’.

3.1.1 One-Loop as Leading Order

In Sec. 2.2.4 we have learned that the leading order anomalous dilatation operatorDl is
invariant under classical superconformal transformations J0. It is impossible to construct
an invariant operator D1 at first order of the coupling constant g, therefore the leading
order is one-loop, l = 2. We will come back to this point after having reviewed some
representation theory at the end of Sec. 3.1.3. In what follows we will consider only the
classical psu(2, 2|4) algebra of generators J0; the one-loop anomalous dilatation generator
D2 will be considered an independent object; we will refer to it as the Hamiltonian H,

J(g) = J +O(g), D(g) = D + g2H +O(g3), [J,H] = 0. (3.1)

3.1.2 Generic Form

The Hamiltonian has the following generic form1

H = −N−1(Ca)
AB

CD
:Tr
[
WA, W̌C

][
WB, W̌D

]
:

−N−1(Cb)
AB

CD
:Tr
[
WA,WB

][
W̌C, W̌D

]
:

+N−1(Cc)
A

B
gmn:Tr

[
WA, tm

][
tn, W̌B

]
:. (3.2)

1These expressions are valid for bosonic fields WA only. They do generalise to fermions, but only at
the cost of obscure signs at various places.
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a b c

Figure 3.2: Algebraic structure of the one-loop diagrams contributing to the anomalous dimen-
sion. The lines correspond to any of the fundamental fields of the theory.

These terms correspond to the three basic types of divergent Feynman diagrams which
arise at the one-loop level, see Fig. 3.2. As before, in Sec. 2.4.3, we can transform the
term of type c by means of gauge invariance. The generator of gauge transformations (see
Sec. 1.3) is j = i:[WC, W̌C]: and it annihilates gauge invariant operators. Therefore we can
write (note the change of normal orderings)

0 =̂ −iTr j :
[
WA, W̌B

]
: = :Tr

[
WC, W̌C

][
WA, W̌B

]
: + gmn:Tr

[
WA, tm

][
tn, W̌B

]
:, (3.3)

which allows us to write the term of type c as a term of type a. Furthermore the term of
type b can be transformed by means of a Jacobi-identity

:Tr
[
WA,WB

][
W̌C, W̌D

]
: = :Tr

[
WA, W̌C

][
WB, W̌D

]
:− :Tr

[
WA, W̌D

][
WB, W̌C

]
:. (3.4)

We combine all coefficients into a single one of type a

CAB

CD
= −

(
(Ca)

AB

CD
+ (Cb)

AB

CD
− (Cb)

AB

DC
+ 1

2
δA

C
(Cc)

B

D
+ 1

2
(Cc)

A

C
δB

D

)
. (3.5)

The total Hamiltonian is

H = −N−1CAB

CD
:Tr
[
WA, W̌C

][
WB, W̌D

]
: (3.6)

with some yet undetermined coefficient CAB

CD
.

3.1.3 Symmetry

The combined coefficient CAB

CD
must be invariant under the classical superconformal

algebra, it describes an intertwining map VF × VF 7→ VF × VF. This requirement puts
tight constraints on the coefficients, the independent components can be obtained by
investigating the irreducible modules in the tensor product VF × VF. The tensor product
of two VF is given by (see e.g. [103])

VF × VF =
∞∑

j=0

Vj, (3.7)

where Vj are the modules with primary weights

w0 = (2; 0, 0; 0, 2, 0; 0, 2),

w1 = (2; 0, 0; 1, 0, 1; 0, 2),

wj = (j; j − 2, j − 2; 0, 0, 0; 0, 2). (3.8)
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The module V0 is the half-BPS current multiplet, V1 is quarter-BPS and the other ones are
doubly-short. As an aside, it is interesting to see that the quadratic Casimir (c.f. App. D.3)
for these modules is given by

J2
12 Vj = j(j + 1)Vj, (3.9)

just as if we were dealing with sl(2) alone. Due to invariance, CAB

CD
must be of block-

diagonal form: All states of a module Vj must be mapped to the same type of module
Vj with equal coefficients. In our case, each module Vj appears only once in the tensor
product, therefore we can assign only one coefficient Cj for each Vj . Let (Pj)AB

CD
project

two fields WA,WB to the module Vj. Then the most general invariant coefficients can be
written as

CAB

CD
=

∞∑

j=0

Cj (Pj)AB

CD
. (3.10)

Note that the decomposition (3.7) is also valid for the group pu(2, 2|4). Therefore, the
hypercharge B is preserved by H. Obviously, also the length, measured by the operator
L, is conserved

[H,B] = [H,L] = 0. (3.11)

This will clearly not be the case for higher-loop corrections to the dilatation genera-
tor, which act on more than two fields at the same time. At higher loops, the Konishi
anomaly [104] mixes operators of different hypercharges. The same points also hold for
the length L of a state. Nevertheless, it makes perfect sense to speak of the leading order
hypercharge and length to describe a state. Mixing with states of different hypercharges
or lengths is sub-leading, because the one-loop dilatation generator conserves these.

At this point we can also exclude the possibility of a ‘half-loop’ contribution D1 or
a length non-preserving contribution to D2 on algebraic grounds: There is no overlap
between the irreducible modules in the in and out channels

V0
F
6∈ V3

F
, VF 6∈ V2

F
, V0

F
6∈ V4

F
, VF 6∈ V3

F
, (3.12)

which can be seen by comparing the scaling dimensions. The only possible contributions
up to second order in g are V2

F
7→ V2

F
or VF 7→ VF as assumed in (3.2).

3.1.4 Planar Limit

We can now take the planar limit of (3.6)

H =
∞∑

j=0

2Cj (Pj)AB

CD

{ CD
AB
}

(3.13)

in the notation introduced in Sec. 2.6.2. In this chapter we will use a slightly different
notation which assumes that H acts on a spin chain of length L and transforms two
adjacent fields2

H =
L∑

p=1

Hp,p+1, Hp,p+1 =
∞∑

j=0

2CjPp,p+1,j. (3.14)

2We assume cyclic site indices, i.e. HL,L+1 = HL,1.
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The symbol Pp,p+1,j projects the fields at positions p, p + 1 to the module Vj . We see
that all coefficients Cj can be read off from this Hamiltonian. Therefore, the Hamiltonian
density H12 generalises uniquely to the non-planar Hamiltonian H in (3.6). In what
follows we can safely restrict ourselves to the investigation of H12 alone.

To simplify some expressions, we introduce the psu(2, 2|4) invariant total spin operator
J12 by the implicit definition

J12 Vj = j Vj . (3.15)

We can now define a function f(J12) of this operator by

f(J12) =

∞∑

j=0

f(j)P12,j . (3.16)

Using the short notation the Hamiltonian density becomes simply

H12 = 2C(J12). (3.17)

3.2 The Fermionic su(1, 1) × u(1|1) Subsector

It remains to determine the coefficients Cj. To accomplish this task we will consider
the closed subsector (1, 3) of N = 4 SYM (c.f. Sec. 2.3.5) and show how to derive the
Hamiltonian from the algebraic constraints.

3.2.1 Fields and States

The fields in this subsector consist only of the fermion Ψ = Ψ42 with K derivatives
D = D22 acting on it, see Sec. 2.3.5. In the oscillator notation of Sec. 1.9 they can be
written as

|k〉 :=
1

(k + 1)!
(a†

2b
†
2)
k|Ψ〉 =

1

(k + 1)!
(a†

2b
†
2)
ka†

2d
†
2|Z〉. (3.18)

States are constructed as tensor products of the fields

|k1, . . . , kL〉 (3.19)

with the cyclic identifications (the sign is due to statistics)

|k1, . . . kp, kp+1, . . . , kL〉 = (−1)p(L−p)|kp+1, . . . , kL, k1, . . . kp〉. (3.20)

The identifications exclude states of the form

|k1, . . . , kL/2, k1, . . . , kL/2〉 = 0. (3.21)

The weight of a state with a total number of K excitations is given by

w = (3L/2 +K;K + L,K; 0, 0, L;L/2, L). (3.22)

This weight is beyond a unitarity bound of psu(2, 2|4) and cannot be primary. The generic
shift from the highest superconformal weight to the highest weight within the subsector
is given by

δw = δw′
i + δw′

ii + (1;−2, 0;−1, 0, 1; 1, 0) = (2;−1,+1; 0, 0, 2; 1, 0). (3.23)

The shifts δw′
i,ii take the weight beyond the unitarity bound and should be omitted for

quarter-BPS multiplets. The additional shift is related to the two additional conditions
nc2

= nc2
= 0 in the definition of the subsector.
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3.2.2 Symmetry

The subsector is invariant under an su(1, 1)×u(1|1) subalgebra of the superconformal
algebra. In the fully interacting theory, the su(1, 1) algebra consists of the generators3

J′
+(g) = K22(g), J′

−(g) = P22(g), J′
0(g) = L − 2D0 − δD(g). (3.24)

Note that the dilatation generator D is part of the algebra. At higher loops, one should
keep in mind that only half of the anomalous piece appears. The su(1, 1) algebra is

[J′
+(g), J′

−(g)] = −J′
0(g), [J′

0(g), J
′
±(g)] = ±2J′

±(g). (3.25)

The u(1|1) algebra is generated by

L, Q′
−(g) = Q1

1(g), Q′
+(g) = S1

1(g), δD(g) (3.26)

and the non-zero commutators are4

[L,Q′
±(g)] = ∓Q′

±(g), {Q′
+(g),Q′

−(g)} = 1
2
δD(g). (3.27)

The generators of su(1, 1) and u(1|1) commute with each other

[J′(g),L] = [J′(g),Q′
±(g)] = [J′(g), δD(g)] = 0. (3.28)

In the classical limit, the algebra u(1|1) is trivial, Q′
±(0) = 0, it transforms between

oscillators of type a†
1 and c†1, both of which are absent in this subsector. In the interact-

ing theory, however, the generators Q′
±(g) must receive non-trivial corrections (see also

Fig. 1.14) because they close on δD(g). In particular, they must produce D2 which is
possible only if Q′

±,1 6= 0.
Let us now restrict to the leading orders of all generators as in Sec. 3.1.1

J′
± := J′

±,0, J′
0 := J′

0,0, Q′
± := Q′

±,1, H′ := D2. (3.29)

The resulting non-trivial commutators of u(1|1) are

[L,Q′
±] = ∓Q′

±, {Q′
+,Q

′
−} = 1

2
H′. (3.30)

3.2.3 Representations

The fields transform under su(1, 1) as

J′
−|k〉 = (k + 2)|k + 1〉, J′

+|k〉 = k|k − 1〉, J′
0|k〉 = −2(k + 1)|k〉, (3.31)

as can be inferred from the oscillator representation. All of the fields can be transformed
into each other, they therefore span an irreducible module V ′

F
of su(1, 1). The Dynkin

label of the highest weight |0〉, measured by J′
0, is

w′
F

= [−2], (3.32)

3The precise form of J3 can be obtained from the commutator of P22 and K22 in App. D.1 noting that
we can set L2

2 = 1
2D0 − 1

4L and L̇2
2 = 1

2D− 3
4L in this sector.

4Note that L1
1 = − 1

2D0 + 1
4L and R1

1 = − 1
4L in the sector.
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in other words, the fields transform in the spin −1 irreducible representation.
The Hamiltonian density H′

12 is su(1, 1) invariant and acts on two fields at a time. Of
particular interest is therefore the tensor product of two V ′

F
’s, by standard sl(2) rules it

splits into modules of spin −1− j, j ≥ 1

V ′
F
× V ′

F
=

∞∑

j=1

V ′
j, with w′

j = [−2− 2j]. (3.33)

All irreducible modules have multiplicity one and we can write the invariant Hamiltonian
as

H′
12 = C ′(J ′

12), (3.34)

where the total spin operator J ′
12 is defined implicitly by

J ′
12 V ′

j = j V ′
j . (3.35)

3.2.4 Supercharges

In order to find the Hamiltonian H′, it suffices to find the supercharges Q′
±; via the

supersymmetry relation (3.30) we can generate H′ later. The supercharges Q′
± are of

order g in perturbation theory, therefore they should have three legs (c.f. Sec. 2.5.3).
We already know from (3.30) that Q′

− increases the length by one and Q′
+ decreases it.

Consequently, we make the ansatz5

Q′
−|m〉 =

m−1∑

k=0

c−m,k|k,m− 1− k〉. (3.36)

The supercharge should commute with all generators J′ because they belong to distinct
algebras. Therefore Q′

− conserves the J′
0 charge and Q′

−|m〉 may only yield states of the
form |k,m− 1− k〉. The commutator of Q′

− with J′
− is

[Q′
−, J

′
−]|m〉 =

m∑

k=0

(
c−m+1,k(n+ 2)− δk 6=0c

−
m,k−1(k + 1)− δk 6=mc−m,k(m− k + 1)

)
|k,m− k〉.

(3.37)
The coefficients can be computed recursively and one easily confirms that the only pos-
sibility to make [Q′

−, J
′
−] vanish identically is c−m,k = 0. For that purpose, start with

m = k = 0 and find that c−1,0 = 0; then continue with m = 1, k = 0, 1 and so on. In terms
of representation theory this is understood because V ′

F
and V ′

F
× V ′

F
have no irreducible

modules in common. This might seem to be disastrous for it leads to Q′
− = H′ = 0. How-

ever, we do not need to require that [Q′
−, J

′
−] vanishes identically, but only that its action

annihilates all states. In particular, this allows [Q′
−, J

′
−] to generate a gauge transforma-

tion which annihilates gauge invariant states. The only suitable gauge transformation to
match |m〉 7→ |k,m− k〉 is DmΨ 7→ {Ψ,DmΨ}. Therefore we should merely require

[Q′
−, J

′
−]|m〉 = c−|m, 0〉+ c−|0, m〉. (3.38)

5Here, |n〉 is considered to be a field within a state. A single field should be annihilated by Q′
−.



3.2 The Fermionic su(1, 1)× u(1|1) Subsector 77

H′ = − 2
Q′

+

Q′
−

+ 2

Q′
−

Q′
+

− 2

Q′
−

Q′
+

+ 2

Q′
+

Q′
−

Figure 3.4: Diagrammatic representation of the commutator H′ = 2{Q′
+,Q′

−}. The diagrams
are to be inserted to a state at the white dots.

It is not difficult to see that there is a unique solution to this equation, namely c−m,k = c−.
By making a similar ansatz for Q′

+ we find in total

Q′
−|m〉 ∼

1

2

m−1∑

k=0

|k,m− 1− k〉,

Q′
+|k,m− k〉 ∼

(
1

k + 1
+

1

m− k + 1

)
|m+ 1〉. (3.39)

Again, Q′
+ commutes with J′

+ only up to a gauge transformation

[Q′
+, J

′
+]|k,m− k〉 ∼ (δk=0 + δk=m)|m〉. (3.40)

The other commutators [Q′
+, J

′
−] and [Q′

−, J
′
+] turn out to vanish identically.

3.2.5 The Hamiltonian

We are now ready to compute the Hamiltonian H′ = 2{Q′
+,Q

′
−}. For definiteness,

we will assume unit proportionality constants in (3.39). In total there are four types of
diagrams to represent the anticommutator, see Fig. 3.4. To compute Q′

+Q′
− there are

three different ways in which Q′
+ could act. Let us therefore add labels to indicate the

fields on which each generator acts. Firstly, Q′
+ could act on one of the fields generated

by Q′
− and one adjacent field (the sign is due to statistics).

Q′
+,23Q

′
−,1|k,m− k〉 = −1

2

k−1∑

k′=0

(
1

k − k′ +
1

m− k + 1

)
|k′, m− k′〉,

Q′
+,12Q

′
−,2|k,m− k〉 = −1

2

m∑

k′=k+1

(
1

k + 1
+

1

k′ − k

)
|k′, m− k′〉. (3.41)

Secondly, it could act on both fields that result from the action of Q′
−

Q′
+,12Q

′
−,1|k,m− k〉 =

1

2

k−1∑

k′=0

(
1

k′ + 1
+

1

k − k′
)
|k,m− k〉 = h(k)|k,m− k〉, (3.42)

where the harmonic numbers h(m) are defined as

h(m) :=

m∑

k=1

1

k
. (3.43)
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We want all interactions to act on two adjacent sites, therefore we should evenly distribute
this contribution between both fields

(
1
2
Q′

+,12Q
′
−,1 + 1

2
Q′

+,23Q
′
−,2
)
|k,m− k〉 = 1

2

(
h(k) + h(m− k)

)
|k,m− k〉. (3.44)

Finally, Q′
−Q

′
+ is easily computed

Q′
1,−Q′

+,12|k,m− k〉 =
1

2

(
1

k + 1
+

1

m− k + 1

) m∑

k′=0

|k′, m− k′〉. (3.45)

In total the action of the Hamiltonian density is

H′
12 = 2Q′

+,23Q
′
−,1 + 2Q′

+,12Q
′
−,2 + 2Q′

1,−Q′
+,12 + Q′

+,12Q
′
−,1 + Q′

+,23Q
′
−,2; (3.46)

summing the terms in (3.41,3.44,3.45) we get

H′
12|k,m− k〉 ∼

k−1∑

k′=0

(
1

k + 1
− 1

k − k′
)
|k′, m− k′〉

+
(
h(k + 1) + h(m− k + 1)

)
|k,m− k〉

+

m∑

k′=k+1

(
1

m− k + 1
− 1

k′ − k

)
|k′, m− k′〉. (3.47)

The su(1, 1) invariance of H′
12 is inherited from Q′

±.

3.2.6 Eigenvalues of the Hamiltonian

In order to transform this expression into the concise form (3.17) we need to find the
eigenvalue of the Hamiltonian on module V ′

j . The highest weight state of V ′
j, which is

annihilated by J′
1,+ + J′

2,+, is

|j〉 =

j−1∑

k=0

(−1)k(j − 1)!

k!(j − k − 1)!
|k, j − k − 1〉. (3.48)

We know that |j〉 is an eigenstate ofH′
12 because H′

12 is invariant under su(1, 1). Therefore
we only need to compute the coefficient of |0, j − 1〉 in H′

12|j〉; we obtain

H′
12|j〉 ∼

(

1 + h(j) +

j−1∑

k=1

(−1)k(j − 1)!

k!(j − k − 1)!

(
1

k + 1
− 1

k

))

|0, j − 1〉+ . . . . (3.49)

The first part of the sum is easily performed by extending the range and thus completing
the binomial (1− 1)j

j−1∑

k=1

(−1)k(j − 1)!

(k + 1)!(j − k − 1)!
=

j−1∑

k=−1

(−1)k(j − 1)!

(k + 1)!(j − k − 1)!
− 1 +

1

j
= −1 +

1

j
. (3.50)
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For the second part we replace 1/k by 1/(j − 1) + (j − k − 1)/k(j − 1) and get

−
j−1∑

k=1

(−1)k(j − 1)!

k!(j − k − 1)!k
= −

j−1∑

k=1

(−1)k(j − 2)!

k!(j − k − 1)!
−

j−1∑

k=1

(−1)k(j − 2)!

k!(j − k − 2)!k
. (3.51)

The first of the resulting sums is done by completing (1−1)j−1 and evaluates to 1/(j−1).
The second sum is the same as above with j replaced by j − 1. By induction we thus get

−
j−1∑

k=1

(−1)k(j − 1)!

k!(j − k − 1)!k
=

1

j − 1
+

1

j − 2
+ . . .+

1

1
= h(j − 1). (3.52)

Summing up we obtain

H′
12|j〉 ∼

(
1 + h(j)− 1 + 1/j + h(j − 1)

)
|0, j − 1〉+ . . . = 2h(j) |j〉. (3.53)

where we have reconstructed all other terms of |j〉 by means of invariance. We have
therefore determined the Hamiltonian in this subsector up to an overall constant

H′
12 ∼ 2h(J ′

12). (3.54)

3.3 The Lift to psu(2, 2|4)

Let us now compare the results of the preceding sections. This allows us to derive the
complete one-loop dilatation operator of N = 4 supersymmetric gauge theory. The state
|j〉 has length L = 2 and K = j − 1 excitations. According to (3.22,3.23) the highest
weight of the superconformal multiplet that includes |j〉 is

w′
j = (j; j − 2, j − 2; 0, 0, 0; 0, 2). (3.55)

For j = 1 the shift is exceptional, it excludes δw′
i + δw′

ii in (3.23) because the multiplet is
quarter-BPS. The corresponding highest superconformal weight is

w′
1 = (2; 0, 0; 1, 0, 1; 0, 2). (3.56)

These are precisely the highest weights of the superconformal modules Vj, j ≥ 1 in (3.7).
There is a one-to-one correspondence between the modules Vj, j ≥ 1 (3.8) and V ′

j

V ′
j ⊂ Vj, j ≥ 1. (3.57)

Using the fact that the two Hamiltonians must agree within the subsector we find

2Cj |j〉 = H12 |j〉 = H′
12 |j〉 ∼ 2h(j) |j〉, j ≥ 1. (3.58)

This leaves one overall constant and the coefficient C0 to be determined. The multiplet
V0 is half-BPS and thus protected, it cannot acquire an anomalous dimension; we must
set

C0 = h(0) = 0. (3.59)

The overall constant cannot possibly be fixed by algebraic considerations, we need to
match it to a field theory calculation. For example, we can use the anomalous dimension
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of the Konishi operator, D2 = 6 (2.20), as input. In the free theory, it is part of the
multiplet V2. The Hamiltonian acting on a state of length L = 2 is H = H12 + H21.
For the Konishi state we therefore get D2 = 4C2 and set C2 = 3

2
= h(2). The resulting

‘Hamiltonian density’ H12 for N = 4 SYM is thus

H12 =
∞∑

j=0

2h(j)P12,j = 2h(J12). (3.60)

To conclude, the one-loop dilatation generator of N = 4 can be written as

D(g) = D0 −
g2

YM

8π2

∞∑

j=0

h(j) (Pj)AB

CD
:Tr
[
WA, W̌C

][
WB, W̌D

]
: +O(g3), (3.61)

where we have inserted the conventional Yang-Mills coupling constant g2
YM

= 8π2g2/N .
This is the principal result of this chapter. The coefficients are the harmonic numbers
h(j), elements of the harmonic series

‘harmonic numbers’ : h(m) :=

m∑

k=1

1

k
= Ψ(m+ 1)−Ψ(1), (3.62)

which can also be expressed in terms of the digamma function Ψ(x) = Γ′(x)/Γ(x). In
App. F we will present the harmonic action, a practical implementation of the action of
H12 = 2h(J12).

3.4 The Bosonic su(1, 1) Subsector

In this section we will consider the closed subsector (2, 2); it is a nice sector, quite
similar to the fermionic subsector (3, 1), see Sec. 3.2, and we will make use of it later.
The fields in this subsector consist only of the field Z = Φ34 with K derivatives D = D22

acting on it. They can be written as

|k〉 :=
1

k!
(a†

2b
†
2)
k|Z〉 =

1

k!
DkZ. (3.63)

States are constructed as tensor products of the fields modulo cyclicity of the trace

|k1, . . . , kL〉 = |kp+1, . . . , kL, k1, . . . kp〉. (3.64)

The weight of a state with a total number of K excitations is given by

w = (L+K;K,K; 0, L, 0; 0, L). (3.65)

The generic shift from the highest superconformal weight to the highest weight within the
subsector is given by

δw = δw′
i + δw′

ii + (1;−1,−1;−1,+2,−1; 0, 0) = (2;−2,−2; 0,−2, 0; 0, 0). (3.66)

The shifts δw′
i,ii take the weight beyond the unitarity bound and should be omitted for

quarter-BPS multiplets with K = 1. The additional shift is related to the two additional
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conditions nc2
= nd2

= 0 in the definition of the subsector; it should be omitted for
half-BPS multiplets with K = 0.

The subsector is invariant under an su(1, 1)× u(1)× u(1) subalgebra of the supercon-
formal algebra. The su(1, 1) algebra of generators J′′ is exactly the same as in (3.24,3.25).
The two u(1) charges are the length L and anomalous dimension δD(g).

The fields transform under su(1, 1) as

J′′
−|k〉 = (k + 1)|k + 1〉, J′′

+|k〉 = k|k − 1〉, J′′
0|k〉 = −(2k + 1)|k〉. (3.67)

All fields can be transformed into each other, they therefore span an irreducible module
V ′′

F
of su(1, 1). The Dynkin label of the highest weight |0〉 is

w′′
F

= [−1], (3.68)

in other words, the fields transform in the spin −1
2

irreducible representation.
The tensor product of two V ′′

F
is as in (3.33), but here also the module V ′′

0 with j = 0
appears. There is a one-to-one correspondence between the modules V ′′

j and the irreducible
modules of the superconformal algebra

V ′′
j ⊂ Vj . (3.69)

In [50] the Hamiltonian density was obtained from a direct field theory computation

H′′
12 |m,m− k〉 =

m∑

k′=0

(
δk=k′

(
h(k) + h(m− k)

)
− δk 6=k′

|k − k′|

)
|k′, m− k′〉, (3.70)

It is straightforward to verify that H′′
12 is invariant under the generators J′′

12. As in
Sec. 3.2.6, one can show that (3.70) is equivalent to

H′′
12 = 2h(J ′′

12). (3.71)

This result can be lifted to N = 4 SYM as well to obtain the complete one-loop dilatation
operator [50].

3.5 Planar Spectrum

In this section we will apply the planar, one-loop dilatation generator (Hamiltonian)
to find some anomalous dimensions (energies).

3.5.1 Lowest-Lying States

In Tab. 3.2 we present the spectrum of lowest-lying states in N = 4 SYM. For a
given highest weight of the classical algebra we write the anomalous dimensions along
with the parity P . The parity is defined such that for a SO(N) or Sp(N) gauge group
the states with negative parity are projected out. Parity P = ± indicates a pair of states
with opposite parity and degenerate energies. Furthermore, we have indicated states with
conjugate representations for which the order of su(2)2, su(4) and psu(2, 2|4) labels as
well as the hypercharge B are inverted. Generically, the one-loop energy shifts are not
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D0 su(2)2 su(4) B L psu(2, 2|4) EP

2 [0, 0] [0, 2, 0] 0 2 [0; 0; 0, 2, 0; 0; 0] 0+

[0, 0] [0, 0, 0] 0 2 [0; 1; 0, 0, 0; 1; 0] 6+

3 [0, 0] [0, 3, 0] 0 3 [0; 0; 0, 3, 0; 0; 0] 0−

[0, 0] [0, 1, 0] 0 3 [0; 1; 0, 1, 0; 1; 0] 4−

4 [0, 0] [0, 4, 0] 0 4 [0; 0; 0, 4, 0; 0; 0] 0+

[0, 0] [0, 2, 0] 0 4 [0; 1; 0, 2, 0; 1; 0] (10E − 20)+

[0, 0] [1, 0, 1] 0 4 [0; 1; 1, 0, 1; 1; 0] 6−

[0, 0] [0, 0, 0] 0 4 [0; 2; 0, 0, 0; 2; 0] (13E − 32)+

[2, 0] [0, 0, 0] 1 3 [2; 3; 0, 0, 0; 2; 0] 9− + conj.

[1, 1] [0, 1, 0] 0 3 [1; 2; 0, 1, 0; 2; 1] 15
2

±

[2, 2] [0, 0, 0] 0 2 [2; 3; 0, 0, 0; 3; 2] 25
3

+

5 [0, 0] [0, 5, 0] 0 5 [0; 0; 0, 5, 0; 0; 0] 0−

[0, 0] [0, 3, 0] 0 5 [0; 1; 0, 3, 0; 1; 0] 2−, 6−

[0, 0] [1, 1, 1] 0 5 [0; 1; 1, 1, 1; 1; 0] 5±

[0, 0] [0, 0, 2] 0 5 [0; 2; 0, 0, 2; 1; 0] (14E − 36)+ + conj.
[2, 0] [0, 0, 2] 1 4 [2; 3; 0, 0, 2; 1; 0] 10− + conj.
[0, 0] [0, 1, 0] 0 5 [0; 2; 0, 1, 0; 2; 0] 10−, 10−, (10E − 20)−

[2, 0] [0, 1, 0] 1 4 [2; 3; 0, 1, 0; 2; 0] (16E − 62)+ + conj.
[1, 1] [0, 2, 0] 0 4 [1; 2; 0, 2, 0; 2; 1] 6±

[1, 1] [1, 0, 1] 0 4 [1; 2; 1, 0, 1; 2; 1] 5±, 10±

[1, 1] [0, 0, 0] 0 4 [1; 3; 0, 0, 0; 3; 1] 9±

[2, 2] [0, 1, 0] 0 3 [2; 3; 0, 1, 0; 3; 2] 6−

5.5 [1, 0] [0, 2, 1] 1
2

5 [1; 2; 0, 2, 1; 1; 0] 8± + conj.
[1, 0] [1, 1, 0] 1

2
5 [1; 2; 1, 1, 0; 2; 0] (16E − 62)± + conj.

[1, 0] [0, 0, 1] 1
2

5 [1; 3; 0, 0, 1; 2; 0] (35
2
E − 305

4
)± + conj.

[2, 1] [0, 1, 1] 1
2

4 [2; 3; 0, 1, 1; 2; 1] 9± + conj.
[2, 1] [1, 0, 0] 1

2
4 [2; 3; 1, 0, 0; 3; 1] (37

2
E − 333

4
)± + conj.

[3, 2] [0, 0, 1] 1
2

3 [3; 4; 0, 0, 1; 3; 2] 10± + conj.

Table 3.2: All one-loop planar anomalous dimensions of primary operators with D0 ≤ 5.5. The
label P refers to parity, P = ± indicates a degenerate pair of states. The label ‘+conj.’ represents
conjugate states with su(2)2, su(4), psu(2, 2|4) labels reversed and opposite hypercharge B.
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fractional numbers but solutions to some algebraic equations. We refrain from solving
these numerically, but instead give the equations. In the table such states are represented
by polynomials X(E) of degree k − 1. The true energies E are obtained as solutions to
the equation

Ek = X(E). (3.72)

For example, the quadratic polynomial for the state with weight (4; 0, 0; 0, 2, 0; 0, 4) is
X(E) = 10E − 20. It translates to the energy (see also [45])

E2 = 10E − 20, E = 5±
√

5. (3.73)

The table was computed as follows: A C++ programme was used to determine all
highest weight states up to and including classical dimension 5.5 as well as their descen-
dants. In analogy to the sieve of Eratostene the algorithm [105] subsequently removes
descendants from the set of all states. What remains, are the primary states. Please
refer to [106] for details of the implementation of the sieve algorithm. For each multiplet
we pick one state and compute the total excitation numbers using Tab. D.2. Here it is
crucial to choose a descendant for which the mixing problem is minimised. This reduces
the size of the energy matrix to be computed and diagonalised. For these purposes, a
good descendant usually has as few different types of oscillators as possible.

In a Mathematica programme all states with a given set of oscillator excitations were
collected: We spread the oscillators on the sites of the spin chain in all possible ways tak-
ing the central charge constraint at each site into account. Identical states with respect
to cyclicity of the trace are dropped. In a second step, the harmonic action, c.f. App. F,
was applied to all the states to determine the matrix of anomalous dimensions. For all
the descendants which were removed in the sieve algorithm, we remove the correspond-
ing energy eigenvalues. The remaining eigenvalues are the one-loop planar anomalous
dimensions of highest weight states.

To go to higher canonical dimensions involves obtaining and diagonalising bigger and
bigger matrices. One can reduce the complexity by going to certain subsectors. The
smallest subsector is the su(2) subsector, see Sec. 2.4. There are only two fields, Z, φ,
which we might indicate in a planar notation as

|0〉 = Z, |1〉 = φ. (3.74)

The Hamiltonian density acts on two adjacent fields, within this sector it is (2.110)

H′′′
12 |k1, k2〉 = |k1, k2〉 − |k2, k1〉. (3.75)

Here there are far less states and it is much easier to compute the energy matrix. In
Tab. 3.4 we show a complete table of states and energies up to classical dimension D0 ≤ 9.
We have omitted the vacuum states with K = 0; there is one for each length L and
its energy vanishes. The states and their energies can be obtained conveniently using
a computer algebra system. In App. E we present a couple of Mathematica functions
to deal with the su(2) subsector. Similarly, we can obtain the spectrum for the bosonic
su(1, 1) subsector. The expression (3.70) can be used to calculate any one-loop anomalous
dimension within this subsector. We display our results in Tab. 3.6.

There are two points to be observed in the spectra in Tab. 3.2,3.4,3.6. Firstly, we note
the appearance of pairs of states with degenerate energy and opposite parities P = ±

‘paired state’: E+ = E−. (3.76)
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L K EP

4 2 6+

5 2 4−

6 2 (10E − 20)+

3 6−

7 2 2−, 6−

3 5±

L K EP

8 2 (14E2 − 56E + 56)+

3 4±, 6−

4 (20E2 − 116E + 200)+

9 2 (8E − 8)−, 4−

3 (17E2 − 90E + 147)±

4 5±, (12E − 24)−

Table 3.4: The lowest-lying states within the su(2) subsector [38]. The weights of the corre-
sponding primaries are (L− 2; 0, 0;K − 2, L− 2K,K − 2; 0, L − 2).

D0 L K EP

4 2 2 6+

5 3 2 4−

6 4 2 (10E − 20)+

3 3 15
2

±

2 4 25
3

+

7 5 2 2−, 6−

4 3 6±

3 4 6−

D0 L K EP

8 6 2 (14E2 − 56E + 56)+

5 3 (25
2
E − 147

4
)±

4 4 23
3

±
, (73

3
E2 − 553

3
E + 1274

3
)+

3 5 35
4

±

2 6 49
5

+

9 7 2 (8E − 8)−, 4−

6 3 (19E2 − 459
4
E + 216)±

5 4 (13E − 32)−, (97
6
E − 2291

36
)±

4 5 (35
2
E − 665

9
)±

3 6 22
3

−
, 227

20

±

Table 3.6: The first few states within the bosonic su(1, 1) subsector [50]. The weights of the
corresponding primaries are (L + K − 2;K − 2,K − 2; 0, L − 2, 0; 0, L).

This will be an important issue for integrability discussed in Ch. 4. Secondly, we find
some overlapping primaries in Tab. 3.4,3.6, clearly their energies do agree. What is more,
we find that a couple of energies repeatedly occur. These are for example, 6, 10, 5, 9,
but also 10E − 20 and 13E − 32. As these states are primaries transforming in different
representations, they cannot be related by psu(2, 2|4). Of course, these degeneracies could
merely be a coincidence of small numbers. Nevertheless the reappearance of e.g. 13E−32
is somewhat striking. This could hint at yet another symmetry enhancement of the
planar one-loop Hamiltonian. It might also turn out to be a consequence of integrability.
Furthermore, one might speculate that it is some remnant of the broken higher spin
symmetry of the free theory, see e.g. [107] and references in [105].

3.5.2 Two Partons

A straightforward exercise is to determine the spectrum of states of length L = 2.
These so-called twist-two states can conveniently be written as

Oj,AB = (Pj)CDAB
TrWCWD. (3.77)
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Note that j must be even due to cyclicity of the trace. Using (3.60) we find6

E = 4h(j), δD =
g2

YM
N

2π2
h(j) +O(g3) (3.78)

in agreement with the results of [43, 44]. Twist-two states have positive parity.

3.5.3 Three Partons

For states of length L = 3 the following multiplets are found within a trace [103]

TrVF × VF × VF =
∞∑

m=−∞

∞∑

n=0

(
V−

2m,2n + V+
2m+1,2n + cnV±

m,n+3

)
, (3.79)

where c0,1,2,3,4,5 = (1, 0, 1, 1, 1, 1) and cn+6 = cn + 1. The modules Vm,n have highest
weights

w0,0 = (3; 0, 0; 0, 3, 0; 0, 3),

w0,n = (n+ 1;n− 2, n− 2; 0, 1, 0; 0, 3),

w1,0 = (3; 0, 0; 0, 0, 0; 0, 3),

w1,n = (n+ 5/2;n, n− 1; 0, 0, 1; 1/2, 3),

wm,n = (n+ 2m;n+ 2m− 2, n+m− 2; 0, 0, 0; 1, 3) (3.80)

and the conjugate w−m,n has reversed su(2)2, su(4) labels and opposite hypercharge. The
multiplets V0,n have components in the subsector (2, 2), see (3.4), the multiplets V1,n

have components in the fermionic subsector (3, 1), see (3.2), and all the other Vm,n are
represented in the sector (4, 0).

By inspecting the spectrum of lowest-lying states and their energies, we find that
almost all of them form pairs with degenerate energies. We list the pairs in Tab. 3.8.7

Concerning the unpaired states, there is one for each even n, it has parity (−1)m+1. For
the unpaired states one can observe a pattern in the table of energies, Tab. 3.10. We find
that all energies agree with the formula

E = 2h(1
2
m− 1

2
) + 2h(m+ 1

2
n) + 2h(1

2
m+ 1

2
n)− 2h(−1

2
). (3.81)

In particular, for m = 1 the energies are

E = 2h(1 + 1
2
n) + 2h(1

2
+ 1

2
n)− 2h(−1

2
) = 4h(n+ 2), (3.82)

which agrees precisely with the energy (3.78) of the short twist-two multiplet V2n+2.
Superconformal invariance requires this degeneracy so that the short multiplets can join
to form a long multiplet. The cases m = 0 and n = 0 also seem interesting, we find
E = 4h(1

2
n) and E = 6h(m).

6Note that H = H12 +H21 = 2H12 = 4h(J12).
7The energies are all rational numbers because there is always just a single pair up to n ≤ 8 (3.79).

Starting from n = 9 there is more than one pair and the energies become irrational.
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n\m 0 1 2 3 4 5 6

3 15
2

10 47
4

131
10

71
5

1059
70

4461
280

5 35
4

133
12

761
60

487
35

12533
840

39749
2520

13873
840

6 227
20

761
60

967
70

2069
140

39349
2520

2747
168

3929
231

7 581
60

179
15

3763
280

18383
1260

39133
2520

7543
462

94373
5544

8 5087
420

1403
105

18187
1260

38677
2520

49711
3080

2593
154

629227
36036

Table 3.8: First few paired anomalous dimensions for Vm,n [103].

n\m 0 1 2 3 4 5 6

0 0 6 9 11 25
2

137
10

147
10

2 4 25
3

32
3

123
10

407
30

3067
210

542
35

4 6 49
5

71
6

929
70

72
5

9661
630

2259
140

6 22
3

761
70

191
15

8851
630

528
35

221047
13860

21031
1260

8 25
3

7381
630

202
15

101861
6930

6581
420

329899
20020

21643
1260

10 137
15

86021
6930

493
35

2748871
180180

20383
1260

203545
12012

122029
6930

Table 3.10: First few unpaired anomalous dimensions for Vm,n [103]. The parity is P = (−1)m+1.

3.5.4 Two Excitations

Instead of considering a fixed number of fields, one can also consider the L-particle
vacuum state |Z, L〉 and add a small number of excitations, see Sec. 2.3.6. A state without
excitations is just the half-BPS vacuum and a state with one excitation is related to the
vacuum by one of the lowering operators. The first interesting case is two excitations [14].
Assume we consider four oscillator excitations of type a†

2, a
†
2,b

†
2,b

†
2. This corresponds to

a state of the bosonic su(1, 1) sector with a total of two derivatives D acting on L fields
Z. A useful basis of states is thus

EL1 = TrDDZ ZL−1, ELp = TrDZ Zp−2DZ ZL−p. (3.83)

Note that we should identify ELp and ELL+2−p due to cyclicity of the trace and consider a
matrix with half the number of rows and columns. Equivalently, we may choose to restrict
to vectors which are symmetric under p ↔ L+ 2 − p. Using the Hamiltonian (3.70), we
find the matrix of anomalous dimensions in this basis

H =





+2 −1 −1
−2 +4 −2

−2
. . .

. . .
. . .

. . . −2
−2 +4 −2

−2 −2 +4





. (3.84)

The bulk of the matrix has precisely the form of a second lattice derivative. The
appropriate ansatz to diagonalise it, is a vector with elements cos(ap+ b). The boundary
contributions together with the symmetry determine the constants a and b. The matrix
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(3.84) has the following exact eigenvectors

OLn =
1

L

L∑

p=1

cos

(
πn(2p− 1)

L+ 1

)
ELp . (3.85)

Note that OLn = OL−n = −OLL+1−n. Thus the set of independent modes is given by the
mode numbers 0 ≤ n < (L + 1)/2. The corresponding exact planar one-loop anomalous
dimension is [27]

EL
n = 8 sin2 πn

L+ 1
, δD =

g2
YM
N

π2
sin2 πn

L+ 1
+O(g3). (3.86)

This is just one component of a multiplet of the residual symmetry psu(2|2)×psu(2|2)
within the sector. The oscillators A† = (a†, c†) (c.f. Sec. 2.3.6) transform in the fun-
damental representation [0; 0; 1] of one of the psu(2|2)’s. For two excitations we should
consider the tensor product of two fundamental modules which is [0; 0; 1] × [0; 0; 1] =
[0; 0; 2]+ + [0; 1; 0]−. These two correspond to the symmetric and antisymmetric combi-
nation of two indices A,B. The same applies to the oscillators Ȧ† = (b†,d†). In total we
find four multiplets corresponding to the combined symmetrisations ++,+−,−+,−−:

OL
n,{AB]{ĊḊ]

=
L∑

p=1

cos

(
πn(2p− 1)

L+ 1

)
TrA†

1,{AA
†
p,B] Ȧ

†
1,{ĊȦ†

p,Ḋ]
|Z, L〉,

OL+1

n,{AB][ĊḊ} =

L+1∑

p=2

sin

(
πn(2p− 2)

L+ 1

)
TrA†

1,{AA
†
p,B] Ȧ

†
1,[Ċ

Ȧ†
p,Ḋ} |Z, L+ 1〉,

OL+1

n,[AB}[ĊḊ]
=

L+1∑

p=2

sin

(
πn(2p− 2)

L+ 1

)
TrA†

1,[AA
†
p,B} Ȧ

†
1,{ĊȦ†

p,Ḋ]
|Z, L+ 1〉,

OL+2

n,[AB}[ĊḊ} =

L+2∑

p=2

cos

(
πn(2p− 3)

L+ 1

)
TrA†

1,[AA
†
p,B} Ȧ†

1,[Ċ
Ȧ†
p,Ḋ} |Z, L+ 2〉. (3.87)

All of these have the same energy EL
n . This is related to the fact that all short multiplets

join to form a long multiplet in the interacting theory [27] (unless n = 0). For psu(2|2)
the interacting multiplet [0; 1 + 1

2
δD; 0] is at the unitarity bound r1 ≈ s1 + 1. When

δD approaches zero, the interacting multiplet splits up into a short and a BPS multiplet
[0; 1 + 1

2
δD; 0] → [0; 1; 0] + [0; 0; 2]. In total, the highest weight of the long multiplet is

therefore
[0; 1 + 1

2
δD; 0]× [0; 1 + 1

2
δD; 0]. (3.88)

In psu(2, 2|4) the classical highest weight for states n 6= 0 is (L; 0, 0; 0, L− 2, 0; 0, 0) =
[0; 1; 0, L− 2, 0; 1; 0]. The protected states for n = 0 are part of the half-BPS multiplet
(L; 0, 0; 0, L, 0; 0, 0). The states have parity (−1)L.

3.5.5 Three Excitations

Let us investigate the states with three excitations. We find that such states almost
always form pairs with degenerate planar energies. The only exceptions from this rule are
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states with weight

(2m+ 4; 0, 0; 1, 2m, 1; 0, 2m+ 4) = [0; 1; 1, 2m, 1; 1; 0], m ≥ 0. (3.89)

They have a descendant in the su(2) subsector which is given by

O =

2m+2∑

k=1

(−1)k TrφφZkφZ2m+3−k, E = 6, P = −1. (3.90)

Interestingly, two of the excitations are always adjacent in this leading order approxima-
tion. Further states of this kind with more excitations can be found.

3.6 Plane Wave Physics

In this section we would like to demonstrate the use of the dilatation operator to
find non-planar corrections, i.e. corrections in 1/N , to the scaling dimensions. Here the
dilatation operator brings about a major simplification [35] as opposed to the computation
of correlation functions [18,19,108,21,22,36] because it allows to derive scaling dimensions
independently of two-point normalisation constants. In particular we will derive the
genus-one correction to the scaling dimension of two-excitation BMN operators in the
BMN limit.

3.6.1 The BMN Limit

Berenstein, Maldacena and Nastase (BMN) [14] suggested to investigate operators of
a large dimension D0 and a nearly equally large charge J of su(4)

J = p− 1
2
q1 − 1

2
q2. (3.91)

Then the relevant states constitute long strings of Z-fields with D0 − J excitations or
impurities scattered in8

TrZ . . .Z φZ . . .Z DZ Z . . .Z ψZ . . .Z, (3.92)

which became known as BMN operators. As particular examples, BMN investigated
operators with zero, one and two excitations of scalar type. The operators with less than
two excitations belong to half-BPS multiplets and are thus protected. Starting with two
excitations there are states whose scaling dimension changes in the quantum theory. For
large J one finds that the smallest one-loop planar anomalous dimensions scale as 1/J2,

E = O(1/J2). (3.93)

as confirmed by the exact values in the case of two excitations (3.86). BMN proposed to
absorb the dependence on J into an effective coupling constant λ′

λ′ :=
λ

J2
=
g2

YM
N

J2
, (3.94)

8The excitation subsectors in Sec. 2.3.6 were constructed to describe states of this kind.



3.6 Plane Wave Physics 89

for our purposes it seems convenient to use the combination ĝ

ĝ :=
g

J
, λ′ = 8π2ĝ2. (3.95)

BMN conjectured that this would lead to finite planar eigenvalues for the BMN energy
operator D− J (as a function of ĝ) in the large J limit, even beyond one-loop.

Moreover, it was found [18, 19] that also the genus counting parameter 1/N can be
renormalised in such a way as to obtain finite results for non-planar correlators

ĝs = g2 :=
J2

N
. (3.96)

The non-planar BMN limit can be defined as the double-scaling limit

‘BMN limit ’: J,N, g, λ→∞ with ĝ, ĝs fixed. (3.97)

The physical significance of the above lies in the BMN correspondence, which is a limit
of the celebrated AdS/CFT correspondence. The statement of the correspondence is that
BMN operators are dual to states of string theory on the plane-wave background. The
scaling dimensions of BMN operators minus their charge J should match the light-cone
energies of the corresponding string states. In an operatorial form, the correspondence
can be written as

‘BMN Correspondence’: HLC = D− J +O(1/J). (3.98)

The planar limit corresponds to a non-interacting string theory and it is fairly easy to
derive the light-cone energy eigenvalues [14]

ELC =

M∑

k=1

√
1 + λ′ n2

k =

M∑

k=1

√
1 + 2ĝ2(2πnk)2 . (3.99)

The numbers nk are the mode numbers (positive, negative or zero) of M string oscillator
excitations and are subject to the level matching constraint

∑M
k=1 nk = 0. There are some

indications that this all-loop prediction for gauge theory might indeed be true [25, 109].
There exists an exceedingly large literature on the BMN correspondence, see [17] for

reviews.

3.6.2 Basis of States

Starting from here, we will only consider operators with two excitations. As shown in
Sec. 3.5.4, it makes perfect sense to consider these operators also for arbitrary finite values
of J . All two-excitation states form a single multiplet of superconformal symmetry, so we
are free to choose a particular descendant to be used in our investigation. In particular
there is one descendant in the su(2) sector that can be written in terms of J fields Z and
two excitations of type φ. Generic multi-trace operators with two excitations can have
both excitations in one trace

EJ0;J1,...,JK
p = TrφZpφZJ0−p

K∏

k=1

TrZJk , (3.100)
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or the two excitations separated in different traces

QJ0,J1;J2,...,JK = TrφZJ0 TrφZJ1

K∏

k=2

TrZJk , (3.101)

with
∑K

k=0 Jk = J . Both series of operators are symmetric under the interchange of sizes
Jk of traces TrZJk , E is symmetric under p→ J0− p and Q is symmetric under J0 ↔ J1.

3.6.3 The Action of the Dilatation Generator

The non-planar dilatation generator (2.113)

H = D2 = −N−1:Tr [Z, φ][Ž, φ̌]: (3.102)

can be seen to act as

H
(
Ep Q

)
=
(
Ep Q

)( ∗ ∗
0 0

)
, (3.103)

i.e. operators of type Q are never produced. This follows from the fact that all produced
objects will contain a commutator [Z, φ] in some trace and this trace will vanish unless
it contains another φ. It immediately follows that for every Q there is one protected
quarter-BPS operator. Its leading part is given by Q itself, plus a 1/N correction from
the operators Ep [34, 110, 21, 22].9 On the other hand, the operators Ep are in general not
protected and we will investigate their spectrum of anomalous dimensions in what follows.
From the form of the dilatation matrix we infer that operators of type Ep do not receive
corrections from operators of type Q; the latter therefore completely decouple as far as
the consideration of the Ep’s is concerned.

It is easy to write down the exact expression for HEp. Let us define

H = H0 +N−1H+ +N−1H−, (3.104)

where H0 is trace conserving and H+ and H− respectively increases and decreases the
number of traces by one. These three different contributions arise from three different
contractions of the variations in the dilatation generator with the fields in the states,
see Fig. 3.6. Contractions to adjacent fields within a trace lead to planar contributions.
Contractions to non-adjacent fields will split up the trace. Contractions to different traces
will join them. We find

H0 EJ0;J1,...,JK
p = −2

(
δp 6=J0

EJ0;J1,...,JK

p+1 − (δp 6=J0
+ δp 6=0)EJ0;J1,...,JK

p + δp 6=0EJ0;J1,...,JK

p−1

)
,

H+ EJ0;J1,...,JK
p =

p−1∑

JK+1=1

2
(
EJ0−JK+1;J1,...,JK+1

p−JK+1
− EJ0−JK+1;J1,...,JK+1

p−1−JK+1

)

−
J0−p−1∑

JK+1=1

2
(
EJ0−JK+1;J1,...,JK+1

p+1 − EJ0−JK+1;J1,...,JK+1

p

)
,

9We note that all quarter-BPS states in [34, 110] are annihilated by the operator [Ž, φ̌] which is part
of D2. It is also part of a superboost which relates would-be quarter-BPS states with their partners in a
long multiplet. For true quarter-BPS states, this must not happen and [Ž, φ̌] annihilates them.
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H

O O

H H

O1 O2

↓ ↓ ↓

O′ O′
1 O′

2 O′

Planar H0 Splitting H+ Joining H−

Figure 3.6: Topological structures of the action of the one-loop dilatation operator.

H− EJ0;J1,...,JK
p =

K∑

k=1

2Jk
(
EJ0+Jk;J1,...,×Jk,...,JK

Jk+p − EJ0+Jk;J1,...,×Jk,...,JK

Jk+p−1

)

−
K∑

k=1

2Jk
(
EJ0+Jk;J1,...,×Jk,...,JK

p+1 − EJ0+Jk;J1,...,×Jk,...,JK
p

)
. (3.105)

In view of the AdS/CFT and BMN correspondence this is very suggestive. The one-loop
dilatation operator can either not change the structure of traces, split one trace into two,
or join two into one. This is in qualitative agreement with string field theory when traces
are interpreted as strings. Also the parameter 1/N appears in the right places to be
interpreted as the string coupling constant.

3.6.4 The BMN Limit of Two Excitation Operators

With J being very large we can view p̂ = p/J and Ĵk = Jk/J as continuum variables
and replace the discrete set of states in equation (3.100) by a set of continuum states

EJ0;J1,...,JK
p → |p̂; Ĵ1, . . . , ĴK〉 = |Ĵ0 − p̂; Ĵ1, . . . , ĴK〉, (3.106)

where

p̂ ∈ [0, Ĵ0], Ĵ0, Ĵk ∈ [0, 1] and Ĵ0 = 1− (Ĵ1 + . . .+ ĴK). (3.107)

It is understood that |p̂; Ĵ1, . . . , ĴK〉 = |p̂; Ĵπ(1), . . . , Ĵπ(K)〉 with π an arbitrary permutation
of K elements.

Absorbing the J-dependence into the definition of the Hamiltonian

Ĥ = J2H and Ĥ = Ĥ0 + ĝsĤ+ + ĝsĤ−, (3.108)
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we impose the BMN limit (3.97) and get a continuum version of (3.105)

Ĥ0 |p̂; Ĵ1, . . . , ĴK〉 = −2∂2
p̂ |p̂; Ĵ1, . . . , ĴK〉, (3.109)

Ĥ+ |p̂; Ĵ1, . . . , ĴK〉 =

p̂∫

0

dĴK+1 2∂p̂|p̂− ĴK+1; Ĵ1, . . . , ĴK+1〉

−
Ĵ0−p̂∫

0

dĴK+1 2∂p̂|Ĵ ; Ĵ1, . . . , ĴK+1〉,

Ĥ−|p̂; Ĵ1, . . . , ĴK〉 =
K∑

k=1

2Ĵk ∂p̂|p̂+ Ĵk; Ĵ1, . . . , ×̂Jk, . . . , ĴK〉

−
K∑

k=1

2Ĵk ∂p̂ |p̂; Ĵ1, . . . , ×̂Jk, . . . , ĴK〉.

3.6.5 The Mode Decomposition

The (K + 1)-trace eigenstates at ĝs = 0 are

|n; Ĵ1, . . . , ĴK〉 =
1

Ĵ0

∫ Ĵ0

0

dp̂ cos
(

2πn
Ĵ0

p̂
)
|p̂; Ĵ1, . . . , ĴK〉, n = 0, 1, 2, . . . . (3.110)

This is of course in accordance with the nature of the exact eigenstates at finite J ,
c.f. Sec. 3.5.4. The inverse transformation of (3.110) reads

|p̂; Ĵ1, . . . , ĴK〉 = |0; Ĵ1, . . . , ĴK〉+ 2
∞∑

n=1

cos
(

2πn
Ĵ0

p̂
)
|n; Ĵ1, . . . , ĴK〉. (3.111)

In the basis (3.110), the action of the operator Ĥ reads

Ĥ0 |n; Ĵ1, . . . , ĴK〉 = 2
(

2πn
Ĵ0

)2 |n; Ĵ1, . . . , ĴK〉, (3.112)

Ĥ+ |n; Ĵ1, . . . , ĴK〉 =
16

Ĵ0

∫ Ĵ0

0

dĴK+1

∞∑

n′=1

(
2πn′

Ĵ0−ĴK+1

)2
sin2

(
πn ĴK+1

Ĵ0

)

(
2πn′

Ĵ0−ĴK+1

)2 −
(

2πn
Ĵ0

)2 |n′; Ĵ1, . . . , ĴK+1〉,

Ĥ−|n; Ĵ1, . . . , ĴK〉 = 16
K∑

k=1

Ĵk

Ĵ0

∞∑

n′=1

(
2πn′

Ĵ0+Ĵk

)2
sin2

(
πn′ Ĵk

Ĵ0+Ĵk

)

(
2πn′

Ĵ0+Ĵk

)2 −
(

2πn
Ĵ0

)2 |n′; Ĵ1, . . . , ×̂Jk, . . . , ĴK〉.

In interacting plane-waves string theory similar expressions have been derived [20,111,
23,112]. The Hamiltonians of both theories should however not be compared directly, but
only modulo a similarity transformation. A proposal for the change of basis was given
in [24, 113] and applied in [47] to show the equivalence of the Hamiltonians in the one-
loop approximation. Up to some assumptions [23] (which appear to be inconsistent [114])
regarding excitation number non-preserving amplitudes in string theory, it proves the
BMN correspondence (3.98) at first order in ĝ2 (one-loop) and all orders in ĝs (all-genus)
for single trace states with two excitations. A similar statement for three excitation states
was investigated in [115], but a generalisation to arbitrarily many excitations of arbitrary
type has not been attempted yet.
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3.6.6 The Genus-One Energy Shift

Now the scene is set for determining the spectrum of the full one-loop Hamiltonian
order by order in ĝs by standard quantum mechanical perturbation theory. The leading
non-planar correction to the energy Ên,0 = 2(2πn)2 of a single trace state |n〉 is obtained
by second-order perturbation theory

Ên,2|n〉 = πn Ĥ−
1

Ên,0 − Ĥ0

Ĥ+ |n〉, (3.113)

where πn projects to |n〉. We now insert (3.112) and get the genus-one (torus) correction
to the energy

Ên,2 =

∫ 1

0

dĴ1

∞∑

n′=1

128 Ĵ1(
2πn′

1−Ĵ1

)
2
(2πn)2 sin4(πnĴ1)

(1− Ĵ1)
(
( 2πn′

1−Ĵ1

)
2 − (2πn)2

)3 =
1

6
+

35

4(2πn)2
. (3.114)

The total scaling dimension is thus

D = J + 2 + 2(2πn)2ĝ2 +

(
1

6
+

35

4(2πn)2

)
ĝ2ĝ2

s + . . .

= J + 2 + λ′ n2 + λ′ĝ2
s

(
1

48π2
+

35

128π4n2

)
+ . . . . (3.115)

This genus-one result was first derived by computing gauge theory correlation functions
[21, 22] and confirmed in string theory [23], see also [24]. Here it was assumed that one
can restrict to excitation number preserving amplitudes in string theory, however, there
are doubts that this assumption is consistent [114]. Subsequently, the formula (3.114) was
rederived by Janik by considering matrix elements of the dilatation generator [37]. This
lead to a great simplification of the calculation.
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Chapter 4

Integrability

In Sec. 2.6 we have demonstrated how, in the planar limit, local operators can be
interpreted as quantum spin chains. In that picture, the planar dilatation operator is
represented by the spin chain Hamiltonian. Minahan and Zarembo realised that the one-
loop dilatation operator of N = 4 SYM for states composed from only scalar fields (the
one-loop so(6) sector) is precisely the Hamiltonian of an integrable spin chain [48]. This
parallels earlier discoveries of integrable spin chains in generic, non-supersymmetric gauge
theories at one-loop and in the large N limit when dealing with states composed mostly
from covariant derivatives [52–54] (see also the review [55]).

In this chapter we will show how these two lines of development can be combined into
a psu(2, 2|4) supersymmetric spin chain [58]. We will start by introducing the notion
of integrable spin chains and later present the algebraic Bethe ansatz technique. As
an application, we shall derive the one-loop anomalous dimension of a state dual to a
macroscopic spinning string in AdS5 × S5 and find a remarkable agreement [60, 66].

4.1 Integrable Spin Chains

A quantum integrable system is a quantum mechanical system with an infinite number1

of mutually commuting scalar charges Qr

[Qr,Qs] = [J,Qr] = 0. (4.1)

In other words, the naive symmetry algebra is enlarged by infinitely many abelian genera-
tors constituting the algebra u(1)∞. The Hamiltonian H, a u(1) generator invariant under
the symmetry algebra, will turn out to be one of the charges, H = Q2, and is absorbed
into u(1)∞. The symmetry enhancement might thus be stated as

u(1) −→ u(1)∞. (4.2)

In this section we will discuss the integrable structures found at the one-loop level.

1The precise counting is somewhat unclear in a quantum system. In a classical system one needs
exactly half the number of phase-space dimensions. Here, the spin chains can be arbitrarily long which
gives rise to an arbitrarily large number of conserved charges. This is what is meant by infinitely many.
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u1, A1

u1, B1

u2, Ã2

u2, B̃2

R A1Ã2

B1B̃2

(u1 − u2)

Figure 4.2: A scattering process of two particles is described by the R-matrix.
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R

=

R

R
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Figure 4.4: The Yang-Baxter equation.

4.1.1 The R-Matrix

A spin chain is composed from L modules transforming in some representation of a
symmetry algebra. We will assume the symmetry algebra to be of unitary type, su(M).
To understand the integrable model, it makes sense to consider the individual spins as
‘particles’. A particle XA(u) is thus defined as an element of a module of the symmetry
group together with a spectral parameter u. The central object of the integrable model is
the R-matrix, it describes the ‘scattering’ of particles. The R-matrix rotates two modules
depending on their representations and difference of spectral parameters, c.f. Fig. 4.2

X̃ ′
2,B̃2

(u2)X
′
1,B1

(u1) = RA1Ã2

B1B̃2
(u1 − u2)X1,A1

(u1) X̃2,Ã2
(u2). (4.3)

The scattering is elastic in the sense that neither the representation nor the spectral
parameters are changed; the only effect is a generalised phase shift described by the R-
matrix. In an integrable system, the order in which particles scatter does not matter. For
the scattering of three particles this fact is described by the Yang-Baxter equation

RA1Ã2

B1B̃2
(u1 − u2)RB1Â3

C1B̂3

(u1 − u3)RB̃2B̂3

C̃2Ĉ3

(u2 − u3)

= RÃ2Â3

B̃2B̂3

(u2 − u3)RA1B̂3

B1Ĉ3

(u1 − u3)RB1B̃2

C1C̃2
(u1 − u2) (4.4)

or R12R13R23 = R23R13R12 for short. The Yang-Baxter equation is most intuitively
represented in a diagrammatic fashion, see Fig. 4.4; it implies that the particle lines can
be moved around freely, even past other interactions. From this it follows that, also for a
larger number of particles, the order of scatterings does not matter.

In addition to the Yang-Baxter equation, there is the relation, see Fig. 4.6

RA1Ã2

B1B̃2
(u1 − u2)RB̃2B1

C̃2C1
(u2 − u1) = δA1

C1
δÃ2

C̃2
, (4.5)
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R

R

=

Figure 4.6: The R-matrix and its inverse.

R = R R R R R

Figure 4.8: The monodromy matrix for a composite particle.

which defines the inverse of the R-matrix.
The case of all particles transforming in the fundamental representation is particularly

easy to solve. The solution of the bi-fundamental Yang-Baxter equation is

Rab
cd(u) =

u

u+ i
δac δ

b
d +

i

u+ i
δadδ

b
c or R12(u) =

u

u+ i
I12 +

i

u+ i
P12, (4.6)

where I12 is the identity acting on particles 1, 2 and P12 is the permutation. It is useful to
write this in a mixed notation where we keep one index manifest and suppress the other
in a matrix notation

Ra
b (u) =

u+ i/M

u+ i
δab +

i

u+ i
Jab, (4.7)

where we make use the symmetry generator (Jab)
c
d = δadδ

c
b − δab δcd/M in the fundamental

representation. The fundamental R-matrix, where one particle transforms in the funda-
mental representation and the other in an arbitrary one, is given by a similar expression
as (4.7) using the symmetry generators.

4.1.2 Transfer Matrices

Several particles can be grouped into a composite particle XA1...AL
(v1, . . . , vL).

2 The
spin chain is just such a composite particle. For a composite particle one can define a
composite R-matrix (monodromy matrix) by, see Fig. 4.8

R̃Ã,A1...AL

B̃,B1...BL
(u) = RÃ A1

C̃2B1
(u− v1)RC̃2A2

C̃3B2
(u− v2) . . .RC̃LAL

B̃ BL
(u− vL). (4.8)

This R-matrix naturally satisfies the Yang-Baxter equation. Usually one suppresses most
indices and spectral parameters RA

B = (R1)
A
C2

(R2)
C2

C3
. . . (RL)

CL

B . Let us write the mon-
odromy matrix for the fundamental representation using (4.7) with all spectral parameters
aligned vp = 0

Ra
b (u) =

(
u+ i/M

u+ i
δac2 +

i

u+ i
J1

a
c2

)
· · ·
(
u+ i/M

u+ i
δcLb +

i

u+ uL
JL

cL
b

)
. (4.9)

2Commonly, all spectral parameters will be aligned vp = v and constitute a homogeneous chain. In
Sec. 6.4.1 we will however encounter an inhomogeneous chain with different vp’s.
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This expression reveals an interesting interpretation of the monodromy matrix for a spin
chain: The generator of rotations, J, may be considered as the component of some gauge
field in the direction of the spin chain. Then, the monodromy matrix has a great similarity
to a Wilson line along the spin chain. In that picture, an elementary R-matrix is just the
monodromy of the gauge field across one spin chain site. Moreover, there is not only a
single gauge field, but a family of gauge fields, parameterised by the spectral parameter
u. When viewed in this way, the integrable structure is very similar to the one found in
string theory on AdS5 × S5, see [82, 83, 86]. This similarity allowed the authors of [116]
to promote the Yangian structure from string theory to gauge theory.

For a cyclic spin chain it is natural to close the Wilson line to a loop and take the
trace. One obtains the transfer matrix

T̃ (u) = R̃Ã
Ã
(u) = (R1)

C̃1

C̃2
(R2)

C̃2

C̃3
. . . (RL)

C̃L

C̃1
. (4.10)

The transfer matrix can be taken for any representation circulating around the Wilson
loop and for any spectral parameter. In this work, however, we shall restrict to the
equal representations of the spins and the Wilson loop. The interesting aspect of transfer
matrices is that all of them commute

[T̃ (u), T̂ (v)] = 0. (4.11)

This statement can be shown easily by inserting a R-matrix and its inverse into the
traces, see Fig. 4.6. Using the Yang-Baxter equation, the R-matrix is commuted around
the traces interchanging the order of monodromy matrices

T̃ (u) T̂ (v) = R̃Ã
Ã
(u) R̂Â

Â
(v) = RÂÃ

B̂B̃
(v − u)RB̃B̂

C̃Ĉ
(u− v) R̃C̃

Ã
(u) R̂Ĉ

Â
(v)

= RÂÃ
B̂B̃

(v − u) R̂B̂
Ĉ
(v) R̃B̃

C̃
(u)RC̃Ĉ

ÃÂ
(u− v)

= R̂B̂
B̂
(v) R̃B̃

B̃
(u) = T̂ (v) T̃ (u). (4.12)

Afterwards the R-matrix and its inverse cancel out and the transfer matrices are inter-
changed.

4.1.3 The Local Charges

There are many uses for monodromy and transfer matrices. A particular one is the
Yangian, an associative Hopf algebra which enlarges the symmetry algebra, see e.g. [117].
The Yangian is an important object for integrable systems. The elements of the Yangian
are given by the monodromy matrix in the fundamental representation (4.8). Commonly,
the Yangian is expanded around u =∞. In the leading two orders one finds the identity
and the generators of the symmetry algebra, J, acting on the full spin chain. At the next
order, the first non-trivial elements of the Yangian appear. They are bi-local along the
spin-chain and can be used to generate all higher elements. In N = 4 SYM we deal with
cyclic spin chains and the open Wilson line of the Yangian breaks cyclic symmetry. At
the moment it is not clear how to make direct use of the Yangian for the study of scaling
dimension and we will not consider it further. See [116] for a treatment of the Yangian in
N = 4 SYM.
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Here we would like to investigate the transfer matrices. These are closed Wilson loops
and they preserve cyclic symmetry. The transfer matrix can be used as a generating
function for the charges U ,Qn when expanded in the spectral parameter

T (u) = U exp

∞∑

r=2

iur−1Qr. (4.13)

All of these charges commute with each other due to commuting of the transfer matrices
at different values of the spectral parameters (4.11).

For spin chains with equal spin representations at each site, it is useful to pick the
same representation to circle around the Wilson loop as well. We will furthermore assume
that all R-matrices for the construction of the transfer matrix are the same and have a
specific value at u = 0

RA1A2

B1B2
(0) = δA1

B2
δA2

B1
, (4.14)

i.e. they permute the modules.3 Let us now expand the transfer matrix in u. At u = 0
we find the cyclic shift operator

UA1...AL

B1...BL
= T A1...AL

B1...BL
(0) = δA1

B2
δA2

B3
. . . δ

AL−1

BL
δAL

B1
. (4.15)

Expanding to first order in u we find that we have to insert a derivative R′ = ∂R/∂u of
the R-matrix into the shift operator and sum over all insertion points,

T A1...AL

B1...BL
(u) = UA1...AL

B1...BL
+ u

L∑

p=1

δA1

B2
. . .R′ ApAp+1

Bp+2Bp+1
(0) . . . δAL

B1
+O(u2). (4.16)

Let us define the charge density

Q2,
A1A2

B1B2
= −iR′ A1A2

B2B1
(0) or Q2,12 = −iP12R′

12(0), (4.17)

where the second form is short for the first. The permutation P12 interchanges the spins
at two sites. According to the definition (4.13) we should absorb the cyclic shift in (4.16)
into U and the second charge Q2 is simply

Q2,
A1...AL

B1...BL
=

L∑

p=1

δA1

B1
. . .Q2,

ApAp+1

BpBp+1
. . . δAL

BL
or Q2 =

L∑

p=1

Q2,p,p+1. (4.18)

It is very suggestive to interpret this charge as the Hamiltonian, it has a nearest-neighbour
type interaction as desired for a spin chain

H = Q2 =

L∑

p=1

Hp,p+1, H12 = Q2,12 = −iP12R′
12(0). (4.19)

Expanding T (u) to quadratic order in u we find many terms. There are some disconnected
terms which should be absorbed into −1

2
u2UQ2

2 from the expansion of the exponential in
(4.13). To complete the square Q2

2 we need the identity R′′
12(0) = R′

12(0)P12R′
12(0) due to
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Q3 =
i

2 H

H
− i

2

H

H

Figure 4.10: The third charge density is composed from two copies of the Hamiltonian density.

the Yang-Baxter equation. The remaining terms give rise to the third charge, see Fig. 4.10

Q3 =

L∑

p=1

Q3,p,p+1,p+2, Q3,123 = i
2
(H12H23 −H23H12). (4.20)

One can go on constructing the higher charges Qr in this way and finds that they can all
be written in terms of the Hamiltonian density H12.

4

4.1.4 Parity and Pairs

Above we have constructed two charges of the spin chain, H = Q2 and Q3. From
(4.1,4.11) we know that they commute

[H,Q3] = 0, (4.21)

even though this statement is labourious to verify explicitly. Let us find out what happens
when we invert the order of spins within the spin chain. This is equivalent to the parity
operation p defined in Sec. 1.3,2.6.4. up to a factor of (−1)L. The Hamiltonian density
will be assumed to have positive parity

pH p−1 = H, [p,H] = 0. (4.22)

From this it immediately follows that the third charge has negative parity (it has negative
mirror symmetry with respect to the vertical axis, see Fig. 4.10)

pQ3 p−1 = −Q3, {p,Q3} = 0. (4.23)

Similarly one finds for the higher charges

pQr p−1 = (−1)rQr. (4.24)

A consequence of (4.22,4.23,4.24) is that the spectrum of H will display a degeneracy
of states |±〉 with opposite parities [118]

‘paired state’:
{
|+〉, |−〉

}
with E+ = E−. (4.25)

3One might have to redefine the R-matrix slightly exploiting the symmetries of the Yang-Baxter
equation (4.4): Firstly, we can rescale the R-matrix by a function of the spectral parameter. Secondly,
we can shift and rescale the spectral parameters by a constant. The bi-fundamental R-matrix in (4.7) is
already in this from.

4A more efficient way is to use the boost operator B =
∑L

p=1 ipHp,p+1. It generates the higher charges
recursively via [B,Qr] = rQr+1. This can be deduced by assigning different spectral parameters to the
individual spins, up = u+pǫ. Note however, that the boost leaves some undesired boundary terms which
are, in particular, incompatible with the cyclic nature of the spin chain. These should be dropped.
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This is a very non-trivial statement because H conserves parity and thus cannot relate
states with opposite parities in any way. Assume we find a state of positive parity |+〉
and energy E+. Then the state |−〉 = Q3|+〉 has negative parity and energy E+

H |−〉 = HQ3 |+〉 = Q3H |+〉 = E+Q3 |+〉 = E+ |−〉. (4.26)

Of course, we cannot exclude that Q3 annihilates |+〉 and |−〉 = 0. In this case the state
of definite parity P = + or P = − is unpaired

‘unpaired state’: |P 〉 with Q3|P 〉 = 0. (4.27)

Such states exist when, for example, the numbers of positive and negative parity states
do not agree.

We have seen that the third charge of the integrable spin chain has important conse-
quences. It is thus natural to investigate the higher charges Qr. In contrast to Q3 we find
that Q4 does not pair up operators, it simply assigns a number (charge) to each operator.
This is in fact what might be expected. The reason why Q3 was interesting is that it
anticommutes with p, while H commutes, thus giving rise to pairs. The next charge, Q5,
does again anticommute with parity. This generator will relate the same pairs, only with
different coefficients (charges).

4.2 One-Loop Integrability

In this section we derive the R-matrix for the integrable spin chain considered in this
chapter. For this purpose we make use of a special subsector of the spin chain with
residual su(1, 1) symmetry and show how to lift the universal sl(2) = su(1, 1) R-matrix
to an psu(2, 2|4) invariant R-matrix. The derived Hamiltonian is shown to agree with
the complete one-loop planar dilatation generator of N = 4 SYM, thus proving the
integrability of the latter.

4.2.1 Planar Parity Pairs

Let us have a look at the tables of one-loop planar spectra in Sec. 3.5. One observes
a large number of degenerate pairs of states with opposite parity which are indicated
by p = ±. In fact, in no representation of the symmetry group unpaired states of both
parities can be found. In other words, it appears that the only possibility for an unpaired
state to exist, is the absence of a suitable partner. This picture is not expected to continue
strictly at higher dimensions, but it shows that the pairing of states is very systematic
and not merely a coincidence. A simple explanation for the pairing of states would be the
existence of a conserved charge that anticommutes with parity, just like Q3, as explained
in Sec. 4.1.4. Indeed, pairing of states is a useful criterion for integrability: The planar
one-loop spectrum of N = 4 displays pairing and is thus a candidate integrable system.
Moreover, there is phenomenological evidence that paired spectra can only arise in an
integrable system, see also [80]. We will discuss this point in Sec. 6.2.3. In this section we
will use the methods of integrable spin chains introduced in Sec. 4.1 to find that planar
one-loop N = 4 is indeed integrable.
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One may wonder whether the degeneracy also holds at the non-planar level. In an
example we show that this is not the case. There are three unprotected multiplets with
highest weights w = (5; 0, 0; 1, 1, 1; 0, 5), two single-trace and one double-trace state. They
are at both unitarity bounds and have zero spin. As such they have descendants in the
quarter-BPS su(2) sector. The states have length L = 7 and excitation number K = 3,
i.e. they are of the form Z4φ3. Two have negative parity and one has positive parity, the
line separates between them

ET =




2 TrZ4φ3 + 2 TrZ2φZ2φ2 + 2 TrZ2φZφZφ− 3 TrZ3φ{φ,Z}φ

TrZφTrZ2[φ,Z]φ− TrZ2 TrZ[φ,Z]φ2

Tr [φ,Z][φ,Z][φ,Z]Z,



 . (4.28)

The dilatation operator (2.113) acts on these as (note HE = EH)

H =




5 10

N
0

4
N

4 0
0 0 5



 . (4.29)

This corresponds to the scaling dimensions exact for all values of N [34]

E+ = 5, E− = 9
2
±
√

1
4

+ 40
N2 . (4.30)

We find that the scaling dimensions of the two single-trace operators are degenerate at
N = ∞. For finite N or in an expansion in powers of 1/N we find that the degeneracy
is broken. Therefore integrability, as defined above, can only hold in the planar limit
and breaks down when topological interactions take place. This is in agreement with the
picture of a Wilson loop as a generating function for the charges. The Wilson loop of
a flat connection can be moved around freely on the ‘world-sheet’ of the spin chain. It
cannot, however, be moved past points of topological changes. This would require to cut
open the loop and glue the ends in a different order, thus modifying the Wilson loop.
Still, one may hope for some aspects of integrability to survive even when non-planar
corrections are taken into account: The family of gauge connections (alias the R-matrix)
underlying the Wilson loop is a local object and does not depend on the global structure
of the world-sheet.

4.2.2 The Bosonic su(1, 1) Subsector

We will use a similar trick as in Sec. 3.3 to derive the R-matrix of the complete
psu(2, 2|4) spin chain. Here, we shall use the Hamiltonian within the bosonic su(1, 1)
subsector introduced in Sec. 3.4 to obtain an expression for the R-matrix which is subse-
quently lifted to the full theory.

The Hamiltonian density (3.71)

H′′
12 = 2h(J ′′

12) :=
∞∑

j=0

2h(j)P ′′
12,j (4.31)

equals the one of the so-called Heisenberg XXX−1/2 spin chain.5 Recall that the spins
belong to V ′′

F
which is the highest-weight module [−1] (spin −1/2) and the tensor product

5The integrable sl(2) spin chain with fundamental spin representation [s] (spin s/2) is called the
‘Heisenberg XXXs/2 spin chain’
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of two V ′′
F

decomposes into V ′′
j with highest weight [−2− 2j] (spin −1− j). The operator

P ′′
12,j projects a two-spin state to the module V ′′

j and J ′′
12 measures the label j of V ′′

j . The
function h(j) gives the harmonic numbers.

Let us show that the above Hamiltonian is integrable. To accomplish this, we make
use of the universal R-matrix of sl(2) spin chains. This sl(2) invariant operator can be
decomposed into its irreducible components corresponding to the modules V ′′

j

R′′
12(u) =

∞∑

j=0

R′′
j (u)P ′′

12,j. (4.32)

The eigenvalues R′′
j (u) of the sl(2) universal R-matrix were determined in [119]. In a spin

−1− j representation the eigenvalue is

R′′
j (u) = (−1)j+1 Γ(−j − cu)

Γ(−j + cu)

f(+cu)

f(−cu) . (4.33)

The arbitrary function f(u) and normalisation constant c reflect trivial symmetries of the
Yang-Baxter equation. We choose the function and constant to be6

f(cu) = Γ(1 + cu) , c = −i. (4.34)

This enables us to find rational expressions for R′′
j and its derivative when j is integer

R′′
j (u) =

j∏

k=1

u− ik
u+ ik

,
∂R′′

j

∂u
(u) = R′′

j (u)

j∑

k=1

2ik

k2 + u2
. (4.35)

We note that for even (odd) j the composite module V ′′
j is a (anti)symmetric combination

of two V ′′
F
, consequently the permutation acts as

P12 V ′′
j = (−1)j V ′′

j . (4.36)

In other words, the R-matrix at u = 0, whose elements equal (−1)j, is a permutation

R′′
12(0) = P12. (4.37)

We now obtain the induced Hamiltonian density using (4.19,4.35)

H′′
12 = −iP12

∂R′′
j

∂u
(0) = 2h(J ′′

12)P12R′′
12(0) = 2h(J ′′

12). (4.38)

This proves the integrability of the Hamiltonian density H′′
12.

4.2.3 The Complete R-matrix

To derive an R-matrix for the full psu(2, 2|4) spin chain we will assume that for given
representations of the symmetry algebra there exists a unique R-matrix which satisfies the
Yang-Baxter equation (modulo the symmetries of the YBE). This claim [119] is supported

6The normalization for (4.6) uses c = +i. For non-compact representations it is however more conve-
nient to use a different sign c = −i.
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by the existence and uniqueness of the algebraic Bethe ansatz procedure in Sec. 4.3.
Let R12 be this R-matrix for the psu(2, 2|4) integrable spin chain. The R-matrix is an
invariant operator, thus it can be reduced to its irreducible components corresponding to
the modules Vj

R12(u) =
∞∑

j=0

Rj(u)P12,j. (4.39)

The restriction R′′ of the R-matrix to the bosonic su(1, 1) sector must also satisfy the
Yang-Baxter equation. The unique solution for the eigenvalues of R′′ is (4.33). Due to
the one-to-one correspondence of modules Vj and V ′′

j , c.f. Sec. 3.4, the eigenvalues of the
unique psu(2, 2|4) R-matrix must be

Rj(u) = R′′
j (u) = (−1)j+1 Γ(−j − cu)

Γ(−j + cu)

f(+cu)

f(−cu) . (4.40)

For the choice (4.34) of f and c, this R-matrix yields (4.38)

H12 = 2h(J12). (4.41)

This is just the one-loop Hamiltonian density of N = 4 SYM, c.f. Sec. 3.3, which in
turn shows that the planar one-loop dilatation generator of N = 4 is integrable. Note,
however, that this proof is based on the assumption of the existence of a unique R-matrix.

Let us verify that the R-matrix satisfies the Yang-Baxter equation involving two mul-
tiplets VF and one fundamental module. We shall use the fundamental R-matrix

Rp(up) =
up

up − i
− i

up − i
Jp, (4.42)

which obeys the Yang-Baxter equation with two fundamental particles and is similar
to the bi-fundamental R-matrix (4.7).7 The generator Jp is a matrix of operators, the
operators act on VF at site p and the matrix is bi-fundamental. We now substitute this
into the Yang-Baxter equation and expand (we suppress all indices)

0 = R12(u1 − u2)R1(u1)R2(u2)−R2(u2)R1(u1)R12(u1 − u2)

= − i(u1 + u2)

2(u1 − i)(u2 − i)
[R12, J12]−

1

2(u1 − i)(u2 − i)
[R12, Q

′
12]

+
i(u1 − u2)

2(u1 − i)(u2 − i)
[R12, q12]−

1

2(u1 − i)(u2 − i)
{R12, Q12}, (4.43)

where we have defined the bi-fundamental matrices of operators8

J12 = J1 + J2, A12 = J1 − J2, B12 = [J1, J2], C12 = {J1, J2}. (4.44)

The action of these operators on the modules Vj was investigated in [116]. To understand
how these operators act, it is useful to know their parity. It is straightforward to see

7For non-compact representations it is convenient to flip the sign of u.
8The commutator in Q12 does not vanish, because the operators J1 and J2 are matrices.
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that J12 and C12 have positive parity, while A12 and B12 have negative parity. Therefore
J12, C12 map between modules of the same parity and A12,B12 invert the parity

J12, C12 : Vj → Vj+2n, A12,B12 : Vj → Vj+2n+1. (4.45)

Furthermore, all operators are invariant under psu(2, 2|4) if one simultaneously rotates
the modules VF and the bi-fundamental matrix. The bi-fundamental representation is
just the adjoint, which can shift the highest weight of the module by not more than one
step

J12,A12, C12,B12 : Vj → Vj−1,Vj,Vj+1. (4.46)

Together this teaches us that J12, C12 do not change the spin j while A12,B12 change the
spin j by one. We can immediately see that the first two commutators in (4.43) vanish9

because R12 depends only on the total spin j.
We will now choose some state |j〉 from the module Vj. Then A12 must change the

spin by one A12|j〉 = |j + 1〉+ |j − 1〉 with some states |j + 1〉, |j − 1〉 from the modules
Vj+1,Vj−1. We note a useful identity [116] to express B12 in terms of the quadratic Casimir
J2

12, c.f. App. D.3,

B12 = −1
2
[A12, J

2
12]. (4.47)

Now we can compute B12 acting on |j〉 making use of J2
12|j〉 = j(j + 1)|j〉, see (3.9),

B12|j〉 = −1
2
[A12, J

2
12]|j〉 = (j + 1)|j + 1〉 − j|j − 1〉. (4.48)

Let us now determine the remaining two terms in (4.43) with u = u1 − u2

0 =
(
u[R12,A12] + i{R12,B12}

)
|j〉

= +
(
(u+ i(j + 1))Rj+1 − (u− i(j + 1))Rj

)
|j + 1〉

−
(
(u+ ij)Rj − (u− ij)Rj−1

)
|j − 1〉. (4.49)

Due to (4.35), the R-matrix satisfies the recursion relation

Rj+1(u) =
u− i(j + 1)

u+ i(j + 1)
Rj(u), (4.50)

which completes the proof of the Yang-Baxter equation.

4.3 The Algebraic Bethe Ansatz

The Bethe ansatz determines the energy eigenvalues of a quantum integrable spin
chain. It is very different from the direct diagonalisation of the Hamiltonian in that it
does not involve finding a matrix representation for the Hamiltonian on some basis of
states. Instead, it gives a set of algebraic equations whose solution directly leads to the
energies as well as the eigenvalues of the higher charges.

9The commutator [R12, J12] is trivially zero by invariance of the R-matrix.
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4.3.1 The Heisenberg Chain

Let us explain the Bethe ansatz in the simplest case of an sl(2) chain, the so-called
XXXs/2 Heisenberg chain. (For a very pedagogical introduction, see [59]). The results
apply directly to the su(2) subsector of Sec. 2.4 when s = 1 (spin 1/2) and the su(1, 1)
subsectors of Sec. 3.2,3.4 when s = −2 or s = −1. Each eigenstate of the Hamiltonian is
uniquely characterised by a set of complex Bethe roots uk, k = 1, . . . , K,

‘Bethe roots ’: {u1, . . . , uK}, uk ∈ C. (4.51)

These determine the energy E and eigenvalue U of the shift operator U of the state by10

E =
K∑

k=1

|s|
u2
k + 1

4
s2
, U =

K∏

k=1

uk + i
2
|s|

uk − i
2
|s| . (4.52)

More generally, the matrix elements of the transfer matrix in a spin t/2 representation
for a given set of roots are determined by

Tt(u) =

t∑

m=0

(
Γ(iu sign s− 1

2
t+ 1

2
s+m)

Γ(iu sign s− 1
2
t− 1

2
s+m)

Γ(iu sign s− 1
2
t− 1

2
s)

Γ(iu sign s− 1
2
t+ 1

2
s)

)L
(4.53)

×
K∏

k=1

(
u− uk + i

2
(−t) sign s

u− uk + i
2
(t− 2m) sign s

u− uk + i
2
(t+ 2) sign s

u− uk + i
2
(t− 2m+ 2) sign s

)
.

Here the upper limit of the sum should be extended to infinity whenever t is not a positive
integer. From the transfer matrix T (u) = Ts(u) in the spin representation, t = s, we can
read off the higher charges Qr via (4.13)

Qr =
i

r − 1

K∑

k=1

(
1

(uk + i
2
|s|)r−1

− 1

(uk − i
2
|s|)r−1

)
, T (u) =

K∏

k=1

u− uk − i
2
|s|

u− uk + i
2
|s| + . . . .

(4.54)
The charges are only valid for r ≤ L due to the neglected terms in T (u) with m 6= 0.

The Bethe roots are found by solving the Bethe equations for k = 1, . . . , K

‘Bethe equations ’:

(
uk − i

2
s

uk + i
2
s

)L
=

K∏

l=1
l 6=k

uk − ul − i
uk − ul + i

. (4.55)

These equations should be solved subject to the constraint that no two roots coincide.
Furthermore, roots at infinity correspond to descendants; for highest-weight states there
are no roots at infinity. Note that the above Bethe equations follow from (4.53) by
cancellation of poles in Tt(u) at u = uk − i

2
(t− 2m+ 2) sign s.

Note that the Bethe ansatz conceptually agrees with the particle picture presented
in Sec. 4.1.1: Each Bethe root can be considered as a particle. The right-hand side of
the Bethe equations (4.55) corresponds to scattering of two particles, while the left-hand

10The absolute value for s is used for convenience; it makes the energy positive, but requires a redefi-
nition of uk when changing the sign of s.
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side corresponds to the propagation of the particle across L spin chain sites. There is no
interaction of more than two particles. The phase-shifts due to these interactions must
agree for an eigenstate. The total energy (4.52) is just the sum of the energies of the
particles within the system.

We will start with the simplest example: The su(2) sector with spin representation
s = 1 (spin 1/2) and states of the form

TrZL−KφK + . . . . (4.56)

In this particular model, the spin at each site can either point up (Z) or down (φ). The
vacuum state with no excitations, K = 0, is the half-BPS state

|Z, L〉 = ZL, (4.57)

with all spins aligned. This is the ferromagnetic ground state of the chain. The excitation
number K, giving the total number of roots, counts the number of φ’s or down-spins
along the chain. Assuming excitations are generated by some creation operator B(u),11 a
generic state has the form

{u1, . . . , uK} ↔ B(u1) . . .B(uK)|Z, L〉 ↔ ZL−KφK + . . . . (4.58)

There is an additional constraint on the Bethe roots:

1 = U =

K∏

k=1

uk + i
2

uk − i
2

. (4.59)

For the spin chain, it means that we have periodic boundary conditions and we are only
looking for zero-momentum states. In the gauge theory interpretation it expresses the
cyclicity of the trace

{u1, . . . , uK} with (4.59) ↔ TrB(u1) . . .B(uK)|Z, L〉 ↔ TrZL−KφK + . . . .
(4.60)

For the s = 1 Bethe ansatz, the exact eigenvalue of the transfer matrix (4.53) is

T (u) =

K∏

k=0

u− uk − i
2

u− uk + i
2

+

(
u

u+ i

)L K∏

k=0

u− uk + 3i
2

u− uk + i
2

. (4.61)

Note that we can derive the Bethe equations from this expression by demanding that
(u+ i)LT (u) has no singularities.

The Dynkin label of a solution with K excitations is [L− 2K]. Therefore, one should
consider only solutions withK ≤ L/2, there are clearly no highest-weight states with more
excited spin sites. However, the Bethe equations do have solutions also for K > L/2. It
is interesting to see that for a solution with K ≤ L/2, there exists also a mirror solution
with K ′ = L + 1 − K > L/2.12 In terms of Dynkin labels, the solutions are related by
s′ = −s− 2. There is an explanation for this behaviour in terms of multiplet shortening,
see Sec. 1.7. We are considering a spin chain with a finite (short) s = 1 multiplet at

11The operator B is an element of the monodromy matrix in the fundamental representation.
12This solution has norm zero, thus it is not realised as a spin chain state.
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each site, consequently also the eigenstates form finite multiplets. In the Bethe ansatz,
shortening is not taken into account and all multiplets are assumed to be infinite (long).
The relevant solutions are therefore highest weights of reducible multiplets which split
into two irreducible components. Interestingly, the Bethe ansatz finds the highest weight
states of both submultiplets and naturally the energies and changes must agree. In some
cases this peculiarity can be made use of by solving for the mirror states.

The second simplest example concerns the bosonic su(1, 1) subsector with spin repre-
sentation s = −1 (spin −1/2) and states of the form

Tr(Dn1Z) · · · (DnLZ). (4.62)

Here the spins at each lattice site p may take any value np = 0, 1, 2, . . ., as we have an
infinite [−1] representation of sl(2). Furthermore, the total excitation number K =

∑
nk

is not bounded as in the above example. The vacuum is still ZL. Again, the energies of
the states (4.62) with momentum U = 1 are given via (4.52,4.55).

The third example is the fermionic su(1, 1) subsector with spin representation s = −2
(spin −1) and states of the form

Tr(Dn1Ψ ) · · · (DnLΨ ). (4.63)

There are two chief differences as compared to the other subsectors: Firstly, the fermionic
nature of the fields requires a modified cyclicity condition

(−1)L+1 = U =

K∏

k=1

uk + i

uk − i
. (4.64)

For example, the ground state exists only for odd L, as for even L we have TrΨL = 0.
Secondly, the ground state does not have zero energy, but E = 2L

E = 2L+

K∑

k=1

2

u2
k + 1

. (4.65)

In particular the ground state TrΨ 3 is a Konishi descendant with E = 6.

4.3.2 Generic Algebras

In the above example the algebra was su(2) and thus of rank one. There is a beautiful
extension of the Bethe equations to an arbitrary symmetry algebra and arbitrary repre-
sentation due to Reshetikhin and Ogievetsky, Wiegmann [120]. The general form also
extends to the case of super algebras, see [121] and references therein, and is precisely
what we need for N = 4 SYM at one-loop. There, we should expect Bethe equations for
the superalgebra psu(2, 2|4) to generate the correct spectrum. The general equation is
based on knowing the Dynkin diagram of the algebra. The Dynkin diagram of psu(2, 2|4)
contains seven dots corresponding to a choice of seven simple roots. Consider a total of
K excitations. For each of the corresponding Bethe roots uk, k = 1, . . . , K, we specify
by jk = 1, . . . , 7 which of the seven simple roots is excited. The Bethe equations for
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k = 1, . . . , K can then be written in the compact form

(
uk − i

2
Vjk

uk + i
2
Vjk

)L
=

K∏

l=1
l 6=k

uk − ul − i
2
Mjk,jl

uk − ul + i
2
Mjk,jl

. (4.66)

Here, M is the Cartan matrix of the algebra and V are the Dynkin labels of the spin rep-
resentation. Furthermore, we still consider a cyclic spin chain with zero total momentum.
This gives the additional constraint13

1 = U =
K∏

k=1

uk + i
2
Vjk

uk − i
2
Vjk

. (4.67)

The energy of a configuration of roots that satisfies the Bethe equations is now given by14

E =
K∑

k=1

Vjk
u2
k + 1

4
V 2
jk

. (4.68)

Apparently, also the higher charges (r ≤ L) and transfer matrix can be obtained [122]

Qr =
i

r − 1

K∑

k=1

(
1

(uk + i
2
Vjk)

r−1
− 1

(uk − i
2
Vjk)

r−1

)
, T (u) =

K∏

k=1

u− uk − i
2
Vjk

u− uk + i
2
Vjk

+ . . . .

(4.69)
It is easily seen that restricting these equations to the Dynkin diagram of the algebra

so(6) reproduces the Bethe equations of [48]. It will turn out, see below, that these general
equations, which are well known in the literature on integrable spin chains, indeed solve
the entire problem of computing planar anomalous dimensions in N = 4 SYM, once we
(i) identify the correct representations of the fundamental fields on the lattice sites, and
(ii) after resolving certain subtleties concerning Dynkin diagrams for superalgebras.

4.3.3 The Complete Bethe Ansatz

In Sec. 4.2 we have established that the planar one-loop dilatation operator of N = 4
SYM is integrable. We therefore expect the general Bethe ansatz equations (4.66) to
hold. However, for them to be useful, we still need to specify the Dynkin labels, the
Cartan matrix and precise form of the energy (4.68). Furthermore, we will perform a
check of the validity of this psu(2, 2|4) Bethe ansatz which goes beyond the so(6) spin
chain investigated in [48].

First, we need to specify the Cartan matrix, determined by the Dynkin diagram, and
the Dynkin labels of the spin representation corresponding to the module VF. For a clas-
sical semi-simple Lie algebra the Dynkin diagram is unique. In the case of superalgebras,
however, there is some freedom to distribute the simple fermionic roots. For N = 4
SYM the Dynkin diagram Fig. 1.10,4.12 turns out to be very convenient. On top of the
Dynkin diagram Fig. 4.12 we have indicated the Dynkin labels of the spin representation.

13For a fermionic vacuum there is an additional sign as in (4.64).
14In fact, the Bethe equations determine the energy only up to scale c and a shift eL as in (4.65).
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+1

Figure 4.12: Dynkin diagram and spin representation vector for the psu(2, 2|4) Bethe ansatz.

−3 +2

Figure 4.14: A different Dynkin diagram and spin representation vector for the psu(2, 2|4) Bethe
ansatz.

We write the Cartan matrix corresponding to this choice of Dynkin diagram and the
representation vector as15

M =





−2 +1
+1 −1

−1 +2 −1
−1 +2 −1

−1 +2 −1
−1 +1

+1 −2





, V =





0
0
0
1
0
0
0





. (4.70)

There exist other choices of Dynkin diagrams. E.g. the ‘distinguished’ one is depicted
in Fig. 4.14. We have indicated the Dynkin labels of VF on top. The energy is given by
(4.68), except for a vacuum energy shift of 3L. The ansatz is rather odd and appears
hardly helpful in terms of physics. Nevertheless, it was investigated in [58] and shown to
yield the same spectrum by means of example, a good confirmation of the validity of the
Bethe ansatz methods.

4.3.4 Excitation Numbers

Finally, we need to obtain the number of excitations Kj, j = 1, . . . , 7, of the individual
simple roots for a state with a given weight

w = (D0; s1, s2; q1, p, q2;B,L). (4.71)

This is most easily seen in the oscillator picture in Sec. 1.9 using the physical vacuum
|Z, L〉. We present the action of the generators corresponding to the simple roots in
terms of creation and annihilation operators in Fig. 4.16. It is now clear that K1 = na1

,

15In fact, the Cartan matrix is obtained from this by inverting some lines. The Bethe equations are
invariant under the inversion and it is slightly more convenient to work with a symmetric matrix M .

K1 K2 K3 K4 K5 K6 K7

a
†
1a

2
a
†
2c

1
c
†
1c

2
c
†
2d

†
2 d

†
1d

2
b
†
2d

1
b
†
1b

2

Figure 4.16: Excitation numbers for the Bethe roots and associated oscillator representation.
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K2 = na1
+na2

and so on. Using the formulas in Tab. D.2 we write down the corresponding
excitation numbers of the simple roots

Kj =





1
2
D0 − 1

2
(L− B)− 1

2
s1

D0 − (L− B)
D0 − 1

2
(L− B)− 1

2
p− 3

4
q1 − 1

4
q2

D0 − p− 1
2
q1 − 1

2
q2

D0 − 1
2
(L+B)− 1

2
p− 1

4
q1 − 3

4
q2

D0 − (L+B)
1
2
D0 − 1

2
(L+B)− 1

2
s2





. (4.72)

Not all excitations of the simple roots correspond to physical states. Obviously, the
excitation numbers of the oscillators must be non-negative, this gives the bounds

0 ≤ K1 ≤ K2 ≤ K3 ≤ K4 ≥ K5 ≥ K6 ≥ K7 ≥ 0. (4.73)

Furthermore, each fermionic oscillator cannot be excited more than once, this gives the
bounds16

K2 + 2L ≥ K3 + L ≥ K4 ≤ K5 + L ≤ K6 + 2L. (4.74)

Certainly, we should obtain the so(6) subsector studied by Minahan and Zarembo [48]
when we remove the outer four simple roots from the Dynkin diagram in Fig. 4.12. When
we restrict to the states of this subsector the number of excitations (4.72) of the outer four
roots is trivially zero. They become irrelevant for the Bethe ansatz and can be discarded.
Thus all solutions to the so(6) Bethe equations are also solutions to the psu(2, 2|4) Bethe
equations. What is more, we can apply this Bethe ansatz to a wider range of operators,
in fact, to all single-trace operators of N = 4 SYM.

4.3.5 Multiplet Splitting

Now we can write down and try to solve the Bethe equations for any state in N = 4
SYM. Note, however, that the Bethe equations need to be solved only for highest weight
states. All descendants of a highest weight state are obtained by adding Bethe roots at
infinity, uk = ∞. In other words, the solutions to the Bethe equations corresponding to
highest weight states are distinguished in that they have no roots uk at infinity. Never-
theless, there is one subtlety related to this point which can be used to our advantage.
Namely this is multiplet splitting at the unitarity bounds as discussed in Sec. 1.8. We
assume that the spin chain of L sites transforms in the tensor product of L spin rep-
resentations. The corrections δD to the scaling dimension induced by the Hamiltonian
H are not included in this picture. Thus, in terms of the spin chain, only the classical
psu(2, 2|4) algebra applies where the scaling dimension is exactly D0. The shortening
conditions given in Sec. 1.8 can also be expressed in terms of excitations of simple roots,

16Superconformal primaries reside in the fundamental Weyl chamber defined by the bounds −2K1 +
K2 > −1, K2 − 2K3 + K4 > −1, K3 − 2K4 + K5 + L > −1, K4 − 2K5 + K6 > −1, K6 − 2K7 > −1.
Together with (4.73) this implies, among other relations, (4.74). Solutions of the Bethe equations outside
the fundamental domain apparently correspond to mirror images of primary states due to reflections at
the chamber boundaries.
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we find

i : K1 +K3 = K2 + 1,

ii : K7 +K5 = K6 + 1. (4.75)

The corresponding offsets translate into

δKi = ( 0,−1,−1, 0, 0, 0, 0), δL = 1, for K2 > K1,

δKI = ( 0, 0,−1, 0, 0, 0, 0), δL = 1, for K2 = K1,

δKii = ( 0, 0, 0, 0,−1,−1, 0), δL = 1, for K6 > K7,

δKII = ( 0, 0, 0, 0,−1, 0, 0), δL = 1, for K6 = K7. (4.76)

We thus see that in the case of multiplet shortening, the primaries of higher submultiplets
have less excitations. In an explicit calculation this may reduce the complexity of the
Bethe equations somewhat as we shall see in an example below.

Multiplet splitting is an extremely interesting issue from the point of view of inte-
grability. Let us consider some operator acting on a spin chain. Assume the operator is
invariant under the classical algebra psu(2, 2|4). In the most general case, this operator
can assign a different value to all irreducible multiplets of states. In particular this is
so for the submultiplets of a long multiplet at the unitarity bound, see Sec. 1.8. Now,
if we impose integrability on the operator, we obtain the one-loop planar correction to
the dilatation operator of N = 4 SYM. In N = 4 SYM the submultiplets rejoin into a
long multiplet and for consistency they must be degenerate (note that the momentum
constraint U = 1 is crucial for this observation). A priori, from the point of view of the
spin chain, this seems like a miracle, especially in view of the fact that the submultiplets
have a different number of spin sites L! Why should integrability imply this degener-
acy? For a simple manifestation of this fact, one may consider the fermionic su(1, 1)
subsector discussed in Sec. 3.2. This subsector has an additional u(1|1) supersymmetry,
which relates states of different length and which was used to construct the complete
one-loop dilatation generator. Obviously the solutions to the Bethe ansatz for this sys-
tem, c.f. Sec. 4.3.1, must display this symmetry (note the momentum constraint). What
is the origin of this symmetry (putting N = 4 SYM aside)? It almost seems as if inte-
grability selects the one invariant operator which is suitable as a consistent deformation
of the dilatation generator! Then, clearly the miracle would turn into the condition for
integrability.

4.3.6 Degenerate Pairs

The Bethe equations are invariant under the map

{uk} 7→ {−uk}. (4.77)

Also the energy and all even charges are invariant, the odd charges change sign,

Qr 7→ (−1)rQr. (4.78)

This operation is most naturally identified with parity p. Therefore, for every solution
{uk} there is another solution {−uk} with degenerate energy and even charges, but neg-
ative odd charges

‘paired states’: {uk} 6= {−uk}. (4.79)



4.4 Spectrum 113

Unpaired states are such states for which

‘unpaired state’: {uk} = {−uk}. (4.80)

This is the manifestation of the findings of Sec. 4.1.4 within the Bethe ansatz.17

4.4 Spectrum

In order to illustrate the application of the Bethe ansatz, we shall repeat the investi-
gation of the spectrum in Sec. 3.5 with the Bethe ansatz. We will see that, except in a
few examples, it is rather tedious to find exact solutions to the Bethe equations. In the
following section, however, we will investigate a class of states for which the Bethe ansatz
is of tremendous importance.

4.4.1 Example

In the following, we will apply the complete Bethe ansatz to the two-parton state with
highest weight (c.f. Sec. 3.5.2)

w = (4; 2, 2; 0, 0, 0; 0, 2). (4.81)

Using (4.72) we find the excitation numbers and length

K0,j = (0, 2, 3, 4, 3, 2, 0), L0 = 2. (4.82)

This weight is on both unitarity bounds, c.f. (4.75), the excitation numbers of the highest
submultiplet, c.f. (4.76), are

Kj = K0,j + δKI,j + δKII,j = (0, 1, 2, 4, 2, 1, 0), L = L0 + 2δL = 4. (4.83)

We therefore configure the simple roots as follows

jk = (2, 3, 3, 4, 4, 4, 4, 5, 5, 6). (4.84)

Now we note that twist-two states are unpaired states. Therefore the configurations of
Bethe roots must be invariant under the symmetry {uk} 7→ {−uk}. This tells us

u1 = u10 = 0, u2 = −u3, u4 = −u5, u6 = −u7, u8 = −u9 (4.85)

and the momentum constraint (4.67) is automatically satisfied. Furthermore the excita-
tions (4.83) are invariant under flipping the Dynkin diagram, Kj 7→ K8−j. This suggests
the ansatz

u2 = u8. (4.86)

The Bethe equations (4.66) are then solved exactly by

u2 =

√
5

7
, u4,6 =

√
65± 4

√
205

140
, (4.87)

17The parity eigenvalue P seems to be determined by the number of Bethe roots at zero and the length.
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which yields the energy (4.68)

E =
25

3
. (4.88)

This is indeed the energy of the twist-two state at dimension four, c.f. Sec. 3.5.2 and [40].
Note that in some cases it may be more convenient to use a different Dynkin diagram

from the one in Fig. 4.12. In this example, the distinguished Dynkin diagram Fig. 4.14
would require only two Bethe roots [58]. Alternatively, one might consider one of the
su(1, 1) subsectors of Sec. 3.2,3.4 to simplify the investigation.

4.4.2 Two Excitations

States with two excitations, see Sec. 3.5.4, are the simplest solutions to the Bethe
equations [48]. Let us consider the two-excitation state of the su(2) subsector first. For
this purpose, we can restrict to the Bethe ansatz for the Heisenberg XXX1/2 spin chain.
We should solve the Bethe equations for two roots u1,2. Let us start with the momentum
constraint

1 = U =
u1 + i

2

u1 − i
2

u2 + i
2

u2 − i
2

, (4.89)

this requires u2 = −u1. Now the Bethe equations for u1 and u2 collapse to the single
equation (

u1 − i
2

u1 + i
2

)L
=

2u1 − i
2u1 + i

or

(
u1 − i

2

u1 + i
2

)L−1

= 1. (4.90)

This equation has the solutions

u1,2 = ±1

2
cot

πn

L− 1
(4.91)

for 0 ≤ n < (L− 1)/2. The energy of this solution is

E = 8 sin2 πn

L− 1
, (4.92)

in agreement with Sec. 3.5.4. In addition to the energy, we can also compute the values
of the higher charges

Qr =

(
1 + (−1)r

)
2r

r − 1
sin

π(r − 1)n

L− 1
sinr−1 πn

L− 1
. (4.93)

The two-excitation multiplets are actually at both unitarity bounds and split up in
the classical theory. As far as the one-loop Bethe ansatz is concerned, the classical sym-
metry algebra applies and we should be able to find further solutions corresponding to
the three other submultiplets, Sec. 3.5.4. The highest weight of the top multiplet is
(L; 0, 0; 0, L− 2, 0; 0, L) According to (4.72), it all requires two excitations of type 4 and
one excitation of types 3, 5 each. We will configure the Bethe roots as jk = (4, 4, 3, 5).
The solution to the Bethe equations is found straightforwardly

u1,2 = ±1

2
cot

πn

L+ 1
, u3 = u4 = 0, E = 8 sin2 πn

L+ 1
. (4.94)
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Finally, the highest weights of the middle submultiplets are (L; 0, 0; 2, L− 3, 0; 0, L) and
its conjugate. The solutions to the root configuration jk = (4, 4, 3) or jk = (4, 4, 5) are

u1,2 = ±1

2
cot

πn

L
, u3 = 0, E = 8 sin2 πn

L
. (4.95)

Their energies agree precisely with the results of Sec. 3.5.4.

4.4.3 Three Excitations

In Sec. 3.5.5 we have investigated a peculiar set of states with three impurities in the
su(2) sector and found their exact planar one-loop energies and eigenstates. The energy of
all states turned out to be the same for all states, E = 6. This is best understood in terms
of the Bethe equations of which they are very special solutions. The states are unpaired
and therefore we should expect the Bethe roots to be invariant under {uk} 7→ {−uk}.
This requires that u3 = 0 is one of the roots and u1 = −u2. Unfortunately, this seems to
imply U = −1 and violate the trace condition. However, the singular points u1,2 = ± i

2

can invert the momentum once again.18 Therefore the roots must be

u1,2 = ± i
2
, u3 = 0. (4.96)

The singularity needs to be regularised, e.g. the Bethe equations and the energy formula
are naively divergent. It is best to consider the transfer matrix

T (u) =
u

(u+ i)

(u− i)
u

(u− i
2
)

(u+ i
2
)

+

(
u

u+ i

)L
(u+ 2i)

(u+ i)

(u+ i)

u

(u+ 3i
2
)

(u+ i
2
)

=
(u− i)
(u+ i)

(u− i
2
)

(u+ i
2
)

+

(
u

u+ i

)L−1
(u+ 2i)

(u+ i)

(u+ 3i
2
)

(u+ i
2
)
. (4.97)

It is easy to confirm that (u+ i)LT (u) has no poles for even L and thus {u1,2,3} is indeed
a solution, even if the Bethe equations and energy formula appear divergent. From this
expression it is also straightforward to derive the energy E = 6 and higher charges Qr

Qr =

(
(+i)r−2 + (−i)r−2

)(
2r−1 + 1

)

(r − 1)
, r ≤ L− 2, (4.98)

which can clearly seen to be independent of L for small r.

4.5 The Thermodynamic Limit

The BMN limit (c.f. Sec. 3.6) is very interesting for the AdS/CFT correspondence
because it allows to make contact to (plane-wave) string theory on a quantitative level.
In the BMN limit, the length of the spin chain approaches infinity, J ∼ L→∞, while the
number of excitations is fixed at a finite value. This requires some rescaling of energies.

The thermodynamic limit is a generalisation of the BMN limit in that the spin chain
grows very long while focusing on the low energy spectrum. The difference to the BMN

18The singular roots lead to states with sticky excitations which are always on adjacent spin chain
sites, c.f. (3.90).
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limit is that the number of excitations is proportional to L and also approaches infinity.
In this case, the Bethe equations turn into integral equations, similar to the ones found
in matrix models. As in the BMN limit, one can make contact to string theory as will be
seen in the following section. Here, we will lay the foundation for this comparison on a
general level. For a beautiful review of the thermodynamic limit of the Bethe equations
and the arising Riemann surfaces, see [75].

4.5.1 The Heisenberg Chain

Here we will outline the thermodynamic limit of the Bethe ansatz system of equa-
tions (4.52,4.55) for the case of the XXXs/2 Heisenberg spin chain with length L and K
excitations (c.f. [123])

E =
K∑

k=1

|s|
u2
k + 1

4
s2
, 1 =

K∏

k=1

uk + i
2
|s|

uk − i
2
|s| ,

(
uk − i

2
s

uk + i
2
s

)L
=

K∏

l=1
l 6=k

uk − ul − i
uk − ul + i

. (4.99)

For a large length L and solutions of a sufficiently low energy, we expect that the positions
of the roots uk scale as L, see (4.91) [48]. Let us therefore define uk = Lũk.

19 We then
take the logarithm of the equations (4.99) and obtain for large L

Ẽ = LE =
1

L

K∑

k=1

|s|
ũ2
k

, 2πn =
1

L

K∑

k=1

|s|
ũk
, 2πnk −

s

ũk
=

1

L

K∑

l=1
l 6=k

2

ũl − ũk
. (4.100)

The integer mode numbers nk, n enumerate the possible branches of the logarithm. The
rescaled energy Ẽ = LE was defined such that there is one power of 1/L in front of the
sum. This will cancel against the O(L) terms of the sum.20 The total rescaled dimension
is thus given by

D̃ = D/L = D̃0 + g̃2Ẽ +O(g̃4) (4.101)

where we have introduced the effective coupling constant g̃2 similar to the BMN coupling
ĝ2 ∼ λ′, see Sec. 3.621

g̃2 =
g2

L2
=

λ

8π2L2
. (4.102)

Likewise, the charges and transfer matrix in the thermodynamic limit are given by [68]22

Q̃r = Lr−1Qr =
1

L

K∑

k=1

|s|
ũrk
, −i log T̃ (ũ) = −i log T (ũL) =

1

L

K∑

k=1

|s|
ũk − ũ

+ . . . . (4.103)

19Interestingly, we might include s in the rescaling and remove it completely from the equations.
20This is the chief difference to the BMN limit, where there are only finitely many excitations. Conse-

quently, in the BMN limit one would define Ê = L2E.
21The length L in this section corresponds to the combination J +M from discussion of the BMN limit.

Hence, we distinguish between the coupling constant g̃ = g/L for the thermodynamic limit and ĝ = g/J
from Sec. 3.6.

22For the BMN limit one would define Q̂r = LrQr and T̂ (û) = T (ûL)L to account for the different
scaling of the number of excitations.
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We shall start by assuming that in the large L limit the Bethe roots accumulate on A
smooth contours Ca, the so-called ‘Bethe-strings’

‘Bethe-strings ’: C1, . . . , CA. (4.104)

It is reasonable, therefore, to replace the discrete root positions ũk by a smooth continuum
variable ũ and introduce a density ρ(ũ) describing the distribution of the roots in the
complex ũ-plane:

1

L

K∑

k=1

−→
∫

C
dũ ρ(ũ), (4.105)

where C is the support of the density, i.e. the union of contours Ca along which the roots
are distributed. The density is normalised to the filling fraction K̃ = K/L,

∫

C
dũ ρ(ũ) = K̃. (4.106)

Moreover, we may specify solutions by the contour filling fractions, i.e. the numbers of
roots LK̃a residing on each contour Ca, by

∫

Ca

dũ ρ(ũ) = K̃a. (4.107)

The Bethe equations (4.100) in the ‘thermodynamic limit’ then conveniently turn into
singular integral equations:

Ẽ = |s|
∫

C

dũ ρ(ũ)

ũ2
, 2πn = |s|

∫

C

dũ ρ(ũ)

ũ
, 2πnũ −

s

ũ
= 2 −

∫

C

dṽ ρ(ṽ)

ṽ − ũ , (4.108)

where nũ is the mode number nk at point ũ = ũk. It is expected to be constant, nũ = na,
along each contour Ca and contours are distinguished by their mode number. Here and in
the following, the slash through the integral sign implies a principal part prescription. In
addition, we have a consistency condition derived from the right of (4.108) by integrating
both sides over C and using (4.107): n = sign s

∑A
a=1 K̃ana. Finally, we can compute the

eigenvalues of the higher charges (4.69), they read [68]

Q̃r = |s|
∫

C

dũ ρ(ũ)

ũr
, G(ũ) = |s|

∫

C

dṽ ρ(ṽ)

ṽ − ũ . (4.109)

The resolvent G(ũ) is a central object of a solution. It is defined by

G(ũ) =

∞∑

r=1

ũr−1Q̃r with Q1 = −i logU = 2πn, (4.110)

so naively one might think G(ũ) = −i log T̃ (ũ). This is not quite true due to the omitted
terms in the eigenvalue of the transfer matrix (4.54). The additional term is of O(uL), so
in the large L limit one might be tempted to drop it. However, let us see what happens for
s = 1 for which we know the exact transfer matrix (4.61). The second term is multiplied
by uL/(u+ i)L. In the thermodynamic limit this becomes

(
u

u+ i

)L
=

(
ũL

ũL+ i

)L
=

(
1 +

i

Lũ

)−L
−→ exp

(
− i
ũ

)
, (4.111)
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which is indeed non-zero despite the suppression by uL. In total we obtain for the eigen-
value of the transfer matrix

T̃ (ũ) = exp
(
iG(ũ)

)
+ exp

(
−iG(ũ)− i/ũ

)
= exp

(
−i/2ũ

)
2 cos

(
Gsing(ũ)

)
. (4.112)

The exponential prefactor may now be absorbed into the definition of T̃ and we merely
have 2 cosGsing(ũ) with the singular resolvent

Gsing(ũ) = G(ũ) +
1

2ũ
. (4.113)

Gladly, the additional terms only change the form of the transfer matrix, all physically
relevant information is encoded into the non-singular resolvent G. The resolvent G may
therefore be obtained even in ignorance of the additional terms in T̃ .

Note that the Bethe equation (4.100) can alternatively be obtained as a consistency
condition on the transfer matrix T̃ (ũ). The resolvent has many sheets, but 2 cosG′

sing(ũ)
must be single-valued on the complex ũ plane. This requires

Gsing(ũ+ iǫ) +G′
sing(ũ− iǫ) = 2πnũ (4.114)

across a branch cut of G at ũ, which is an equivalent formulation of the Bethe equation
(4.100).

4.5.2 Generic Algebras

Let us briefly state the generalisation of the thermodynamic limit for arbitrary groups
with Cartan matrix M and representation labels V . In addition to the mode numbers
na, here we have to specify for each contour Ca to which simple root ja of the algebra it
belongs. The energy, momentum constraint and Bethe equations are

Ẽ = −
∫
dũ ρ(ũ)Vũ

ũ2
, 2πn = −

∫
dũ ρ(ũ)Vũ

ũ
, 2πnũ −

Vũ
ũ

= −
∫
dṽ ρ(ṽ)Mũ,ṽ

ṽ − ũ .

(4.115)
Here we have used the short notation Mũ,ṽ = Mja,ja′

or Vũ = Vja for the element of the
Cartan matrix or representation vector corresponding to the simple roots of the contours
ũ ∈ Ca, ṽ ∈ Ca′ . The higher charges (4.69) and resolvent (4.110) as their generating
function, G(ũ) ≈ −i log T̃ (ũ), are given by

Q̃r = −
∫
dũ ρ(ũ)Vũ

ũr
, G(ũ) = −

∫
dṽ ρ(ṽ)Vṽ
ṽ − ũ . (4.116)

4.6 Stringing Spins

Following the work [61], Frolov and Tseytlin proposed a novel possibility for a quanti-
tative comparison of string theory and gauge theory [65, 63], see [76] for a nice review of
the subject. They suggested to investigate states with large charges (angular momenta)
of both, the conformal symmetry su(2, 2) and the internal symmetry su(4). In the case of
string theory it was understood [61, 62] (see also [124]) that the string sigma model can
be efficiently treated by semi-classical methods. On the gauge theory side, it was realised
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that such states can be treated with the Bethe ansatz in the thermodynamic limit [60].
This lead to a remarkable agreement at the one-loop level [60, 66]. We shall use this
example to illustrate the use of the Bethe ansatz. First, we will shortly review the string
theory computations, then derive the gauge theory result and compare.

4.6.1 String Theory Details

We will investigate a folded string (a closed string, which is folded to a line) which
stretches along a spatial direction of AdS5. It rotates with angular momentum (spin) S
around its centre of mass and moves in the time direction with energy D as well as on a
great circle of S5 with angular momentum (charge) J . For this string configuration, we
would like to find the dependence of the energy D on the charges S, J

D = D(S, J). (4.117)

We will make the ansatz that the embedding coordinates of the string world sheet,
parameterised by τ, σ, are given by

t = κτ, φ1 = φ = ωτ, ϕ3 = ϕ = wτ, ρ = ρ(σ) = ρ(σ + 2π), (4.118)

all the other coordinates are zero. In fact, the string moves only in a subspace AdS3×S1

of AdS5 × S5. The relevant part of the AdS5 × S5 metric is

ds2 = dρ2 − cosh2 ρ dt2 + sinh2 ρ dφ2 + dϕ2. (4.119)

The string theory sigma model is given by the Polyakov action

Sstring =
√
λ

∫
dτ

∫
dσ

2π
1
2
GMN(ẊMẊN −X ′MX ′N) (4.120)

together with the Virasoro constraints

GMN(ẊMẊN +X ′MX ′N ) = GMNẊ
MX ′N = 0. (4.121)

The equations of motion following from the action are

∂

∂τ
(GMNẊ

N)− ∂

∂σ
(GMNX

′N) = 0. (4.122)

The conserved charges D,S, J corresponding to t, φ, ϕ are determined using (4.120,4.119)

D = κ
√
λ

∫
dσ

2π
cosh2 ρ, S = ω

√
λ

∫
dσ

2π
sinh2 ρ, J = w

√
λ . (4.123)

From the prefactor of the action we can now infer that quantum loops are counted by
1/
√
λ if λ is large. Furthermore, we see that, as J = w

√
λ, quantum loops are effectively

counted by 1/J if we fix w. Therefore, if we content ourselves with the leading order
in an expansion with respect to 1/J and w fixed, we can neglect all quantum loops and
consider the classical string theory.
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In the classical model, the parameter λ can be absorbed into the definition of the
charges, we use

D =
D√
λ

= κ

∫
dσ

2π
cosh2 ρ, S =

S√
λ

= ω

∫
dσ

2π
sinh2 ρ, J =

J√
λ

= w. (4.124)

The only non-trivial equation of motion is

ρ′′ − (κ2 − ω2) sinh ρ cosh ρ = 0. (4.125)

and the non-trivial Virasoro constraint is

ρ′ 2 − κ2 cosh2 ρ+ ω2 sinh2 ρ+ w2 = 0. (4.126)

To solve the system, we will assume that ρ(σ) is a periodic function stretching between
±ρ0. By inverting the function ρ(σ) to σ(ρ) (for half of the period) we can rewrite the
worldsheet integrals as ∫ 2π

0

dσ

2π
=

2

2π

∫ ρ0

−ρ0

dρ

ρ′
. (4.127)

There are two points to be taken into account. Firstly, an integral without an integrand
should yield 1 and secondly, ρ′ must be zero at ±ρ0, this leads to two new constraints.
We can now solve the Virasoro constraint for ρ′ and compute the integrals D and S. At
this point we have five equations in total: the definition of the three charges D,S,J and
two constraints from the change of parameters. It is now possible to solve three equations
for κ, ω, w, see [66] for details which we omit here. The two remaining equations are

( J
K(x)

)2

−
( D

E(x)

)2

=
4

π2
x,

( S
K(x)− E(x)

)2

−
( J

K(x)

)2

=
4

π2
(1− x), (4.128)

where x = − sinh2 ρ0 is related to the end-points of the string. The functions K(x) and
E(x) are the elliptic integrals of the first and second kind, respectively

K(x) =

∫ 1

0

dy√
1− y2

1√
1− xy2

, E(x) =

∫ 1

0

dy√
1− y2

√
1− xy2 . (4.129)

The first equation in (4.128) determines the energy D in terms of the charges S,J and
the parameter x. The parameter x is fixed by the second equation. In total we obtain
the energy as a function of the charges as

D(S,J ) = D(S,J , x(S,J )). (4.130)

Frolov and Tseytlin noticed that D admits an expansion in powers of 1/J when we fix
the ratio of the charges α = S/J

D(S,J ) = δ0(α)J +
δ1(α)

8π2J +
δ2(α)

64π4J 3
+

δ3(α)

512π6J 5
+ . . . , α =

S
J . (4.131)

Using the original charges D,S, J we can write

D(S, J, g) = J
(
δ0(α) + g̃2 δ1(α) + g̃4 δ2(α) + g̃6 δ3(α) + . . .

)
, α =

S

J
. (4.132)
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where we have used the effective coupling constant g̃2, see (4.102), in the thermodynamic
limit (note that L = J in this case)

g̃2 =
g2

J2
=

λ

8π2J2
=

1

8π2J 2
. (4.133)

The expression (4.132) suggests that, when g ∼
√
λ is assumed to be small, we can

compare to perturbative gauge theory! Nevertheless, a word of caution is in order here: We
have started out assuming that λ is indeed large. One may hope that, due to analyticity,
the function D(S, J, g) is valid even for small g, but there might be some additional terms
which can be neglected for large g, but become relevant for small g [87, 75]. We will
comment on this issue in Sec. 6.5.

Extracting the leading-order or ‘one-loop’ term δ1 from the relations (4.128) is straight-
forward. For large J one sets x = x0+x1/J 2+ . . . and solves the resulting transcendental
equation for x0. One then finds

δ0(α) = 1 + α (4.134)

and the parametric solution

δ1 = −16 K(x0)
(
E(x0)− (1− x0)K(x0)

)
, α =

S

J
=

E(x0)

K(x0)
− 1. (4.135)

4.6.2 Gauge Theory Details

Let us see whether we can obtain an expression for δ1 from gauge theory. We shall
be interested in a state with large charge J of su(4), large charge (spin) S of su(2, 2) as
well as a large dimension D. In the classical theory, the charges should obey the relations
(4.134)

D0 = J + S. (4.136)

The weight of such a state is

w = (J + S;S, S; 0, J, 0; 0, J) (4.137)

it belongs to the bosonic su(1, 1) sector, c.f. Sec. 3.4, and the state has the form TrDSZJ .
As the charges S, J in string theory are very large while the one-loop energy is small,

we can use the thermodynamic limit of the Bethe equations as explained in Sec. 4.5. We
expect the roots for the ground state to lie on the real axis (this may be verified by explicit
solution of the exact Bethe equations for small values of J). Furthermore, we assume the
distribution of roots to be symmetric, dũ ρ(ũ) = dũ′ ρ(ũ′) with ũ′ = −ũ, which implies
n = 0. For the ground state we expect the support of the root density to split into two
disjoint intervals C = C− ∪ C+ with C− = [−b,−a] and C+ = [a, b], where a < b are both
real. The mode numbers should be n± = ∓1 on C± and the filling fractions should be
K̃± = S/2J . The total filling filling fraction will be denoted by

α = K̃ =
S

J
. (4.138)

For this distribution of roots, the Bethe equations (4.108) become

−
∫ b

a

dṽ ρ(ṽ) ũ2

ṽ2 − ũ2
=

1

4
− π

2
ũ , Ẽ = 2

∫ b

a

dũ ρ(ũ)

ũ2
. (4.139)
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The solution of the integral equation (see, e.g., [125]), yielding the density ρ(ũ), may be
obtained explicitly; it reads

ρ(ũ) =
2

πũ
−
∫ b

a

dṽ ṽ2

ṽ2 − ũ2

√
(b2 − ũ2)(ũ2 − a2)

(b2 − ṽ2)(ṽ2 − a2)
. (4.140)

This density may be expressed explicitly through standard functions:

ρ(ũ) =
1

2πbũ

√
ũ2 − a2

b2 − ũ2

(
b2

a
− 4ũ2Π

(b2 − ũ2

b2
, q
))

, q =
b2 − a2

b2
, (4.141)

where we introduced the modulus q which is related to the end-points a, b of the ‘strings’
of Bethe roots; it plays the role of an auxiliary parameter. The function Π is the elliptic
integral of the third kind

Π(m, q) =

∫ 1

0

dy√
1− y2

1

(1−my2)
√

1− qy2
. (4.142)

Furthermore, we may derive two conditions determining the interval boundaries a, b as a
function of the filling fraction α:

∫ b

a

dũ ũ2

√
(b2 − ũ2)(ũ2 − a2)

=
1 + 2α

4
and

∫ b

a

dũ√
(b2 − ũ2)(ũ2 − a2)

=
1

4ab
.

(4.143)
The first is derived from the normalisation condition (4.106), while the second is a consis-
tency condition assuring the positivity of the density. These may be reexpressed through
standard elliptic integrals of, respectively, the second and the first kind (4.129). It is
straightforward to eliminate the interval boundaries a, b from these equations via

a =
1

4K(q)
, b =

1

4
√

1− qK(q)
. (4.144)

Furthermore, we can integrate the density and compute the energy Ẽ from the right
equation in (4.139)

Ẽ = −4 K(q)
(
2E(q)− (2− q)K(q)

)
, α =

S

J
=

1

2
√

1− q
E(q)

K(q)
− 1

2
. (4.145)

In total the scaling dimension of our solution is

D(S, J, g) = S + J +
g2

J
Ẽ(α) + . . . = J

(
1 + α + g̃2 Ẽ(α) + . . .

)
+ . . . (4.146)

with the effective coupling g̃ defined in (4.102,4.133).
Finally, we can compute the resolvent (4.110) [68]23

− i log T̃ (ũ) ≈ G(ũ) =
1

2ũ
∓ 2a2

bũ

√
− b

2 − ũ2

ũ2 − a2
Π

(
q ũ2

ũ2 − a2
, q

)
+ 2πn. (4.147)

The resolvent G(ũ) is a central object in the investigation of the solution. It is multi-
valued on the complex plane and has branch cuts with the discontinuity proportional
to the density ρ(ũ). Furthermore, it encodes the values of all rescaled charges Q̃r when
expanded around ũ = 0.

23Note that the first term in G(ũ) is due to the shift in Gsing(ũ) = G(ũ) + s/2ũ, the generalisation of
(4.113) to arbitrary spin s. The ambiguities ± and n drop out in 2 cosGsing(ũ).
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4.6.3 Comparison

Let us now compare the string theory system (4.135) for the classical energy and the
gauge theory system (4.145) for the one-loop anomalous dimension. Both systems are
parametric, i.e. finding energy/dimension as a function of spins involves elimination of
auxiliary parameters. They look similar, but superficially they are not identical. However,
if we relate the auxiliary parameters x0 and q by

x0 = −(1−√1− q)2

4
√

1− q , (4.148)

one can show, using the elliptic integral modular transformation relations

K(x0) = (1− q)1/4K(q), E(x0) = 1
2
(1− q)−1/4E(q) + 1

2
(1− q)1/4K(q) , (4.149)

that the systems (4.135) and (4.145) are, in fact, exactly the same. As a result, their
solutions δ1(α) = Ẽ(α) do become identical! We have thus demonstrated the equivalence
between the string theory and gauge theory results for a particular two-spin part of the
spectrum at the full functional level. In [68] it was furthermore shown, that not only the
energy, but also the set of all higher charges agrees with string theory!

Recently, Kazakov, Marshakov, Minahan and Zarembo have proposed a proof for
the complete agreement between string theory and gauge theory at the one-loop (and
two-loop) level in the dual case of strings spinning on S5 instead of AdS5, i.e. the su(2)
subsector [75]. We will comment on the comparison at higher-loops in Sec. 6.5. In another
line of work initiated by Kruczenski similar statements can be made [71, 72]. These are
based on a coherent state picture and independent of integrability.
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Chapter 5

Higher-Loops

In Ch. 3 we have seen how to make use of the algebra to find the complete one-
loop dilatation operator. and in the previous chapter we have seen that its integrability
in the planar limit enables a precise comparison to string theory within the AdS/CFT
correspondence. It would be exciting to see whether these ideas may be extended to
higher loops. In this chapter we will aim at the construction of higher-loop corrections to
the dilatation generator. Higher-loop integrability will be the subject of the next chapter.

At one-loop the analysis was simplified due to the preserved classical algebra; at
higher-loops this is not the case and a derivation of the complete dilatation operator
would require a large amount of work. We will therefore restrict to the su(2|3) subsector
of N = 4 SYM with a finite number of fundamental fields and a smaller supersymmetry
algebra, which includes the dilatation operator.

Here we will find and investigate deformations J(g) of the classical representation J0

of the symmetry algebra on the space of states. These deformations are furnished in such
a way that they are compatible (i) with the symmetry algebra and (ii) with N = 4 SYM
field theory and its Feynman diagrams. The text is based on the article [51] and contains
excerpts from [38,81].

5.1 The su(2|3) Eighth-BPS Sector

The model discussed in this chapter is the (0, 1+) subsector with su(2|3)× u(1) sym-
metry, c.f. Sec. 2.3.4, in the planar limit. In the large N limit, the gauge theory turns into
a quantum spin chain as described in Sec. 2.6.6 and we will use spin chain terminology.
Note that the model is a subsector, not only of N = 4 SYM, but also of the BMN matrix
model, which was briefly introduced in Sec. 2.1.6. Therefore, all results obtained in this
chapter apply equally well to the BMN matrix model.

In the following, we shall describe the model in terms of the space of states, symmetry
and how it is related to N = 4 gauge theory.

5.1.1 Fields, States and Interactions

The subsector consists of three complex scalars φa (Latin indices take the values 1, 2, 3)
and two complex fermions ψα (Greek indices take the values 1, 2)

φa (a = 1, 2, 3), ψα (α = 1, 2). (5.1)
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These can be combined into a supermultiplet WA (capital indices range from 1 to 5) of
fields

W1,2,3 = φ1,2,3, W4,5 = ψ1,2. (5.2)

We shall use the notation introduced in Sec. 2.6 to describe (single-trace) states and
interactions

|A1 . . . AL〉 = TrWA1
. . .WAL

,
{ A1...AEi

B1...BEo

}
. (5.3)

To distinguish between bosons and fermions in the interaction symbols, we use Latin and
Greek letters. For example, the interaction

{
αbc
cαb

}
searches for one fermion followed by

two bosons within the trace. Wherever they can be found these three fields are permuted
such that the last boson comes first, next the fermion and the other boson last. A sample
action is {

αbc
cαb

}
|142334452〉 = |134234452〉+ |242334415〉. (5.4)

5.1.2 The Algebra

The fields WA transform canonically in a fundamental 3|2 representation of su(2|3).
Let us start by defining this algebra. The su(2|3)×u(1) algebra consists of the generators

J = {Lα
β ,R

a
b,D0,H|Qa

α,S
α
a}. (5.5)

The bar separates bosonic from fermionic operators. The su(2) and su(3) generators Lα
β

and Ra
b are traceless, Lα

α = Ra
a = 0. The commutators are defined as follows: Under

the rotations L,R, the indices of any generator J transform canonically according to the
rules

[Lα
β, Jγ] = δαγ Jβ − 1

2
δαβJγ , [Lα

β , J
γ] = −δγβJα + 1

2
δαβJγ ,

[Ra
b, Jc] = δacJb − 1

3
δabJc, [Ra

b, J
c] = −δcbJa + 1

3
δabJ

c.
(5.6)

The commutators of the dilatation operator D0 and the Hamiltonian H are given by

[D0, J] = dim(J) J, [H, J] = 0. (5.7)

In other words, H is the central u(1) generator and the non-vanishing dimensions are

dim(Q) = − dim(S) = 1
2
. (5.8)

The supercharges anticommuting into rotations are given by

{Sα
a,Q

b
β} = δbaL

α
β + δαβRb

a + δbaδ
α
β (1

3
D0 + 1

2
g2H). (5.9)

This implies that the linear combination D0 + 3
2
g2H belongs to the algebra su(2|3). Fur-

thermore, we demand a parity even algebra

p J p−1 = J or [p, J] = 0. (5.10)

It is straightforward to find the fundamental 3|2 representation acting on the funda-
mental module (we will do this explicitly in Sec. 5.2)

VF = [W1,W2,W3,W4,W5]. (5.11)

As states are constructed from the fundamental fields WA there is an induced represen-
tation on the space of states; this is simply a tensor product representation and we will
denote it by J0. The higher order corrections Jk will act on more than one field at a time.
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5.1.3 Representations

In terms of representation theory, a state is characterised by the charges

D0, s, [q, p], E, (5.12)

where D0 is the classical dimension, E is the energy (i.e. the eigenvalue of the Hamiltonian
H), s is twice the su(2) spin and [q, p] are the su(3) Dynkin labels. These can be arranged
into Dynkin labels1 of su(2|3)

w = [s; r; q, p], r = 1
3
D0 + 1

2
g2E + 1

2
s− 1

3
p− 2

3
q. (5.13)

Although it is sufficient to give either the dimension or the label r, we will usually state
both for convenience. The labels s, q, p are integer-valued, whereas the fermionic label r
can be any real number.2 Representations are characterised by their highest weight. For
instance, the highest weight of the fundamental module VF is

wF = [0; 0; 0, 1]. (5.14)

It is helpful to know how to construct a state with given charges D0, s, p, q and length
L from the fundamental fields φ1,2,3, ψ1,2. The numbers of constituents of each kind are
given by

nφ = n1,2,3 =




L− 2

3
D0 + 2

3
p+ 1

3
q

L− 2
3
D0 − 1

3
p+ 1

3
q

L− 2
3
D0 − 1

3
p− 2

3
q



 , nψ = n4,5 =

(
D0 − L+ 1

2
s

D0 − L− 1
2
s

)
. (5.15)

The following ‘unitarity’ bound3 applies to multiplets of su(2|3)

D0 + 3
2
g2E ≥ 3 + 3

2
s+ p+ 2q, r − s ≥ 1, or D0 + 3

2
g2E = p+ 2q, r = s = 0.

(5.16)
A (typical) multiplet of su(2|3) away from the bound consists of

(32|32)× (s+ 1)× 1
2
(p+ 1)(q + 1)(p+ q + 2) (5.17)

components. However, under certain conditions on the dimension, the multiplet is short-
ened (atypical). We find three conditions relevant to the spin chain. The first one is the
‘half-BPS’4 condition

D0 + 3
2
g2E = p, s = r = q = 0, n2 = n3 = n4 = n5 = 0, (5.18)

where we have also displayed the condition in terms of the number of fields (5.15). Such
a multiplet has 1 + p(p + 1)|p(p + 1) components. The second one is the ‘quarter-BPS’5

condition
D0 + 3

2
g2E = p+ 2q, s = r = 0, n3 = n4 = n5 = 0. (5.19)

1The sign of r was chosen such that [1; 0; 0, 0]× [1; 0; 0, 0] = [2; 0; 0, 0] + [0;−1; 0, 0].
2Nevertheless we will usually write its value at g = 0 and state the irrational part E(g) separately.
3We use the terminology of N = 4 SYM even if some terms might be inappropriate.
4In fact, 4 out of 6 supercharges annihilate the state.
5In fact, 2 out of 6 supercharges annihilate the state. Multiplets of this kind have states belonging to

the su(2) subsector of just two complex bosonic fields φ1,2.



128 5 Higher-Loops

Although a quarter-BPS multiplet is beyond the unitarity bound, it can acquire a non-
zero energy if it joins with another multiplet to form a long one. The last condition
determines short (usually called semi-short) multiplets

D0 + 3
2
g2E = 3 + 3

2
s+ p+ 2q, r − s = 1, n3 + n5 = 1. (5.20)

A long multiplet whose energy approaches the unitarity bound (5.16) splits in two at
(5.20). If s > 0, the highest weight of the upper short submultiplet is shifted by

δD0 = +1
2
, δwi = [−1;−1; +1, 0], δL = +1. (5.21)

For s = 0 the upper submultiplet is quarter-BPS and its highest weight is shifted by

δD0 = +1, δwI = [0;−1; +2, 0], δL = +1. (5.22)

Multiplet shortening will turn out to be important later on. This is because the generators
which relate both submultiplets must act as O(g) so that the multiplet can indeed split
at g = 0.

5.1.4 Fluctuations in Length

Note that all three bosons together have vanishing su(3) charges and dimension 3.
Similarly, both fermions have vanishing su(2) spin and dimension 3, i.e. the same quantum
numbers

φ[1φ2φ3] ∼ ψ[1ψ2]. (5.23)

Therefore one can expect fluctuations between these two configurations. In field theory
these are closely related to the Konishi anomaly [104,126]. A state composed from n1 ≥
n2 ≥ n3 bosons and n4 ≥ n5 fermions can mix with states

(n1 − k, n2 − k, n3 − k;n4 + k, n5 + k), −n5 ≤ k ≤ n3. (5.24)

Note that the length L = n1 +n2+n3 +n4+n5 decreases by k. We will refer to this aspect
of the spin chain as dynamic. The length can fluctuate by as much as n3 + n5 = r − s
units, a quantity directly related to the distance to the unitarity bound.

Length fluctuations are especially interesting for multiplet shortenings. The highest
weight state of a half-BPS or quarter-BPS multiplet has fixed length due to n3 = n5 = 0.
For short multiplets we have n3 + n5 = 1. This means that the length fluctuates by
one unit for the highest weight state. Two of the six supercharges transform a φ3 into
a fermion ψ1,2. Naively, both cannot act at the same time because there is only one
φ3 (we will always have n3 = 1 for a long multiplet), and the multiplet becomes short.
However, we could simultaneously replace the resulting ψ[1ψ2] by φ[1φ2φ3] and thus fill up
the φ3-hole. A suitable transformation rule is6

Q3
2 ψ1 ∼ g φ[1φ2]. (5.25)

This is also the step between the two short submultiplets (5.21). This property was
used in [100] to determine two-loop scaling dimensions for operators at the unitarity

6In fact, this is part of the ‘classical’ supersymmetry variation.
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bounds from a one-loop field-theory calculation. Note that Q3
2 annihilates the highest

weight when n4 = 0; we need to apply Q3
1 first to produce a ψ1. In this case the upper

submultiplet is quarter-BPS (5.22). Furthermore note that when we apply Q3
1 first, there

are no more φ3’s and ψ2’s left and length fluctuations are ruled out. Therefore, in a BPS
or short multiplet we can always find states with fixed length; fluctuations are frozen at
the unitarity bound. In contrast, all states in a multiplet away from the unitarity bound
(5.16) are mixtures of states of different lengths.

5.1.5 From N = 4 SYM to su(2|3)

A state of free N = 4 SYM is characterised by the classical dimension D0, the su(2)2

labels [s, s2], the su(4) Dynkin labels [q, p, q2], the u(1) hypercharge B as well as the length
L. The su(2|3) subsector is obtained by restricting to states with (c.f. Sec. 2.3.4)

D0 = p+ 1
2
q + 3

2
q2, s2 = 0. (5.26)

This also implies D0 = B+L. We write these as relations of the corresponding generators

(Rsu(4))
4
4 = 1

2
D0, L̇α̇

β̇ = 0, D0 = L+ B. (5.27)

Furthermore, we express the su(4) generator Rsu(4) in terms of an su(3) generator R

(Rsu(4))
a
b = Ra

b − 1
6
δabD0. (5.28)

Now we can reduce the psu(2, 2|4) algebra as given in App. D.1 to the su(2|3) subsector
and find precisely the su(2|3) relations (c.f. Sec. 5.1.2) if the Hamiltonian H is identified
with the anomalous dilatation generator as follows

δD = g2H. (5.29)

As we would like to compare directly to N = 4 SYM, we write one of the generators of
su(2|3) as D0 + 3

2
g2H instead of assigning a new letter.

We note that the states in this subsector are (classically) eighth-BPS in terms ofN = 4
SYM (in Sec. 5.6.4 we will present a true eighth-BPS state). Unprotected primary states
of the subsector can therefore not be primary states of psu(2, 2|4). To shift from the
corresponding superconformal primary to the highest weight in the subsector we have to
shift by (c.f. Sec. 2.3.4)

δwII = (+1; 0, 0; 0, 0,+2; 0,+1). (5.30)

Note that in terms of the Dynkin labels [s; r; q, p, q2; r2; s2] the last two are zero in this
subsector r2 = s2 = 0. We then simply restrict to the first four labels [s; r; q, p].

5.2 Tree-Level

We would like to construct a representation J(g) of su(2|3)× u(1) on the spin chain.
The generators must satisfy the algebra relations

[
JM(g), JN(g)

}
= FPMN JP (g) (5.31)
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with FPMN the structure constants of the symmetry algebra as given in Sec. 5.1.2.
Let us illustrate the procedure for the generators at tree-level. At tree-level, composite

states transform in tensor product representations of the fundamental representation 3|2.
The generators therefore act on one field at a time. We write down the most general form
of generators that respects su(3)× su(2) symmetry

Ra
b = c1

{
a
b

}
+ c2δ

a
b

{
c
c

}
,

Lα
β = c3

{
α
β

}
+ c4δ

α
β

{
γ
γ

}
,

D0 = c5
{
a
a

}
+ c6

{
α
α

}
,

(Q0)
a
α = c7

{
a
α

}
,

(S0)
α
a = c8

{
α
a

}
. (5.32)

The algebra relations have two solutions. One is the trivial solution ck = 0 corresponding
to the trivial representation. The other solution requires

c1 = c3 = c5 = 1, c2 = −1
3
, c4 = −1

2
, c6 = 3

2
, c7 = eiβ1, c8 = e−iβ1 . (5.33)

As expected, we find that the bosons and fermions have dimension 1 and 3
2
, respectively

D0 =
{
a
a

}
+ 3

2

{
α
α

}
. (5.34)

The appearance of a free parameter β1 is related to a possible rescaling of the bosons and
fermions. This can be represented in terms of a similarity transformation on the algebra

J0 7→ exp
(
2iβ1D0

)
J0 exp

(
−2iβ1D0

)
. (5.35)

Obviously, the algebra relations in Sec. 5.1.2 are invariant under such a transformation.
The only other su(3)× su(2) invariant similarity transformation besides (5.35) is

J0 7→ exp
(
iβ2L

)
J0 exp

(
−iβ2L

)
, (5.36)

where L is the length operator

L =
{
a
a

}
+
{
α
α

}
or simply L =

{ ·
·
}
. (5.37)

The transformation (5.36) is trivial and does not give rise to a new parameter at tree-level
because the length is conserved there

[L, J0] = 0. (5.38)

5.3 One-Loop

In this section we construct deformations of the algebra generators J(g) obeying the
algebra relations in Sec. 5.1.2. Here, we will proceed up to O(g) for the deformations of
the Hamiltonian H(g). This can still be done conveniently by hand without the help of
computer algebra systems. This section is meant to illustrate the methods of this chapter
in a simple context before we proceed to higher-loops in the sections to follow.

The most important one of the algebra relations is the invariance of the interaction
Hamiltonian

[JM(g),H(g)] = 0. (5.39)

Moreover we will assume the su(2), su(3) rotation generators Ra
b and Lα

β to receive no
corrections. This is natural, for the rotation symmetries are preserved by the quantisation
procedure.



5.3 One-Loop 131

Figure 5.2: The structures for the construction of H0. Straight and zigzag lines correspond to
bosons and fermions, respectively.

5.3.1 Pre-Leading Order

Let us restrict (5.39) to its leading order

[J0,Hl] = 0, (5.40)

in other words, the leading order of the Hamiltonian at some O(gl) is conserved by the
classical algebra. The leading order for H will be l = 0 and we shall now exclude a
correction to H at order l = −1 7 by representation theory in analogy to Sec. 3.1.3: At
this order the interactions have three legs and the possible ways to distribute them among
the in and out channels are

{ ·
ABC

}
,
{

C
AB

}
,
{
BC
A

}
,
{
ABC

·
}
. (5.41)

The indices cannot be contracted fully, hence there is no invariant interaction at this
order. In other words there is no common irreducible representation of the free algebra
among the in and the out channel

V0
F
6∈ V3

F
, V1

F
6∈ V2

F
. (5.42)

5.3.2 Leading Order

A similar argument is used to show that at leading order we must evenly distribute
the four fields among the in and out channel, i.e.

V0
F
6∈ V4

F
, V1

F
6∈ V3

F
, but V2

F
= V2

F
. (5.43)

The most general form of H0, expressed as an action on bosons (a, b) and fermions (α, β)
is therefore

H0 = c1
{
ab
ab

}
+ c2

{
aβ
aβ

}
+ c′2

{
αb
αb

}
+ c3

{
αβ
αβ

}

+ c4
{
ab
ba

}
+ c5

{
aβ
βa

}
+ c′5

{
αb
bα

}
+ c6

{
αβ
βα

}
, (5.44)

see also Fig. 5.2. First of all we demand that H0 conserves parity (5.10),

pH0 p−1 = H0. (5.45)

As can be seen easily, this requires

c2 = c′2, c5 = c′5. (5.46)

7Note that H is shifted by two orders in perturbation theory due to δD = g2H. It therefore makes
sense to consider H−1 = D1.
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H0 = c1 + c4

Figure 5.4: The structures of H0 which are compatible with su(2|3) symmetry at leading order.
A straight+zigzag line correspond to a supermultiplet.

H1 = c7 + c8 , Q1 = c9 , S1 = c10

Figure 5.6: The structures for the construction of H1,Q1,S1. The number of spin sites is not
conserved here.

We now commute Q0 with H0 and find

[(Q0)
a
α,H0] = eiβ1(c1 − c2)

({
ab
αb

}
+
{
ba
bα

})
+ eiβ1(c4 − c5)

({
ba
αb

}
+
{
ab
bα

})
(5.47)

+ eiβ1(c2 − c3)
({

aβ
αβ

}
−
{
βa
βα

})
− eiβ1(c5 + c6)

({
aβ
βα

}
−
{
βa
αβ

})
.

According to (5.40) this must vanish, so we set

c1 = c2 = c3, c4 = c5 = −c6. (5.48)

The commutator [S0,H0] leads to the same set of constraints. The two independent
constants correspond to the two irreducible representations in the tensor product (see
Fig. 5.4)

VF × VF = [0; 0; 0, 2]+ + [0; 0; 1, 0]− . (5.49)

More explicitly, c1 + c4 corresponds to the symmetric product [0; 0; 0, 2] which is half-BPS
and c1 − c4 to the antisymmetric one [0; 0; 1, 0] which is quarter-BPS.

5.3.3 First Order

The virtue of a classically invariant interaction applies only to the leading order, for
H1 we should break it. However, we do not wish to break classical su(2|3) in the most
general way, but assume that the classical su(3)× su(2) invariance is conserved. In field
theory these correspond to symmetries compatible with the regularisation scheme.

The possible first order corrections involve the totally antisymmetric tensors of su(3)
and su(2), see Fig. 5.6:

H1 = c7 εαβε
abc
{
αβ
abc

}
+ c8 εabcε

αβ
{
abc
αβ

}
,

(Q1)
a
α = c9 εαβε

abc
{
β
bc

}
,

(S1)
α
a = c10 εabcε

αβ
{
bc
β

}
. (5.50)

With these expressions it is possible, yet tedious, to work out the commutators at first
order by hand. It is useful to note a version of the gauge invariance identity (2.149)
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H0 ∼ −

Figure 5.8: Closure of the algebra at O(g3) fixes the relative coefficients within H0.

adapted to this particular situation
{
βd
bcd

}
+
{
βδ
bcδ

}
=
{
dβ
dbc

}
−
{
δβ
δbc

}
=
{
β
bc

}
. (5.51)

Furthermore we will employ some identities of the totally antisymmetric tensors εabc and
εαβ and find for the commutator [Q,H] at O(g)

[(Q0)
a
α,H1] + [(Q1)

a
α,H0] = (c4c9 − eiβ1c7) ε

bcdεαβ
({

aβ
bcd

}
−
{
βa
bcd

})

+ (c4c9 − eiβ1c7) ε
abcεβγ

(
−
{
βγ
αbc

}
+
{
βγ
bαc

}
−
{
βγ
bcα

})

− (c1 + c4)c9 ε
abcεαβ

{
β
bc

}
. (5.52)

To satisfy (5.39) this must vanish. The commutator [S,H] gives similar constraints and
closure of the algebra requires

c1 = −c4, eiβ1c7 = c4c9, e−iβ1c8 = c4c10. (5.53)

Here, there are two types of constraints. The latter two fix the coefficients of Q1 and S1.
The first one is more interesting, it fixes a coefficient of H0 from one order below, see
Fig. 5.8. This is related to the fact that H0 was constructed to assign equal energies to all
states of a multiplet of the free algebra. In a superalgebra, several atypical multiplets of the
free theory can join to form one typical multiplet in the interacting theory, see Sec. 5.1.3
and Fig. 1.14. A consistency requirement for this to happen is that the energy shift of
the submultiplets agree. In this case it is achieved by c1 = −c4. To ensure agreement
of energies in terms of commutators, we need to consider one additional power of the
coupling constant, which is required to move between the submultiplets. Furthermore, we
note that the constraint c1 = −c4 assigns a zero eigenvalue to the representation [0; 0; 0, 2]
in (5.49). This is essential, because [0; 0; 0, 2] is in fact half-BPS and must have zero
energy. It is good to see though, that the protectedness of half-BPS states follows from
the algebraic constraints; we will not have to impose it by hand.

5.3.4 Conclusions

We now set the remaining independent constants c1, c9, c10 to

c1 = α2
1, c9 = 1√

2
α1 e

iβ1+iβ2, c10 = 1√
2
α1 e

−iβ1−iβ′
2 . (5.54)

In total we find the deformations at first order

H0 = α2
1

{
ab
ab

}
+ α2

1

({
aβ
aβ

}
+
{
αb
αb

})
+ α2

1

{
αβ
αβ

}

− α2
1

{
ab
ba

}
− α2

1

({
aβ
βa

}
+
{
αb
bα

})
+ α2

1

{
αβ
βα

}
,

H1 = − 1√
2
α3

1 e
iβ2 εαβε

abc
{
αβ
abc

}
− 1√

2
α3

1 e
−iβ′

2 εabcε
αβ
{
abc
αβ

}
,

(Q1)
a
α = 1√

2
α1 e

iβ1+iβ2 εαβε
abc
{
β
bc

}
,

(S1)
α
a = 1√

2
α1 e

−iβ1−iβ′
2 εabcε

αβ
{
bc
β

}
. (5.55)
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Let us discuss the free parameters. The parameter β ′
2 will in fact be determined by a

constraint from fourth order, see the following section: c9c10 = 1
2
c1 or

β ′
2 = β2. (5.56)

As shown in (5.35,5.36), the coefficients β1,2 correspond to a similarity transformation of
the algebra

J0 7→ exp
(
2iβ1D0 + iβ2L

)
J0 exp

(
−2iβ1D0 − iβ2L

)
. (5.57)

The algebra relations (5.31) are invariant under similarity transformations, so β1,2 can
take arbitrary values. For convenience, we might fix a gauge and set β1 = β2 = 0, but we
will refrain from doing that here. Last but not least, the parameter α1 corresponds to a
rescaling of the coupling constant

g 7→ α1 g. (5.58)

The algebra relations (5.31) are also invariant under this redefinition.
In a real form of the algebra we get a few additional constraints. There, the algebra

should be self-adjoint which imposes some reality constraint on α1, β1,2. For a real su(2|3)
they have to be real and α2

1 needs to be positive. This ensures positive planar energies as
required by the unitarity bound.

In conclusion we have found that the deformations of the generators are uniquely fixed
at one-loop. Note that H0 agrees with the complete one-loop dilatation operator found
in Ch. 3. Here, it is understood that some parameters cannot be fixed due to symmetries
of the algebra relations. In determining the coefficients we saw that [H(g), J(g)] = 0
at order O(g2ℓ−2) makes the ℓ-loop energy shift agree within short multiplets, whereas
O(g2ℓ−1) joins up short multiplets into long multiplets. Note that the anticommutator
of supercharges at first order is trivially satisfied due to the flavours of incoming and
outgoing fields

{(S1)
α
a, (Q0)

b
β}+ {(S0)

α
a, (Q1)

b
β} = 0 = 1

2
δbaδ

α
βH−1. (5.59)

5.4 Two-Loops

In this section we will discuss the restrictions from the algebra at two-loops, i.e. up
to third order. The steps are straightforward, but involve very lengthy expressions. We
have relied on the algebra system Mathematica to perform the necessary computations.

5.4.1 Structures

At second order we need to determine H2,Q2,S2. For H2 the su(3)× su(2) invariant
interactions which preserve the dimension also preserve the number of fields, i.e. three
fields are mapped into three fields. Similarly, for Q2,S2 we need two fields going into two
fields

H2 ∼
{
A1A2A3

B1B2B3

}
, Q2,S2 ∼

{
A1A2

B1B2

}
. (5.60)

It is an easy exercise to count the number of structures in H2,Q2,S2. For H2 there 23 = 8
ways to determine the statistics of A1A2A3 and 3! = 6 ways to permute the fields (each
A must be contracted to one of the B’s). In total there are 6 · 8 = 48 structures for H2
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and 8 for Q2,S2 each. We now demand parity conservation. This restricts the number
of independent structures to 28 and 4 for H2 and Q2,S2, respectively.

At third order we need to determine H3,Q3,S3. Like H1,Q1,S1, all of these involve
the totally antisymmetric tensors for su(3), su(2) and change the number of fields by one.
Counting of independent structures is also straightforward, we find 48 for H3 and 12 for
Q3,S3 each. Parity conservation halves each of these numbers.

5.4.2 Coefficients

Now we demand that energy shifts are conserved at third order

[Qa
α,H] = [Sα

a,H] = O(g4). (5.61)

This fixes the remaining coefficient β ′
2 at first order (5.56) and many coefficients at second

and third order. The anticommutator of supercharges

{Sα
a,Q

b
β} = δbaL

α
β + δαβRb

a + δbaδ
α
β (1

3
D0 + 1

2
g2H) +O(g4) (5.62)

does not lead to additional constraints. The resulting deformations of the generators up
to second order are presented in Tab. 5.2. In the remainder of this subsection we shall
discuss the undetermined coefficients α, γ, δ and we shall find an explanation for each of
them.

• Firstly, the constants δ1,2 multiply a structure which has a spectator leg on either side
of the interaction

{ A1...AEi
C

B1...BEoC

}
− (−1)C(A1...AEi

B1...BEo )
{ CA1...AEi

CB1...BEo

}
, (5.63)

such that both interactions cancel out in a cyclic state.

• Secondly, the constant δ3 multiplies a structure which is zero due to an su(2) identity.
We cannot antisymmetrise more than two fundamental representations of su(2)

{
αβγ
[αβγ]

}
= 0. (5.64)

• Thirdly, we can use a similarity transformation to modify the generators

J(g) 7→ T (g) J(g)T (g)−1. (5.65)

In Sec. 5.3.4, we have used a transformation which is independent of the coupling
constant, here we consider a transformation T (g) = 1 + g2T2 + . . . proportional to
g2. For consistency with the algebra, the transformation will have to be su(3)× su(2)
invariant and preserve the dimension as well as parity. Also, according to Sec. 2.6.2,
it should involve four fields. These are exactly the requirements for the form of H0,
the 6 independent structures are given in (5.44,5.45). Out of these six, there are two
special combinations: One of them is H0 itself and the other one is equivalent to the
length operator

L =
{
ab
ab

}
+
{
aβ
aβ

}
+
{
αb
αb

}
+
{
αβ
αβ

}
(5.66)
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Ra
b =

{
a
b

}
− 1

3
δab
{
c
c

}
,

Lα
β =

{
α
β

}
− 1

2
δαβ
{
γ
γ

}
,

D0 =
{
a
a

}
+ 3

2

{
α
α

}
,

H0 = α2
1

{
ab
ab

}
+ α2

1

({
aβ
aβ

}
+
{
αb
αb

})
+ α2

1

{
αβ
αβ

}

− α2
1

{
ab
ba

}
− α2

1

({
aβ
βa

}
+
{
αb
bα

})
+ α2

1

{
αβ
βα

}
,

H1 = − 1√
2
α3

1 e
iβ2 εαβε

abc
{
αβ
abc

}
− 1√

2
α3

1 e
−iβ2 εabcε

αβ
{
abc
αβ

}
,

H2 = (−2α4
1 + 2α1α3)

{
abc
abc

}
+ (−1

2
α4

1 + 2α1α3 + δ3)
{
αβγ
αβγ

}

+ (1
2
α4

1 + 2α1α3 + 2δ2)
{
aβc
aβc

}
+ (−4α4

1 + 2α1α3 − 2δ2)
{
αbγ
αbγ

}

+ (−11
4
α4

1 + 2α1α3 − δ2)
({

abγ
abγ

}
+
{
αbc
αbc

})
+ (2α1α3 + δ2)

({
aβγ
aβγ

}
+
{
αβc
αβc

})

+ (3
2
α4

1 − α1α3)
({

abc
bac

}
+
{
abc
acb

})
+ (α4

1 − α1α3)
({

abγ
baγ

}
+
{
αbc
αcb

})

+ (5
4
α4

1 − α1α3 + iα2
1γ3 + iδ1)

({
αbc
bαc

}
+
{
abγ
aγb

})

+ (5
4
α4

1 − α1α3 − iα2
1γ3 − iδ1)

({
aβc
βac

}
+
{
aβc
acβ

})

+ (α4
1 − α1α3 + iδ1)

({
αbγ
bαγ

}
+
{
αbγ
αγb

})

+ (α4
1 − α1α3 − iδ1)

({
aβγ
βaγ

}
+
{
αβc
αcβ

})

+ (−7
4
α4

1 + α1α3)
({

αβc
βαc

}
+
{
aβγ
aγβ

})
+ (−7

4
α4

1 + α1α3 − δ3)
({

αβγ
βαγ

}
+
{
αβγ
αγβ

})

− 1
2
α4

1

({
abc
cab

}
+
{
abc
bca

})
+ δ3

({
αβγ
γαβ

}
+
{
αβγ
βγα

})

+ (−1
4
α4

1 + iα2
1γ1)

({
αbc
cαb

}
+
{
abγ
bγa

})
+ (1

4
α4

1 + iα2
1γ2)

({
aβγ
γaβ

}
+
{
αβc
βcα

})

+ (−1
4
α4

1 − iα2
1γ1)

({
aβc
caβ

}
+
{
aβc
βca

})
+ (1

4
α4

1 − iα2
1γ2)

({
αbγ
γαb

}
+
{
αbγ
bγα

})

− 1
2
α4

1

({
abγ
γba

}
+
{
αbc
cbα

})
+ 1

2
α4

1

{
αbγ
γbα

}
− δ3

{
αβγ
γβα

}

+ 3
2
α4

1

([
αβ
αβ

]
−
[
αβ
βα

])
,

(Q0)
a
α = eiβ1

{
a
α

}
,

(Q1)
a
α = 1√

2
α1 e

iβ1+iβ2εαβε
abc
{
β
bc

}
,

(Q2)
a
α = eiβ1(1

4
α2

1 − i12γ3 + i1
2
γ4)
({

ab
αb

}
+
{
ba
bα

})
+ eiβ1(1

2
iγ3 + 1

2
iγ4)

({
aβ
αβ

}
−
{
βa
βα

})

+ eiβ1(−1
4
α2

1 − iγ1)
({

ab
bα

}
+
{
ba
αb

})
+ eiβ1(1

4
α2

1 + iγ2)
({

aβ
βα

}
−
{
βa
αβ

})
,

(S0)
α
a = e−iβ1

{
α
a

}
,

(S1)
α
a = 1√

2
α1 e

−iβ1−iβ2εabcε
αβ
{
bc
β

}
,

(S2)
α
a = e−iβ1(1

4
α2

1 + 1
2
iγ3 − 1

2
iγ4)

({
αb
ab

}
+
{
bα
ba

})
+ e−iβ1(−1

2
iγ3 − 1

2
iγ4)

({
αβ
aβ

}
−
{
βα
βa

})

+ e−iβ1(−1
4
α2

1 + iγ1)
({

αb
ba

}
+
{
bα
ab

})
+ e−iβ1(1

4
α2

1 − iγ2)
(
−
{
αβ
βa

}
+
{
βα
aβ

})
.

Table 5.2: Two-loop deformations of the generators



5.4 Two-Loops 137

up to gauge transformations. The similarity transformation amounts to adding com-
mutators with H0,Q0,S0

H2 7→ H2 + [T2,H0], J2 7→ J2 + [T2, J0]. (5.67)

These commutators vanish for H0 and L
[H0, J0] = [L, J0] = [H0,H0] = [L,H0] = 0. (5.68)

In other words, conjugation with g2H0 and g2L will have no effect on H2,Q2,S2. The
remaining four structures in (5.44,5.45) do not commute with H0,Q0,S0 and amount
to the constants γ1,2,3,4. Note that γ4 is related to the structure D0 and does not
appear in H2 because of [D0,H0] = 0.

• Finally, we are allowed to perform a transformation of the coupling constant

J(g) 7→ J(f(g)). (5.69)

If we use the function f(g) = α1g + α3g
3 we find that

H2 7→ α4
1H2 + 2α1α3H0, (5.70)

which explains the degree of freedom α3.

5.4.3 Short States and Wrapping Interactions

The second order interactions H2 act on three fields. We should also determine its
action on the states of length two8

O(ab) = |ab〉 = Trφaφb, Oaβ = |aβ〉 = Trφaψβ , O1 = εαβ|αβ〉 = εαβ Trψαψβ . (5.71)

Together, these form the protected half-BPS multiplet [0; 0; 0, 2]. It is therefore reassuring
to see thatO(ab) andOaβ are annihilated byH0,H1; just as well they should be annihilated
by H2. For O1 the situation is different: It is annihilated by H0, but H1 produces the
operator

O2 = εabc|abc〉 = εabc Trφaφbφc. (5.72)

The action of H(g) on these two operators up to second order is given by

H(g)

(
O1

O2

)
=

(
ǫg2 −2

√
2 eiβ2α3

1g

−9
√

2 eiβ2e−iβ2α3
1g 6α2

1 − 18α2
1g

2 + 12α1α3g
2

)(
O1

O2

)
, (5.73)

where we have assumed that H2O1 = ǫO1. The eigenvalues of this matrix at fourth order
are given by

E1 = ǫg2 − 6α4
1g

2, E2 = 6α2
1 − 12α4

1g
2 + 12α1α3g

2. (5.74)

Due to its half-BPS nature, the energy of the diagonalised O1 must be exactly zero,
E1 = 0, and we set

ǫ = 6α4
1. (5.75)

The second order Hamiltonian for states of length two should thus annihilate the states
O(ab),Oaβ and yield 6α4

1O1 when acting onO1. This is achieved by a wrapping interaction,
c.f. Sec. 2.6.3,

H2 = . . .+ 3
2
α4

1

([
αβ
αβ

]
−
[
αβ
βα

])
. (5.76)

8Length-one states are U(1) fields and do not interact at all.
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5.4.4 Conclusions

We see that for all free parameters in Tab. 5.2 there is an associated symmetry of the
algebra relations and we can say that the two-loop contribution is uniquely fixed. The only
parameter that influences energies is α3; we cannot remove it by algebraic considerations.
The parameters γ1,2,3,4 rotate only the eigenstates. Finally, the parameters δ1,2,3 are there
only because we were not careful enough in finding independent structures (for H2 there
are only 25 = 28− 3 independent structures). They have no effect at all.

5.5 Three-Loops

For the fourth order contributions H4,Q4,S4 we find in total 208 + 56 + 56 parity
conserving structures; they all conserve the number of fields9. Of these only 173+32+32
are independent due to identities as discussed above. We impose the constraint (5.39) at
fourth order

[Q,H] = [S,H] = O(g5) (5.77)

and find that the algebra relations fix 202 coefficients (plus one coefficient at third order).
This leaves 35 free coefficients. The anticommutator of supercharges (5.9) at fourth order

{Sα
a,Q

b
β} = δbaL

α
β + δαβRb

a + δbaδ
α
β (1

3
D0 + 1

2
g2H) +O(g5) (5.78)

is satisfied automatically.
As we have learned above, the commutators at fourth order are not sufficient to ensure

consistency for splitting multiplets at the unitarity bound, we should also consider fifth
order. To perform those commutators would be even harder. We therefore consider a set
of probe multiplets at the unitarity bound. By requiring that the three-loop energy shifts
coincide within submultiplets we are able to fix another 8 coefficients.

Still this leaves 27 coefficients to be fixed, however, almost all of them rotate the
space of states. Experimentally, we found that only 4 coefficients affect the energies. The
remaining 23 coefficients can be attributed to similarity transformations. As before, the
number of similarity transformations equals the number of structures for H2, i.e. 25. This
means that there must be 2 commuting generators which are readily found to be g4H0

and g4L. We summarise our findings concerning the number of coefficients in Tab. 5.4.
The symmetries indicated in the table refer to L (which is conserved at leading order but
broken at first order, hence the −1 at k = 1), g2L (broken at third order), g2H, g4L (will
break at fifth order) and g4H. This sequence of symmetries will continue at higher orders,
but there will be additional ones due to integrability, see Sec. 6.1.4.

Let us now discuss the relevant coefficients. One coefficient is due to a redefinition
of the coupling constant and cannot be fixed algebraically. To constrain the other three
we will need further input. Unfortunately, the resulting generators are too lengthy to
be displayed here. Instead, let us have a look at the set of totally bosonic states. In
this subsector (which is closed only when further restricted to two flavours, i.e. the su(2)
subsector) H4 is presented in Tab. 5.6.

The coefficients in Tab. 5.6 can be understood as follows. The coefficients σ1,2,3,4 are
relevant. One of them, σ1, multiplies the structure H0 (up to spectator legs) and therefore

9At sixth order the number of fields can be changed by two using four antisymmetric tensors.
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k 0 1 2 3 4
Hk 6 2 25 18 173
Qk 1 1 4 6 32
Sk 1 1 4 6 32

total 8 4 33 30 237
fixed at O(gk) 5 2 25 26 202

fixed at O(gk+1) 1 1 3 1 8
relevant 1 0 1 0 4
irrelevant 1 1 4 3 23

symmetries 1 −1 2 −1 2
Hk−2 2 0 6 2 25

Table 5.4: Number of coefficients. Hk,Qk,Sk give the number of independent structures that
can be used for the construction of generators. The algebra relations fix a certain number of
coefficients. Of the remaining coefficients, some are relevant for energies and some correspond
to similarity transformations generated by the structures in Hk−2. Some of the similarity trans-
formations are symmetries.

corresponds to a redefinition of the coupling constant as in (5.69). The coefficients ζ1,2,3
multiply structures which are actually zero: More explicitly, ζ1 multiplies

{
abcd
[abcd]

}
and ζ2,3

can be gauged away by removing spectator legs. Finally, the coefficients ξ1,2,3 are related
to similarity transformations and have no effect on the energy shifts.

The crucial point is that we want H4 to be generated by Feynman diagrams. Here
we can make use of a special property of the scalar sector, c.f. Sec. 2.5.3. The Feynman
diagrams with the maximum number of eight legs do not have internal index loops. In
the planar case, such diagrams must be iterated one-loop diagrams. This implies that we
can only have three permutations of adjacent fields. The structures

{
abcd
cdab

}
,
{
abcd
bdca

}
,
{
abcd
dbac

}
,
{
abcd
cbda

}
,
{
abcd
dacb

}
,
{
abcd
cdba

}
,
{
abcd
dcab

}
,
{
abcd
dbca

}
,
{
abcd
dcba

}
(5.79)

consist of four, five or six crossings of adjacent fields and are therefore excluded. We must
set their coefficients to zero

σ3 = σ4 = 0, ζ1 = ξ1 = 0. (5.80)

The final relevant coefficient σ2 multiplies a structure Q4,0 which commutes with H0. This
issue is related to integrability, see Sec. 6.1.4. At this point we cannot determine σ2, but
believe that it will be fixed due to the anticommutator {Q,S} at O(g6) (four-loops).

5.6 Spectrum

In this section we fix the remaining degrees of freedom within the Hamiltonian and
apply it to a number of states to find their energies.

5.6.1 The Remaining Coefficients

First of all, we would like to fix the remaining relevant coefficients. We cannot do
this algebraically because most of them correspond to symmetries of the commutation
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H4 =
(

15
2
α6

1 − 8α3
1α3 + σ1 − 1

3
σ2 + 12σ3 − 2σ4 + ξ2 + ζ1

){
abcd
abcd

}

+
(
−13

4
α6

1 + 3α3
1α3 − 1

4
σ1 + 1

6
σ2 − 3σ3 + σ4 − 1

2
ξ2 − ζ1 + ζ3

)({
abcd
abdc

}
+
{
abcd
bacd

})

+
(
−13

2
α6

1 + 6α3
1α3 − 1

2
σ1 + 1

3
σ2 − 6σ3 + 2σ4 − ξ2 − ζ1 − 2ζ3

){
abcd
acbd

}

+
(

3
2
α6

1 − α3
1α3 − σ4 + 1

2
ξ2 + ζ1 − iζ2

)({
abcd
acdb

}
+
{
abcd
cabd

})

+
(

3
2
α6

1 − α3
1α3 − σ4 + 1

2
ξ2 + ζ1 + iζ2

)({
abcd
adbc

}
+
{
abcd
bcad

})

+
(
−1

6
σ2 − 1

2
ξ2 − ζ1

)({
abcd
adcb

}
+
{
abcd
cbad

})
+
(

1
2
α6

1 − 2σ3 + ζ1
){

abcd
badc

}

+
(
−1

2
α6

1 + 1
3
σ2 − 4σ3 + 2σ4 − ζ1

)({
abcd
bcda

}
+
{
abcd
dabc

})

+
(
−1

3
σ2 + 4σ3 + σ4 − iξ3 − ζ1

){
abcd
bdac

}
+
(
−1

3
σ2 + 4σ3 + σ4 + iξ3 − ζ1

){
abcd
cadb

}

+
(
σ3 − σ4 + iξ1 + ζ1

)({
abcd
bdca

}
+
{
abcd
dbac

})
+
(
σ3 − σ4 − iξ1 + ζ1

)({
abcd
cbda

}
+
{
abcd
dacb

})

+
(
−2σ3 − 2σ4 + ζ1

){
abcd
cdab

}
+
(
−ζ1

)({
abcd
cdba

}
+
{
abcd
dcab

})

+
(
2σ4 − ζ1

){
abcd
dbca

}
+
(
ζ1
){

abcd
dcba

}
.

Table 5.6: H4 acting on bosonic states.

relations. One of them is a redefinition of the coupling constant

g 7→ f(g). (5.81)

Unlike the other symmetries, this transformation has relevant consequences, it implies
that energies are changed according to

E(g) 7→ E(f(g)). (5.82)

In order to match these degrees of freedom to N = 4 SYM we should use some scaling
dimension that is known to all orders in perturbation theory. In fact it is sufficient to use
the scaling behaviour in the BMN limit, c.f. Sec. 3.6, i.e. for large J , all properly rescaled
quantities should depend only on

ĝ =
g

J
or λ′ =

λ

J2
=

8π2g2

J2
= 8π2ĝ2. (5.83)

Let us assume this to be the case. If we redefine the coupling constant g we obtain for
the rescaled coupling constant

ĝ 7→ f(g)

J
=
f1g + f3g

3 + . . .

J
= f1ĝ + f3ĝ

3J2 + . . . . (5.84)

The problem is that all the higher expansion coefficients of f yield divergent contributions
in the BMN limit J → ∞. Thus all ĝ dependent quantities will also become divergent.
The only degree of freedom compatible with BMN scaling behaviour is to change g by a
constant factor f1.

In our model we would like to define the coupling constant by fixing α3, σ1 in such a
way as to obtain a good scaling behaviour of energies in the BMN limit. It is not possible
to achieve proper scaling by adjusting α3, σ1 alone; also σ2 multiplies a structure with a
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wrong scaling. This is fortunate, because it allows us to determine σ2 as well, in total we
find

α3 = 0, σ1 = 0, σ2 = 0. (5.85)

Afterwards we can only change α1. This final degree of freedom is eliminated by a single
known scaling dimension, e.g. the one of the Konishi multiplet (2.20) E0 = 6, or using
the quantitative BMN energy formula (3.99). It fixes α1 to unity

α1 = 1. (5.86)

We conclude that the planar three-loop Hamiltonian is uniquely fixed by the symmetry
algebra, field theory and the BMN scaling behaviour.10 Together with the fact that this
model is a closed subsector of N = 4 SYM we have derived the planar dilatation generator
in the su(2|3) subsector at three-loops. Similarly, this model is a closed subsector of the
BMN matrix model and the two Hamiltonians must agree up to three loops (after a
redefinition of the coupling constant and provided that the BMN matrix model has a
BMN limit). This is indeed the case as shown in [79].

5.6.2 Lowest-Lying States

We are now ready to compute numerical values for some energies. For this we should
consider the charges D0, s, p, q, L of a state and compute the number of constituent fields
according to (5.15). These are arranged within a trace in all possible ways

En = (Trφn1

1 φ
n2

2 φ
n3

3 ψ
n4

1 ψ
n5

2 , . . .). (5.87)

Note that the length L is not a good quantum number at O(g), so we must include states
of all admissible lengths in (5.87). In practice this means that we may replace a complete
set of bosons φ1φ2φ3 by a complete set of fermions ψ1ψ2, (5.23). Due to conservation
of charges, the Hamiltonian closes on this set of states and we can evaluate its matrix
elements11

H(g) Ei = Ej Hj
i(g). (5.88)

It is a straightforward task to find the eigenvalues and their perturbations

H(g) = H0 + V (g), with V = O(g). (5.89)

Diagonalising the leading order matrix H0 is a non-linear problem. The resulting eigen-
values represent the one-loop energies E0. Now we pick an eigenvalue e = E0 of H0 and
consider the subspace of states with energy e. The higher-order energy shifts are given by
(in contrast to the formula in [79] V ′ was constructed such that conjugation symmetry is

10Without BMN scaling the constants α1, α3, σ1, σ2 remain unknown. However, α1, α3, σ1 are related
to a redefinition of the coupling constant and, as we shall see in Sec. 6.1.4, there is a natural explanation
for σ2 in terms of integrability. It therefore makes sense to say that the Hamiltonian is uniquely fixed
(up to symmetries) even without making use of BMN scaling.

11Although the Hilbert space is infinite-dimensional, the Hamiltonian acts on a space of fixed dimension
D0. Therefore the matrix Hj

i(g) has a finite size.
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preserved)

V ′ =
∑

e
Πe

[
V + V ∆eV +

(
V ∆eV ∆eV − 1

2
V ∆2

eV ΠeV − 1
2
V ΠeV ∆

2
eV
)

+ V ∆eV ∆eV ∆eV − 1
2
V ∆2

eV ΠeV ∆eV − 1
2
V ∆eV ΠeV ∆

2
eV

− 1
2
V ∆2

eV ∆eV ΠeV − 1
2
V ΠeV ∆eV ∆

2
eV (5.90)

− 1
2
V ∆eV ∆

2
eV ΠeV − 1

2
V ΠeV ∆

2
eV ∆eV

+ 1
3
V ∆3

eV ΠeV ΠeV + 1
3
V ΠeV ∆

3
eV ΠeV + 1

3
V ΠeV ΠeV ∆

3
eV + . . .

]
Πe.

The propagator ∆e is given by

∆e =
1−Πe

e−H0
(5.91)

and Πe projects to the subspace with leading correction e. If there is only a single state
with one-loop energy e, (5.90) gives its higher order corrections. For degenerate states
at one-loop, (5.89,5.90) must be applied iteratively until the resulting matrix V ′ becomes
diagonal12.

Next, it is important to know the multiplets of states. In the interacting theory there
are two types of single-trace multiplets, half-BPS and long ones. The half-BPS multiplets
are easily identified, there is one multiplet with labels

D0 = L = p, E = 0, [0; 0; 0, p], P = (−1)p (5.92)

for each p, they receive no corrections to their energy. Long multiplets are not so easy
to find. By means of a C++ computer programme we have constructed the spectrum of
all states explicitly (up to some energy bound) and iteratively removed the multiplets
corresponding to the leftover highest weight state (this ‘sieve’ algorithm, also reminiscent
of the standard algorithm for division, is described in more detail in [105,106]). For a set
of states with given charges as in (5.87) this also tells us how many representatives there
are from each of the multiplets and allows us to identify the energy we are interested in.

Finally, to obtain the energy shift of a given multiplet, a lot of work can be saved
by choosing a suitable representative. Resolving the mixing problem for the highest
weight state is usually more involved than for a descendant. For instance, highest weight
states involve all three flavours of bosons, n1, n2, n3 ≥ 1. This increases the number of
permutations in (5.87) and also gives rise to mixing between states of different lengths.
The matrix Hm

n will be unnecessarily large. If, instead, one applies three supergenerators
Q1

4Q
2
4Q

3
4, i.e.

n1 7→ n1 − 1, n2 7→ n2 − 1, n3 7→ n3 − 1, n4 7→ n4 + 3, (5.93)

the state becomes more uniform. This decreases the number of permutations and, in the
case of multiplets at the unitarity bound (5.16), mixing between states of different lengths
is prevented due to n3 = n5 = 0.

We summarise our findings for states of dimension D0 ≤ 8.5 in Tab. 5.8. We have
labelled the states by their dimension D0, classical su(2|3) Dynkin labels, and classical
length L. For each multiplet we have given its energy E = E0 + g2E2 + g4E4 +O(g6) up

12In principle it could happen that states with equal leading order energy e have matrix elements at
O(g). In this case the energy would have an expansion in terms of g ∼

√
λ instead of g2 ∼ λ similar to

the peculiarities noticed in [38]. It would be interesting to see if this does indeed happen or, if not, why?
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D0 su(2|3) L
(
E0, E2, E4

)P

2 [0; 0; 0, 2]†• 2 (0, 0, 0)+

3 [0; 0; 0, 3]†• 3 (0, 0, 0)−

3 [0; 1; 0, 0]∗• 3
(
6,−12, 42

)+

4 [0; 0; 0, 4]†• 4 (0, 0, 0)+

4 [0; 1; 0, 1]∗• 4
(
4,−6, 17

)−

5 [0; 0; 0, 5]†• 5 (0, 0, 0)−

5 [0; 1; 0, 2]∗• 5
(
10E − 20,−17E + 60, 117

2
E − 230

)+

5 [0; 1; 1, 0]∗• 5
(
6,−9, 63

2

)−

6 [0; 0; 0, 6]†• 6 (0, 0, 0)+

6 [0; 1; 0, 3]∗• 6
(
2,−3

2
, 37

16

)−
,
(
6,−21

2
, 555

16

)−

6 [0; 1; 1, 1]∗• 6
(
5,−15

2
, 25
)±

6 [0; 2; 0, 0] 6
(
14E − 36,−24E + 90, 173

2
E − 315

)+

6 [2; 3; 0, 0]∗ 5
(
10,−20, 145

2

)−

6.5 [1; 2; 0, 2]∗ 6
(
8,−14, 49

)±

7 [0; 0; 0, 7]†• 7
(
0, 0, 0

)−

7 [0; 1; 0, 4]∗• 7
(
14E2−56E+56,−23E2+172E−224, 79E2−695E+966

)+

7 [0; 1; 1, 2]∗• 7
(
4,−5, 14

)±
,
(
6,−9, 33

)−

7 [0; 1; 2, 0]∗• 7
(
20E2−116E+200,−32E2+340E−800, 112E2−1400E+3600

)+

7 [0; 2; 0, 1] 7
(
22E2−144E+248,−37E2+460E−1016, 125E2−1893E+4438

)−

7 [2; 3; 0, 1]∗ 6
(
8,−14, 46

)+

7.5 [1; 2; 0, 3]∗ 7
(
7,−12, 83

2

)±

7.5 [1; 2; 1, 1]∗ 7
(
6,−33

4
, 1557

64

)±
,
(
10,−75

4
, 4315

64

)±

7.5 [1; 3; 0, 0] 7
(
9,−15, 51

)±

8 [0; 0; 0, 8]†• 8
(
0, 0, 0

)+

8 [0; 1; 0, 5]∗• 8
(
4,−5, 49

4

)−
,
(
8E − 8,−13E + 18, 179

4
E − 61

)−

8 [0; 1; 1, 3]∗• 8
(
17E2−90E+147,− 51

2
E2+ 525

2
E− 1239

2
, 169

2
E2− 2091

2
E+ 5649

2

)±

8 [0; 1; 2, 1]∗• 8
(
5,−15

2
, 55

2

)±
,
(
12E − 24,−18E + 54, 57E − 171

)−

8 [0; 2; 0, 2] 8
(
7,−19

2
, 59

2

)±
,
(
44E5−768E4+6752E3−31168E2+70528E−60224, A,B

)+

8 [0; 2; 1, 0] 8
(
9,−31

2
, 103

2

)±
,
(
24E2−172E+344,−39E2+524E−1372, 138E2−2209E+6198

)−

8 [2; 3; 0, 2]∗ 7
(
28E2−252E+728,−51E2+906E−3864, 179E2−3965E+20090

)−

8 [2; 3; 1, 0]∗ 7
(
8,−25

2
, 687

16

)+
,
(
12,−45

2
, 1281

16

)+

8.5 [1; 2; 0, 4]∗ 8
(
6,−19

2
, 247

8

)±
,
(
8,−29

2
, 427

8

)±

8.5 [1; 2; 1, 2]∗ 8
(
31E3−350E2+1704E−3016,−50E3+1111E2−7971E+18452, C

)±

8.5 [1; 2; 2, 0]∗ 8
(
8,−13, 343

8

)±
,
(
15E − 48,−23E + 135, 595

8
E − 4023

8

)±

8.5 [1; 3; 0, 1] 8
(
8,−13, 173

4

)±
,
(
10,−67

4
, 3725

64

)±
,
(
19E−86,− 133

4
E+ 1169

4
, 7395

64
E− 79503

64

)±

A = −73E5 + 2486E4 − 31804E3 + 188280E2 − 506048E + 487104

B = 251E5 − 10452E4 + 156202E3 − 1041992E2 + 3055168E − 3125328

C = 337

2
E3 − 18363

4
E2 + 38740E − 102390

Table 5.8: Spectrum of highest weight states with D0 ≤ 8.5 in the dynamic su(2|3) spin chain.
Please refer to the end of Sec. 5.6.2 for explanations.
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to three-loops and parity P . A pair of degenerate states with opposite parity is labelled
by P = ±. For convenience we have indicated the shortening conditions relevant for the
su(2|3) representations: Half-BPS multiplets and multiplets at the unitarity bound (which
split at g = 0) are labelled by † and ∗, respectively. For s = 0 some of the components
are in the su(2) subsector, such multiplets are indicated by •.

Generically, the one-loop energies are not fractional numbers, but solutions to some
algebraic equations. We refrain from solving them (numerically), but instead give the
equations. In the table such states are indicated as polynomials X0,2,4(E) of degree k−1.
The energies are obtained as solutions to the equation

Ek = X0(E) + g2X2(E) + g4X4(E) +O(g6), (5.94)

see also Sec. 3.5.1. The scaling dimension of the corresponding gauge theory states are
given by D(g) = D0 + g2E(g).

For example, the three-loop planar scaling dimension of the Konishi operator K =
ηmn TrΦmΦn introduced in Sec. 2.1.1 is given by (see Fig. 5.8, line 3 corresponds to a
descendant of K)

D = 2 + 6g2 − 12g4 + 42g6 +O(g8) = 2 +
3g2

YM
N

4π2
− 3g2

YM
N

16π2
+

21g2
YM
N

256π2
+ . . . . (5.95)

The two-loop result was computed in [42] and the three-loop coefficient was first con-
jectured in [38]. It was later derived in [51] using the methods described in the current
chapter. This result was recently confirmed by independent arguments based on extract-
ing the N = 4 SYM anomalous dimensions of twist-two operators (c.f. Sec. 3.5.2) from
the exact QCD result. The three-loop QCD result became available after an impressive,
full-fledged and rigorous field theoretic computation by Moch, Vermaseren and Vogt [127].
To generalise to N = 4 SYM, it was observed that in maximally supersymmetric gauge
theory only terms of ‘highest transcendentality’ seem to arise. Here, terms similar to ζ(k)
have transcendentality k and an ℓ-loop anomalous dimension in N = 4 SYM should have
transcendentality 2ℓ−1. Even more remarkably, for purely gluonic amplitudes, the contri-
butions of highest transcendentality appear to independent of the matter content. If true,
one can truncate to highest transcendentality [128] to obtain the anomalous dimensions
of twist-two operators from QCD. The conjecture of [128] for the lowest twist-two opera-
tor, which is part of the Konishi multiplet, agrees with the result (5.95) in a spectacular
fashion.

5.6.3 Two Excitations

We can use our above results to find the energy of two-excitation states up to three-
loops. In this subsector they are represented by the highest weight modules with Dynkin
labels [0; 1; 0, J − 2] and length L = J + 1. All ‘flavours’ of two-excitation states are part
of the same multiplet, c.f. Sec. 3.5.4, and it is convenient to use a descendant in the su(2)
subsector as in Sec. 3.6

EJp = TrφZp φZJ−p. (5.96)

The action of the one-loop Hamiltonian was found in (3.105)

H0 EJp = −2δp 6=J EJp+1 + 2(δp 6=J + δp 6=0) EJp − 2δp 6=0 EJp−1 (5.97)
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and the exact eigenstates are given in (3.87)

OJ0,n =
1

J + 1

J∑

p=0

cos
πn(2p+ 1)

J + 1
EJp (5.98)

with the exact one-loop energy (3.86)

EJ
0,n = 8 sin2 πn

J + 1
. (5.99)

Let us state the inverse transformation of the discrete cosine transform (5.98)

EJp = OJ0,0 + 2

[J/2]∑

n=1

cos

(
πn(2p+ 1)

J + 1

)
OJ0,n. (5.100)

We act with the two-loop Hamiltonian and find that it mostly equals the square of the
one-loop Hamiltonian

H2 EJp = −1
4
H2

0 EJp + V2 EJp , (5.101)

up to a contact-interaction of the two excitations

V2 EJp = (δp,0 + δp,J − δp,1 − δp,J−1)
(
EJ1 − EJ0

)
. (5.102)

We now face the problem that the states OJ0,n are no longer eigenstates of H2, since H0

and V2 do not commute. We find

V2OJ0,n = − 64

J + 1
sin2 πn

J + 1
cos

πn

J + 1

[J/2]∑

n′=1

sin2 πn′

J + 1
cos

πn′

J + 1
OJ0,n′. (5.103)

However, we can treat H2 as a perturbation and thus find that the two-loop part of
the planar anomalous dimension is the diagonal (m = m′) piece of H2. We obtain the
following two-loop energy shift

EJ
2,n = 64 sin4 πn

J + 1

(

−1

4
−

cos2 πn
J+1

J + 1

)

. (5.104)

Furthermore, using standard perturbation theory, we can also find the perturbative cor-
rection to the eigenstates: They involve the coupling constant dependent redefinition

OJn = OJ0,n + g2OJ2,n + . . . (5.105)

with

OJ2,n = − 64

J + 1

[J/2]∑

n′=1
n′ 6=n

sin2 πn
J+1

cos πn
J+1

sin2 πn′

J+1
cos πn′

J+1

sin2 πn
J+1
− sin2 πn′

J+1

OJ0,n′ . (5.106)

This mixing of modes is a complicating feature that we can expect at each further quantum
loop order; remarkably, it is absent in the large J (BMN) limit.
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We move on to three-loops and find that the result agrees with a general formula

DJ
n = D0 + g2E = J + 2 +

∞∑

ℓ=1

(
8g2 sin2 πn

J + 1

)ℓ(
cℓ +

ℓ−1∑

k,l=1

cℓ,k,l
cos2l πn

J+1

(J + 1)k

)
(5.107)

with the coefficients up to three-loops given by [38]

c1 = 1, c2 = −1
4
, c2,1,1 = −1, c3 = 1

8
, c3,k,l =

(
+3

4
+1

2

−3
4

+5
2

)
. (5.108)

As expected, the formula reproduces the energies of all states [0; 1; 0, J − 2] in Tab. 5.8.
The coefficients cℓ agree with the prediction of string theory on plane-waves (3.99,3.98)

DJ
n = J + 2

√
1 + λ′n2 +O(J−1), λ′ = 8π2g2/J2. (5.109)

This is a non-trivial result: Although we have only made use of the qualitative BMN
limit, the quantitative BMN energy formula seems to be the outcome.

We can also compare our result to string theory on a near plane-wave background
[26,88]. This corresponds to an expansion of the results in powers of 1/J . Let us expand
our result (5.107,5.108) to first order

DJ
n = J + 2 +

∞∑

ℓ=1

(
λ′n2

)ℓ(
cℓ + J−1

(
−2ℓcℓ +

∑ℓ−1
l=1cℓ,1,l

)
+O(J−2)

)
(5.110)

= J + 2 +
(
λ′n2

)(
1− 2J−1

)
+
(
λ′n2

)2(−1
4

+ 0J−1
)

+
(
λ′n2

)3(1
8

+ 1
2
J−1

)
+ . . . .

This is to be compared to the near plane-wave string theory result [88] (the comparison
takes place at level 4 of the multiplet)

DJ
n = J + 2

√
1 + λ′n2 − 2λ′n2 J−1 +O(J−2) (5.111)

= J + 2 +
(
λ′n2

)(
1− 2J−1

)
+
(
λ′n2

)2(−1
4

+ 0J−1
)

+
(
λ′n2

)3(1
8

+ 0J−1
)

+ . . . .

Structurally, both expression are equivalent and all coefficients agree except single one
at O(λ′ 3J−1). The same kind of disagreement was also observed for three excitations
[129,102] and arbitrarily many of scalar type [130,131]. We will see further evidence of a
disagreement between string theory and gauge theory starting at three loops in Sec. 6.5;
we will discuss this issue there.

5.6.4 An Eighth-BPS state

Let us take a peek at non-planar physics within this sector: The lowest-dimensional
eighth-BPS state is expected to be a triple-trace state with weight w = (6; 0, 0; 0, 0, 4; 0, 6).
Using the non-planar, one-loop Hamiltonian we find this protected state

O1/8−BPS = εabcεdef
[
N(N2 − 3) Trφaφd Trφbφe Trφcφf

+ 6(N2 − 1) Trφaφd Trφbφcφeφf − 12N Trφaφbφcφdφeφf

+ 8N Trφaφdφbφeφcφf + 4 Trφaφbφc Trφdφeφf
]
. (5.112)



5.6 Spectrum 147

It is annihilated by the operators

εabc[φ̌
b, φ̌c], εabcε

αβ Trψα[φ̌
a, [φ̌b, [φ̌c, ψβ]]], (5.113)

which are part of the non-planar generalisations of S1,H0 and H1. This implies that the
state is protected (at least at one-loop).

It would be interesting to generalise some of the results of this chapter to include
non-planar corrections. At two-loops this might indeed be feasible as there are only few
non-planar graphs.
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Chapter 6

Higher-Loop Integrability

In this final chapter we would like to put together the results of the previous two
chapters. In Ch. 5 we have seen how to make use of the interacting algebra to find higher-
loop corrections. In Ch. 4 we have investigated the integrability of planar N = 4 SYM at
the one-loop level and demonstrated its usefulness. An obvious question is whether the
integrable structures persist even at higher-loops. This will be the subject of the current
chapter.

To start off, we shall introduce higher-loop integrability and argue that N = 4 gauge
theory (or, more precisely, the subsector discussed in Ch. 5) is indeed integrable at higher-
loops. The main part of the chapter is devoted to the investigation of an integrable model
in the su(2) subsector. By making some assumptions on the form of interactions, we will
find that this model is uniquely determined at five-loops and, excitingly, reproduces the
plane wave energy formula. What is more, we find the corresponding Bethe ansatz to
compute the spectrum at an arbitrary order in perturbation theory!

6.1 Higher-Loop Spin Chains

First of all, we would like to describe the notion of integrability for spin chains at
higher-loops. We then go on by explaining why we believe that these structures should
apply to higher-loop N = 4 SYM. Finally we will investigate the scaling behaviour of
charges in the thermodynamic limit and describe how they can be defined canonically.

6.1.1 Aspects of Higher-Loop Integrability

To describe higher-loop corrections to scaling dimensions we have promoted the Hamil-
tonian H = H0 of Ch. 3 to a function of the coupling constant H(g) in Ch. 5. At zero
coupling one recovers the one-loop Hamiltonian H(0) = H0. For higher-loop integrability
we do the same and promote the charges Qr = Qr,0 to functions Qr(g) with Qr(0) = Qr,0.
A Hamiltonian H(g) = Q2(g) is considered to be higher-loop integrable if there exist
conserved charges Qr(g) with

‘higher-loop integrability ’: [Qr(g),Qs(g)] = [J(g),Qr(g)] = 0. (6.1)

In the case of N = 4 SYM, the symmetry algebra is psu(2, 2|4)×u(1). The u(1) factor
corresponds to the anomalous piece of the dilatation operator δD(g) which is conserved
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in two-point functions. We will argue that N = 4 SYM in the planar limit might be
integrable for arbitrary values of the coupling constant g. The higher charges Qr(g) form
an abelian algebra which enlarges the symmetry in the planar limit

psu(2, 2|4)× u(1) −→ psu(2, 2|4)× u(1)∞. (6.2)

Here, the u(1) anomalous dimension is absorbed into the set of integrable charges by the
identification δD(g) = g2H(g) = g2Q2(g).

An obstacle to the investigation of higher-loop integrability is that it apparently can-
not be described with the formalism introduced in Sec. 4.1. The reason is that higher-loop
interactions are between several nearby fields, whereas an ordinary integrable spin chain
involves nearest-neighbour interactions only.1 What is more, higher-loop interactions can
change the length of the spin chain giving rise to completely new structures. In order to
construct a higher-loop integrable spin chain, the R-matrix of Sec. 4.1 appears to be not
suitable. For instance, it describes the scattering of two elementary spins and it is not
yet understood how to generalise it to the interactions that occur at higher-loops. Con-
sequently, we cannot even attempt to prove the associated Yang-Baxter equation, which
would make higher-loop integrability manifest. Finally, there is not yet a constructive
means to obtain higher charges.

In Sec. 4.1.3 we have shown how to extract the charges Qr,0 from the transfer matrix
T (u, 0). Here, we can take the opposite direction and package all charges into a transfer
matrix

T (u, g) = exp i

∞∑

r=2

ur−1Qr(g), (6.3)

which should satisfy the equivalent of (4.11)

[J(g), T (u, g)] = [T (u, g), T (v, g)] = 0. (6.4)

An interpretation of the transfer matrix might be as follows: An ordinary spin chain can be
considered to be a composite object assembled from individual fields/spins/particles. The
transfer matrix is derived from scattering processes of the individual particles. At higher-
loops it is not known how to make sense of parton scattering processes. Nevertheless, it
might still be useful to consider the transfer matrix as a Wilson loop around the composite
object. The identification of particles with fields/spins, however, would be lost for two
reasons: Interactions take place between more than two fields and the number of fields is
not even preserved. Instead, the Bethe ansatz (c.f. Sec. 4.3) offers an alternative notion
of particles: The composite object has some vacuum state and its excitations correspond
to particles. The interactions of such excitation particles are pairwise (right-hand side of
the Bethe equations) and can therefore be integrable. This picture may be generalised to
higher-loops without complications.

6.1.2 The Local Charges

We do not know how to obtain the higher charges Qr explicitly and are therefore
forced to construct them by hand such that they satisfy (6.1). We cannot expect this

1Although non-nearest neighbour interactions of several spins are included in the tower of higher
chargesQr, these cannot be related to the higher orders of the Hamiltonian because the charges commute
among themselves, whereas the Hk’s in general do not.



6.1 Higher-Loop Spin Chains 151

to be feasible for finite values of g and restrict ourselves to a perturbative treatment. In
fact, we know (parts of) H(g) only up to order g4 (three-loops) and we may construct the
charges Qr(g) only up to the same order. The algebra need not be satisfied exactly, but
only up to terms of higher order in perturbation theory

[Qr(g),Qs(g)] = [J(g),Qr(g)] = O(g2ℓ). (6.5)

For all-loop integrability the remaining higher-order terms would have to be cancelled
by higher-order corrections to the charges. We now expand the charges in powers of the
coupling constant g

Qr(g) =
∞∑

k=0

gkQr,k. (6.6)

The integrability condition (6.1) translates to the statement of perturbative integrability

‘perturbative integrability ’:

l∑

k=0

[Qr,k,Qs,l−k] =

l∑

k=0

[Jk,Qr,l−k] = 0. (6.7)

One important consideration for the construction of charges is their representation as
an interaction acting on the spin chain, see Sec. 2.6.2. In Sec. 4.1.3 we have learned that
the local charges Qr,0 act on r adjacent spins. In other words, the charge Qr,0 has 2r legs,
r incoming and r outgoing ones. Although the higher-loop form of interactions described
in Sec. 2.6.2 applies to quantities that appear in correlators, it seems natural to generalise
it to the charges. An order gk correction to a generator J involves k + 2 legs and we
conclude that for each power of g we should have one leg. In total, a charge Qr,k should
have 2r + k legs

Qr,k ∼
{A1...AEi

B1...BEo

}
, with Ei + Eo = 2r + k. (6.8)

It is also natural to assume that the charges have a definite parity, the same as at leading
order

pQr(g) p−1 = (−1)rQr(g). (6.9)

Finally, the charges preserve the classical dimension

[D0,Qr(g)] = 0 (6.10)

when we identify the second charge with the anomalous dimension δD(g) = g2Q2(g),
because D(g) and Q2(g) commute with all charges and so does their difference.

Let us now comment on the role of the Hamiltonian H(g). On the one hand, it belongs
to the symmetry algebra psu(2, 2|4) when combined with D0

D0 + g2H(g) = D0 + δD(g) = D(g) ∈ psu(2, 2|4). (6.11)

On the other hand, H(g) is also one of the integrable charges. As such it is a generator
of the abelian algebra u(1)∞ defined by (6.1)

H(g) = Q2(g) ∈ u(1)∞. (6.12)

This is somewhat different from the situation at one-loop where the symmetry algebra is
taken strictly at g = 0. The one-loop anomalous dilatation generator is an independent
object and belongs only to the abelian algebra u(1)∞.
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6.1.3 Parity Pairs

As we have seen in Sec. 4.1.4, the integrable structure gives rise to pairs of states
with degenerate energies and opposite parities. We have proved integrability only at one-
loop, but a closer look at Tab. 5.8 reveals that the degeneracy of all one-loop pairs (±)
is preserved even at three-loops!2 This is so for the pairs of the su(2) sector (•) [38], for
pairs at the unitarity bound (∗), but also, and most importantly, for pairs away from
the unitarity bound (unmarked). As discussed at the end of Sec. 5.1.4 all states of such
a multiplet are superpositions of states of different lengths. This is interesting because
it shows that also for truly dynamic spin chains with a fluctuating number of sites,
integrability is an option.

We do not know how to use the R-matrix formalism beyond one-loop, if this is possible
at all. Therefore we cannot rigorously prove higher-loop integrability by means of a
Yang-Baxter equation. One might construct several of the higher charges explicitly at
higher-loops and thus make integrability very plausible, but this would not constitute
a proof. Instead, we shall be satisfied by demonstrating the preservation of degenerate
pairs at three-loops. This is certainly a necessary condition for integrability, but at first
sight it appears not to imply the existence of commuting charges. Nevertheless, there are
some indications that pairing is indeed sufficient to guarantee integrability. First of all, a
systematic pairing is most naturally explained by the following set of identities

[H(g),Q(g)] = [p,H(g)] = {p,Q(g)} = 0 (6.13)

among the Hamiltonian H(g), parity p and some charge Q(g). The investigations for
the model in Sec. 6.2 have shown that indeed we can construct a charge Q(g) = Q3(g)
whenever the spectrum has sufficiently many pairs without imposing further constraints on
the Hamiltonian H(g). More remarkably, it always turned out to be possible to construct
conserved charges Qr(g) as soon as the Hamiltonian pairs up states. The charges do not
only commute with the Hamiltonian, but also among themselves, i.e. they automatically
satisfy (6.1). This parallels earlier observations [80] that it appears close to impossible to
construct systems with [Q2,Q3] = 0 which do not have arbitrarily many other commuting
charges Qr, i.e. which are not integrable.

It is therefore likely that planar N = 4 SYM (at least) in the su(2|3) subsector and (at
least) at three-loops is integrable. In agreement with the findings of [79] we conclude that
integrability appears to be a consequence of field theory combined with symmetry and
does not depend on the specific model very much. It strongly supports the idea of all-loop
integrability in planar N = 4 SYM. What is more, the dynamic aspects of higher-loop
spin chains appear to be no obstruction. Let us emphasise, though, that a rigorous proof
of higher-loop integrability remains a challenge.

6.1.4 The su(2|3) Sector Revisited

At this point we can reinvestigate the undetermined coefficients of the su(2|3) spin
chain at three-loops, c.f. Sec. 5.5. By imposing

[Q(g),H(g)] = [S(g),H(g)] = O(g6) (6.14)

2Let us emphasise that, even if the table was computed assuming BMN scaling to fix the values of
α1, α3, σ1, σ2, the pairing holds for generic values.
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we found that H4 depends on four relevant coefficients σ1,2,3,4. The coefficients σ3,4 multi-
ply invalid structures, whereas σ1 corresponds to a redefinition of the coupling constant.
The remaining coefficient σ2 multiplies Q4,0 which is structurally equivalent to H4 and
satisfies [J(g),Q4(g)] = 0 as well. In fact, by imposing [Q(g), X(g)] = [S(g), X(g)] = 0
we do not only find H(g), but also all the other even generators Qr(g) of the abelian
algebra of integrable charges u(1)∞. Thus σ2 corresponds to the transformation

H(g) 7→ H(g) + σ2 g
4Q4(g), (6.15)

which has no influence on (6.14) due to [J(g),Qr(g)] = 0. This degree of freedom may be
fixed by considering the anticommutator of supercharges (5.9) at order g6

6∑

k=0

{
(Sk)

α
a, (Q6−k)

b
β

}
= 1

2
δbaδ

α
βH4. (6.16)

Unfortunately, this equation involves Q6,S6 which are part of a four-loop calculation
and out of reach here. We believe that (6.16) will force the coefficient σ2 to vanish,
and in conclusion all corrections up to three loops would be determined uniquely (up
to a redefinition of the coupling constant). At higher loops this picture is expected to
continue: While [Q(g), X(g)] = [S(g), X(g)] = 0 determines the even elements Qr of
u(1)∞, the anticommutator {S(g),Q(g)} yields the one element Q2(g) = H(g) which is
also associated to su(2|3) as the generator D0 + 3

2
g2H(g). It is reasonable to assume that

σ2 may alternatively be fixed by the non-planar algebra where conservation of the charge
Q4 is lost.

Let us comment on the effect of integrability on the degrees of freedom for similar-
ity transformations. Similarity transformations are symmetries of the algebra relations
and thus give rise to undetermined coefficients in the construction of the most general
deformation of generators. In Sec. 5.5 we argued that the coefficients which arise for
the generators Jk are in one-to-one correspondence with the structures that can be used
for the construction of Hk−2, see also Tab. 5.4. However there are also some similarity
transformations which do not change the generators. These are generated by invariant
operators such as H(g) and, to some extent, the length L. In an integrable system there
are more invariant operators: The charges Qr(g). Only the even charges Qr are compati-
ble with the structure of Hk−2. For example, the fourth charge will appear as a symmetry
in Tab. 5.4 starting at sixth order (four-loops).

6.1.5 The Thermodynamic Limit

The thermodynamic limit is the limit in which the length of the spin chain L as well
as the number of excitations is taken to infinity while focusing on the the low-energy
spectrum, c.f. Sec. 4.5. In this limit it was observed that the r-th charge Qr,0 at one-loop
scales as L1−r [68]. Here, we would like to generalise the thermodynamic limit to higher-
loops. From the investigation of the closely related BMN limit (c.f. Sec. 3.6) as well as
from classical spinning strings (c.f. Sec. 4.6), we infer that each power of the coupling
constant g should be accompanied by one power of 1/L. It is common belief that this
scaling behaviour holds for perturbative gauge theory, but it is clearly not a firm fact.
We shall assume its validity for several reasons: Firstly, it was not only confirmed at
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one-loop, but also at two-loops [25, 38]. It is a nice structure and conceptually it would
be somewhat disappointing if broken at some higher loop order. Secondly, the AdS/CFT
correspondence seems to suggest it. Thirdly, it will allow us to define charges uniquely,
see below, and arrive at a unique result in Sec. 6.2.

In conclusion, the scaling of charges in the thermodynamic limit is given by3

Q̃r,k = lim
L→∞

Lk+r−1Qr,k, T̃ (ũ, g̃) = lim
L→∞

T (Lũ, Lg̃). (6.17)

6.1.6 Canonical Charges

As the charges form an abelian algebra, one can replace Qr(g) by some polynomial
Q′
r(g) in the charges without changing the algebra. We will now prove the uniqueness of

the ‘canonical’ set of charges with good structural (c.f. Sec. 6.1.2) and scaling properties
(c.f. Sec. 6.1.5). We will start by assuming that the charges Qr(g) are canonical and show
that we cannot change them without spoiling the one of the properties.

The charges can be written as a local interaction Qr,k =
∑L

p=1Qr,k,p... with the local
charge density Qr,k,p.... A generic polynomial transformation would therefore make Q′

r

multi-local in general. To preserve locality we are restricted to linear transformations
which are generated by

Q′
r(g) = Qr(g) + αr,s,l g

2lQr+2s(g). (6.18)

We now find two constraints on l and s: On the one hand, there is the structural
constraint (6.8) which tells that Q′

r,k can only have 2r + k legs. This requires

l ≥ 2s. (6.19)

On the other hand, a correct scaling in the thermodynamic limit (6.17) requires that Q′
r,k

scales as O(L1−k−r). In order not to spoil scaling, we need

l ≤ s. (6.20)

Together, these two constraints imply l ≤ 0, but we do not allow negative powers of g.
In total we get l = s = 0 or, in other words, Qr can only be rescaled by a constant αr,0,0.
Finally, this constant can be fixed by using the canonical transfer matrix T (u, 0) of the
one-loop spin-chain, c.f. Sec. 4.1.3.

In conclusion, the canonical definition for Qr(g) is unique (if it exists). As H(g) is
subject to the same constraints as Q2(g), both of them must be equal H(g) = Q2(g).

6.2 The su(2) Sector at Higher-Loops

In this section we will construct a model for higher-loop anomalous dimensions in
the su(2) subsector of N = 4 SYM. We will rely on three assumptions on the form
of interactions: (i) Integrability, (ii) the thermodynamic limit and (iii) some constraints
inspired by Feynman diagrammatics. Note that none of these assumptions should be taken

3In the BMN we would account for the finite number of excitations by the slightly modified definitions
Q̂r,k = Lk+rQr,k and T̂ (ũ, g̃) = T (Lũ, Lg̃)L
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as a firm fact. Whether or not they are fully justified in (perturbative) N = 4 SYM will
not be the subject of this chapter, but we believe that the model shares several features
with higher-loop gauge theory and therefore deserves an investigation. Intriguingly, it
will turn out to be unique up to (at least) five-loops and agree with the excitation energy
formula in the BMN limit! At any rate, this makes it a very interesting model to consider
in its own right. With some luck, the assumptions (i-iii) will turn out to be valid for
N = 4 SYM and we have constructed the planar, five-loop4 dilatation generator in the
su(2) subsector.

6.2.1 Interactions

In the su(2) sector, the number of field sites is conserved. In particular, this implies
that odd powers of g are not allowed. Furthermore, rotations are manifestly realised, the
su(2) generators do not receive radiative corrections. Therefore the interactions can only
be of the form (see Sec. 2.6.2) { a1 . . . aE

aπ(1) . . . aπ(E)

}
(6.21)

with π some permutation of E elements.5 Any permutation can be represented in terms
of elementary permutations Pp,p+1 of adjacent fields. A generic term will be written as

{p1, p2, . . .} =
L∑

p=1

Pp+p1,p+p1+1Pp+p2,p+p2+1 . . . . (6.22)

For example, in this notation the one-loop dilatation generator (3.75) is given by

H0 = Q2,0 =
(
{} − {1}

)
. (6.23)

This notation is useful due to the nature of maximal scalar diagrams as discussed at the
end of Sec. 2.5.3: An interaction of scalars at ℓ loops with the maximal number of 2 + 2ℓ
legs can be composed from ℓ crossings of scalar lines. In the planar limit, the crossings
correspond to elementary permutations and at ℓ-loops there should be no more than ℓ
permutations. In field theory this is a feature of maximal diagrams, but here we will
assume the pattern to hold in general. Furthermore, in Sec. 4.1.3 we have learned that
the r-th charge at leading (one-loop) order can be constructed from r − 1 copies of the
Hamiltonian density which, in this case (6.23), is essentially an elementary permutation.
We will therefore assume the contributions to the charges to be of the form

Qr,2ℓ−2 ∼ {p1, . . . , pm} with m ≤ r + ℓ− 2 and 1 ≤ pi ≤ r + ℓ− 2. (6.24)

Finally, the even (odd) charges should be parity even (odd) and (anti)symmetric.6

Parity acts on the interactions as

p {p1, . . . , pm} p−1 = {−p1, . . . ,−pm}, (6.25)

4We disregard wrapping interactions, see Sec. 2.6.3, i.e. this applies only to states of length L ≥ 6.
5Note that we will consider the states to be sufficiently long and drop wrapping interactions

(c.f. Sec. 2.6.3). We will comment on the role of wrappings in Sec. 6.5.4.
6In fact, the Hamiltonian H(g) and charges Qr(g) should be hermitian. The coefficients of the in-

teraction structures should therefore be real (imaginary) for even (odd) r. Reality of the Hamiltonian
follows from the equivalence of the Hamiltonian for the su(2) sector and its conjugate.
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whereas symmetry acts as

{p1, . . . , pm}T = {pm, . . . , p1}. (6.26)

Symmetry will ensure that the eigenvalues of the charges are real.
Note that the interaction symbols are subject to several identities which can be used

to bring them into some normal form. One identity involves a repeated elementary per-
mutation

{. . . , p, p, . . .} = {. . . , . . .}. (6.27)

Another obvious identity

{. . . , p, p′, . . .} = {. . . , p′, p . . .} if |p− p′| ≥ 2 (6.28)

allows to commute two non-overlapping elementary permutations. A third identity is due
to gauge invariance or cyclic invariance of interactions

{p1 + p′, . . . , pm + p′} = {p1, . . . , pm}. (6.29)

Finally, the spin at each site can take two different values and we cannot antisymmetrise
more than two spins. This leads to the the identity

{. . . , p, p± 1, p, . . .} = {. . . , . . .} − {. . . , p, . . .} − {. . . , p± 1, . . .}
+ {. . . , p, p± 1, . . .}+ {. . . , p± 1, p, . . .}. (6.30)

6.2.2 The Higher Charges

We would now like to construct some of the higher charges for the model in Ch. 5
explicitly. Let us start by writing down the Hamiltonian in Tab. 5.2,5.6, restricted to the
su(2) subsector in the notation introduced above

H0 = {} − {1},
H2 = (−2 + 2α3){}+ (3− 2α3){1} − 1

2

(
{1, 2}+ {2, 1}

)
,

H4 =
(

15
2
− 8α3 + σ1 − 2

3
σ2

)
{}+

(
−13 + 12α3 − σ1 + 4

3
σ2

)
{1}+ 1

2
{1, 3}

+
(
3− 2α3 − 1

3
σ2

)(
{1, 2}+ {2, 1}

)
+
(
−1

2
+ 1

3
σ2

)(
{1, 2, 3}+ {3, 2, 1}

)

+
(
−1

3
σ2 − iξ3

)
{2, 1, 3}+

(
−1

3
σ2 + iξ3

)
{1, 3, 2}. (6.31)

Here, we should set σ1 = σ2 = α3 = 0 to obtain the correct scaling behaviour in the ther-
modynamic limit, see Sec. 5.6.1. Furthermore, the coefficient ξ3 is related to a similarity
transformation; it consequently does not affect scaling dimensions and we set it to zero.7

According to Sec. 4.1.3, the leading order third charge is given by

Q3,0 = i
2

(
{1, 2} − {2, 1}

)
. (6.32)

As discussed in Sec. 6.1.4, the leading fourth charge can be read off from H4 as the
structure multiplied by σ2

Q4,0 = −2
3
{}+ 4

3
{1} − 1

3
({1, 2}+ {2, 1})

− 1
3

(
{1, 3, 2}+ {2, 1, 3}

)
+ 1

3

(
{1, 2, 3}+ {3, 2, 1}

)
. (6.33)

7Furthermore, the coefficients of interaction structures can be assumed to be real for the Hamiltonian.
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Both of them commute with H0 and among themselves.
Let us now go ahead and compute the first correction to a higher charge. For Q3,2 the

only suitable structures are ({1, 2} − {2, 1}) and ({1, 2, 3} − {3, 2, 1}). We demand that
Q3(g) commutes with H(g) in perturbation theory

[H0,Q3,2] + [H2,Q3,0] = 0 (6.34)

and find the coefficient of ({1, 2, 3} − {3, 2, 1}) to be fixed to i/2. The coefficient of
({1, 2} − {2, 1}) cannot be determined because this structure is proportional to Q3,0 and
commutes with H0 by construction. We can only fix it by demanding a correct scaling
behaviour in the thermodynamic limit, c.f. Sec. 6.1.5,6.1.6 and obtain

Q3,2 = −2i
(
{1, 2} − {2, 1}

)
+ i

2

(
{1, 2, 3} − {3, 2, 1}

)
. (6.35)

We proceed in the same way to determine the integrable charges Q3,Q4 up to O(g4)
(three-loops). The unique solution with correct scaling in the thermodynamic limit is
presented in Tab. 6.2.

6.2.3 Higher-Loop Construction

Here we would like to construct the most general (i) integrable higher-loop spin chain
with (ii) the proposed scaling in the thermodynamic limit. For that purpose, we make the
most general ansatz for the charges in terms of (iii) permutation symbols {. . .} multiplied
by undetermined coefficients. We then demand that the charges mutually commute and
have the right scaling behaviour in the thermodynamic limit. We will use the computer
algebra system Mathematica to preform all necessary commutators and solve the arising
sets of linear equations to determine the coefficients. Some of the methods used in the
construction are given in App. E. Let us describe the details of our construction of the
integrable model:8

• We make the ansatz that the charges Qr,2ℓ−2 with r even (odd), have even (odd)
parity and are (anti)symmetric. They consist of no more than r + ℓ − 2 elementary
permutations ranging over r + ℓ− 1 adjacent sites, see Sec. 6.2.1.

• We compute the commutator of H and Q3 (up to five-loops). By demanding that it
should vanish, we obtain a set of linear equations among the coefficients. We solve it
for coefficients of Q3 as far as possible, but some equations relate coefficients of Q2

only among themselves.

• Alternatively, we may ignore the charge Q3 and only demand that all pairs in the spec-
trum of H remain degenerate at higher-loops. This yields the same set of constraints
for the coefficients of H (up to four-loops).

• We then compute the commutator of H and Qr (for r = 3, 4 up to ℓ = 4 and for
r = 5, 6 up to ℓ = 2). This constrains most coefficients of Qr and remarkably yields
no new constraints for H.

8We keep track of the number of free coefficients in Tab. 6.4. We shall also indicate in the text at
what loop order ℓ the individual calculations have been performed.
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H0 = +{} − {1},
H2 = −2{}+ 3{1} − 1

2

(
{1, 2}+ {2, 1}

)
,

H4 = +15
2
{} − 13{1}+ 1

2
{1, 3}+ 3({1, 2}+ {2, 1})− 1

2

(
{1, 2, 3}+ {3, 2, 1}

)
,

Q3,0 = + i
2

(
{1, 2} − {2, 1}

)
,

Q3,2 = −2i
(
{1, 2} − {2, 1}

)
+ i

2

(
{1, 2, 3} − {3, 2, 1}

)
,

Q3,4 = +73i
8

(
{1, 2} − {2, 1}

)
− i

4

(
{1, 2, 4}+ {1, 3, 4} − {1, 4, 3} − {2, 1, 4}

)

− 7i
2

(
{1, 2, 3} − {3, 2, 1}

)
− i

8

(
{1, 3, 2, 4} − {2, 1, 4, 3}

)

− i
8

(
{1, 2, 4, 3} − {1, 4, 3, 2}+ {2, 1, 3, 4} − {3, 2, 1, 4}

)

+ 5i
8

(
{1, 2, 3, 4} − {4, 3, 2, 1}

)
,

Q4,0 = −2
3
{}+ 4

3
{1} − 1

3
({1, 2}+ {2, 1})

− 1
3

(
{1, 3, 2}+ {2, 1, 3}

)
+ 1

3

(
{1, 2, 3}+ {3, 2, 1}

)
,

Q4,2 = +5{} − 31
3
{1}+ 2

3
{1, 3}+ 17

6

(
{1, 2}+ {2, 1}

)
+ 11

6

(
{1, 3, 2}+ {2, 1, 3}

)

− 13
6

(
{1, 2, 3}+ {3, 2, 1}

)
− 1

3
{2, 1, 3, 2} − 1

6

(
{1, 3, 2, 4}+ {2, 1, 4, 3}

)

− 1
6

(
{1, 2, 4, 3}+ {1, 4, 3, 2}+ {2, 1, 3, 4}+ {3, 2, 1, 4}

)

+ 1
2

(
{1, 2, 3, 4}+ {4, 3, 2, 1}

)
,

Q4,4 = −63
2
{}+ 401

6
{1} − 20

3
{1, 3} − 5

6
{1, 4} − 77

4

(
{1, 2}+ {2, 1}

)

− 61
6

(
{1, 3, 2}+ {2, 1, 3}

)
+ 1

2

(
{1, 2, 4}+ {1, 3, 4}+ {1, 4, 3}+ {2, 1, 4}

)

+ 83
6

(
{1, 2, 3}+ {3, 2, 1}

)
+ 8

3
{2, 1, 3, 2} − 1

6

(
{1, 2, 4, 5}+ {2, 1, 5, 4}

)

+ 1
6

(
{1, 3, 2, 5}+ {1, 3, 5, 4}+ {1, 4, 3, 5}+ {2, 1, 3, 5}

)

+ 19
12

(
{1, 3, 2, 4}+ {2, 1, 4, 3}

)
+ 1

6

(
{1, 2, 5, 4}+ {2, 1, 4, 5}

)

+ 17
12

(
{1, 2, 4, 3}+ {1, 4, 3, 2}+ {2, 1, 3, 4}+ {3, 2, 1, 4}

)

− 1
6

(
{1, 2, 3, 5}+ {1, 3, 4, 5}+ {1, 5, 4, 3}+ {3, 2, 1, 5}

)

− 19
4

(
{1, 2, 3, 4}+ {4, 3, 2, 1}

)
+ 1

12

(
{1, 4, 3, 2, 5}+ {2, 1, 3, 5, 4}

)

+ 1
12

(
{1, 3, 2, 5, 4}+ {2, 1, 4, 3, 5}

)
+ 1

12

(
{1, 2, 5, 4, 3}+ {3, 2, 1, 4, 5}

)

− 1
6

(
{1, 3, 2, 4, 3}+ {2, 1, 3, 2, 4}+ {2, 1, 4, 3, 2}+ {3, 2, 1, 4, 3}

)

− 1
4

(
{1, 2, 4, 3, 5}+ {1, 3, 2, 4, 5}+ {2, 1, 5, 4, 3}+ {3, 2, 1, 5, 4}

)

− 1
4

(
{1, 2, 3, 5, 4}+ {1, 5, 4, 3, 2}+ {2, 1, 3, 4, 5}+ {4, 3, 2, 1, 5}

)

+ 3
4

(
{1, 2, 3, 4, 5}+ {5, 4, 3, 2, 1}

)
.

Table 6.2: The Hamiltonian H = Q2 and the charges Q3,Q4 at three-loops.
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ℓ 1 2 3 4 5
structures for H2ℓ−2 2 3 6 12 27
integrability 0 0 2 5 17
integrable H2ℓ−2 2 3 4 7 10
structures for T2ℓ−2 0 0 0 1 3
H2ℓ−2 relevant 2 3 4 6 7
propagation 1 2 3 4 5
two-spin interaction 0 0 1 2 2(+1)
remaining d.o.f. 1 1 0 0 0

ℓ 1 2 3 4 5
structures for Q3,2ℓ−2 1 2 6 15 46
integrability 0 1 4 13 43
Q3,2ℓ−2 1 1 2 2 3

structures for Q4,2ℓ−2 6 12 27 63
integrability 3 9 23 59
Q4,2ℓ−2 3 3 4 4

Table 6.4: Number of coefficients for the higher-loop integrable su(2) spin chain

• All the obtained charges Qr commute among themselves without further constraints.
We notice that the remaining degrees of freedom correspond precisely to linear re-
definitions of charges, c.f. the right hand side of Tab. 6.4: We can rescale the charge
Q3 by a function of the coupling constant, this yields one degree of freedom at each
loop order. We may also add g4f(g2)Q5(g) which is structurally equivalent to Q3(g),
this yields one degree of freedom starting from ℓ = 3. For Q4 the story is equivalent.
Here, we can always add the length operator L as well as the the Hamiltonian H or
rescale by a function. This gives three degrees of freedom for all loop orders. Starting
from ℓ = 3 there are further degrees of freedom due to Q6. All in all, this is just the
expected number of coefficients. In the thermodynamic limit (should it exist at all),
all coefficients would be fixed for the canonical charges, see Sec. 6.1.6.

In this way we have established the most general integrable system for the assumed set
of interactions. We conclude that, indeed, the pairing of states appears to be a sufficient
condition for integrability (in this model). Next we would like to impose the thermody-
namic limit. For the thermodynamic limit we make use of two processes: Propagation
of a single excitation and interaction of two excitations. These should yield the correct
scaling behaviour at each loop order.

• In Sec. 3.6 we have seen that the planar one-loop dilatation operator acts on the
position of a single excitation as a lattice Laplacian �. The resulting eigenstates are
Fourier modes. The lowest, non-zero eigenvalue of the Laplacian is proportional to
1/L2, exactly the right behaviour for H0. Due to the form of the interaction, H2ℓ−2

must act as a polynomial in � of degree ℓ. For the correct scaling behaviour, 1/L2ℓ,
all terms �

k with k < ℓ should be absent. In general, this determines ℓ coefficients,
see Tab. 6.4. We shall not fix the coefficient of �

ℓ although the quantitative BMN
excitation energy formula H(g) = (

√
1− 2g2�− 1)/g2 predicts it

H2ℓ−2 ∼ −2−ℓ−1Cℓ−1�
ℓ (6.36)

with Ck = (2k)!/k!(k+1)! the Catalan numbers governing the expansion of the square
root.

• The interaction of two excitations is a more delicate issue, it is obtained by acting
with H2ℓ−2 on two excitations and subtracting the contribution from the propagation
of the individual excitations. The remainder can only be non-zero if both excitations
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are close (the distance depends on the loop order), in other words the remainder is
a contact interaction. This interaction must also be suppressed by sufficiently high
powers of 1/L.

Let us investigate the first order effect of the contact term for states with only two
excitations, see Sec. 5.6.3. The first order is determined by diagonal scattering, we
therefore compute the matrix element of O0,n going into itself. First of all, this is sup-
pressed by 1/L due to phase space considerations. Furthermore, there is a suppression
of n2n′ 2/L4 for the process O0,n → O0,n′. This is due to the zero mode state O0,0 which
must be annihilated and can never be produced. In total there is a suppression of 1/L5

for the contact term, this is sufficient for ℓ = 2. Starting from three-loops, the contact
term may violate the scaling behaviour and there will be additional constraints. At
three-loops a single constraint is enough to remove terms of order 1/L5. At four-loops
we need to remove terms of orders 1/L5 and 1/L7 yielding two constraints. At ℓ = 5
there are three constraints, but only two independent coefficients which may influence
the scaling behaviour. Miraculously, the three constraints seem to be degenerate such
that the scaling in the thermodynamic limit appears to be fine at five-loops.

To impose the constraints is not a trivial task.9 The problem is that also iterated
contact terms of perturbation theory may violate the scaling in the thermodynamic
limit. These must be cancelled by higher order contact terms. We will therefore
consider only states with exactly two excitations for which closed expression can be
found. We will assume that the conjectured energy formula (5.107) holds to all orders.
We will then compute the energies of several two-excitation states at higher-loops and
match them with the formula. This can only be possible if a qualitative BMN limit
exists and the coefficients are adjusted such that Hamiltonian provides the correct
scaling.

• At this point nearly all relevant coefficients are fixed. However, starting at four-
loops, there are some free coefficients left which have no influence on the scaling
dimensions. These are due to the freedom to rotate the space of states with an
orthogonal transformation generated by an antisymmetric operator A. For the four-
loop interactions there is precisely one antisymmetric operator A6, it happens to be
proportional to [Q2,0,Q2,2]. It gives rise to the following similarity transformation

Qr(g) 7→ exp(αg6A6)Qr(g) exp(−αg6A6). (6.37)

The leading term in H = Q2 due to the transformation is

H6 7→ H6 + α[A6,H0]. (6.38)

Consequently, the eigenvalues of H(g) are not changed and α only affects the eigen-
vectors. Similarly, at five-loops there are three even antisymmetric operators for the
construction of A8.

There are some interesting points to be mentioned regarding this solution. First of all,
integrability and the thermodynamic limit fix exactly the right number of coefficients for

9It would be interesting to find a general criterion which determines whether an interaction of two or
more excitations has the correct scaling or not.



6.3 Spectrum 161

a unique solution. For this solution, the contribution δÊ of one excitation to the energy
in the BMN limit is given by (recall that ĝ2 = g2/J2 = λ′/8π2 and D = D0 + ĝ2Ê)

δÊn =
c1
ĝ2

(√
1 + c2 8π2n2ĝ2 − 1

)
+O(g10) (6.39)

The constants c1, c2 correspond to symmetries of the equations, they can therefore not
be fixed by algebraic arguments. We will set them to their physical values, c1 = c2 = 1.
It is interesting to observe that the BMN quantitative square-root formula for the energy
of one excitation is predicted correctly; we have only demanded that the thermodynamic
(i.e. qualitative BMN limit) limit exists. Finally, let us mention that the three-loop
contribution agrees precisely with the calculation of Ch. 5. For the physical choice of
c1, c2 we present the four-loop and five-loop contribution to the Hamiltonian in Tab. 6.6.

6.3 Spectrum

We can now apply the higher-loop integrable Hamiltonian to obtain some energies. In
addition we can evaluate the integrable charges on the eigenstates of the Hamiltonian.

6.3.1 Lowest-Lying States

In preparation for the next section, it will be helpful to know the spectrum of lowest-
lying modes for our spin chain. To obtain a matrix representation for the operators,
we have used standard higher order quantum mechanical perturbation theory. We have
applied the Hamiltonian H and charges Q3,Q4 up to four-loops to all states with a
given length L and number of excitations K. The computations were performed using
the routines in App. E. Then, the leading order energy matrix was diagonalised to
obtain the leading order energy eigenvalues. Next, the off-diagonal terms at higher-loops
were removed iteratively by a sequence of similarity transformations, see also Sec. 5.6.2.
Afterwards, the Hamiltonian is diagonal and we can read off the energy eigenvalues. The
same similarity transformations which were used to make H diagonal also diagonalise
Q3,Q4 and we may read off their eigenvalues.

We present our findings up to L = 8 in Tab. 6.8 (we omit the protected states with
K = 0) which is read as follows: For each state there is a polynomial and we write down
the coefficients up to O(g8) and O(x2). For single states the polynomial X(x, g) equals
simply

X(x, g) = E(g) + x2Q4(g). (6.40)

If there is more than one state transforming in the same representation, the eigenvalues
are solutions to algebraic equations. These could be solved numerically, here we prefer to
state the exact algebraic equation in terms of a polynomial X(ω, x, g) of degree k − 1 in
ω (k is also the number of lines in one block, one for each coefficient of the polynomial).
The energy and charge eigenvalues are determined through the formula

ω = E(g) + xQ3(g) + x2Q4(g), ωk = X(ω, x, g). (6.41)

At first sight the terms linear in x may appear spurious and the corresponding charge
Q3(g) would have to be zero. For unpaired states with non-degenerate Q2(g) this is true,
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H6 = −35{}+
(
67 + 1

2
α
)
{1}+

(
−21

4
− 1

4
α
)
{1, 3} − 1

4
{1, 4}

+
(
−151

8
− 1

2
α
)(
{1, 2}+ {2, 1}

)
+ 1

4
α
(
{1, 3, 2}+ {2, 1, 3}

)

+ 1
4

(
{1, 2, 4}+ {1, 3, 4}+ {1, 4, 3}+ {2, 1, 4}

)
+
(
6 + 1

4
α
)(
{1, 2, 3}+ {3, 2, 1}

)

+
(
−3

4
− 1

4
α
)
{2, 1, 3, 2}+

(
9
8

+ 1
4
α
)(
{1, 3, 2, 4}+ {2, 1, 4, 3}

)

+
(
−1

2
− 1

8
α
)(
{1, 2, 4, 3}+ {1, 4, 3, 2}+ {2, 1, 3, 4}+ {3, 2, 1, 4}

)

− 5
8

(
{1, 2, 3, 4}+ {4, 3, 2, 1}

)
,

H8 = +
(

1479
8

+ 1
4
α
)
{}+

(
−1043

4
− 3

4
α− 2β2 − β3

)
{1}

+
(
−19 + 5

8
α + 4β1 + β2 + 1

2
β3

)
{1, 3}+

(
5− 4β1 − 4β2

)
{1, 4}+ 1

8
{1, 5}

+ β3

(
{1, 2}+ {2, 1}

)
− 1

4
{1, 3, 5}+

(
251
4

+ β2 − 1
2
β3

)(
{1, 3, 2}+ {2, 1, 3}

)

+
(
−3 + 2β2

)(
{1, 2, 4}+ {1, 3, 4}+ {1, 4, 3}+ {2, 1, 4}

)

− 1
8

(
{1, 2, 5}+ {1, 4, 5}+ {1, 5, 4}+ {2, 1, 5}

)

+
(

41
4

+ 1
4
α+ 3β2 − 1

2
β3

)(
{1, 2, 3}+ {3, 2, 1}

)

+
(
−107

2
− 1

8
α + β2 + 1

2
β3

)
{2, 1, 3, 2}

+
(

1
4
− β1

)(
{1, 3, 2, 5}+ {1, 3, 5, 4}+ {1, 4, 3, 5}+ {2, 1, 3, 5}

)

+
(

183
4

+ 2β1 − β2 − 1
2
β3

)(
{1, 3, 2, 4}+ {2, 1, 4, 3}

)

+
(
−3

4
+ 2β1

)(
{1, 2, 5, 4}+ {2, 1, 4, 5}

)
+
(
1− 2β1

)(
{1, 2, 4, 5}+ {2, 1, 5, 4}

)

+
(
−51

2
− 1

4
α− β1 − 5

2
β2 + 1

4
β3

)(
{1, 2, 4, 3}+ {1, 4, 3, 2}+ {2, 1, 3, 4}+ {3, 2, 1, 4}

)

+ β1

(
{1, 2, 3, 5}+ {1, 3, 4, 5}+ {1, 5, 4, 3}+ {3, 2, 1, 5}

)

+
(

35
4
− 2β2

)(
{1, 2, 3, 4}+ {4, 3, 2, 1}

)

+
(
−7

8
− 1

4
α− 2β2

)(
{1, 4, 3, 2, 5}+ {2, 1, 3, 5, 4}

)

+
(

1
2

+ 1
8
α
)(
{1, 3, 2, 5, 4}+ {2, 1, 4, 3, 5}

)

+
(

5
8

+ 1
8
α + β2

)(
{1, 3, 2, 4, 3}+ {2, 1, 3, 2, 4}+ {2, 1, 4, 3, 2}+ {3, 2, 1, 4, 3}

)

+
(

1
4

+ 1
8
α + 2β2

)(
{1, 2, 5, 4, 3}+ {3, 2, 1, 4, 5}

)

+
(

1
4
− β2

)(
{1, 2, 4, 3, 5}+ {1, 3, 2, 4, 5}+ {2, 1, 5, 4, 3}+ {3, 2, 1, 5, 4}

)

+ β2

(
{1, 2, 3, 5, 4}+ {1, 5, 4, 3, 2}+ {2, 1, 3, 4, 5}+ {4, 3, 2, 1, 5}

)

− 7
8

(
{1, 2, 3, 4, 5}+ {5, 4, 3, 2, 1}

)

Table 6.6: Four-loop and five-loop contributions to the Hamiltonian.
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L K P g0x0 g2x0 g4x0 g6x0 g0x2 g2x2 g4x2 g6x2

4 2 + +6 −12 +42 ∗ +0 ∗ ∗ ∗
5 2 − +4 −6 +17 −115

2
+8

3
−8 ∗ ∗

6 2 + +10ω −17ω +117
2
ω −1037

4
ω −10

3
ω +30ω −381

2
ω ∗

−20 +60 −230 +1025 +0 −140
3

+420 ∗
6 3 − +6 −9 +63

2
−621

4
−6 +36 +0 ∗

7 2 − +2 −3
2

+37
16

−283
64

+4
3

−5
2

+81
16

−707
64

7 2 − +6 −21
2

+555
16

−8997
64

+0 +9
2

−513
16

+11907
64

7 3 ± +10ω −15ω +50ω −875
4
ω −10

3
ω +25ω −285

2
ω +1615

2
ω

−25 +75 −1225
4

+5875
4

+245
12

−180 +28145
24

−86875
12

8 2 + +14ω2 −23ω2 +79ω2 −349ω2 −14
3
ω2 +39ω2 −250ω2 +4691

3
ω2

−56ω +172ω −695ω +3254ω +56
3
ω −700

3
ω +5258

3
ω −11822ω

+56 −224 +966 −4585 −0 +168 −5054
3

+38269
3

8 3 − +6 −9 +33 −162 −6 +33 −192 +1191

8 3 ± +8ω −10ω +28ω −102ω +4
3
ω −2ω +4ω −26

3
ω

−16 +40 −137 +548 −4
3

−40
3

+328
3

−1948
3

8 4 + +20ω2 −32ω2 +112ω2 −511ω2 −32
3
ω2 +72ω2 −442ω2 +8264

3
ω2

−116ω +340ω −1400ω +6938ω +392
3
ω −3100

3
ω +20708

3
ω −45348ω

+200 −800 +3600 −18400 −320 +2800 −58400
3

+389680
3

Table 6.8: Four-loop energies and charges Q3,4. See Sec. 6.3.1 for an explanation.

but not so for pairs of degenerate states. Then the solution of the algebraic equation leads
to terms of the sort

√
0 + x2 = ±x, where the 0 is meant to represent the degeneracy.

Note that for some states the interaction is longer than the state. In such a case, indicated
by ∗ in the table, we do not know the energy/charge eigenvalue, see also Sec. 6.5.4.

6.3.2 Two Excitations

Now that the Hamiltonian is known up to five loops, we may continue the analysis of
the two-excitation states in Sec. 5.6.3. In principle, we should diagonalise the energy in
perturbation theory, however, this is very labourious. Instead we will assume the all-loop
formula (5.107) to be correct and match the coefficients to sufficiently many two-excitation
states.10 When the coefficients have been determined, we may compare the formula to
further states and find agreement. We take this as compelling evidence that the obtained
formula and coefficients are indeed correct. We present a summary of findings in Tab. 6.10.

An application of the exact energies of two-excitation operators is the near BMN limit
of O(1/J) corrections. Some inspired guessing yields an all-loop expression for the near
BMN limit which agrees with Tab. 6.10 at five-loops

DJ
n = J + 2

√
1 + λ′ n2 − 4λ′ n2

J
√

1 + λ′ n2
+

2λ′ n2

J(1 + λ′ n2)
+O(1/J2). (6.42)

10In fact, the five-loop coefficients have been obtained in a more convenient way, see Sec. 6.4.2.
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DJ
n = J + 2 +

∞∑

ℓ=1

(
g2

YM
N

π2
sin2 πn

J + 1

)ℓ(
cℓ +

ℓ−1∑

k,l=1

cℓ,k,l
cos2l πn

J+1

(J + 1)k

)
,

c1 = +1,

c2 = −1

4
, c2,1,1 = −1,

c3 = +
1

8
, c3,k,l =

(
+3

4
+1

2

−3
4

+5
2

)
,

c4 = − 5

64
, c4,k,l =




−5

8
− 5

12
−1

3

+3
4
−7

4
−7

2

−1
2

+59
12
−49

6



 ,

c5 = +
7

128
, c5,k,l =





+35
64

+35
96

+ 7
24

+1
4

−45
64

+185
96

+131
48

+33
8

+5
8
−125

24
−13

24
+81

4

− 5
16

+305
48
−1319

48
+243

8



 .

Table 6.10: Planar scaling dimension of two-excitation states.

The first 1/J term can be regarded as a renormalisation of the term λ′n2 in the first square
root. For instance, we might replace J in the definition of λ′ by L = J + 2 to absorb the
second term into the leading order energy. Incidentally, this yields precisely the coupling
constant g̃ = g/L for the thermodynamic limit (see Sec. 6.4.3). Unfortunately, as we have
seen in Sec. 5.6.3, this formula does not agree with the expression for the near plane-wave
limit (5.111) derived in [88]

DJ
n = J + 2

√
1 + λ′ n2 − 2λ′ n2

J
+O(1/J2). (6.43)

A curious observation is that the coefficient cℓ,1,1 equals 2ℓcℓ. At order 1/J , it cancels
the effect of the expansion of the leading order sine. Only at one-loop there is no cℓ,1,1 to
cancel 2c1. We find exactly the string theory prediction when we set cℓ,1,l = 0 for l > 1.

6.3.3 Three Excitations

Let us continue the analysis of unpaired three-excitation states at higher loops. We
find for the scaling dimensions

D = 2,

D = 4 + 6g2 − 12g4 + 84
2
g6 + . . . ,

D = 6 + 6g2 − 9g4 + 63
2
g6 − 621

4
g8 + 7047

8
g10 + . . . ,

D = 8 + 6g2 − 9g4 + 66
2
g6 − 648

4
g8 + 7212

8
g10 + . . . ,

D = 10 + 6g2 − 9g4 + 66
2
g6 − 645

4
g8 + 7179

8
g10 + . . . ,

D = 12 + 6g2 − 9g4 + 66
2
g6 − 645

4
g8 + 7182

8
g10 + . . . ,

D = 14 + 6g2 − 9g4 + 66
2
g6 − 645

4
g8 + 7182

8
g10 + . . . ,

. . . , (6.44)
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where we have added the dimension-two half-BPS state and a Konishi descendant which
appear to be the natural first two elements of this sequence. Note that the exact one-loop
form of the eigenstates is corrected at higher-loops.

We observe that all corrections Dk to the scaling dimensions below the ‘diagonal’
k ≤ L− 2 , are equal. Incidentally, the coefficients agree with the formula

D(g) = L+
(√

1 + 8g2 − 1
)

+
(√

1 + 2g2 − 1
)

+
(√

1 + 2g2 − 1
)
. (6.45)

We may interpret the three terms in parenthesis as the energies of the three excitations.
Then this form can be taken as a clear confirmation of an integrable system with elastic
scattering of excitations.

Only if the loop order is at least half the classical dimension at O(gL) the pattern
breaks down. Interestingly, if the loop order is exactly half the classical dimension, the
coefficient is decreased by 3 · 22−ℓ. It would be of great importance to understand the
changes further away from the diagonal. This might provide us with clues about wrapping
interactions, which, in the above example, obscure the scaling dimension of the Konishi
state beyond three-loops.

For completeness, we state a similar all-loop conjecture for the higher charges [89] to
generalise (4.98)

Qr(g) =
i

r − 1

(
1 + (−1)r

(
i
4

+ i
4

√
1 + 8g2

)r−1 +
1 + (−1)r

(
i
2

+ i
2

√
1 + 2g2

)r−1

)

. (6.46)

Note that Qr is accurate only up order gL−2−r. The corresponding transfer matrix, to be
compared to the one-loop counterpart (4.97), is

T (x, g) =
x−

(
i
4

+ i
4

√
1 + 8g2

)

x+
(
i
4

+ i
4

√
1 + 8g2

)
x−

(
i
2

+ i
2

√
1 + 2g2

)

x+
(
i
2

+ i
2

√
1 + 2g2

) + . . . . (6.47)

Here we have used the symbol x instead of u for the spectral parameter; the reason will
become more apparent in the next section.

6.4 Long-Range Bethe Ansatz

In Sec. 6.2 we have investigated the su(2) subsector up to five-loops assuming that
higher-loop integrability holds and that the thermodynamic limits exists. Remarkably,
these requirements were sufficient to obtain a unique system! For an integrable system we
might hope for a Bethe ansatz to describe the energy eigenvalues. Serban and Staudacher
have shown that the Inozemtsev long-range spin chain and associated asymptotic Bethe
ansatz [78] can be used to reproduce this model up to three-loops [87]. At four-loops
there is, however, a fundamental difference and the scaling in the thermodynamic limit
breaks down in the Inozemtsev chain. In this context, asymptotic refers to the fact that
the Bethe ansatz is only reliable up to L loops, where L is the length of the chain.

6.4.1 Ansatz

Without further ado, let us write down an ansatz [89] to reproduce the results of
the previous section. The universal Bethe equations are the same as for the Inozemtsev
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chain [78] proposed in [87]

PL(uk − i
2
)

PL(uk + i
2
)

=

K∏

l=1
l 6=k

uk − ul − i
uk − ul + i

. (6.48)

Here we use the Bethe roots uk instead of momenta pk as the fundamental variables,
see [89] for a description of the transformation. The precise model is specified by the
function PL(u). For the model derived in Sec. 6.2 we suggest11

PL(u) = x(u)L +

(
g2

2x(u)

)L
(6.49)

with the function x(u) defined as12

x(u) = 1
2
u+ 1

2
u
√

1− 2g2/u2 . (6.50)

This relation is the main difference to the Inozemtsev chain. Inspired by the findings of
Sec. 6.3.3 we propose the energy to be given by

E =

K∑

k=1

(
i

x(uk + i
2
)
− i

x(uk − i
2
)

)
+O(g2L−2), D = L+ g2E. (6.51)

The unknown terms of order g2L−2 are related to the asymptotic nature of our Bethe
ansatz.

Furthermore, the charges are apparently given by

Qr =
K∑

k=1

i

r − 1

(
1

x(uk + i
2
)r−1
− 1

x(uk − i
2
)r−1

)
+O(g2L−2r+2). (6.52)

They can be summed up into a transfer matrix

T (x) = U exp

∞∑

r=2

iur−1Qr + . . . =

K∏

k=1

x− x(uk + i
2
)

x− x(uk − i
2
)

+ . . . , (6.53)

where the dots indicate further possible terms like xL or g2L which cannot be seen for
the lower charges or at lower loop orders. The transfer matrix at u = 0 gives the shift
eigenvalue

1 = U = T (0) =

K∏

k=1

x(uk + i
2
)

x(uk − i
2
)

(6.54)

which should equal U = 1 for gauge theory states with cyclic symmetry.

11The alternative model specified by P ′
L(u) = x(u)L is equivalent to our model at the desired accuracy.

Beyond that order, one of the two functions might be preferred, but probably the model changes sub-
stantially. For the singular solutions in Sec. 4.4.3, the simplified, non-polynomial function P ′

L(u) leads to
problems due to overlapping divergencies.

12At g = 0 we reproduce the one-loop Bethe ansatz.
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The function PL(u) is indeed a polynomial of degree L in u, which can be derived from
the inverse of (6.50)

u(x) = x+
g2

2x
. (6.55)

Therefore, the equation (6.48) is the Bethe equation of an inhomogeneous spin chain, see
Sec. 4.1.2 and [59]. The polynomial can be factorised and we obtain for the inhomo-
geneities vp

PL(u) =
L∏

p=1

(u− vp) with vp =
√

2 g cos
π(2p− 1)

2L
. (6.56)

Now it can be noticed that the physical transfer matrix T (x) is not the natural transfer
matrix T ′(u) associated to the inhomogeneous spin chain

T ′(u) =
K∏

k=1

u− uk − i
2

u− uk + i
2

+
PL(u)

PL(u+ i)

K∏

k=1

u− uk + 3i
2

u− uk + i
2

. (6.57)

The Bethe equations follow from this transfer matrix by cancellation of poles at uk − i
2
.

The charges Q′
r derived from T ′(u) are given as in (4.54). In perturbation theory we can

relate these charges to the physical charges Qr by

Qr = Q′
r + 1

2
(r + 1)g2Q′

r+2 + 1
8
(r + 2)(r + 3)g4Q′

r+4 + . . . . (6.58)

Let us first of all comment on the inhomogeneity. Our spin chain is homogeneous,
how can the Bethe ansatz of an inhomogeneous spin chain describe our model? First
of all, the equation (6.58) is merely an eigenvalue equation, it does not directly relate
the homogeneous and inhomogeneous charges, Qr and Q′

s; it merely tells us that there
is a similarity transformation between the two. Similar maps are encountered within the
inhomogeneous spin chain itself: On the one hand, the order of the inhomogeneities vp
does not matter for the Bethe ansatz and thus for the eigenvalues Q′

r of the charges. On
the other hand, it should certainly influence the charge operators Q′

r. Consequently, the
eigenstates should be related by a similarity transformation.13 To understand our model
better, it would be essential to investigate this point further and find the map between
our homogeneous spin chain model and the common inhomogeneous spin chain.

In our equations, the map between x and u (6.50,6.55) plays a major role. It is a
double covering map, for every value of u there are two corresponding values of x, namely

u←→
{
x,
g2

2x

}
. (6.59)

For small values of g, where the asymptotic Bethe ansatz describes the long-range spin
chain, we will always assume that x ≈ u. When g is taken to be large (if this makes
sense at all is a different question), however, special care would be needed in selecting the
appropriate branch. The double covering map for x and u has an analog for the transfer
matrices T (x) and T ′(u). We find the relation

T (x)T (g2/2x)

T (0, g)
≈ T ′(u). (6.60)

13The inhomogeneities vp and vp+1 can be interchanged by conjugation with Rp,p+1(vp − vp+1).
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which holds if the second term in (6.57) is dropped. It can be proved by using the double
covering relation

(x− x′)
(

1− g2

2xx′

)
=

(
x+

g2

2x

)
−
(
x′ +

g2

2x′

)
= u− u′. (6.61)

We believe it is important to further study the implications of the double covering maps.
This might lead to insight into the definition of our model, possibly even beyond wrapping
order.

Now we have totally self-consistent Bethe equations with associated transfer matrix
elements T ′(u). Unfortunately, T ′(u) does not directly describe physical quantities, such
as the energy E. These are encoded in the physical transfer matrix elements T (x) which
involve the function x(u) and are ambiguous due to the two branches of the square root.
This is not a problem in perturbation theory, however, even there inconsistencies are
observed at higher order in g [89]. Remarkably, these appear precisely at the order
where wrapping interactions start to contribute and our asymptotic Bethe ansatz is fully
consistent to the desired accuracy. Conversely, there are signs of the missing of wrapping
terms. We hope that finding a cure for the problems beyond wrapping order might
help to find a generalization of the Bethe equations which include wrapping interactions.
Presumably these equations will have a substantially different form, see Sec. 6.4.4.

6.4.2 Results

Here we summarise the results of a comparison of the above Bethe ansatz with the
spectrum of the spin chain model. For the details of the comparison we refer the reader
to the article [89].

• The energy of states with two excitations agrees with the formula given in Tab. 6.10.
In fact, the five-loop result was obtained using the Bethe ansatz, where this is a
straightforward task. It was shown to agree with the model in a number of cases.
Furthermore, it is possible to derive all-loop results in the near BMN limit. The
energy as an analytic function in λ′ is indeed given by the conjectured formula (6.42).

• The general BMN energy formula (3.99,3.98) is easily confirmed.

• The unpaired three-excitation states are singular. We can treat these solutions by
demanding cancellation of singularities in the transfer matrix T ′(u). Remarkably, the
results agree with their respective mirror solutions, see Sec. 4.3.1. These have L − 2
excitations instead of 3 and are regular. Up to L = 10 their energies do agree with
(6.44).

• All states with L ≤ 8 and all unpaired ones with L ≤ 10 have been computed in the
Bethe ansatz. Their energies agree with Tab. 6.8.

• We have also compared some higher charges of the Bethe ansatz with the corresponding
explicit computations. They agree.

In conclusion, we can say that for all considered examples, the Bethe ansatz yields
precisely the same spectrum as the integrable spin chain model constructed in Sec. 6.2.
It shows that an integrable spin chain with a well-defined thermodynamic limit (see
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Sec. 6.1.5) is very likely to exist in contrast to the doubts raised in [87]. In terms of
the long-range Bethe ansatz there may seem to be many such models. These would
be obtained by replacing the phase relation (6.49) and energy formula (6.51) by some
other function that is well-behaved in the limit. If we however demand that the model
is related to an inhomogeneous spin chain, we find a unique model with thermodynamic
scaling behaviour, see [89] for details.

The upshot for the integrable spin chain model is similar: In its construction we have
assumed a very specific form of interactions and the obtained Hamiltonian has turned
out to be unique (at five loops). In other words, the very relations (6.49,6.51) are special
and correspond to the assumed form of interactions (iii).14 At any rate, the relations
(6.49,6.51) are very suggestive in view of a correspondence to string theory on plane waves,
see Sec. 3.6. It is therefore not inconceivable, that the Bethe ansatz indeed describes planar
N = 4 gauge theory in the su(2) subsector at higher-loops.

6.4.3 The Thermodynamic Limit

Here we shall only present the thermodynamic limit of the equations in (6.4.1). The
overall structure is the same as described in Sec. 4.5 only that we now introduce depen-
dence on the effective coupling constant

g̃ = g/L. (6.62)

An application and sample calculation is found in [89].
As before, we shall assume that the roots ũk = uk/L condense on a disconnected

contour C in the complex plane with density function ρ(ũ). The density is again normalised
by the total filling fraction K̃ = K/L

∫

C
dũ ρ(ũ) = K̃. (6.63)

We find for the energy and the momentum constraint
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, (6.64)

with the map between x̃ and ũ is given by15

x̃(ũ) = 1
2
ũ+ 1

2
ũ
√

1− 2g̃2/ũ2 , ũ(x̃) = x̃+
g2

2x̃
, (6.65)

whereas the higher-loop generalisation of the Bethe equation reads
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√

1− 2g̃2/ũ2
= 2 −

∫
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dṽ ρ(ṽ)

ṽ − ũ . (6.66)

In the thermodynamic limit, the physical charges and resolvent are given by

Q̃r =

∫
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√
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ũ
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x̃(ũ)− x̃ . (6.67)

14This picture is rather similar to the Inozemtsev spin chain where the requirement of pairwise inter-
actions of spins at a distance was shown to lead to the phase relation of the Inozemtsev-Bethe ansatz.

15Note the useful identity x̃− g2/2x̃ = ũ
√

1− 2g̃2/ũ2 .
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As in the one-loop case, the Bethe equation (6.66) can alternatively be written as a
consistency condition on the singular transfer matrix T̃ ′(ũ) ∼ 2 cosG′

sing(ũ) with

G′
sing(ũ) = G′(ũ) +

1

2ũ
√

1− 2g̃2/ũ2
and G′(ũ) =

∫

C

dṽ ρ(ṽ)

ṽ − ũ . (6.68)

The function 2 cosG′
sing(ũ) is single-valued if it obeys (4.113)

G′
sing(ũ+ iǫ) +G′

sing(ũ− iǫ) = 2πnũ (6.69)

across a cut of G′ at ũ. At this point, it is however not clear how the physical transfer
matrix T̃ (x) is related to the physical resolvent G(x) and if there is also a consistency
requirement which leads to the Bethe equations. This is largely related to mirror cuts in
T̃ (g̃2/2x̃) which are due to the double covering map (6.61).

6.4.4 Bethe Ansätze for Bigger Subsectors

The Bethe ansatz has proved to be a very powerful tool in obtaining the spectrum at
high loop orders. It would therefore be extremely interesting and important to generalise
it to bigger subsectors than the su(2) subsector, preferably to the complete psu(2, 2|4)
spin chain. Despite some attempts we have not succeeded in finding suitable equations
beyond the su(2) sector.16 We would thus like to present a number of considerations for
the construction of a complete all-loop Bethe ansatz.

• The most important issue seems to be multiplet shortening, see also Sec. 1.8,4.3.5.
The spectrum contains a number of multiplets which are short in the free theory. A
short multiplet cannot acquire an anomalous dimension (energy) unless it combines
with other short multiplets to form a long one (in analogy to the Higgs mechanism).

The one-loop Bethe ansatz was not constructed to respect multiplet joining, never-
theless it does display this feature. For all short, non-protected multiplets compatible
short multiplets can be found. All of these have not only equal anomalous dimension
but also equal higher charges so that they can join in the interacting theory. The
one-loop Bethe ansatz has a solution for all highest-weight states of the multiplets. In
particular, there are multiple solutions for splitting multiplets. At higher-loops these
multiplets join, consequently the complete Bethe ansatz should only find the highest
weight of the long multiplet. The highest weights of the submultiplets should not
generalise or display some other kind of inconsistency beyond one-loop.

• There is another issue related to multiplet shortening. The Bethe ansatz not only
yields solutions corresponding to gauge theory states, but also solutions with non-zero
momentum, U 6= 1. A naive generalisation to higher-loops would also produce these
states. This, however, would be inconsistent for a simple reason: Short multiplets in
the non-zero momentum sector generically do not have suitable partners to join up.
Let us consider the state

|X〉 = |Zφ〉 − |φZ〉. (6.70)

This state does not obey the momentum constraint, i.e. Tr |X〉 = 0 or U|X〉 = −|X〉.
It is not physical, but nevertheless reproduced by the Bethe ansatz. Its Dynkin labels

16In the thermodynamic limit there are simplifications which allow to guess the Bethe equations [132].
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are [0; 0; 1, 0, 1; 0; 0], it is the primary of a BPS multiplet. In principle this multiplet
could join with another short multiplet of lower dimension to form a long one. Here
this is not possible, there are no potential partners. Consequently, this multiplet
would have to be protected, but a direct computation using the one-loop Hamiltonian
or Bethe ansatz yields E = 4 which is inconsistent. A prospective Bethe ansatz should
take this into account and exclusively yield solutions with zero momentum.

• There is a complication which applies to non-compact and supersymmetric represen-
tations: The Dynkin labels r, r1, r2 contain the anomalous dimension δD and thus
change with g. For the Bethe ansatz, the labels also specify the number of excitations
for any given state (c.f. Sec. 4.3.4) which certainly must be positive integers. It is
not clear if and how these two points can be combined. If possible, it is reasonable
to believe that the Bethe equations will be a self-consistency equation on the energy
(this is somewhat similar to the integral equations which appear in string theory [75]).
In perturbation theory at each order, the corrected energy would have to be used as
input for the next order.

• The length L and hypercharge B are not good quantum numbers in dynamic spin
chains. However, they are also used as input for the Bethe equations, see Sec. 4.3.4.
It is not clear how to identify states when L and B cannot be fixed; ideally the Bethe
ansatz for a dynamic spin chain should not distinguish between states with different
L,B.

All in all this suggests that the prospective all-loop psu(2, 2|4) Bethe ansatz, if it exists,17

has a rather different structure than the one-loop approximation. Even more, the one-
loop ansatz might turn out not to be a smooth limit of it. This could indeed be a blessing
in disguise because a substantially different Bethe ansatz might allow for the inclusion of
wrapping interactions, see Sec. 6.5.4 or even incorporate them naturally.

The arguments presented above do not apply to the su(2) subsector because there is
no multiplet shortening and the su(2) labels are not affected by the anomalous dimension.
This explains why it was relatively easy to find our all-loop generalisation.

For a generalisation one might take a more pragmatic point of view and merely consider
the classical algebra as the symmetry algebra. All classical representation labels would
be perfectly well-defined and integer. The Bethe ansatz should yield some energies which
we interpret as the corrections to the scaling dimensions. It would then be essential that
all submultiplets have precisely the same energy and charges. Solutions with non-zero
momentum would have to be ignored. The only shortcoming of such an ansatz would be
that it does not explain the truly interacting structure of the algebra.

6.5 Stringing Spins at Higher Loops

Now that we have a Bethe ansatz for higher-loop scaling dimensions we may continue
the comparison of spinning strings and gauge theory started in Sec. 4.6.

17Given that N = 4 SYM is likely to be an integrable model, even beyond one-loop, we can hope for
some associated Bethe ansatz.
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6.5.1 Spinning out of Control

The first steps in this direction have been performed in [87] using the Inozemtsev
spin chain, which is consistent with the results of the previous and current chapter up to
three-loops. Further progress was made in [75, 70, 89]. Here we shall only summarise the
results.

In the thermodynamic limit the perturbative Bethe equations reduce to expressions
similar to the ones given in Sec. 4.5, but with a few additional g-dependent terms,
c.f. Sec. 6.4.3. These terms modify the solution in two ways. On the one hand, the
contour will experience a perturbative deformation and, on the other hand, the energy
formula receives radiative corrections. Together, these determine the higher-loop contri-
butions to the energy, either implicitly or explicitly. It was then found that the two-loop
correction indeed coincides with the prediction from string theory [87]. Moreover the
higher charges do agree [70]. This result was subsequently generalized to all solutions
within the su(2) subsector by comparing their Bethe ansätze [75, 89].

Interestingly, the agreement does not persist at the three-loop level [87]. One might
argue that this due to a flawed gauge theory Hamiltonian. Although this is a possibility,
it would not explain the discrepancy: The authors of [87] investigated whether agreement
can be achieved by modifying the phase relation and expression for the energy in the
most general way compatible with the scaling behaviour of string theory: The outcome
was negative. Therefore it may seem impossible to construct a weak coupling integrable
spin chain to reproduce string theory at ‘three-loops’. Giving up on integrability is not
an option either, because (classical) string theory on AdS5×S5 is integrable [83] and the
spectra could not possibly agree.

The problem parallels the earlier three-loop disagreement with near plane-wave string
theory [88] discussed in Sec. 5.6.3. In fact, it appears that the mismatch in these two
examples is related: Both of them constitute a deviation from the BMN limit, either by
considering many excitations or a state where the length is not strictly infinite.18

6.5.2 Order of Limits

The above problems suggest that either the correspondence between string theory and
gauge theory breaks down at three-loops or some subtlety has not been taken into account
properly [87, 75, 89]. Indeed, there may be a fundamental problem in the comparison:

The comparison takes place in the thermodynamic limit L→∞ and in an expansion
around g̃ = g/L = 0. However starting with an exact function F (g, L), we must decide
which limit is taken first. It turns out that for classical string theory, the thermodynamic
limit L → ∞ is a basic assumption. The resulting energy may then be expanded in
powers of g̃. In contrast, gauge theory takes the other path. The computations are
based on perturbation theory around g = 0. This expansion coincides with the expansion
in g̃ because the coefficients turn out to be suppressed by sufficiently many powers of
1/L. Now the order of limits does potentially matter. This is best illustrated in the
non-commutative diagram Fig. 6.2 and the example in Sec. 6.5.3. Semi-classical string

18One could extract the expansion of the function Ẽ(α) for small α, (c.f. Sec. 4.6) from a large L
expansion. For that one would consider an arbitrary number of excitations, K. For the 1/Ln correction
to the energy one should find no more than n powers of K. The term Kn/Ln is to be interpreted as αn,
whereas all lower powers of K would have to be dropped.
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F (g, L)
=
G(g̃, L)

Fk(L)

G(g̃)

Fk

6=
Gk

classical
string
theory

mismatch
perturbative
gauge
theory

exact
result

expand in g̃

expand in g

L → ∞

L → ∞

Figure 6.2: A possible explanation for both the near BMN and the FT spinning strings disagree-
ment. Fℓ excludes gauge theory wrapping effects, while Gℓ is expected to include them.

theory corresponds to the upper right corner of the diagram, i.e. it requires the large spin
limit. Conversely, perturbative gauge theory is situated at the lower left corner, where
the length L is finite, but only the first few orders in g are known.19

The BMN and FT proposals are both based on the assumption that the diagram in
Fig. 6.2 does commute. In other words one should be able to compare, order by order,
the gauge theory loop expansion with the string theory expansion in g̃. That this might
in fact not be true was first hinted at in another context in [133]. Another, more closely
related, instance where the different limiting procedures lead to different results can be
found in [87]. For the hyperbolic Inozemtsev spin chain it was shown that the order of
limits does matter. In the ‘gauge theory’ order, this spin chain appears to have no proper
thermodynamic limit. For the ‘string theory’ order, i.e. when the thermodynamic limit is
taken right from the start, it is meaningful!

In order to make contact with string theory we propose to sum up the perturba-
tion series in λ before taking the thermodynamic limit. In this case, the comparison
would take place at the upper right corner of Fig. 6.2.20 With the all-loop spin chain
at hand this may indeed be feasible. In contrast to the Inozemtsev chain, there appears
to be no difference between the two orders of limits because the thermodynamic limit
is well-behaved in perturbation theory. However one has to take into account wrapping
interactions which could violate thermodynamic scaling behaviour. These arise at higher
loop orders ℓ when the interaction stretches all around the state, i.e. when ℓ ≥ L. We will
discuss them in Sec. 6.5.4 after an example, which illustrates the potential importance of
these interactions.

19We recall that the number of known terms grows with L, if our spin chain ansatz is correct.
20If we wish to compare at the lower left corner we should sum up all quantum corrections in string

theory before we compare to perturbative gauge theory. There the 1/L alias 1/g suppression of quantum
effects was derived assuming a large g. For small g this simplification is not justified and additional effects
may contribute.
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6.5.3 Example

Here we present an example where one can see the importance of the order of limits.
We choose a function

F (g, L) =
g2L

(c+ g2)L
=

(
1 +

c

g̃2L2

)−L
= G(g̃, L). (6.71)

In perturbation theory around g = 0 we find that the function vanishes at L leading loop
orders

F (g, L) =
∞∑

k=0

Fk g
k =

g2L

cL
− g2L+2

cL+1
+
g2L+4

cL+2
+ . . . , i.e. Fk(L) = 0 for k < 2L.

(6.72)
The leading factor g2L mimics the effect of wrapping interactions in gauge theory as
explained below. When we now go to the thermodynamic limit, L→ ∞, we see that all
coefficients Fk are zero.

Now let us take the thermodynamic limit first. The large L limit ofG(g̃, L) =
∑

kGk g̃
k

yields G(g̃) = 1 in a straightforward fashion. This result depends crucially on the function
F (g, L). Currently, we do not know how to incorporate wrapping interactions, but g2L

alone would not have a sensible thermodynamic limit. To compensate this, we have
introduced some function 1/(c+ g2)L. Clearly we cannot currently prove that gauge
theory produces a function like this, but it appears to be a definite possibility. In our toy
example, the expansion in g̃ gives G0 = 1 and Gk = 0 otherwise.

In conclusion we find G0 = 1 while F0 = 0 which demonstrates the non-commutativity
of the diagram in Fig. 6.2 in an example potentially relevant to our context. It is not hard
to construct a function F (g, L) which yields arbitrary coefficients Gk while all Fk remain
zero.

Note however that there is a sign of the non-commutativity in (6.72): A correct scaling
behaviour would require the coefficient Fk to scale as L−k. In particular for k = 2L, the
coefficient should scale as L−2L instead of c−L. Therefore one can say that the function F
violates the scaling law even at weak coupling, but in a mild way that is easily overlooked.
This parallels the above observations for the Inozemtsev spin chain that a proper scaling
behaviour might be obscured in perturbation theory.

6.5.4 Wrapping Interactions

One very important aspect of the spin chain are wrapping interactions (c.f. Sec. 2.6.3).
These interactions appear when the expected length of the interactions, ℓ+1, exceeds the
length of the state L. Let us note that the asymptotic Bethe ansatz for the Inozemtsev
spin chain apparently does not incorporate wrapping interactions correctly. As our ansatz
is very similar, we expect the same to apply here.

For a fixed length L, the wrapping interactions are irrelevant at lower loop orders, but
at higher-loops they are the only contribution. Therefore, at finite values of the coupling
constant, wrapping interactions dominate and the dependence on the coupling constant
may change completely. This is very appealing from the point of view of the AdS/CFT
correspondence, which predicts the scaling dimension of a generic, unprotected state to
grow like

√
g ∼ λ1/4 for large g [5].Instead, the energy formula (6.51) seems to suggest
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a linear growth in g, but it is valid only for sufficiently low loop orders. Therefore we
suspect that wrapping interactions may be responsible for the conjectured

√
g behaviour

at large g. Note that a generalisation of the Bethe equations for classical string theory [75]
to towards the quantum regime has been conjectured in [130]. These equations reproduce
the λ1/4 behaviour as well as the near plane wave results of [88, 129, 102,131].

In the same spirit, wrappings may be important for the comparison between gauge
theory and string theory in the case of spinning strings and the near BMN limit [89]
where they become an order-of-limits issue: When we assume the length of the state to
be sufficiently large, wrapping interactions are suppressed. Then we find that g and 1/L
combine and the energy is a function of g̃. However, for a comparison to string theory,
we might wish to take g finite for a fixed length. Again we should find that g and 1/L
combine (possibly for a completely different reason) and obtain a function of g̃. Here
we may expect a qualitative difference because wrappings dominate the complete tail of
the perturbative expansion for any fixed length. Summing up the perturbative series we
might get a totally different function, as demonstrated by the example in Sec. 6.5.3.

Unfortunately, we currently have no handle on wrapping interactions. In the alge-
braic analysis of Ch. 5, there seem to be few constraints on their form. In fact, virtually
any higher-loop anomalous dimensions can be assigned to multiplets with a small length
by means of wrapping interactions. For the Bethe ansatz the inclusion of wrapping in-
teractions will probably require a substantially different form. For instance, an exact,
non-asymptotic Bethe ansatz for the Inozemtsev chain is not known [78].

All in all, a better understanding of wrapping interactions might be of great importance
to the AdS/CFT correspondence and our understanding of higher-loop conformal gauge
theory.
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Conclusions

In this dissertation we have developed means to efficiently compute and investigate
scaling dimensions of local operators in a perturbative four-dimensional conformal field
theory. The central object is the dilatation operator ; it is one of the generators of the
(super)conformal algebra and it measures scaling dimensions. In the example of N = 4
supersymmetric gauge theory, we have made use of the symmetry algebra and structural
properties of Feynman graphs to derive this generator up to a few quantum loops; the
analysis is purely algebraic, no actual (higher-loop) computations were required. The
obtained results have allowed us to prove that the planar dilatation operator is completely
integrable, not only at one-loop, but possibly even at higher-loops and for finite values of
the coupling constant.

Apart from generic interest in the structure of field theories at higher-loops, our investi-
gations are motivated by the AdS/CFT correspondence. One prediction of this conjecture
is the agreement of the spectrum of scaling dimensions of local operators in N = 4 SYM
with the spectrum of energies of IIB string theory on AdS5 × S5. The dilatation op-
erator has become a versatile tool for testing and even proving parts of the AdS/CFT
correspondence.

There are various ways to deduce scaling dimensions of local operators and their
quantum corrections (i.e. the anomalous dimensions) from field theory correlators. They
are convenient when interested in particular and rather simple local operators at low loop
orders. Unfortunately, the AdS/CFT correspondence relates this regime of operators
to an essentially inaccessible strong-coupling regime in string theory. Conversely, the
perturbative regime of string theory is usually mapped to an inaccessible regime in gauge
theory. In recent years, it has emerged that this incompatibility can be overcome when
focusing on states with a large spin quantum number on S5, or equivalently of so(6). In
gauge theory this requires operators with a large number of constituents in which case the
direct approach requires too much work. It is therefore desirable to have some technology
to deal with such states in an efficient way.

The dilatation generator is perfectly suited to investigate scaling dimensions. As com-
pared to conventional methods, it offers several advantages: Once it is obtained from field
theory, the computation of scaling dimensions is turned into a combinatorial exercise.
Furthermore, the dilatation operator is an algebraic object and one can save a significant
amount of work by simplifying it, before it is applied to specific states. Moreover, one can
try to obtain the dilatation operator without performing labourious field theory computa-
tions; this constitutes one of the key results of the current work. Finally, whereas scaling
dimensions are just a set of data, the dilatation generator comprises the whole spectrum;
it allows to compare on an abstract level and thus prove the equivalence of certain spec-
tra instead of performing tests for an (inevitably small) set of states. For instance, when
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non-planar corrections are taken into account, the dilatation generator can split and join
traces (alias strings) making it very reminiscent of a stringy Hamiltonian. What is more,
in N = 4 SYM in the BMN limit, it was shown to coincide also quantitatively with the
plane-wave string field theory Hamiltonian. This proves the agreement of arbitrary-genus
contributions to scaling dimensions/energy and constitutes a strong test of the AdS/CFT
or plane-wave/BMN correspondence.

Here, we have chosen N = 4 supersymmetric gauge theory as a model quantum con-
formal field theory in four spacetime dimensions. For this model we have first investigated
the dilatation operator in the one-loop approximation. We have started by making the
most general ansatz compatible with field theory, which involves infinitely many unde-
termined coefficients. Subsequently, we have used conformal invariance to reduce the
independent coefficients, first to one infinite sequence, then to just a single one. Being
related to a rescaling of the coupling constant, it is not possible to assign a value to the
leftover coefficient except by actually computing it in field theory. Therefore, the com-
plete one-loop dilatation operator of N = 4 SYM is entirely fixed by symmetry (up to
obvious transformations).

Similar conclusions hold also at higher-loops: A general treatment would have required
very much work, therefore we have first investigated subsectors on which the dilatation
operator closes. In an interesting one, the su(2|3) subsector, we were able to obtain planar
three-loop corrections by algebraic means. Again, the result has turned out to be unique
up to symmetries of the defining relations. This enables us to perform a very exact test of
AdS/CFT correspondence and the near plane-wave/BMN limit thereof. Remarkably, this
test has revealed a discrepancy starting only at three-loops. We have presented a possible
explanation in terms of an order of limits problem, but more importantly, it demonstrates
that we can find relevant and unexpected physics even in a higher-loop computation!

The dilatation operator is not only useful to obtain scaling dimensions, but it is inter-
esting in itself. One exciting feature of the planar dilatation operator, with very important
consequences, is its apparent integrability. As far as the spectrum is concerned, integrabil-
ity merely leads to a curiosity: For generic multiplets of local operators there is a partner
with exactly degenerate anomalous dimension. Below the surface, however, the existence
of arbitrarily many conserved commuting charges strongly constrains the dilatation op-
erator. This leads to a major simplification in computing scaling dimensions due to the
algebraic Bethe ansatz.

The Bethe ansatz is especially powerful in the thermodynamic limit, i.e. for local op-
erators with a large number of constituent fields. This limit is practically inaccessible
by conventional methods, however, here the Bethe equations turn into integral equations
which can still be solved in practice. The AdS/CFT correspondence relates the thermo-
dynamic limit of N = 4 SYM to classical spinning string configurations on AdS5 × S5.
The energy is usually given by intricate algebraic, elliptic or hyperelliptic functions of
the ratios of the involved spins. In a number of cases, agreement between gauge theory
and string theory could be shown, which confirms the correspondence with unprecedented
accuracy. Even more, the Bethe equations in the thermodynamic limit could be shown
to coincide with integral equations derived from string theory!

Integrability of the planar dilatation operator was first found at one-loop and for
certain subsectors of states. More accurately, it was shown that the dilatation operator
is isomorphic to the Hamiltonian of an integrable quantum spin chain with so(6) or
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sl(2) symmetry. In this work we have extended these one-loop results to the complete
spectrum of states and full psu(2, 2|4) superconformal symmetry. Even more exciting is
a generalisation of integrability to higher-loops, an entirely new topic. We have found
several indications for integrability beyond one-loop although a framework to investigate,
prove and exploit it, is yet to be established. Most importantly, the three-loop corrections
to the dilatation operator within the su(2|3) subsector preserve the above-mentioned
degeneracy of pairs. Furthermore, the integrable spin chain due to Inozemtsev reproduces
three-loop planar scaling dimensions correctly. Finally, the sigma model of string theory
on AdS5 × S5 is integrable and, via the AdS/CFT correspondence, one expects the same
feature for the corresponding gauge theory.

In order to investigate higher-loop integrability, we have constructed a deformation of
the Heisenberg integrable spin chain model. The assumed form of interactions is inspired
by field theory and conjectures about N = 4 SYM. If all our conjectures are justified,
the model will describe planar anomalous dimensions. Independently of that question,
the model displays some remarkable features: Our assumptions have turned out to be
sufficiently constraining such that we obtain a unique result up to at least five-loops.
Intriguingly, it reproduces the BMN energy formula correctly. Moreover, we have found
a long-range Bethe ansatz, very similar to the one describing the Inozemtsev spin chain,
which reproduces the spectrum of the spin chain exactly. But this is not all: It is valid
for all loop orders, at least if the spin chain is sufficiently long! Have we hereby opened
up a window for finite coupling constant?

In conclusion, we have presented a versatile technology to investigate scaling dimen-
sions in a conformal field theory. We have completed the one-loop calculation and even
had a glimpse of higher-loop physics. Hopefully, making full use of integrability will finally
allow us to leave the weak coupling regime.
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Outlook

There is a wide range of open questions and problems which can be addressed with
the ideas and methods presented in this work; we will group them according to the topics
presented in the individual chapters. Let us start with the dilatation operator in general
which has been considered in Ch. 2:

• It would be very helpful to develop techniques, similar to the ones presented here,
for the efficient evaluation of structure constants of the operator product expansion,
see Sec. 1.10. Apart from the scaling dimensions, they are the other central quan-
tity in a conformal field theory of local operators. The structure constants may be
obtained from three-point functions, but a direct computation is ‘contaminated’ by
useless finite and divergent contributions from the perturbative expansion of the scal-
ing dimensions. One therefore wonders whether one may generalise our methodology
and develop purely algebraic techniques for directly finding the structure constants.
See e.g. [134] for some work in that direction. Especially within the BMN three-point
functions are important for the comparison to the plane-wave string theory [135],
c.f. [108, 21, 22, 136, 49] for some results.

• It might be interesting to extend the current analysis to non-perturbative effects like
instantons. Possibly the symmetry algebra also puts constraints on these and a direct
computation as in [137] might be simplified or even bypassed.

In Ch. 3 we have investigated the dilatation operator at one-loop:

• We have focussed on N = 4 SYM in this work, but there are a few further four-
dimensional conformal quantum field theories with N = 2 supersymmetry. For these,
the determination of the dilatation generator might shed some light on holographic
dualities away from the well-studied case of AdS5 × S5. Even if the superconformal
algebra is smaller, we expect that it is similarly constraining and our results should
generalise in a rather straightforward fashion. Some advances in this direction have
been made in e.g. [138, 139].

• Even in a QFT with broken conformal invariance [56], the techniques developed in
this work can be used to investigate logarithmic corrections to two-point functions
and scattering amplitudes in a systematic way. In particular in QCD at large Nc and
deep inelastic scattering, similar techniques are at use (see e.g. [52–55]).

Questions related to the dilatation operator at higher-loops in Ch. 5:

• The complete one-loop contribution to the dilatation operator has turned out to be
totally fixed by superconformal symmetry; the same might apply at two or even higher-
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loops. This conjecture is not unreasonable, as the action is unique and entirely de-
termined by psu(2, 2|4). Whether or not the conjecture is true, it would be great to
derive the complete two-loop deformation.

• In Ch. 3,5 we have considered the algebras psu(2, 2|4) and su(2|3) with the fundamental
fields transforming in certain representations. An interesting mathematical question
is, which algebras and representations are suited for consistent deformations of the
algebra generators? Are they all related to (conformal) field theories?

• A very important issue is the form of wrapping interactions. For those, our methods
appear to be not very constraining at higher loop orders. A non-planar treatment
might solve the problem, but the complexity will increase drastically due to the large
amount of such digrams. For operators of a finite length, wrappings dominate the tail
of the perturbation series. They are therefore of tremendous importance for the finite
coupling regime.

• It would be nice to confirm some of the higher-loop results of this work explicitly in
field theory. Although we believe our computations are rigorous, we had to rely on
some basic assumptions (e.g. the BMN-limit) which are not firm facts of gauge theory
yet.

• A curious observation is that all the anomalous dimensions we have found are solutions
to algebraic equations. In contrast, higher-loop amplitudes usually involve transcen-
dental numbers such as ζ(3), ζ(5), . . . . Are these merely a renormalisation artefact or
do they appear at some higher loop order?

A related question is whether the coupling constant is renormalised by a finite amount.
For instance, this happens in the BMN matrix model (c.f. Sec. 2.1.6), where a redef-
inition of the coupling constant is required to achieve a proper scaling in the BMN
limit [79] (it is a non-trivial result that this is possible at all).

One-loop integrability was the subject of Ch. 4:

• Clearly, the deep question is, why does integrability emerge from the planar N = 4
gauge theory? Of course, via the the AdS/CFT correspondence, one could take inte-
grability of the classical string sigma model [82–84] as compelling evidence, neverthe-
less we believe there should also be an intrinsically field theoretical reason.

• We know that the spectrum of Q2 is related to the spectrum of anomalous dimensions.
A natural question to ask is whether the spectra of the higher charges Qr have a
physical meaning in the gauge theory.

• Integrability implies the appearance of degenerate pairs in the planar spectrum due to
an interplay of two charges and parity. However, there appears to be no deeper reason
for the pairs in terms of representation theory. It would be very desirable to understand
the degeneracy of pairs better, in terms of N = 4 SYM as well as in terms of the
AdS/CFT correspondence. A possible explanation would be that symmetry extends
by some compact SO(2) group whose representations are either uncharged singlets
or charged doublets. The integrable charges Qr are not suitable SO(2) generators
because their spectrum is non-integer. The SO(2) symmetry naturally combines with
the parity Z2 to O(2) and 1/N corrections break it to Z2.
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Could the conjectured SO(2) symmetry be related to the conjectured modular invari-
ance of N = 4 SYM? In the unbroken form, SL(2,R), the SO(2) subgroup of modular
invariance would pair up states. When broken to SL(2,Z) by higher-genus corrections,
there is no SO(2) group to protect the pairing and the degeneracy is lifted.

• Integrability seems to apply to a wider range of field theories. The obvious candidates
are conformal field theories, see e.g. [140]. However, in theories where conformal invari-
ance is broken by quantum effects, such as massless QCD, one may still investigate the
one-loop dilatation operator, for which conformal symmetry applies, see e.g. [139,141].
In QCD, following pioneering work of Lipatov [52], methods of integrability have also
had much impact, see e.g. [53–55].

• On the one hand, we have demonstrated in Sec. 3.3 that the superconformal algebra
leads to a unique one-loop anomalous dilatation operator. On the other hand, there
is a unique standard spin chain Hamiltonian with psu(2, 2|4) symmetry. In fact, both
operators turn out to be the same, which shows that conformal symmetry and inte-
grability go hand in hand. This is remarkable because we consider a four-dimensional
field theory here. For a two-dimensional theory this relationship is well-understood.
For more details, see the end of Sec. 4.3.5.

Questions related to higher-loop integrability in Ch. 6:

• An improved notion of higher-loop integrability and, even more urgently, a better
understanding of the long-range spin chain in Ch. 6 or the dynamic spin chain in
Ch. 5 is required.

• Can we find a Bethe ansatz for the dynamic spin chain in Ch. 5? If so, can we
generalise it to the complete spin chain for N = 4 SYM? This presumably would be a
non-compact, dynamic psu(2, 2|4) super spin chain with long-range interactions. See
also Sec. 6.4.4 for further comments.

• The Bethe ansätze for the Inozemtsev spin chain and our long-range spin chain
investigated in Sec. 6.4 apparently do not incorporate wrapping interactions (see
Sec. 5.4.3,6.5.4). A key to unravel planar N = 4 gauge theory at all loops would
be to modify the equations to account for wrappings. Unfortunately, it is hard to
find the correct wrapping interactions in field theory. Here, the investigation of the
unknown terms in the physical transfer matrix (6.53) (from which the Bethe equa-
tions should follow as a consistency condition) or a better understanding of the double
covering map (6.59,6.60) might help.

• Is integrability related to the closure of the interacting algebra or to some property of
field theory renormalisation? Can we prove higher-loop integrability in some way?

• An interesting model is the BMN matrix model. It behaves quite similarly to N = 4
SYM, but consists of only a finite number of fields. Explicit higher-loop computations
are feasible [101, 79], and show partial agreement with N = 4 SYM. Here we might
learn about wrapping-interactions and dynamic aspects explicitly.

Questions regarding the AdS/CFT correspondence in the context of the plane-wave/BMN
correspondence and spinning strings:
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• The plane-wave/BMN correspondence and the topic of spinning strings can be in-
vestigated for theories with less supersymmetry. They are especially interesting be-
cause they involve also open strings/traces as opposed to the maximally supersym-
metric case with only closed strings. Many investigations are devoted to this topic,
e.g. [142, 138,143,140], but so far there are no higher-loop results for gauge theory.

• The equivalence of the dilatation operator in the BMN limit and the plane-wave string
field theory Hamiltonian has been shown at one-loop in the case of two [47] and
three [115] excitations (impurities). One could try to prove the equivalence for an
arbitrary number of excitations. A generalisation to higher-loops would be interesting:
At two-loops one might have to consider a g-dependent change of basis to avoid the
mismatch reported in [47]. At three-loops it would be exciting to see if problems of the
kind encountered for the near plane-wave background [88] or for spinning strings [87]
also exist for non-planar corrections.

• In Sec. 6.5 we have offered a possible explanation for the apparent disagreement of
gauge theory and string theory in the case of near plane-waves [88] or spinning strings
[87]. The discrepancy, however, turns out to starts merely at three loops; why do we
find agreement at one loop and two loops? At lower loop orders, the structure might
allow only for a unique answer on either side. Together with the structural equivalence
of both models, one being a lattice discretisation of the other, the agreement may be
explained.
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Appendix A

An Example

Here we would like to demonstrate how to apply the dilatation operator step-by-step
in order to introduce our notation. In the following two sections we will present some
essential matrix model and spin chain technology.

A.1 Non-Planar Application

Consider two N ×N matrices Z and φ. Their elements are given by the variables Za
b

and φa
b with indices a, b, . . . ranging from 1 to N . We would now like to write down a

polynomial O = O(Z, φ) in the elements of Z and φ that is invariant under similarity
transformations Z 7→ TZT−1, φ 7→ TφT−1. This is achieved conveniently by taking traces
of matrices such as

O(Z, φ) = TrZφZφ− TrZZφφ =
N∑

a,b,c,d=1

(
Za

bφ
b
cZc

dφ
d
a− Za

bZb
cφ

c
dφ

d
a

)
. (A.1)

We now introduce a differential operator H on polynomials of the matrix elements

H = −N−1 Tr [Z, φ][Ž, φ̌], (A.2)

where the derivatives Ž and φ̌ are defined as follows1

Ža
b =

∂

∂Zb
a

, φ̌a
b =

∂

∂φb
a

. (A.3)

Let us act with H on O. In this elementary form it is quite tedious, so let us restrict to
the first terms

TrZφŽφ̌ TrZφZφ =

N∑

a,b,c,d,e,f,g,h=1

[
Za

bφ
b
c δ

c
f δ

d
g δe

d δ
f
aZg

hφ
h
e

+ Za
bφ

b
c δ

c
f δ

d
e δe

dφ
f
gZg

h δ
h
a

+ Za
bφ

b
c δ

c
h δ

d
g Ze

f δ
f
a δ

g
dφ

h
e

+ Za
bφ

b
c δ

c
h δ

d
e Ze

fφ
f
g δ

g
d δ

h
a

]

1In the language of canonical quantisation, the fields Z, φ and the variations Ž, φ̌ correspond to
creation and annihilation operators, respectively.
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=

N∑

a,b,e,f=1

(
2Za

bφ
b
aZe

fφ
f
e + 2NZa

bφ
b
fφ

f
eZe

a

)

= 2 TrZφ TrZφ+ 2N TrZφφZ. (A.4)

This calculation can be significantly abbreviated by parameterising the matrices by U(N)
generators tm and using the fusion and fission rules

gmn TrXtm Tr Y tn = TrXY, gmn TrXtmY tn = TrX TrY. (A.5)

The action (A.4) is now

TrZφŽφ̌ TrZφZφ = 2gmpgnq TrZφ tmtn Tr tptqZφ+ 2gmpgnq TrZφ tmtn Tr tpφZ tq

= 2gnq TrZφ tqZφ tn + 2gnq TrZφφZ tqtn

= 2 TrZφTrZφ+ 2 TrZφφZ Tr 1. (A.6)

Summing up all contributions in HO we get

HO = 6 TrZφZφ− 6 TrZZφφ = EO, E = 6. (A.7)

Now it is time to interpret our calculations in terms of physics. The polynomial O is a
gauge invariant local operator (state) andH = D2 is the one-loop dilatation operator. We
have thus found that O is an eigenstate of H with energy is 6; its anomalous dimension
therefore 6g2. We note our definition of coupling constant g in terms of the ordinary
Yang-Mills coupling constant gYM and rank N of the U(N) gauge group

g2 =
g2

YM
N

8π2
=

λ

8π2
. (A.8)

The classical dimension of O is computed using the operator D0

D0 = TrZŽ + Trφφ̌, D0O = 4O, (A.9)

here it just counts the number of constituent fields. In conclusion, the scaling dimension
of O up to one-loop is given by

D = 4 + 6g2 + . . . = 4 +
3g2

YM
N

4π2
. (A.10)

The state O is a descendant of the Konishi operator TrΦmΦm, see e.g. Sec. 2.4.4.

A.2 Planar Application

Let us repeat the example in the planar limit. Consider basis states of the type
|0010110 . . .10〉. The labels are identified cyclically, e.g. |00010110 . . .1〉 represents the
same state. A generic state O is a linear combination of these, for instance

O = |0101〉 − |0011〉. (A.11)
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Now consider a linear operator H on the space of states

H =

L∑

p=1

Hp,p+1, H12 = 1−P12. (A.12)

The operator acts on all pairs of adjacent labels (enumerated by p) within a state. For
each pair, it returns the same state, 1, minus the state with both labels interchanged,
Pp,p+1. Note that HL,L+1 is to be interpreted as HL,1 due to the cyclic nature of states.
Furthermore, it suffices to give H12 acting on the first two labels. The action of Hp,p+1

on the other labels is equivalent. For example

H12|0101〉 = |0101〉 − |1001〉. (A.13)

In total we get for HO

HO =
(
H12 +H23 +H34 +H41

)
|0101〉 −

(
H12 +H23 +H34 +H41

)
|0011〉

= + |0101〉 − |1001〉+ |0101〉 − |0011〉+ |0101〉 − |0110〉+ |0101〉 − |1100〉
− |0011〉+ |0011〉 − |0011〉+ |0101〉 − |0011〉+ |0011〉 − |0011〉+ |1010〉

= +6|0101〉 − 6|0011〉 = 6O. (A.14)

The physical interpretation is as in the previous section. The major difference is that
double-trace terms which arise in a non-planar computation, c.f. (A.4), are discarded
right away in the planar limit, c.f. (A.13). In this particular example, the non-planar
terms cancel in the end and therefore the planar approximation happens to be exact.
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Appendix B

Spinors in Various Dimensions

In this appendix we present a selection of useful identities when dealing with chiral
spinors in four, six and ten dimensions.

B.1 Four Dimensions

There are two types of spinor indices, α = 1, 2 and α̇ = 1, 2 belonging to the two su(2)
factors of so(4). There are two types of invariant objects, ε and σ. There are four types

of totally antisymmetric tensors εαβ, ε
αβ, εα̇β̇, ε

α̇β̇ and it is convenient to use four types

of sigma symbols (Pauli matrices) σµα̇β, σ
µ
βα̇, σ

α̇β
µ , σβα̇µ . We can now suppress spinor indices

and use a matrix notation, in all cases it should be clear which symbol to use. The σ’s
are defined by the relation

σ{µσν} = ηµν . (B.1)

The different ordering of spinor indices was introduced artificially, we remove it by the
identification

σµα̇β = σµβα̇, σα̇βµ = σβα̇µ . (B.2)

Here are some identities involving ε’s in matrix notation

εT = −ε, εε = −1, εσµ = σµε. (B.3)

The Fierz identities for the σ’s read

σα̇βµ σµγ̇δ = 2δα̇γ̇ δ
β
δ , σα̇βµ σµ,γ̇δ = 2εα̇γ̇εβδ, σµ,α̇βσ

µ
γ̇δ = 2εα̇γ̇εβδ (B.4)

and the completeness relation for antisymmetric tensors is

εαβε
γδ = δγαδ

δ
β − δδαδγβ = 2δγ[αδ

δ
β]. (B.5)

B.2 Six Dimensions

In six dimensions there is one type of spinor index a = 1, 2, 3, 4, two totally antisym-
metric tensors εabcd, ε

abcd and two sigma symbols σmab and σabm . Again we can suppress
spinor indices in a matrix notation. The sigma symbols are antisymmetric

σT

m = −σm (B.6)
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and its indices can be raised or lowered by the totally antisymmetric tensor

σm,ab = 1
2
εabcdσmcd, σm,ab = 1

2
εabcdσ

cd
m . (B.7)

They satisfy the Clifford algebra
σ{mσn} = ηmn. (B.8)

Finally, we note the Fierz identities for the σ′s

σabmσ
m
cd = 2δadδ

b
c − 2δac δ

b
d, σabmσ

m,cd = −2εabcd, σm,abσ
m
cd = −2εabcd. (B.9)

B.3 Ten Dimensions

We will denote spinor indices in ten dimensions by A,B, . . . = 1, . . . , 16. There are
two sigma symbols ΣM

AB and ΣAB
M and we can suppress spinor indices. The sigma symbols

are symmetric
ΣT

M = ΣM (B.10)

and satisfy
Σ{MΣN} = ηMN . (B.11)

For the construction of supersymmetric gauge theory, there is one particularly useful
identity

ΣM,ABΣ
M
CD +ΣM,ACΣ

M
DB +ΣM,ADΣ

M
BC = 0. (B.12)

In order to obtain N = 4 SYM from the ten-dimensional supersymmetric gauge theory
we reduce the ten-dimensional spacetime to four spacetime and six internal dimensions.
We will assume that a spinor ΨA in ten dimensions decomposes into Ψαa + Ψ aα̇ in 4 + 6
dimensions. Accordingly, the sigma symbols in ten dimensions split as follows

ΣAB
µ = σµ,αβ̇δ

b
a + σµ,α̇βδ

b
a,

Σµ,AB = σαβ̇µ δab + σα̇βµ δba,

ΣAB
m = −σm,abεαβ − σabmεα̇β̇,

Σm,AB = σabmε
αβ + σm,abε

α̇β̇. (B.13)
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Appendix C

SYM in Ten Dimensions

Four-dimensional maximally supersymmetric Yang-Mills theory is most conveniently
derived from its ten-dimensional supersymmetric counterpart. We will therefore present
the ten-dimensional theory, in superspace or in components, in the following two sections.
In this work we have not made use of these theories, except maybe for the dimensional
reduction scheme, which relies on the component theory.

C.1 Ten-Dimensional Gauge Theory in Superspace

Let us first consider N = 1 gauge theory in ten-dimensional superspace [144]. Su-
perspace is parameterised by ten bosonic coordinates XM and sixteen fermionic coordi-
nates ΘA. Here, indices M,N, . . . refer to ten-component vectors and indices A,B, . . . to
sixteen-component spinors of so(10). The covariant derivatives on this space are defined
as

DM = ∂M , DA = ∂A +ΣM
ABΘ

B∂M . (C.1)

The fermionic derivatives satisfy the anticommutation relation

{DA, DB} = 2ΣM
ABDM , (C.2)

while commutators with a bosonic derivative DM vanish.1 In other words, superspace is
a space with torsion given by ΣM

AB. The matrices ΣM are the chiral projections of the
gamma matrices of so(10). They are symmetric ΣM

AB = ΣM
BA and obey

Σ
{M
ABΣ

N},BC
= δCAδ

MN . (C.3)

In App. B.3 we present our notation and some useful identities.
To have real fermionic coordinates ΘA, the signature of spacetime must be either (9, 1)

or (5, 5). Whereas Minkowski space (9, 1) is certainly the correct choice in terms of physics,
it may be more useful to work in Euclidean space (10, 0) when computing Feynman
diagrams. In fact, the actual signature of spacetime does not matter for all the algebraic
considerations in this work as we can do Wick rotations at any point. We will therefore
not distinguish between different signatures of spacetime and algebras. Alternatively, one
may consider a complexified space/algebra where the signature is irrelevant.

1This space may also be considered as the quotient space G/H of the super Poincaré group G as
defined by (C.1) and the Lorentz group H .



192 C SYM in Ten Dimensions

On this space we define a gauge theory with the supercovariant derivatives

DM = DM − igAM , DA = DA − igAA. (C.4)

We will assume the gauge group to be SU(N) or U(N) and all adjoint fields A to be
(traceless) Hermitian N × N matrices. Under a gauge transformation U(X,Θ) ∈ U(N)
the gauge fields transform canonically according to

AM 7→ UAMU−1 − ig−1DMU U
−1, AA 7→ UAAU−1 − ig−1DAU U

−1. (C.5)

The covariant field strengths of the gauge field are

{DA,DB} = 2ΣM
ABDM − igFAB,

[DA,DM ] = −igFAM ,
[DM ,DN ] = −igFMN . (C.6)

We can now impose a constraint on the gauge field, namely that the field strength FAB
vanishes

FAB = 0. (C.7)

This field strength can be decomposed into two so(10) irreducible modules, 10 and 126.
The vanishing of the 10 part determines the bosonic gauge field AM in terms of the
fermionic one. The 126 part has much more drastic consequences as it not only reduces
the number of independent components, but also implies equations of motion for the gauge
field. Before stating these, we present two important consequences of the constraint and
the Jacobi identities

[DA,DM ] = −igFAM = igΣM,ABΨ
B,

{DA, ΨB} = i
2
g−1ΣM,BCΣN

CA[DM ,DN ] = 1
2
ΣM,BCΣN

CAFMN . (C.8)

The first shows that the 144 part of the field strength FAM is zero, it can be proved by
using the Jacobi identity and inserting the constraint. The second one can be proved by
projecting on the 1, 45, 210 parts and using the Jacobi identity and constraint. The
equations of motion which follow from (C.7) in much the same way as (C.8) are

[DN ,FMN ] = − i
2
gΣM

AB{ΨA, ΨB},
ΣM
AB[DM , ΨB] = 0. (C.9)

C.2 Ten-Dimensional Gauge Theory in Components

Let us now leave superspace and represent superfields by a collection of ordinary fields.
It has been shown that the only independent components of the gauge field are the Θ = 0
components of AM and ΨB once we impose the constraint (C.7). All other components
can be gauged away or are bosonic derivatives of the fundamental fields. By fixing the
gauge along the Θ coordinates we can restrict to the Θ = 0 components of AM and ΨB.
These will become the fundamental fields of the field theory

W = (DM , ΨA), (C.10)
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which we will collectively refer to as W.
The equations of motion (C.9) force the fundamental fields AM and ΨB on shell. These

can be encoded into the Lagrangian

L10[W] = 1
4
TrFMNFMN + 1

2
TrΨAΣM

ABDMΨB. (C.11)

This is the Lagrangian of a ten-dimensional gauge field AM coupled to a (real) chiral
spinor ΨA in the adjoint representation of the gauge group. The covariant derivative
DMW of an adjoint field W is defined as the commutator

DMW := [DM ,W] = ∂MW − igAMW + igWAM . (C.12)

Although we have dropped fermionic coordinates Θ, translations along them are still
possible. For that purpose we introduce fermionic translation generators QA which act
on fields as though they were derivatives along Θ. Equivalently we introduce bosonic
translation generators PM which act on fields rather than coordinates

QA =̂ DA, PM =̂ DM . (C.13)

The derivatives are taken to be covariant when acting on gauge invariant states. Written
in terms of variations δǫ,e = ǫA QA + eM PM supertranslations of the fundamental fields
are given by

δǫ,eDM = igǫAΣM,ABΨ
B + igeNFMN ,

δǫ,e Ψ
A = 1

2
ΣM,ABΣN

BCǫ
CFMN + eMDMΨA. (C.14)

These satisfy the usual supersymmetry relations (C.2) or (C.6). Note, however, that the
algebra closes only on-shell, i.e. up to terms proportional to the equations of motion. The
Lagrangian (C.11) is invariant under fermionic translations up to a total derivative.

C.3 N = 4 SYM from Ten Dimensions

To obtain N = 4 SYM from the ten-dimensional theories, we split up ten-dimensional
spacetime into a four-dimensional spacetime and a six-dimensional internal space. The
fields split up according to DM = Dµ − igΦm, where Φ is a multiplet of six scalars, and
ΨA = Ψαa + Ψ̇ aα̇. The decomposition of the sigma symbols is presented in App. B.3.
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Appendix D

The Algebra u(2, 2|4)

In this appendix we shall present the algebra u(2, 2|4), a slightly enlarged version of the
superconformal algebra, decomposed in terms of spacetime and internal su(2) × su(2) ×
su(4) symmetry.

D.1 Commutation Relations

The (complex) algebra u(2, 2|4) = gl(4|4) is the algebra of (4|4) × (4|4) (complex)
supermatrices. Using the generators J we can parameterise an element j·J of the algebra
by the adjoint vector j. For our purposes it is useful to break up the matrix in 2|4|2
(even|odd|even) rows and columns, the supermatrices will split up according to

j·J =





lβα + 1
2
δβα(d+ b− c) qβa pβα̇

sbα rba − 1
2
δbac q̇bα̇

−kβ̇α −ṡβ̇a −l̇β̇ α̇ + 1
2
δα̇
β̇
(−d+ b− c)



 . (D.1)

The commutation relations of the generators can be read off from the matrix representa-
tion of [j·J, j′·J]. Let us now discuss the generators independently. First of all, there are

the su(2), su(4), su(2) rotation generators Lα
β,R

a
b, L̇

β̇
α̇. The indices of any generator J

transform canonically according to

[Lα
β, Jγ] = δαγ Jβ − 1

2
δαβJγ , [Lα

β , J
γ] = −δγβJα + 1

2
δαβJγ ,

[Ra
b, Jc] = δacJb − 1

4
δabJc, [Ra

b, J
c] = −δcbJa + 1

4
δabJ

c,

[L̇α̇
β̇, Jγ̇] = δα̇γ̇ Jβ̇ − 1

2
δα̇
β̇
Jγ̇ , [L̇α̇

β̇ , J
γ̇] = −δγ̇

β̇
Jα̇ + 1

2
δα̇
β̇
Jγ̇ . (D.2)

The charges D,B,C (dilatation generator, hypercharge, central charge) of the generators
are given by

[D, J] = dim(J) J, [B, J] = hyp(J) J, [C, J] = 0 (D.3)

with non-vanishing dimensions

dim(P) = − dim(K) = 1, dim(Q) = dim(Q̇) = − dim(S) = − dim(Ṡ) = 1
2

(D.4)

and non-vanishing hypercharges

hyp(Q) = − hyp(Q̇) = − hyp(S) = hyp(Ṡ) = 1
2
. (D.5)
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s1 r1 q1 p q2 r2 s2

Figure D.2: Dynkin labels [s1; r1; q1, r, q2; r2; s2] of su(2, 2|4). Note that in our convention the
sign of the odd labels r1, r2 to be negative for the antisymmetric product of two fundamental
representations.

Finally there are the translations Pα̇β, boosts Kαβ̇ as well as their fermionic partners,

the supertranslations Qa
β, Q̇α̇b and superboosts Sα

b, Ṡ
aβ̇. The translations and boosts

commuting into themselves are given by

[Sα
a,Pβ̇γ] = δαγ Q̇β̇a, [Kαβ̇, Q̇γ̇c] = δβ̇γ̇S

α
c,

[Ṡaα̇,Pβ̇γ] = δα̇
β̇
Qa

γ , [Kαβ̇,Qc
γ ] = δαγ Ṡcβ̇,

{Q̇α̇a,Q
b
β} = δbaPα̇β, {Ṡaα̇,Sβ

b} = δabK
βα̇,

(D.6)

while the translations and boosts commuting into rotations are given by

[Kαβ̇,Pγ̇δ] = δβ̇γ̇L
α
δ + δαγ L̇β̇

δ̇ + δαγ δ
β̇

δ̇
D,

{Sα
a,Q

b
β} = δbaL

α
β + δαβRb

a + 1
2
δbaδ

α
β (D− C),

{Ṡaα̇, Q̇β̇b} = δab L̇
α̇
β̇ − δα̇β̇Ra

b + 1
2
δab δ

α̇
β̇
(D + C). (D.7)

As we see, the hypercharge B never appears on the right hand side, it can be dropped,
leading to su(2, 2|4). Conversely, when restricting to representations with zero central
charge C, the resulting algebra is pu(2, 2|4), which becomes psu(2, 2|4) after removing B

as well.
In this work we deal with two further operators, L and δD = g2H, which are not part

of u(2, 2|4). The operator L measures the length, i.e. the number of components fields,
of a state. The anomalous dilatation operator δD(g) = D(g)−D(0), or equivalently the
Hamiltonian H, commutes with u(2, 2|4).

D.2 Labels

Let us collect some of our notation concerning labels of states and multiplets, see also
Sec. 1.5. The Dynkin labels of su(2, 2|4) are, c.f. Fig. D.2,

[s1; r1; q1, p, q2; r2; s2], (D.8)

where [q1, p, q2] and [s1, r, s2] with r = −r1 − q1 − p − q2 − r2 are the Dynkin labels of
su(4) and su(2, 2), respectively. Note that s1, s2 are twice the spins of the Lorentz algebra.
These labels are given as the eigenvalues Lαβ, L̇

α̇
β̇, R

a
b of Cartan generators Lα

β, L̇
α̇
β̇,R

a
b

(α = β, α̇ = β̇, a = b)

s1 = L2
2 − L1

1, s2 = L̇2
2 − L̇1

1,

r1 = 1
2
D − 1

2
C − L1

1 +R1
1, r2 = 1

2
D + 1

2
C − L̇1

1 −R4
4,

q1 = R2
2 −R1

1, q2 = R4
4 −R3

3,

p = R3
3 −R2

2, r = −D + L1
1 + L̇1

1.

(D.9)
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We also use the notation

(D0, s1, s2; q1, p, q2;B,L) (D.10)

to describe states of the classical theory. The label B is the hypercharge measured by B.
The length L corresponds to the number of fields within a state, it is measured by the
operator L which is not part of u(2, 2|4). D0 is the classical dimension and we introduce
E as the ‘energy’ or anomalous dimension measured by H = g−2δD. Together they form
the scaling dimension D = D0 + g2E which is measured by D = D0 + g2H. Usually we
will state only the classical dimension D0 to specify a state; the corresponding energy
E will be the main result of a our computations. It is useful to know how to translate
between the dimension D and Dynkin labels r1, r2, r, see (D.9),

r1 = 1
2
D − 1

2
C − 1

2
p− 3

4
q1 − 1

4
q2 + 1

2
s1,

r2 = 1
2
D + 1

2
C − 1

2
p− 1

4
q1 − 3

4
q2 + 1

2
s2,

r = −D − 1
2
s1 − 1

2
s2,

r = −r1 − q1 − p− q2 − r2
D = −1

2
s1 + r1 + q1 + p+ q2 + r2 − 1

2
s2. (D.11)

D.3 The Quadratic Casimir

The quadratic Casimir of u(2, 2|4) is

J2 = 1
2
D2 + 1

2
Lγ

δL
δ
γ + 1

2
L̇γ̇

δ̇L̇
δ̇
γ̇ − 1

2
Rc

dR
d
c

− 1
2
[Qc

γ,S
γ
c]− 1

2
[Q̇γ̇c, Ṡ

γ̇c]− 1
2
{Pγ̇δ,K

δγ̇} −BC. (D.12)

In psu(2, 2|4) the last term BC is absent. For highest weight states, which are annihilated
by raising operators J+ (1.53), we can conveniently evaluate J2 by using the standard
trick of turning the anticommutators into commutators. We find

J2 = 1
4
s1(s1 + 2) + 1

4
s2(s2 + 2) + 1

2
D2 + 2D − BC

− 1
4
q1(q1 + 2)− 1

4
q2(q2 + 2)− 1

8
(2p+ q1 + q2)

2 − (2p+ q1 + q2). (D.13)

D.4 The Oscillator Representation

Let us explain the use of oscillators for fields and generators in terms of the algebra
gl(M): We write1

JAB = A†
BAA, with A,B = 1, . . . ,M. (D.14)

Using the commutators

[AA,A†
B] = δAB, [AA,AB] = [A†

A,A
†
B] = 0 (D.15)

it is a straightforward exercise to show that the generators J satisfy the gl(M) algebra.

1Strictly speaking, the oscillators A and A
† are independent. Only in one of the real forms of gl(M)

they would be related by conjugation.
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To construct an oscillator representation for u(2, 2|4), c.f. [93], we will consider two sets
of bosonic oscillators (aα, a†

α), (bα̇,b†
α̇) with α, α̇ = 1, 2 and one set of fermionic oscillator

(ca, c†a) with a = 1, 2, 3, 4. The non-vanishing commutators of oscillators are taken to be

[aα, a†
β] = δαβ , [bα̇,b†

β̇
] = δα̇

β̇
, {ca, c†b} = δab . (D.16)

We assume that the oscillators AA = (a,b†, c) and A†
A = (a†,−b, c†) form a fundamental

and conjugate fundamental multiplet of u(2, 2|4). Then, the bilinears A†
AA

B generate the
algebra u(2, 2|4) as described above. By comparing to the matrix form (D.1) we can read
off the generators in su(2) × su(2) × su(4) notation. The canonical forms for rotation
generators of su(2), su(2) and su(4) are

Lα
β = a†

βa
α − 1

2
δαβa

†
γa

γ,

L̇α̇
β̇ = b†

β̇
bα̇ − 1

2
δα̇
β̇
b†
γ̇b

γ̇ ,

Ra
b = c†bc

a − 1
4
δab c

†
cc
c. (D.17)

Under these the fields (1.78) transform canonically. We write the corresponding three
u(1) charges as

D = 1 + 1
2
a†
γa

γ + 1
2
b†
γ̇b

γ̇,

C = 1− 1
2
a†
γa

γ + 1
2
b†
γ̇b

γ̇ − 1
2
c†cc

c,

B = 1
2
a†
γa

γ − 1
2
b†
γ̇b

γ̇ . (D.18)

The remaining off-diagonal generators are

Qa
α = a†

αc
a, Sα

a = c†aa
α,

Q̇α̇a = b†
α̇c

†
a, Ṡα̇a = bα̇ca,

Pαβ̇ = a†
αb

†
β̇
, Kαβ̇ = aαbβ̇ . (D.19)

Quite naturally the algebra u(2, 2|4) is realised by the generators (D.17,D.18,D.19).2 We
have written this in a su(2) × su(2) × su(4) covariant way. In fact one can combine the
indices a and α into a superindex and obtain a manifest su(2) × su(2|4) notation. The
generators with two lower or two upper indices, P, Q̇,K, Ṡ, together with the remaining
charges complete the u(2, 2|4) algebra.

Instead of one fermionic oscillator (ca, c†a) with a = 1, 2, 3, 4, we can also introduce
two pairs of oscillators (ca, c†a) and (dȧ,d†

ȧ) with a, ȧ = 1, 2. These should be grouped as
AA = (a,b†, c,d†) and A†

A = (a†,−b, c†,d) into fundamental representations of u(2, 2|4).
Despite the fact that only su(2)4 (or psu(2|2)2 when using superindices) is manifest in
this notation, it has the added benefit that we can define a physical vacuum state |Z〉 by

aα|Z〉 = bα̇|Z〉 = ca|Z〉 = dȧ|Z〉 = 0. (D.20)

This is the highest weight state of the field multiplet, see Sec. 1.9.

2Note that a shift of B by a constant (−1) does not modify the algebra. Then the 1 in D, C, B can

be absorbed into 1 + 1
2b

†
γ̇b

γ̇ = 1
2b

γ̇
b
†
γ̇ to yield a canonical form.
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na =

(
1
2
D0 + 1

2
B − 1

2
L− 1

2
s1

1
2
D0 + 1

2
B − 1

2
L+ 1

2
s1

)
, nb =

(
1
2
D0 − 1

2
B − 1

2
L− 1

2
s2

1
2
D0 − 1

2
B − 1

2
L+ 1

2
s2,

)
,

nc =

(
1
2
L− 1

2
B − 1

2
p− 3

4
q1 − 1

4
q2

1
2
L− 1

2
B − 1

2
p+ 1

4
q1 − 1

4
q2

)
, nd =

(
1
2
L+ 1

2
B − 1

2
p− 1

4
q1 − 3

4
q2

1
2
L+ 1

2
B − 1

2
p− 1

4
q1 + 1

4
q2

)
,

nc =





1
2
L− 1

2
B − 1

2
p− 3

4
q1 − 1

4
q2

1
2
L− 1

2
B − 1

2
p+ 1

4
q1 − 1

4
q2

1
2
L− 1

2
B + 1

2
p+ 1

4
q1 − 1

4
q2

1
2
L− 1

2
B + 1

2
p+ 1

4
q1 + 3

4
q2



.

Table D.2: Oscillator excitation numbers for a state with given charges.

a
†
1a

2
a
†
2c

1
c
†
1c

2
c
†
2d

†
2 d

†
1d

2
b
†
2d

1
b
†
1b

2

Figure D.4: Oscillator representation of simple roots.

In this context it is useful to know how to represent a state with a given weight

w = (D0; s1, s2; q1, p, q2;B,L) (D.21)

in terms of excitations of the oscillators. We introduce a multi-particle vacuum operator
|Z, L〉 which is the tensor product of L vacua |Z〉. The oscillators a†

p,α,b
†
p,α̇, c

†
p,a,d

†
p,ȧ.

now act on site p, where commutators of two oscillators vanish unless the sites agree.
Equivalently, we define the unphysical multi-particle vacuum state |0, L〉. A generic state
is written as

(a†)na(b†)nb(c†)nc(d†)nd|Z, L〉 or (a†)na(b†)nb(c†)nc|0, L〉. (D.22)

By considering the weights of the oscillators as well as the central charge constraint,
we find the number of excitations as given in Tab. D.2.3 It is also useful to know how
to represent the generators corresponding to the simple roots in terms of creation and
annihilation operators, c.f. Fig. D.4.

3The components of the vectors correspond to the numbers of each component of the oscillators.
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Appendix E

Tools for the su(2) Sector

In this appendix we present a basic set of Mathematica routines to deal with su(2)
spin chains at higher-loops.

E.1 States

One of the basic objects is a state |. . .〉, in Mathematica it will be represented by the
function Chain[...], e.g.

Chain[0,0,1,0,1,1,0] =̂ |0, 0, 1, 0, 1, 1, 0〉 = TrZZφZφφZ. (E.1)

This function is undefined and Mathematica will leave it as it stands and not try to
evaluate it. For example one can construct linear combinations of states, e.g.

2|0, 0, 1, 1〉+ |0, 1, 0, 1〉 =̂ 2 Chain[0,0,1,1] + Chain[0,1,0,1]. (E.2)

We consider spin chain states only modulo cyclic permutations. The order has to be
implemented manually and we need a routine to shift states into some canonical order

SortChain[X_] := X /. C_Chain :>

Module[{k}, Sort[Table[RotateLeft[C, k], {k, Length[C]}]][[1]]];

This function returns the argument X with all chains ordered. It works as follows: First
of all, all states C=Chain[...] within X are found. For each C a list of all possible
cyclic permutations is generated and sorted. The first element is taken as the canonically
ordered state and returned.

We can now define a simple operation on states, the parity p which reverses the spin
chain and multiplies by (−1)L

ChainParity[X_] := X /. C_Chain :> (-1)^Length[C] SortChain[Reverse[C]];

Conveniently, it shifts the states into a canonical order.

E.2 Interactions

The other basic object is an interaction {. . .} which will be represented by Perm[...]

Perm[1,3,2] =̂ {1, 3, 2}. (E.3)



202 E Tools for the su(2) Sector

We need a representation for the action of permutation symbols {. . .}|. . .〉, this is done
by

ApplyPerm[P_, C_] := P /. P0_Perm :> (C /. C0_Chain -> ApplyPermPC[P0, C0]);

ApplyPermPC[P_Perm, C_Chain] :=

Module[{s}, Sum[PermuteList[C, P, s], {s, Length[C]}]];

The function ApplyPerm assumes P and C are linear combinations of interactions and
states. It distributes the elementary interactions and states and passes on to ApplyPermPC

for an elementary pair. This uses another function PermuteList to apply the permutation
to each site s of the spin chain

PermuteList[C_Chain, Perm[], s_] := C;

PermuteList[C_Chain, P_Perm, s_] :=

PermuteList[PermuteElements[C, Last[P] + s], Drop[P, -1], s];

PermuteElements[C_Chain, p_] :=

Module[{p0 = Mod[p, Length[C], 1], p1 = Mod[p + 1, Length[C], 1]},

ReplacePart[ReplacePart[C, C[[p0]], p1], C[[p1]], p0]];

The routine PermuteList recursively works on the permutation symbol P from the right
and uses PermuteElements to perform the pairwise permutations.

E.3 Spectrum

To find the spectrum of an operator, we need to find a complete basis of states on
which the operator closes. This basis is generated by

GenerateChains[L_, K_] :=

(Chain @@ Join[Array[1 &, K], Array[0 &, L - K]])

// Permutations // SortChain // Union;

The function returns a basis of states of L sites with n excitations. It is then convenient
to have a method to evaluate the action of an operator on a basis of states

ActionMatrix[P_, C_] := CoeffList[ApplyPerm[P, C] // SortChain, C];

It returns a matrix that is equivalent to the action of P in the basis C. It requires the
multi-purpose function

CoeffList[X_, L_] := Map[Coefficient[X, #] &, L];

which expands a linear expression X over a basis of atoms L.

E.4 An Example

We can now find the energy of states with length L=4 and K=2 excitations. Let us first
construct a basis of states

Ops = GenerateChains[4, 2]

> {Chain[0, 0, 1, 1], Chain[0, 1, 0, 1]}

The one-loop Hamiltonian is given by H0 = {} − {1} so let us define

Ham = Perm[] - Perm[1];
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and act on the above basis

MHam = ActionMatrix[Ham, Ops]

> {{2, -4}, {-2, 4}}

The eigenvalues are

Eigenvalues[MHam]

> {0, 6}

Eigenvectors[MHam]

> {{2, 1}, {-1, 1}}

where the energy E = 0 belongs to the state 2|0, 0, 1, 1〉 + |0, 1, 0, 1〉 and E = 6 to the
Konishi state −|0, 0, 1, 1〉+ |0, 1, 0, 1〉.

E.5 Commutators

For investigations of integrability we require methods to compute commutators of
interactions abstractly. This is a straightforward implementation of the commutator of
permutation symbols

CommutePerm[X_, Y_] :=

X /. P1_Perm :> (Y /. P2_Perm -> CommutePerm12[P1, P2]) // SimplifyPerm;

CommutePerm12[Perm[X___], Perm[Y___]] :=

Module[{MX = Max[X, 0] + 1, MY = Max[Y, 0] + 1, k},

Sum[Perm @@ Join[{X} + k - 1, {Y} + MX - 1] -

Perm @@ Join[{Y} + MX - 1, {X} + k - 1], {k, MX + MY - 1}]];

As above, CommutePerm distributes linear combinations and calls CommutePerm12 for el-
ementary commutators. Finally, we should simplify the permutation symbols using the
rules in Sec. 6.2.1

SimplifyPerm[YY_] := (YY //.

{Perm[X__ /; Min[X] != 1] :> Perm @@ ({X} - Min[X] + 1),

Perm[X___, y_, y_, Z___] -> Perm[X, Z],

Perm[X___, y_, z_, y_, W___]

/; (z == y + 1) || (z == y - 1)

-> Perm[X, W] - Perm[X, y, W] - Perm[X, z, W]

+ Perm[X, y, z, W] + Perm[X, z, y, W],

Perm[X___, y_, z_, W___]

/; z < y - 1

-> Perm[X, z, y, W],

Perm[X___, y_, z_, W__, y_, V___]

/; (z == y - 1) && (! MemberQ[{W}, k_ /; k > y - 2])

-> Perm[X, y, z, y, W, V],

Perm[X___, y_, W__, z_, y_, V___]

/; (z == y + 1) && (! MemberQ[{W}, k_ /; k < y + 2])

-> Perm[X, W, y, z, y, V]}) // Expand;

For the construction of higher-loop interactions, one can write functions to construct a
basis of interaction symbols for a given loop order and to solve commutators for unknown
coefficients. As the construction still requires a sufficient amount of manual work, we will
not present these here.
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Appendix F

The Harmonic Action

The Hamiltonian density H12 is given by an psu(2, 2|4) invariant function acting on
two sites,

H12 = 2h(J12). (F.1)

We will now describe explicitly how H12 acts on a state of two fields in the oscillator
representation, see Sec. 1.9.

F.1 Generic Invariant Action

We will investigate the action of a generic function f(J12) on two oscillator sites. Let
us introduce a collective oscillator A†

A = (a†
α,b

†
α̇, c

†
a,d

†
ȧ). A general state in VF × VF can

be written as
|p1, . . . , pn;A〉 = A†

p1,A1
. . .A†

pn,An
|ZZ〉, (F.2)

subject to the central charge constraints C1|X〉 = C2|X〉 = 0. The label pk = 1, 2
determines the site on which the k-th oscillator acts. The action of psu(2, 2|4) conserves
the number of each type of oscillator; it can however move oscillators between both sites.
Therefore the action of f(J12) is

f(J12) |p1, . . . , pn;A〉 =
∑

p′
1
,...p′n

cp,p′,A δC1,0δC2,0 |p′1, . . . , p′n;A〉 (F.3)

with some coefficients cs,s′,A. The sums go over the sites 1, 2 and δC1,0, δC2,0 project to
states where the central charge at each site is zero. In view of the fact that oscillators
represent indices of fields, see (1.79), a generic invariant operator f(J12) acts on two fields
by moving indices between them.

F.2 The Harmonic Action

The action of the harmonic numbers within the Hamiltonian density H12 = 2h(J12)
turns out to be particularly simple. It does not depend on the types of oscillators Ak, but
only on the number of oscillators which change the site

H12|s1, . . . , sn;A〉 =
∑

s′
1
,...s′n

cn,n12,n21
δC1,0δC2,0 |s′1, . . . , s′n;A〉. (F.4)



206 F The Harmonic Action

Here n12, n21 count the number of oscillators hopping from site 1 to 2 or vice versa. The
coefficients cn,n12,n21

are given by

cn,n12,n21
= (−1)1+n12n21

Γ
(

1
2
(n12 + n21)

)
Γ
(
1 + 1

2
(n− n12 − n21)

)

Γ
(
1 + 1

2
n
) . (F.5)

In the special case of no oscillator hopping we find

cn,0,0 = h(1
2
n), (F.6)

which can be regarded as a regularisation of (F.5). We will refer to this action given
by (F.4,F.5,F.6) as the ‘harmonic action’. Interestingly, we find that the action of the
Hamiltonian density using the su(4|2)× su(2) invariant vacuum (c.f. Sec. 1.9) is given by
exactly the same expressions.

F.3 Proof

To prove that H12 is given by (F.4,F.5,F.6) it suffices to show

[J12,H12] = 0, H12 Vj = 2h(j)Vj. (F.7)

The invariance of H12 under the subalgebra psu(2|2)× psu(2|2) is straightforward: These
generators only change the types of oscillators, whereas the harmonic action does not
depend on that. In contrast, the remaining generators change the number of oscillators
by two.

Consider a generator which increases the number of oscillators by two, e.g. P12,αβ̇ , and
act with H12P12,αβ̇ on a generic state. First we apply P

P12,αβ̇ |p1, . . . , pn;A〉 = |1, 1, p1, . . . , pn;A
′〉+ |2, 2, p1, . . . , pn;A

′〉, (F.8)

and get a state with two new oscillators, A′ = (α, β̇, A). We apply the Hamiltonian
density (F.4) to this state and get eight terms (to be summed over all p′k). In two of these
terms, both new oscillators end up at site 1

cn+2,n12,n21
|1, 1, p′1, . . . , p′n;A′〉+ cn+2,n12,n21+2|1, 1, p′1, . . . , p′n;A′〉. (F.9)

Here, n12, n21 refer only to the hopping of the old oscillators. Both coefficients can be
combined using (F.5)

cn+2,n12,n21
+ cn+2,n12,n21+2 = cn,n12,n21

. (F.10)

We pull the additional two oscillators out of the state and get

(
cn+2,n12,n21

+ cn+2,n12,n21+2

)
|1, 1, p′1, . . . , p′n;A′〉 = P1,αβ̇ cn,n12,n21

|p′1, . . . , p′n;A〉. (F.11)

Summing over all p′k therefore yields P1,αβ̇H12|p1, . . . , pn;A〉. If both new oscillators end
up at site 2 we get an equivalent result. It remains to be shown that the other four terms
cancel. Two of these are

cn+2,n12,n21+1|1, 2, p′1, . . . , p′n;A′〉+ cn+2,n12+1,n21
|1, 2, p′1, . . . , p′n;A′〉. (F.12)
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The absolute values in (F.5) match for cn+2,n12,n21+1 and cn+2,n12+1,n21
and we sum up the

signs

(−1)1+n12n21+n12 + (−1)1+n12n21+n21 = (−1)1+n12n21
(
(−1)n12 + (−1)n21

)
. (F.13)

Now, oscillators always hop in pairs due to the central charge constraint. One of the new
oscillators has changed the site, so the number of old oscillators changing site must be
odd. The above two signs must be opposite and cancel in the sum. The same is true
for the remaining two terms. This concludes the proof for [P12,αβ̇ ,H12] = 0. The proof
for the other generators which increase the number of oscillators is equivalent. To prove
invariance under the remaining generators, we note that these remove two oscillators from
one of the two sites. Assume it will remove the first two oscillators from a state (for each
two oscillators that are removed, the argument will be the same). Now, the argument is
essentially the same as the proof for P12,αβ̇ read in the opposite direction.

To prove that the eigenvalues of H12 are given by 2h(j), we act on a state |j〉 of Vj
within the bosonic su(1, 1) subsector, c.f. Sec. 3.4

|j〉 =

j∑

k=0

(−1)kj!

k!(j − k)! |k, j − k〉 (F.14)

with a single spin given by

|k〉 =
1

k!
(a†

2)
k(b†

2)
k |Z〉. (F.15)

The state |j〉 has a definite spin and is therefore an eigenstate of H12. We can choose to
calculate only the coefficient of |j, 0〉 in H12|j〉. It is given by (see Sec. 3.2.6)

h(j) +

j∑

k=1

(−1)1+kj!

k k!(j − k)! = 2h(j), (F.16)

which proves that H12 = 2h(J12). This concludes the proof of (F.7).

F.4 An Example

We will now determine the planar anomalous dimensions of some states with weight
(2; 0, 0; 0, 0, 0; 0, 2) to demonstrate how to apply the above Hamiltonian. Using Tab. D.2
we find that we have to excite each of the four oscillators c,d once. There must be an
equal number of c and d oscillators on each site due to the central charge constraint and
the three distinct configurations are

|1212〉 = c†1,1c
†
2,2d

†
1,1d

†
2,2|ZZ〉,

|1221〉 = c†1,1c
†
2,2d

†
2,1d

†
1,2|ZZ〉,

|1111〉 = c†1,1c
†
1,2d

†
1,1d

†
1,2|ZZ〉. (F.17)

Let us now act with H12 on these states, we find

H12|1212〉 = c4,0,0|1212〉+ c4,0,2|1111〉+ c4,2,0|2222〉
+ c4,1,1|2112〉+ c4,1,1|1221〉+ c4,2,2|2121〉

= 3
2
|1212〉 − 1

2
|1111〉 − 1

2
|2222〉+ 1

2
|2112〉+ 1

2
|1221〉 − 1

2
|2121〉

= |1212〉+ |1221〉 − |1111〉 (F.18)
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using (F.4,F.5,F.6) and cyclicity of the trace. Evaluating the Hamiltonian for the remain-
ing two states |1212〉 and |1221〉 we find the energy matrix

H =




2 2 −2
2 2 −2
−2 −2 2



 . (F.19)

the factor of 2 is due to H = H12 +H21. One eigenstate is

|K〉 = |1212〉+ |1221〉 − |1111〉. (F.20)

with energy E = 6; it is clearly part of the Konishi multiplet. The other two, |1212〉 +
|1111〉 and |1221〉 + |1111〉, have vanishing energy and belong to the half-BPS current
multiplet.
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